diff options
| author | Matthias Krüger <matthias.krueger@famsik.de> | 2023-10-12 18:36:44 +0200 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2023-10-12 18:36:44 +0200 |
| commit | 4832811b0d19fd273e698ffa46a8fdac7489052e (patch) | |
| tree | 5852e85d9251058a98cbb11340801db1a02cd209 /compiler/rustc_mir_transform/src/coverage/graph.rs | |
| parent | 5f90bee663f3dcd1708779ac76b7241de2523a9a (diff) | |
| parent | d99ab97b027917b434790b76492386310b47978d (diff) | |
| download | rust-4832811b0d19fd273e698ffa46a8fdac7489052e.tar.gz rust-4832811b0d19fd273e698ffa46a8fdac7489052e.zip | |
Rollup merge of #116654 - Zalathar:reloop-traversal, r=oli-obk
coverage: Clarify loop-edge detection and graph traversal This is a collection of improvements to two semi-related pieces of code: - The code in `counters` that detects which graph edges don't exit a loop, and would therefore be good candidates to have their coverage computed as an expression rather than having a physical counter. - The code in `graph` that traverses the coverage BCB graph in a particular order, and tracks loops and loop edges along the way (which is relevant to the above). I was originally only planning to make the `graph` changes, but there was going to be a lot of indentation churn in `counters` anyway, and once I started looking I noticed a lot of opportunities for simplification. --- `@rustbot` label +A-code-coverage
Diffstat (limited to 'compiler/rustc_mir_transform/src/coverage/graph.rs')
| -rw-r--r-- | compiler/rustc_mir_transform/src/coverage/graph.rs | 161 |
1 files changed, 81 insertions, 80 deletions
diff --git a/compiler/rustc_mir_transform/src/coverage/graph.rs b/compiler/rustc_mir_transform/src/coverage/graph.rs index 39027d21f06..9a7adaada09 100644 --- a/compiler/rustc_mir_transform/src/coverage/graph.rs +++ b/compiler/rustc_mir_transform/src/coverage/graph.rs @@ -6,6 +6,7 @@ use rustc_index::{IndexSlice, IndexVec}; use rustc_middle::mir::{self, BasicBlock, TerminatorKind}; use std::cmp::Ordering; +use std::collections::VecDeque; use std::ops::{Index, IndexMut}; /// A coverage-specific simplification of the MIR control flow graph (CFG). The `CoverageGraph`s @@ -385,57 +386,72 @@ fn bcb_filtered_successors<'a, 'tcx>( /// ensures a loop is completely traversed before processing Blocks after the end of the loop. #[derive(Debug)] pub(super) struct TraversalContext { - /// From one or more backedges returning to a loop header. - pub loop_backedges: Option<(Vec<BasicCoverageBlock>, BasicCoverageBlock)>, - - /// worklist, to be traversed, of CoverageGraph in the loop with the given loop - /// backedges, such that the loop is the inner inner-most loop containing these - /// CoverageGraph - pub worklist: Vec<BasicCoverageBlock>, + /// BCB with one or more incoming loop backedges, indicating which loop + /// this context is for. + /// + /// If `None`, this is the non-loop context for the function as a whole. + loop_header: Option<BasicCoverageBlock>, + + /// Worklist of BCBs to be processed in this context. + worklist: VecDeque<BasicCoverageBlock>, } -pub(super) struct TraverseCoverageGraphWithLoops { - pub backedges: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>, - pub context_stack: Vec<TraversalContext>, +pub(super) struct TraverseCoverageGraphWithLoops<'a> { + basic_coverage_blocks: &'a CoverageGraph, + + backedges: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>, + context_stack: Vec<TraversalContext>, visited: BitSet<BasicCoverageBlock>, } -impl TraverseCoverageGraphWithLoops { - pub fn new(basic_coverage_blocks: &CoverageGraph) -> Self { - let start_bcb = basic_coverage_blocks.start_node(); +impl<'a> TraverseCoverageGraphWithLoops<'a> { + pub(super) fn new(basic_coverage_blocks: &'a CoverageGraph) -> Self { let backedges = find_loop_backedges(basic_coverage_blocks); - let context_stack = - vec![TraversalContext { loop_backedges: None, worklist: vec![start_bcb] }]; + + let worklist = VecDeque::from([basic_coverage_blocks.start_node()]); + let context_stack = vec![TraversalContext { loop_header: None, worklist }]; + // `context_stack` starts with a `TraversalContext` for the main function context (beginning // with the `start` BasicCoverageBlock of the function). New worklists are pushed to the top // of the stack as loops are entered, and popped off of the stack when a loop's worklist is // exhausted. let visited = BitSet::new_empty(basic_coverage_blocks.num_nodes()); - Self { backedges, context_stack, visited } + Self { basic_coverage_blocks, backedges, context_stack, visited } } - pub fn next(&mut self, basic_coverage_blocks: &CoverageGraph) -> Option<BasicCoverageBlock> { + /// For each loop on the loop context stack (top-down), yields a list of BCBs + /// within that loop that have an outgoing edge back to the loop header. + pub(super) fn reloop_bcbs_per_loop(&self) -> impl Iterator<Item = &[BasicCoverageBlock]> { + self.context_stack + .iter() + .rev() + .filter_map(|context| context.loop_header) + .map(|header_bcb| self.backedges[header_bcb].as_slice()) + } + + pub(super) fn next(&mut self) -> Option<BasicCoverageBlock> { debug!( "TraverseCoverageGraphWithLoops::next - context_stack: {:?}", self.context_stack.iter().rev().collect::<Vec<_>>() ); while let Some(context) = self.context_stack.last_mut() { - if let Some(next_bcb) = context.worklist.pop() { - if !self.visited.insert(next_bcb) { - debug!("Already visited: {:?}", next_bcb); + if let Some(bcb) = context.worklist.pop_front() { + if !self.visited.insert(bcb) { + debug!("Already visited: {bcb:?}"); continue; } - debug!("Visiting {:?}", next_bcb); - if self.backedges[next_bcb].len() > 0 { - debug!("{:?} is a loop header! Start a new TraversalContext...", next_bcb); + debug!("Visiting {bcb:?}"); + + if self.backedges[bcb].len() > 0 { + debug!("{bcb:?} is a loop header! Start a new TraversalContext..."); self.context_stack.push(TraversalContext { - loop_backedges: Some((self.backedges[next_bcb].clone(), next_bcb)), - worklist: Vec::new(), + loop_header: Some(bcb), + worklist: VecDeque::new(), }); } - self.extend_worklist(basic_coverage_blocks, next_bcb); - return Some(next_bcb); + self.add_successors_to_worklists(bcb); + return Some(bcb); } else { // Strip contexts with empty worklists from the top of the stack self.context_stack.pop(); @@ -445,13 +461,10 @@ impl TraverseCoverageGraphWithLoops { None } - pub fn extend_worklist( - &mut self, - basic_coverage_blocks: &CoverageGraph, - bcb: BasicCoverageBlock, - ) { - let successors = &basic_coverage_blocks.successors[bcb]; + pub fn add_successors_to_worklists(&mut self, bcb: BasicCoverageBlock) { + let successors = &self.basic_coverage_blocks.successors[bcb]; debug!("{:?} has {} successors:", bcb, successors.len()); + for &successor in successors { if successor == bcb { debug!( @@ -460,56 +473,44 @@ impl TraverseCoverageGraphWithLoops { bcb ); // Don't re-add this successor to the worklist. We are already processing it. + // FIXME: This claims to skip just the self-successor, but it actually skips + // all other successors as well. Does that matter? break; } - for context in self.context_stack.iter_mut().rev() { - // Add successors of the current BCB to the appropriate context. Successors that - // stay within a loop are added to the BCBs context worklist. Successors that - // exit the loop (they are not dominated by the loop header) must be reachable - // from other BCBs outside the loop, and they will be added to a different - // worklist. - // - // Branching blocks (with more than one successor) must be processed before - // blocks with only one successor, to prevent unnecessarily complicating - // `Expression`s by creating a Counter in a `BasicCoverageBlock` that the - // branching block would have given an `Expression` (or vice versa). - let (some_successor_to_add, some_loop_header) = - if let Some((_, loop_header)) = context.loop_backedges { - if basic_coverage_blocks.dominates(loop_header, successor) { - (Some(successor), Some(loop_header)) - } else { - (None, None) - } - } else { - (Some(successor), None) - }; - if let Some(successor_to_add) = some_successor_to_add { - if basic_coverage_blocks.successors[successor_to_add].len() > 1 { - debug!( - "{:?} successor is branching. Prioritize it at the beginning of \ - the {}", - successor_to_add, - if let Some(loop_header) = some_loop_header { - format!("worklist for the loop headed by {loop_header:?}") - } else { - String::from("non-loop worklist") - }, - ); - context.worklist.insert(0, successor_to_add); - } else { - debug!( - "{:?} successor is non-branching. Defer it to the end of the {}", - successor_to_add, - if let Some(loop_header) = some_loop_header { - format!("worklist for the loop headed by {loop_header:?}") - } else { - String::from("non-loop worklist") - }, - ); - context.worklist.push(successor_to_add); + + // Add successors of the current BCB to the appropriate context. Successors that + // stay within a loop are added to the BCBs context worklist. Successors that + // exit the loop (they are not dominated by the loop header) must be reachable + // from other BCBs outside the loop, and they will be added to a different + // worklist. + // + // Branching blocks (with more than one successor) must be processed before + // blocks with only one successor, to prevent unnecessarily complicating + // `Expression`s by creating a Counter in a `BasicCoverageBlock` that the + // branching block would have given an `Expression` (or vice versa). + + let context = self + .context_stack + .iter_mut() + .rev() + .find(|context| match context.loop_header { + Some(loop_header) => { + self.basic_coverage_blocks.dominates(loop_header, successor) } - break; - } + None => true, + }) + .unwrap_or_else(|| bug!("should always fall back to the root non-loop context")); + debug!("adding to worklist for {:?}", context.loop_header); + + // FIXME: The code below had debug messages claiming to add items to a + // particular end of the worklist, but was confused about which end was + // which. The existing behaviour has been preserved for now, but it's + // unclear what the intended behaviour was. + + if self.basic_coverage_blocks.successors[successor].len() > 1 { + context.worklist.push_back(successor); + } else { + context.worklist.push_front(successor); } } } |
