diff options
| author | Dylan DPC <dylan.dpc@gmail.com> | 2020-10-14 02:30:40 +0200 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2020-10-14 02:30:40 +0200 |
| commit | becd6c61c8b83ef26d5838808fc0cc100b51bf01 (patch) | |
| tree | 40dc0a509fc73096d50ba526e761855b8c806e8c /compiler | |
| parent | 17ee28b71f452dc914528786f7b535837ac95f85 (diff) | |
| parent | ce7c73c5a58017fb84b97bda4a87bae0f831f6ea (diff) | |
| download | rust-becd6c61c8b83ef26d5838808fc0cc100b51bf01.tar.gz rust-becd6c61c8b83ef26d5838808fc0cc100b51bf01.zip | |
Rollup merge of #77808 - Nicholas-Baron:fn_ctxt_impl, r=matthewjasper
Moved the main `impl` for FnCtxt to its own file. Resolves #77085 without breaking the API of the `FnCtxt` struct. This is a solution to the file length being over 3000 (see issue #60302). The other solution to the file length is 1. to change the API of this struct by 2. encapulating certain fields of the struct into other structs.
Diffstat (limited to 'compiler')
| -rw-r--r-- | compiler/rustc_typeck/src/check/fn_ctxt.rs | 3200 | ||||
| -rw-r--r-- | compiler/rustc_typeck/src/check/fn_ctxt/_impl.rs | 1469 | ||||
| -rw-r--r-- | compiler/rustc_typeck/src/check/fn_ctxt/checks.rs | 979 | ||||
| -rw-r--r-- | compiler/rustc_typeck/src/check/fn_ctxt/mod.rs | 295 | ||||
| -rw-r--r-- | compiler/rustc_typeck/src/check/fn_ctxt/suggestions.rs | 528 | ||||
| -rw-r--r-- | compiler/rustc_typeck/src/check/mod.rs | 2 |
6 files changed, 3272 insertions, 3201 deletions
diff --git a/compiler/rustc_typeck/src/check/fn_ctxt.rs b/compiler/rustc_typeck/src/check/fn_ctxt.rs deleted file mode 100644 index 79d6c7dbfda..00000000000 --- a/compiler/rustc_typeck/src/check/fn_ctxt.rs +++ /dev/null @@ -1,3200 +0,0 @@ -// ignore-tidy-filelength -// FIXME: This file seems to have too much functionality wrapped into it, -// leading to it being too long. -// Splitting this file may involve abstracting functionality into other files. - -use super::callee::{self, DeferredCallResolution}; -use super::coercion::{CoerceMany, DynamicCoerceMany}; -use super::method::{self, MethodCallee, SelfSource}; -use super::Expectation::*; -use super::TupleArgumentsFlag::*; -use super::{ - potentially_plural_count, struct_span_err, BreakableCtxt, Diverges, EnclosingBreakables, - Expectation, FallbackMode, Inherited, LocalTy, Needs, TupleArgumentsFlag, UnsafetyState, -}; -use crate::astconv::{ - AstConv, ExplicitLateBound, GenericArgCountMismatch, GenericArgCountResult, PathSeg, -}; - -use rustc_ast as ast; -use rustc_ast::util::parser::ExprPrecedence; -use rustc_data_structures::captures::Captures; -use rustc_data_structures::fx::FxHashSet; -use rustc_errors::ErrorReported; -use rustc_errors::{Applicability, DiagnosticBuilder, DiagnosticId}; -use rustc_hir as hir; -use rustc_hir::def::{CtorOf, DefKind, Res}; -use rustc_hir::def_id::DefId; -use rustc_hir::lang_items::LangItem; -use rustc_hir::{ExprKind, GenericArg, ItemKind, Node, QPath}; -use rustc_infer::infer::canonical::{Canonical, OriginalQueryValues, QueryResponse}; -use rustc_infer::infer::error_reporting::TypeAnnotationNeeded::E0282; -use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind}; -use rustc_infer::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind}; -use rustc_infer::infer::{self, InferOk, InferResult}; -use rustc_middle::hir::map::blocks::FnLikeNode; -use rustc_middle::ty::adjustment::{ - Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability, -}; -use rustc_middle::ty::fold::TypeFoldable; -use rustc_middle::ty::subst::{ - self, GenericArgKind, InternalSubsts, Subst, SubstsRef, UserSelfTy, UserSubsts, -}; -use rustc_middle::ty::{ - self, AdtKind, CanonicalUserType, Const, DefIdTree, GenericParamDefKind, ToPolyTraitRef, - ToPredicate, Ty, TyCtxt, UserType, -}; -use rustc_session::{lint, Session}; -use rustc_span::hygiene::DesugaringKind; -use rustc_span::source_map::{original_sp, DUMMY_SP}; -use rustc_span::symbol::{kw, sym, Ident}; -use rustc_span::{self, BytePos, MultiSpan, Span}; -use rustc_trait_selection::infer::InferCtxtExt as _; -use rustc_trait_selection::opaque_types::InferCtxtExt as _; -use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _; -use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _; -use rustc_trait_selection::traits::{ - self, ObligationCause, ObligationCauseCode, TraitEngine, TraitEngineExt, -}; - -use std::cell::{Cell, RefCell}; -use std::collections::hash_map::Entry; -use std::iter; -use std::mem::replace; -use std::ops::Deref; -use std::slice; - -pub struct FnCtxt<'a, 'tcx> { - pub(super) body_id: hir::HirId, - - /// The parameter environment used for proving trait obligations - /// in this function. This can change when we descend into - /// closures (as they bring new things into scope), hence it is - /// not part of `Inherited` (as of the time of this writing, - /// closures do not yet change the environment, but they will - /// eventually). - pub(super) param_env: ty::ParamEnv<'tcx>, - - /// Number of errors that had been reported when we started - /// checking this function. On exit, if we find that *more* errors - /// have been reported, we will skip regionck and other work that - /// expects the types within the function to be consistent. - // FIXME(matthewjasper) This should not exist, and it's not correct - // if type checking is run in parallel. - err_count_on_creation: usize, - - /// If `Some`, this stores coercion information for returned - /// expressions. If `None`, this is in a context where return is - /// inappropriate, such as a const expression. - /// - /// This is a `RefCell<DynamicCoerceMany>`, which means that we - /// can track all the return expressions and then use them to - /// compute a useful coercion from the set, similar to a match - /// expression or other branching context. You can use methods - /// like `expected_ty` to access the declared return type (if - /// any). - pub(super) ret_coercion: Option<RefCell<DynamicCoerceMany<'tcx>>>, - - pub(super) ret_coercion_impl_trait: Option<Ty<'tcx>>, - - pub(super) ret_type_span: Option<Span>, - - /// Used exclusively to reduce cost of advanced evaluation used for - /// more helpful diagnostics. - pub(super) in_tail_expr: bool, - - /// First span of a return site that we find. Used in error messages. - pub(super) ret_coercion_span: RefCell<Option<Span>>, - - pub(super) resume_yield_tys: Option<(Ty<'tcx>, Ty<'tcx>)>, - - pub(super) ps: RefCell<UnsafetyState>, - - /// Whether the last checked node generates a divergence (e.g., - /// `return` will set this to `Always`). In general, when entering - /// an expression or other node in the tree, the initial value - /// indicates whether prior parts of the containing expression may - /// have diverged. It is then typically set to `Maybe` (and the - /// old value remembered) for processing the subparts of the - /// current expression. As each subpart is processed, they may set - /// the flag to `Always`, etc. Finally, at the end, we take the - /// result and "union" it with the original value, so that when we - /// return the flag indicates if any subpart of the parent - /// expression (up to and including this part) has diverged. So, - /// if you read it after evaluating a subexpression `X`, the value - /// you get indicates whether any subexpression that was - /// evaluating up to and including `X` diverged. - /// - /// We currently use this flag only for diagnostic purposes: - /// - /// - To warn about unreachable code: if, after processing a - /// sub-expression but before we have applied the effects of the - /// current node, we see that the flag is set to `Always`, we - /// can issue a warning. This corresponds to something like - /// `foo(return)`; we warn on the `foo()` expression. (We then - /// update the flag to `WarnedAlways` to suppress duplicate - /// reports.) Similarly, if we traverse to a fresh statement (or - /// tail expression) from a `Always` setting, we will issue a - /// warning. This corresponds to something like `{return; - /// foo();}` or `{return; 22}`, where we would warn on the - /// `foo()` or `22`. - /// - /// An expression represents dead code if, after checking it, - /// the diverges flag is set to something other than `Maybe`. - pub(super) diverges: Cell<Diverges>, - - /// Whether any child nodes have any type errors. - pub(super) has_errors: Cell<bool>, - - pub(super) enclosing_breakables: RefCell<EnclosingBreakables<'tcx>>, - - pub(super) inh: &'a Inherited<'a, 'tcx>, -} - -impl<'a, 'tcx> FnCtxt<'a, 'tcx> { - pub fn new( - inh: &'a Inherited<'a, 'tcx>, - param_env: ty::ParamEnv<'tcx>, - body_id: hir::HirId, - ) -> FnCtxt<'a, 'tcx> { - FnCtxt { - body_id, - param_env, - err_count_on_creation: inh.tcx.sess.err_count(), - ret_coercion: None, - ret_coercion_impl_trait: None, - ret_type_span: None, - in_tail_expr: false, - ret_coercion_span: RefCell::new(None), - resume_yield_tys: None, - ps: RefCell::new(UnsafetyState::function(hir::Unsafety::Normal, hir::CRATE_HIR_ID)), - diverges: Cell::new(Diverges::Maybe), - has_errors: Cell::new(false), - enclosing_breakables: RefCell::new(EnclosingBreakables { - stack: Vec::new(), - by_id: Default::default(), - }), - inh, - } - } - - pub fn sess(&self) -> &Session { - &self.tcx.sess - } - - pub fn errors_reported_since_creation(&self) -> bool { - self.tcx.sess.err_count() > self.err_count_on_creation - } - - /// Produces warning on the given node, if the current point in the - /// function is unreachable, and there hasn't been another warning. - pub(super) fn warn_if_unreachable(&self, id: hir::HirId, span: Span, kind: &str) { - // FIXME: Combine these two 'if' expressions into one once - // let chains are implemented - if let Diverges::Always { span: orig_span, custom_note } = self.diverges.get() { - // If span arose from a desugaring of `if` or `while`, then it is the condition itself, - // which diverges, that we are about to lint on. This gives suboptimal diagnostics. - // Instead, stop here so that the `if`- or `while`-expression's block is linted instead. - if !span.is_desugaring(DesugaringKind::CondTemporary) - && !span.is_desugaring(DesugaringKind::Async) - && !orig_span.is_desugaring(DesugaringKind::Await) - { - self.diverges.set(Diverges::WarnedAlways); - - debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind); - - self.tcx().struct_span_lint_hir(lint::builtin::UNREACHABLE_CODE, id, span, |lint| { - let msg = format!("unreachable {}", kind); - lint.build(&msg) - .span_label(span, &msg) - .span_label( - orig_span, - custom_note - .unwrap_or("any code following this expression is unreachable"), - ) - .emit(); - }) - } - } - } - - pub fn cause(&self, span: Span, code: ObligationCauseCode<'tcx>) -> ObligationCause<'tcx> { - ObligationCause::new(span, self.body_id, code) - } - - pub fn misc(&self, span: Span) -> ObligationCause<'tcx> { - self.cause(span, ObligationCauseCode::MiscObligation) - } - - /// Resolves type and const variables in `ty` if possible. Unlike the infcx - /// version (resolve_vars_if_possible), this version will - /// also select obligations if it seems useful, in an effort - /// to get more type information. - pub(super) fn resolve_vars_with_obligations(&self, mut ty: Ty<'tcx>) -> Ty<'tcx> { - debug!("resolve_vars_with_obligations(ty={:?})", ty); - - // No Infer()? Nothing needs doing. - if !ty.has_infer_types_or_consts() { - debug!("resolve_vars_with_obligations: ty={:?}", ty); - return ty; - } - - // If `ty` is a type variable, see whether we already know what it is. - ty = self.resolve_vars_if_possible(&ty); - if !ty.has_infer_types_or_consts() { - debug!("resolve_vars_with_obligations: ty={:?}", ty); - return ty; - } - - // If not, try resolving pending obligations as much as - // possible. This can help substantially when there are - // indirect dependencies that don't seem worth tracking - // precisely. - self.select_obligations_where_possible(false, |_| {}); - ty = self.resolve_vars_if_possible(&ty); - - debug!("resolve_vars_with_obligations: ty={:?}", ty); - ty - } - - pub(super) fn record_deferred_call_resolution( - &self, - closure_def_id: DefId, - r: DeferredCallResolution<'tcx>, - ) { - let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut(); - deferred_call_resolutions.entry(closure_def_id).or_default().push(r); - } - - pub(super) fn remove_deferred_call_resolutions( - &self, - closure_def_id: DefId, - ) -> Vec<DeferredCallResolution<'tcx>> { - let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut(); - deferred_call_resolutions.remove(&closure_def_id).unwrap_or(vec![]) - } - - pub fn tag(&self) -> String { - format!("{:p}", self) - } - - pub fn local_ty(&self, span: Span, nid: hir::HirId) -> LocalTy<'tcx> { - self.locals.borrow().get(&nid).cloned().unwrap_or_else(|| { - span_bug!(span, "no type for local variable {}", self.tcx.hir().node_to_string(nid)) - }) - } - - #[inline] - pub fn write_ty(&self, id: hir::HirId, ty: Ty<'tcx>) { - debug!( - "write_ty({:?}, {:?}) in fcx {}", - id, - self.resolve_vars_if_possible(&ty), - self.tag() - ); - self.typeck_results.borrow_mut().node_types_mut().insert(id, ty); - - if ty.references_error() { - self.has_errors.set(true); - self.set_tainted_by_errors(); - } - } - - pub fn write_field_index(&self, hir_id: hir::HirId, index: usize) { - self.typeck_results.borrow_mut().field_indices_mut().insert(hir_id, index); - } - - fn write_resolution(&self, hir_id: hir::HirId, r: Result<(DefKind, DefId), ErrorReported>) { - self.typeck_results.borrow_mut().type_dependent_defs_mut().insert(hir_id, r); - } - - pub fn write_method_call(&self, hir_id: hir::HirId, method: MethodCallee<'tcx>) { - debug!("write_method_call(hir_id={:?}, method={:?})", hir_id, method); - self.write_resolution(hir_id, Ok((DefKind::AssocFn, method.def_id))); - self.write_substs(hir_id, method.substs); - - // When the method is confirmed, the `method.substs` includes - // parameters from not just the method, but also the impl of - // the method -- in particular, the `Self` type will be fully - // resolved. However, those are not something that the "user - // specified" -- i.e., those types come from the inferred type - // of the receiver, not something the user wrote. So when we - // create the user-substs, we want to replace those earlier - // types with just the types that the user actually wrote -- - // that is, those that appear on the *method itself*. - // - // As an example, if the user wrote something like - // `foo.bar::<u32>(...)` -- the `Self` type here will be the - // type of `foo` (possibly adjusted), but we don't want to - // include that. We want just the `[_, u32]` part. - if !method.substs.is_noop() { - let method_generics = self.tcx.generics_of(method.def_id); - if !method_generics.params.is_empty() { - let user_type_annotation = self.infcx.probe(|_| { - let user_substs = UserSubsts { - substs: InternalSubsts::for_item(self.tcx, method.def_id, |param, _| { - let i = param.index as usize; - if i < method_generics.parent_count { - self.infcx.var_for_def(DUMMY_SP, param) - } else { - method.substs[i] - } - }), - user_self_ty: None, // not relevant here - }; - - self.infcx.canonicalize_user_type_annotation(&UserType::TypeOf( - method.def_id, - user_substs, - )) - }); - - debug!("write_method_call: user_type_annotation={:?}", user_type_annotation); - self.write_user_type_annotation(hir_id, user_type_annotation); - } - } - } - - pub fn write_substs(&self, node_id: hir::HirId, substs: SubstsRef<'tcx>) { - if !substs.is_noop() { - debug!("write_substs({:?}, {:?}) in fcx {}", node_id, substs, self.tag()); - - self.typeck_results.borrow_mut().node_substs_mut().insert(node_id, substs); - } - } - - /// Given the substs that we just converted from the HIR, try to - /// canonicalize them and store them as user-given substitutions - /// (i.e., substitutions that must be respected by the NLL check). - /// - /// This should be invoked **before any unifications have - /// occurred**, so that annotations like `Vec<_>` are preserved - /// properly. - pub fn write_user_type_annotation_from_substs( - &self, - hir_id: hir::HirId, - def_id: DefId, - substs: SubstsRef<'tcx>, - user_self_ty: Option<UserSelfTy<'tcx>>, - ) { - debug!( - "write_user_type_annotation_from_substs: hir_id={:?} def_id={:?} substs={:?} \ - user_self_ty={:?} in fcx {}", - hir_id, - def_id, - substs, - user_self_ty, - self.tag(), - ); - - if Self::can_contain_user_lifetime_bounds((substs, user_self_ty)) { - let canonicalized = self.infcx.canonicalize_user_type_annotation(&UserType::TypeOf( - def_id, - UserSubsts { substs, user_self_ty }, - )); - debug!("write_user_type_annotation_from_substs: canonicalized={:?}", canonicalized); - self.write_user_type_annotation(hir_id, canonicalized); - } - } - - pub fn write_user_type_annotation( - &self, - hir_id: hir::HirId, - canonical_user_type_annotation: CanonicalUserType<'tcx>, - ) { - debug!( - "write_user_type_annotation: hir_id={:?} canonical_user_type_annotation={:?} tag={}", - hir_id, - canonical_user_type_annotation, - self.tag(), - ); - - if !canonical_user_type_annotation.is_identity() { - self.typeck_results - .borrow_mut() - .user_provided_types_mut() - .insert(hir_id, canonical_user_type_annotation); - } else { - debug!("write_user_type_annotation: skipping identity substs"); - } - } - - pub fn apply_adjustments(&self, expr: &hir::Expr<'_>, adj: Vec<Adjustment<'tcx>>) { - debug!("apply_adjustments(expr={:?}, adj={:?})", expr, adj); - - if adj.is_empty() { - return; - } - - let autoborrow_mut = adj.iter().any(|adj| { - matches!(adj, &Adjustment { - kind: Adjust::Borrow(AutoBorrow::Ref(_, AutoBorrowMutability::Mut { .. })), - .. - }) - }); - - match self.typeck_results.borrow_mut().adjustments_mut().entry(expr.hir_id) { - Entry::Vacant(entry) => { - entry.insert(adj); - } - Entry::Occupied(mut entry) => { - debug!(" - composing on top of {:?}", entry.get()); - match (&entry.get()[..], &adj[..]) { - // Applying any adjustment on top of a NeverToAny - // is a valid NeverToAny adjustment, because it can't - // be reached. - (&[Adjustment { kind: Adjust::NeverToAny, .. }], _) => return, - (&[ - Adjustment { kind: Adjust::Deref(_), .. }, - Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(..)), .. }, - ], &[ - Adjustment { kind: Adjust::Deref(_), .. }, - .. // Any following adjustments are allowed. - ]) => { - // A reborrow has no effect before a dereference. - } - // FIXME: currently we never try to compose autoderefs - // and ReifyFnPointer/UnsafeFnPointer, but we could. - _ => - bug!("while adjusting {:?}, can't compose {:?} and {:?}", - expr, entry.get(), adj) - }; - *entry.get_mut() = adj; - } - } - - // If there is an mutable auto-borrow, it is equivalent to `&mut <expr>`. - // In this case implicit use of `Deref` and `Index` within `<expr>` should - // instead be `DerefMut` and `IndexMut`, so fix those up. - if autoborrow_mut { - self.convert_place_derefs_to_mutable(expr); - } - } - - /// Basically whenever we are converting from a type scheme into - /// the fn body space, we always want to normalize associated - /// types as well. This function combines the two. - fn instantiate_type_scheme<T>(&self, span: Span, substs: SubstsRef<'tcx>, value: &T) -> T - where - T: TypeFoldable<'tcx>, - { - let value = value.subst(self.tcx, substs); - let result = self.normalize_associated_types_in(span, &value); - debug!("instantiate_type_scheme(value={:?}, substs={:?}) = {:?}", value, substs, result); - result - } - - /// As `instantiate_type_scheme`, but for the bounds found in a - /// generic type scheme. - fn instantiate_bounds( - &self, - span: Span, - def_id: DefId, - substs: SubstsRef<'tcx>, - ) -> (ty::InstantiatedPredicates<'tcx>, Vec<Span>) { - let bounds = self.tcx.predicates_of(def_id); - let spans: Vec<Span> = bounds.predicates.iter().map(|(_, span)| *span).collect(); - let result = bounds.instantiate(self.tcx, substs); - let result = self.normalize_associated_types_in(span, &result); - debug!( - "instantiate_bounds(bounds={:?}, substs={:?}) = {:?}, {:?}", - bounds, substs, result, spans, - ); - (result, spans) - } - - /// Replaces the opaque types from the given value with type variables, - /// and records the `OpaqueTypeMap` for later use during writeback. See - /// `InferCtxt::instantiate_opaque_types` for more details. - pub(super) fn instantiate_opaque_types_from_value<T: TypeFoldable<'tcx>>( - &self, - parent_id: hir::HirId, - value: &T, - value_span: Span, - ) -> T { - let parent_def_id = self.tcx.hir().local_def_id(parent_id); - debug!( - "instantiate_opaque_types_from_value(parent_def_id={:?}, value={:?})", - parent_def_id, value - ); - - let (value, opaque_type_map) = - self.register_infer_ok_obligations(self.instantiate_opaque_types( - parent_def_id, - self.body_id, - self.param_env, - value, - value_span, - )); - - let mut opaque_types = self.opaque_types.borrow_mut(); - let mut opaque_types_vars = self.opaque_types_vars.borrow_mut(); - for (ty, decl) in opaque_type_map { - let _ = opaque_types.insert(ty, decl); - let _ = opaque_types_vars.insert(decl.concrete_ty, decl.opaque_type); - } - - value - } - - pub(super) fn normalize_associated_types_in<T>(&self, span: Span, value: &T) -> T - where - T: TypeFoldable<'tcx>, - { - self.inh.normalize_associated_types_in(span, self.body_id, self.param_env, value) - } - - pub(super) fn normalize_associated_types_in_as_infer_ok<T>( - &self, - span: Span, - value: &T, - ) -> InferOk<'tcx, T> - where - T: TypeFoldable<'tcx>, - { - self.inh.partially_normalize_associated_types_in(span, self.body_id, self.param_env, value) - } - - pub fn require_type_meets( - &self, - ty: Ty<'tcx>, - span: Span, - code: traits::ObligationCauseCode<'tcx>, - def_id: DefId, - ) { - self.register_bound(ty, def_id, traits::ObligationCause::new(span, self.body_id, code)); - } - - pub fn require_type_is_sized( - &self, - ty: Ty<'tcx>, - span: Span, - code: traits::ObligationCauseCode<'tcx>, - ) { - if !ty.references_error() { - let lang_item = self.tcx.require_lang_item(LangItem::Sized, None); - self.require_type_meets(ty, span, code, lang_item); - } - } - - pub fn require_type_is_sized_deferred( - &self, - ty: Ty<'tcx>, - span: Span, - code: traits::ObligationCauseCode<'tcx>, - ) { - if !ty.references_error() { - self.deferred_sized_obligations.borrow_mut().push((ty, span, code)); - } - } - - pub fn register_bound( - &self, - ty: Ty<'tcx>, - def_id: DefId, - cause: traits::ObligationCause<'tcx>, - ) { - if !ty.references_error() { - self.fulfillment_cx.borrow_mut().register_bound( - self, - self.param_env, - ty, - def_id, - cause, - ); - } - } - - pub fn to_ty(&self, ast_t: &hir::Ty<'_>) -> Ty<'tcx> { - let t = AstConv::ast_ty_to_ty(self, ast_t); - self.register_wf_obligation(t.into(), ast_t.span, traits::MiscObligation); - t - } - - pub fn to_ty_saving_user_provided_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> { - let ty = self.to_ty(ast_ty); - debug!("to_ty_saving_user_provided_ty: ty={:?}", ty); - - if Self::can_contain_user_lifetime_bounds(ty) { - let c_ty = self.infcx.canonicalize_response(&UserType::Ty(ty)); - debug!("to_ty_saving_user_provided_ty: c_ty={:?}", c_ty); - self.typeck_results.borrow_mut().user_provided_types_mut().insert(ast_ty.hir_id, c_ty); - } - - ty - } - - pub fn to_const(&self, ast_c: &hir::AnonConst) -> &'tcx ty::Const<'tcx> { - let const_def_id = self.tcx.hir().local_def_id(ast_c.hir_id); - let c = ty::Const::from_anon_const(self.tcx, const_def_id); - self.register_wf_obligation( - c.into(), - self.tcx.hir().span(ast_c.hir_id), - ObligationCauseCode::MiscObligation, - ); - c - } - - pub fn const_arg_to_const( - &self, - ast_c: &hir::AnonConst, - param_def_id: DefId, - ) -> &'tcx ty::Const<'tcx> { - let const_def = ty::WithOptConstParam { - did: self.tcx.hir().local_def_id(ast_c.hir_id), - const_param_did: Some(param_def_id), - }; - let c = ty::Const::from_opt_const_arg_anon_const(self.tcx, const_def); - self.register_wf_obligation( - c.into(), - self.tcx.hir().span(ast_c.hir_id), - ObligationCauseCode::MiscObligation, - ); - c - } - - // If the type given by the user has free regions, save it for later, since - // NLL would like to enforce those. Also pass in types that involve - // projections, since those can resolve to `'static` bounds (modulo #54940, - // which hopefully will be fixed by the time you see this comment, dear - // reader, although I have my doubts). Also pass in types with inference - // types, because they may be repeated. Other sorts of things are already - // sufficiently enforced with erased regions. =) - fn can_contain_user_lifetime_bounds<T>(t: T) -> bool - where - T: TypeFoldable<'tcx>, - { - t.has_free_regions() || t.has_projections() || t.has_infer_types() - } - - pub fn node_ty(&self, id: hir::HirId) -> Ty<'tcx> { - match self.typeck_results.borrow().node_types().get(id) { - Some(&t) => t, - None if self.is_tainted_by_errors() => self.tcx.ty_error(), - None => { - bug!( - "no type for node {}: {} in fcx {}", - id, - self.tcx.hir().node_to_string(id), - self.tag() - ); - } - } - } - - /// Registers an obligation for checking later, during regionck, that `arg` is well-formed. - pub fn register_wf_obligation( - &self, - arg: subst::GenericArg<'tcx>, - span: Span, - code: traits::ObligationCauseCode<'tcx>, - ) { - // WF obligations never themselves fail, so no real need to give a detailed cause: - let cause = traits::ObligationCause::new(span, self.body_id, code); - self.register_predicate(traits::Obligation::new( - cause, - self.param_env, - ty::PredicateAtom::WellFormed(arg).to_predicate(self.tcx), - )); - } - - /// Registers obligations that all `substs` are well-formed. - pub fn add_wf_bounds(&self, substs: SubstsRef<'tcx>, expr: &hir::Expr<'_>) { - for arg in substs.iter().filter(|arg| { - matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..)) - }) { - self.register_wf_obligation(arg, expr.span, traits::MiscObligation); - } - } - - /// Given a fully substituted set of bounds (`generic_bounds`), and the values with which each - /// type/region parameter was instantiated (`substs`), creates and registers suitable - /// trait/region obligations. - /// - /// For example, if there is a function: - /// - /// ``` - /// fn foo<'a,T:'a>(...) - /// ``` - /// - /// and a reference: - /// - /// ``` - /// let f = foo; - /// ``` - /// - /// Then we will create a fresh region variable `'$0` and a fresh type variable `$1` for `'a` - /// and `T`. This routine will add a region obligation `$1:'$0` and register it locally. - pub fn add_obligations_for_parameters( - &self, - cause: traits::ObligationCause<'tcx>, - predicates: ty::InstantiatedPredicates<'tcx>, - ) { - assert!(!predicates.has_escaping_bound_vars()); - - debug!("add_obligations_for_parameters(predicates={:?})", predicates); - - for obligation in traits::predicates_for_generics(cause, self.param_env, predicates) { - self.register_predicate(obligation); - } - } - - // FIXME(arielb1): use this instead of field.ty everywhere - // Only for fields! Returns <none> for methods> - // Indifferent to privacy flags - pub fn field_ty( - &self, - span: Span, - field: &'tcx ty::FieldDef, - substs: SubstsRef<'tcx>, - ) -> Ty<'tcx> { - self.normalize_associated_types_in(span, &field.ty(self.tcx, substs)) - } - - pub(super) fn check_casts(&self) { - let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut(); - for cast in deferred_cast_checks.drain(..) { - cast.check(self); - } - } - - pub(super) fn resolve_generator_interiors(&self, def_id: DefId) { - let mut generators = self.deferred_generator_interiors.borrow_mut(); - for (body_id, interior, kind) in generators.drain(..) { - self.select_obligations_where_possible(false, |_| {}); - super::generator_interior::resolve_interior(self, def_id, body_id, interior, kind); - } - } - - // Tries to apply a fallback to `ty` if it is an unsolved variable. - // - // - Unconstrained ints are replaced with `i32`. - // - // - Unconstrained floats are replaced with with `f64`. - // - // - Non-numerics get replaced with `!` when `#![feature(never_type_fallback)]` - // is enabled. Otherwise, they are replaced with `()`. - // - // Fallback becomes very dubious if we have encountered type-checking errors. - // In that case, fallback to Error. - // The return value indicates whether fallback has occurred. - pub(super) fn fallback_if_possible(&self, ty: Ty<'tcx>, mode: FallbackMode) -> bool { - use rustc_middle::ty::error::UnconstrainedNumeric::Neither; - use rustc_middle::ty::error::UnconstrainedNumeric::{UnconstrainedFloat, UnconstrainedInt}; - - assert!(ty.is_ty_infer()); - let fallback = match self.type_is_unconstrained_numeric(ty) { - _ if self.is_tainted_by_errors() => self.tcx().ty_error(), - UnconstrainedInt => self.tcx.types.i32, - UnconstrainedFloat => self.tcx.types.f64, - Neither if self.type_var_diverges(ty) => self.tcx.mk_diverging_default(), - Neither => { - // This type variable was created from the instantiation of an opaque - // type. The fact that we're attempting to perform fallback for it - // means that the function neither constrained it to a concrete - // type, nor to the opaque type itself. - // - // For example, in this code: - // - //``` - // type MyType = impl Copy; - // fn defining_use() -> MyType { true } - // fn other_use() -> MyType { defining_use() } - // ``` - // - // `defining_use` will constrain the instantiated inference - // variable to `bool`, while `other_use` will constrain - // the instantiated inference variable to `MyType`. - // - // When we process opaque types during writeback, we - // will handle cases like `other_use`, and not count - // them as defining usages - // - // However, we also need to handle cases like this: - // - // ```rust - // pub type Foo = impl Copy; - // fn produce() -> Option<Foo> { - // None - // } - // ``` - // - // In the above snippet, the inference variable created by - // instantiating `Option<Foo>` will be completely unconstrained. - // We treat this as a non-defining use by making the inference - // variable fall back to the opaque type itself. - if let FallbackMode::All = mode { - if let Some(opaque_ty) = self.opaque_types_vars.borrow().get(ty) { - debug!( - "fallback_if_possible: falling back opaque type var {:?} to {:?}", - ty, opaque_ty - ); - *opaque_ty - } else { - return false; - } - } else { - return false; - } - } - }; - debug!("fallback_if_possible: defaulting `{:?}` to `{:?}`", ty, fallback); - self.demand_eqtype(rustc_span::DUMMY_SP, ty, fallback); - true - } - - pub(super) fn select_all_obligations_or_error(&self) { - debug!("select_all_obligations_or_error"); - if let Err(errors) = self.fulfillment_cx.borrow_mut().select_all_or_error(&self) { - self.report_fulfillment_errors(&errors, self.inh.body_id, false); - } - } - - /// Select as many obligations as we can at present. - pub(super) fn select_obligations_where_possible( - &self, - fallback_has_occurred: bool, - mutate_fullfillment_errors: impl Fn(&mut Vec<traits::FulfillmentError<'tcx>>), - ) { - let result = self.fulfillment_cx.borrow_mut().select_where_possible(self); - if let Err(mut errors) = result { - mutate_fullfillment_errors(&mut errors); - self.report_fulfillment_errors(&errors, self.inh.body_id, fallback_has_occurred); - } - } - - /// For the overloaded place expressions (`*x`, `x[3]`), the trait - /// returns a type of `&T`, but the actual type we assign to the - /// *expression* is `T`. So this function just peels off the return - /// type by one layer to yield `T`. - pub(super) fn make_overloaded_place_return_type( - &self, - method: MethodCallee<'tcx>, - ) -> ty::TypeAndMut<'tcx> { - // extract method return type, which will be &T; - let ret_ty = method.sig.output(); - - // method returns &T, but the type as visible to user is T, so deref - ret_ty.builtin_deref(true).unwrap() - } - - pub(super) fn check_method_argument_types( - &self, - sp: Span, - expr: &'tcx hir::Expr<'tcx>, - method: Result<MethodCallee<'tcx>, ()>, - args_no_rcvr: &'tcx [hir::Expr<'tcx>], - tuple_arguments: TupleArgumentsFlag, - expected: Expectation<'tcx>, - ) -> Ty<'tcx> { - let has_error = match method { - Ok(method) => method.substs.references_error() || method.sig.references_error(), - Err(_) => true, - }; - if has_error { - let err_inputs = self.err_args(args_no_rcvr.len()); - - let err_inputs = match tuple_arguments { - DontTupleArguments => err_inputs, - TupleArguments => vec![self.tcx.intern_tup(&err_inputs[..])], - }; - - self.check_argument_types( - sp, - expr, - &err_inputs[..], - &[], - args_no_rcvr, - false, - tuple_arguments, - None, - ); - return self.tcx.ty_error(); - } - - let method = method.unwrap(); - // HACK(eddyb) ignore self in the definition (see above). - let expected_arg_tys = self.expected_inputs_for_expected_output( - sp, - expected, - method.sig.output(), - &method.sig.inputs()[1..], - ); - self.check_argument_types( - sp, - expr, - &method.sig.inputs()[1..], - &expected_arg_tys[..], - args_no_rcvr, - method.sig.c_variadic, - tuple_arguments, - self.tcx.hir().span_if_local(method.def_id), - ); - method.sig.output() - } - - fn self_type_matches_expected_vid( - &self, - trait_ref: ty::PolyTraitRef<'tcx>, - expected_vid: ty::TyVid, - ) -> bool { - let self_ty = self.shallow_resolve(trait_ref.skip_binder().self_ty()); - debug!( - "self_type_matches_expected_vid(trait_ref={:?}, self_ty={:?}, expected_vid={:?})", - trait_ref, self_ty, expected_vid - ); - match *self_ty.kind() { - ty::Infer(ty::TyVar(found_vid)) => { - // FIXME: consider using `sub_root_var` here so we - // can see through subtyping. - let found_vid = self.root_var(found_vid); - debug!("self_type_matches_expected_vid - found_vid={:?}", found_vid); - expected_vid == found_vid - } - _ => false, - } - } - - pub(super) fn obligations_for_self_ty<'b>( - &'b self, - self_ty: ty::TyVid, - ) -> impl Iterator<Item = (ty::PolyTraitRef<'tcx>, traits::PredicateObligation<'tcx>)> - + Captures<'tcx> - + 'b { - // FIXME: consider using `sub_root_var` here so we - // can see through subtyping. - let ty_var_root = self.root_var(self_ty); - debug!( - "obligations_for_self_ty: self_ty={:?} ty_var_root={:?} pending_obligations={:?}", - self_ty, - ty_var_root, - self.fulfillment_cx.borrow().pending_obligations() - ); - - self.fulfillment_cx - .borrow() - .pending_obligations() - .into_iter() - .filter_map(move |obligation| { - match obligation.predicate.skip_binders() { - ty::PredicateAtom::Projection(data) => { - Some((ty::Binder::bind(data).to_poly_trait_ref(self.tcx), obligation)) - } - ty::PredicateAtom::Trait(data, _) => { - Some((ty::Binder::bind(data).to_poly_trait_ref(), obligation)) - } - ty::PredicateAtom::Subtype(..) => None, - ty::PredicateAtom::RegionOutlives(..) => None, - ty::PredicateAtom::TypeOutlives(..) => None, - ty::PredicateAtom::WellFormed(..) => None, - ty::PredicateAtom::ObjectSafe(..) => None, - ty::PredicateAtom::ConstEvaluatable(..) => None, - ty::PredicateAtom::ConstEquate(..) => None, - // N.B., this predicate is created by breaking down a - // `ClosureType: FnFoo()` predicate, where - // `ClosureType` represents some `Closure`. It can't - // possibly be referring to the current closure, - // because we haven't produced the `Closure` for - // this closure yet; this is exactly why the other - // code is looking for a self type of a unresolved - // inference variable. - ty::PredicateAtom::ClosureKind(..) => None, - ty::PredicateAtom::TypeWellFormedFromEnv(..) => None, - } - }) - .filter(move |(tr, _)| self.self_type_matches_expected_vid(*tr, ty_var_root)) - } - - pub(super) fn type_var_is_sized(&self, self_ty: ty::TyVid) -> bool { - self.obligations_for_self_ty(self_ty) - .any(|(tr, _)| Some(tr.def_id()) == self.tcx.lang_items().sized_trait()) - } - - /// Generic function that factors out common logic from function calls, - /// method calls and overloaded operators. - pub(super) fn check_argument_types( - &self, - sp: Span, - expr: &'tcx hir::Expr<'tcx>, - fn_inputs: &[Ty<'tcx>], - expected_arg_tys: &[Ty<'tcx>], - args: &'tcx [hir::Expr<'tcx>], - c_variadic: bool, - tuple_arguments: TupleArgumentsFlag, - def_span: Option<Span>, - ) { - let tcx = self.tcx; - // Grab the argument types, supplying fresh type variables - // if the wrong number of arguments were supplied - let supplied_arg_count = if tuple_arguments == DontTupleArguments { args.len() } else { 1 }; - - // All the input types from the fn signature must outlive the call - // so as to validate implied bounds. - for (&fn_input_ty, arg_expr) in fn_inputs.iter().zip(args.iter()) { - self.register_wf_obligation(fn_input_ty.into(), arg_expr.span, traits::MiscObligation); - } - - let expected_arg_count = fn_inputs.len(); - - let param_count_error = |expected_count: usize, - arg_count: usize, - error_code: &str, - c_variadic: bool, - sugg_unit: bool| { - let (span, start_span, args) = match &expr.kind { - hir::ExprKind::Call(hir::Expr { span, .. }, args) => (*span, *span, &args[..]), - hir::ExprKind::MethodCall(path_segment, span, args, _) => ( - *span, - // `sp` doesn't point at the whole `foo.bar()`, only at `bar`. - path_segment - .args - .and_then(|args| args.args.iter().last()) - // Account for `foo.bar::<T>()`. - .map(|arg| { - // Skip the closing `>`. - tcx.sess - .source_map() - .next_point(tcx.sess.source_map().next_point(arg.span())) - }) - .unwrap_or(*span), - &args[1..], // Skip the receiver. - ), - k => span_bug!(sp, "checking argument types on a non-call: `{:?}`", k), - }; - let arg_spans = if args.is_empty() { - // foo() - // ^^^-- supplied 0 arguments - // | - // expected 2 arguments - vec![tcx.sess.source_map().next_point(start_span).with_hi(sp.hi())] - } else { - // foo(1, 2, 3) - // ^^^ - - - supplied 3 arguments - // | - // expected 2 arguments - args.iter().map(|arg| arg.span).collect::<Vec<Span>>() - }; - - let mut err = tcx.sess.struct_span_err_with_code( - span, - &format!( - "this function takes {}{} but {} {} supplied", - if c_variadic { "at least " } else { "" }, - potentially_plural_count(expected_count, "argument"), - potentially_plural_count(arg_count, "argument"), - if arg_count == 1 { "was" } else { "were" } - ), - DiagnosticId::Error(error_code.to_owned()), - ); - let label = format!("supplied {}", potentially_plural_count(arg_count, "argument")); - for (i, span) in arg_spans.into_iter().enumerate() { - err.span_label( - span, - if arg_count == 0 || i + 1 == arg_count { &label } else { "" }, - ); - } - - if let Some(def_s) = def_span.map(|sp| tcx.sess.source_map().guess_head_span(sp)) { - err.span_label(def_s, "defined here"); - } - if sugg_unit { - let sugg_span = tcx.sess.source_map().end_point(expr.span); - // remove closing `)` from the span - let sugg_span = sugg_span.shrink_to_lo(); - err.span_suggestion( - sugg_span, - "expected the unit value `()`; create it with empty parentheses", - String::from("()"), - Applicability::MachineApplicable, - ); - } else { - err.span_label( - span, - format!( - "expected {}{}", - if c_variadic { "at least " } else { "" }, - potentially_plural_count(expected_count, "argument") - ), - ); - } - err.emit(); - }; - - let mut expected_arg_tys = expected_arg_tys.to_vec(); - - let formal_tys = if tuple_arguments == TupleArguments { - let tuple_type = self.structurally_resolved_type(sp, fn_inputs[0]); - match tuple_type.kind() { - ty::Tuple(arg_types) if arg_types.len() != args.len() => { - param_count_error(arg_types.len(), args.len(), "E0057", false, false); - expected_arg_tys = vec![]; - self.err_args(args.len()) - } - ty::Tuple(arg_types) => { - expected_arg_tys = match expected_arg_tys.get(0) { - Some(&ty) => match ty.kind() { - ty::Tuple(ref tys) => tys.iter().map(|k| k.expect_ty()).collect(), - _ => vec![], - }, - None => vec![], - }; - arg_types.iter().map(|k| k.expect_ty()).collect() - } - _ => { - struct_span_err!( - tcx.sess, - sp, - E0059, - "cannot use call notation; the first type parameter \ - for the function trait is neither a tuple nor unit" - ) - .emit(); - expected_arg_tys = vec![]; - self.err_args(args.len()) - } - } - } else if expected_arg_count == supplied_arg_count { - fn_inputs.to_vec() - } else if c_variadic { - if supplied_arg_count >= expected_arg_count { - fn_inputs.to_vec() - } else { - param_count_error(expected_arg_count, supplied_arg_count, "E0060", true, false); - expected_arg_tys = vec![]; - self.err_args(supplied_arg_count) - } - } else { - // is the missing argument of type `()`? - let sugg_unit = if expected_arg_tys.len() == 1 && supplied_arg_count == 0 { - self.resolve_vars_if_possible(&expected_arg_tys[0]).is_unit() - } else if fn_inputs.len() == 1 && supplied_arg_count == 0 { - self.resolve_vars_if_possible(&fn_inputs[0]).is_unit() - } else { - false - }; - param_count_error(expected_arg_count, supplied_arg_count, "E0061", false, sugg_unit); - - expected_arg_tys = vec![]; - self.err_args(supplied_arg_count) - }; - - debug!( - "check_argument_types: formal_tys={:?}", - formal_tys.iter().map(|t| self.ty_to_string(*t)).collect::<Vec<String>>() - ); - - // If there is no expectation, expect formal_tys. - let expected_arg_tys = - if !expected_arg_tys.is_empty() { expected_arg_tys } else { formal_tys.clone() }; - - let mut final_arg_types: Vec<(usize, Ty<'_>, Ty<'_>)> = vec![]; - - // Check the arguments. - // We do this in a pretty awful way: first we type-check any arguments - // that are not closures, then we type-check the closures. This is so - // that we have more information about the types of arguments when we - // type-check the functions. This isn't really the right way to do this. - for &check_closures in &[false, true] { - debug!("check_closures={}", check_closures); - - // More awful hacks: before we check argument types, try to do - // an "opportunistic" trait resolution of any trait bounds on - // the call. This helps coercions. - if check_closures { - self.select_obligations_where_possible(false, |errors| { - self.point_at_type_arg_instead_of_call_if_possible(errors, expr); - self.point_at_arg_instead_of_call_if_possible( - errors, - &final_arg_types[..], - sp, - &args, - ); - }) - } - - // For C-variadic functions, we don't have a declared type for all of - // the arguments hence we only do our usual type checking with - // the arguments who's types we do know. - let t = if c_variadic { - expected_arg_count - } else if tuple_arguments == TupleArguments { - args.len() - } else { - supplied_arg_count - }; - for (i, arg) in args.iter().take(t).enumerate() { - // Warn only for the first loop (the "no closures" one). - // Closure arguments themselves can't be diverging, but - // a previous argument can, e.g., `foo(panic!(), || {})`. - if !check_closures { - self.warn_if_unreachable(arg.hir_id, arg.span, "expression"); - } - - let is_closure = match arg.kind { - ExprKind::Closure(..) => true, - _ => false, - }; - - if is_closure != check_closures { - continue; - } - - debug!("checking the argument"); - let formal_ty = formal_tys[i]; - - // The special-cased logic below has three functions: - // 1. Provide as good of an expected type as possible. - let expected = Expectation::rvalue_hint(self, expected_arg_tys[i]); - - let checked_ty = self.check_expr_with_expectation(&arg, expected); - - // 2. Coerce to the most detailed type that could be coerced - // to, which is `expected_ty` if `rvalue_hint` returns an - // `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise. - let coerce_ty = expected.only_has_type(self).unwrap_or(formal_ty); - // We're processing function arguments so we definitely want to use - // two-phase borrows. - self.demand_coerce(&arg, checked_ty, coerce_ty, None, AllowTwoPhase::Yes); - final_arg_types.push((i, checked_ty, coerce_ty)); - - // 3. Relate the expected type and the formal one, - // if the expected type was used for the coercion. - self.demand_suptype(arg.span, formal_ty, coerce_ty); - } - } - - // We also need to make sure we at least write the ty of the other - // arguments which we skipped above. - if c_variadic { - fn variadic_error<'tcx>(s: &Session, span: Span, t: Ty<'tcx>, cast_ty: &str) { - use crate::structured_errors::{StructuredDiagnostic, VariadicError}; - VariadicError::new(s, span, t, cast_ty).diagnostic().emit(); - } - - for arg in args.iter().skip(expected_arg_count) { - let arg_ty = self.check_expr(&arg); - - // There are a few types which get autopromoted when passed via varargs - // in C but we just error out instead and require explicit casts. - let arg_ty = self.structurally_resolved_type(arg.span, arg_ty); - match arg_ty.kind() { - ty::Float(ast::FloatTy::F32) => { - variadic_error(tcx.sess, arg.span, arg_ty, "c_double"); - } - ty::Int(ast::IntTy::I8 | ast::IntTy::I16) | ty::Bool => { - variadic_error(tcx.sess, arg.span, arg_ty, "c_int"); - } - ty::Uint(ast::UintTy::U8 | ast::UintTy::U16) => { - variadic_error(tcx.sess, arg.span, arg_ty, "c_uint"); - } - ty::FnDef(..) => { - let ptr_ty = self.tcx.mk_fn_ptr(arg_ty.fn_sig(self.tcx)); - let ptr_ty = self.resolve_vars_if_possible(&ptr_ty); - variadic_error(tcx.sess, arg.span, arg_ty, &ptr_ty.to_string()); - } - _ => {} - } - } - } - } - - pub(super) fn err_args(&self, len: usize) -> Vec<Ty<'tcx>> { - vec![self.tcx.ty_error(); len] - } - - /// Given a vec of evaluated `FulfillmentError`s and an `fn` call argument expressions, we walk - /// the checked and coerced types for each argument to see if any of the `FulfillmentError`s - /// reference a type argument. The reason to walk also the checked type is that the coerced type - /// can be not easily comparable with predicate type (because of coercion). If the types match - /// for either checked or coerced type, and there's only *one* argument that does, we point at - /// the corresponding argument's expression span instead of the `fn` call path span. - fn point_at_arg_instead_of_call_if_possible( - &self, - errors: &mut Vec<traits::FulfillmentError<'tcx>>, - final_arg_types: &[(usize, Ty<'tcx>, Ty<'tcx>)], - call_sp: Span, - args: &'tcx [hir::Expr<'tcx>], - ) { - // We *do not* do this for desugared call spans to keep good diagnostics when involving - // the `?` operator. - if call_sp.desugaring_kind().is_some() { - return; - } - - for error in errors { - // Only if the cause is somewhere inside the expression we want try to point at arg. - // Otherwise, it means that the cause is somewhere else and we should not change - // anything because we can break the correct span. - if !call_sp.contains(error.obligation.cause.span) { - continue; - } - - if let ty::PredicateAtom::Trait(predicate, _) = - error.obligation.predicate.skip_binders() - { - // Collect the argument position for all arguments that could have caused this - // `FulfillmentError`. - let mut referenced_in = final_arg_types - .iter() - .map(|&(i, checked_ty, _)| (i, checked_ty)) - .chain(final_arg_types.iter().map(|&(i, _, coerced_ty)| (i, coerced_ty))) - .flat_map(|(i, ty)| { - let ty = self.resolve_vars_if_possible(&ty); - // We walk the argument type because the argument's type could have - // been `Option<T>`, but the `FulfillmentError` references `T`. - if ty.walk().any(|arg| arg == predicate.self_ty().into()) { - Some(i) - } else { - None - } - }) - .collect::<Vec<usize>>(); - - // Both checked and coerced types could have matched, thus we need to remove - // duplicates. - - // We sort primitive type usize here and can use unstable sort - referenced_in.sort_unstable(); - referenced_in.dedup(); - - if let (Some(ref_in), None) = (referenced_in.pop(), referenced_in.pop()) { - // We make sure that only *one* argument matches the obligation failure - // and we assign the obligation's span to its expression's. - error.obligation.cause.make_mut().span = args[ref_in].span; - error.points_at_arg_span = true; - } - } - } - } - - /// Given a vec of evaluated `FulfillmentError`s and an `fn` call expression, we walk the - /// `PathSegment`s and resolve their type parameters to see if any of the `FulfillmentError`s - /// were caused by them. If they were, we point at the corresponding type argument's span - /// instead of the `fn` call path span. - fn point_at_type_arg_instead_of_call_if_possible( - &self, - errors: &mut Vec<traits::FulfillmentError<'tcx>>, - call_expr: &'tcx hir::Expr<'tcx>, - ) { - if let hir::ExprKind::Call(path, _) = &call_expr.kind { - if let hir::ExprKind::Path(qpath) = &path.kind { - if let hir::QPath::Resolved(_, path) = &qpath { - for error in errors { - if let ty::PredicateAtom::Trait(predicate, _) = - error.obligation.predicate.skip_binders() - { - // If any of the type arguments in this path segment caused the - // `FullfillmentError`, point at its span (#61860). - for arg in path - .segments - .iter() - .filter_map(|seg| seg.args.as_ref()) - .flat_map(|a| a.args.iter()) - { - if let hir::GenericArg::Type(hir_ty) = &arg { - if let hir::TyKind::Path(hir::QPath::TypeRelative(..)) = - &hir_ty.kind - { - // Avoid ICE with associated types. As this is best - // effort only, it's ok to ignore the case. It - // would trigger in `is_send::<T::AssocType>();` - // from `typeck-default-trait-impl-assoc-type.rs`. - } else { - let ty = AstConv::ast_ty_to_ty(self, hir_ty); - let ty = self.resolve_vars_if_possible(&ty); - if ty == predicate.self_ty() { - error.obligation.cause.make_mut().span = hir_ty.span; - } - } - } - } - } - } - } - } - } - } - - // AST fragment checking - pub(super) fn check_lit(&self, lit: &hir::Lit, expected: Expectation<'tcx>) -> Ty<'tcx> { - let tcx = self.tcx; - - match lit.node { - ast::LitKind::Str(..) => tcx.mk_static_str(), - ast::LitKind::ByteStr(ref v) => { - tcx.mk_imm_ref(tcx.lifetimes.re_static, tcx.mk_array(tcx.types.u8, v.len() as u64)) - } - ast::LitKind::Byte(_) => tcx.types.u8, - ast::LitKind::Char(_) => tcx.types.char, - ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => tcx.mk_mach_int(t), - ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => tcx.mk_mach_uint(t), - ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => { - let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() { - ty::Int(_) | ty::Uint(_) => Some(ty), - ty::Char => Some(tcx.types.u8), - ty::RawPtr(..) => Some(tcx.types.usize), - ty::FnDef(..) | ty::FnPtr(_) => Some(tcx.types.usize), - _ => None, - }); - opt_ty.unwrap_or_else(|| self.next_int_var()) - } - ast::LitKind::Float(_, ast::LitFloatType::Suffixed(t)) => tcx.mk_mach_float(t), - ast::LitKind::Float(_, ast::LitFloatType::Unsuffixed) => { - let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() { - ty::Float(_) => Some(ty), - _ => None, - }); - opt_ty.unwrap_or_else(|| self.next_float_var()) - } - ast::LitKind::Bool(_) => tcx.types.bool, - ast::LitKind::Err(_) => tcx.ty_error(), - } - } - - /// Unifies the output type with the expected type early, for more coercions - /// and forward type information on the input expressions. - pub(super) fn expected_inputs_for_expected_output( - &self, - call_span: Span, - expected_ret: Expectation<'tcx>, - formal_ret: Ty<'tcx>, - formal_args: &[Ty<'tcx>], - ) -> Vec<Ty<'tcx>> { - let formal_ret = self.resolve_vars_with_obligations(formal_ret); - let ret_ty = match expected_ret.only_has_type(self) { - Some(ret) => ret, - None => return Vec::new(), - }; - let expect_args = self - .fudge_inference_if_ok(|| { - // Attempt to apply a subtyping relationship between the formal - // return type (likely containing type variables if the function - // is polymorphic) and the expected return type. - // No argument expectations are produced if unification fails. - let origin = self.misc(call_span); - let ures = self.at(&origin, self.param_env).sup(ret_ty, &formal_ret); - - // FIXME(#27336) can't use ? here, Try::from_error doesn't default - // to identity so the resulting type is not constrained. - match ures { - Ok(ok) => { - // Process any obligations locally as much as - // we can. We don't care if some things turn - // out unconstrained or ambiguous, as we're - // just trying to get hints here. - self.save_and_restore_in_snapshot_flag(|_| { - let mut fulfill = TraitEngine::new(self.tcx); - for obligation in ok.obligations { - fulfill.register_predicate_obligation(self, obligation); - } - fulfill.select_where_possible(self) - }) - .map_err(|_| ())?; - } - Err(_) => return Err(()), - } - - // Record all the argument types, with the substitutions - // produced from the above subtyping unification. - Ok(formal_args.iter().map(|ty| self.resolve_vars_if_possible(ty)).collect()) - }) - .unwrap_or_default(); - debug!( - "expected_inputs_for_expected_output(formal={:?} -> {:?}, expected={:?} -> {:?})", - formal_args, formal_ret, expect_args, expected_ret - ); - expect_args - } - - pub fn check_struct_path( - &self, - qpath: &QPath<'_>, - hir_id: hir::HirId, - ) -> Option<(&'tcx ty::VariantDef, Ty<'tcx>)> { - let path_span = qpath.qself_span(); - let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, hir_id); - let variant = match def { - Res::Err => { - self.set_tainted_by_errors(); - return None; - } - Res::Def(DefKind::Variant, _) => match ty.kind() { - ty::Adt(adt, substs) => Some((adt.variant_of_res(def), adt.did, substs)), - _ => bug!("unexpected type: {:?}", ty), - }, - Res::Def(DefKind::Struct | DefKind::Union | DefKind::TyAlias | DefKind::AssocTy, _) - | Res::SelfTy(..) => match ty.kind() { - ty::Adt(adt, substs) if !adt.is_enum() => { - Some((adt.non_enum_variant(), adt.did, substs)) - } - _ => None, - }, - _ => bug!("unexpected definition: {:?}", def), - }; - - if let Some((variant, did, substs)) = variant { - debug!("check_struct_path: did={:?} substs={:?}", did, substs); - self.write_user_type_annotation_from_substs(hir_id, did, substs, None); - - // Check bounds on type arguments used in the path. - let (bounds, _) = self.instantiate_bounds(path_span, did, substs); - let cause = - traits::ObligationCause::new(path_span, self.body_id, traits::ItemObligation(did)); - self.add_obligations_for_parameters(cause, bounds); - - Some((variant, ty)) - } else { - struct_span_err!( - self.tcx.sess, - path_span, - E0071, - "expected struct, variant or union type, found {}", - ty.sort_string(self.tcx) - ) - .span_label(path_span, "not a struct") - .emit(); - None - } - } - - // Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary. - // The newly resolved definition is written into `type_dependent_defs`. - fn finish_resolving_struct_path( - &self, - qpath: &QPath<'_>, - path_span: Span, - hir_id: hir::HirId, - ) -> (Res, Ty<'tcx>) { - match *qpath { - QPath::Resolved(ref maybe_qself, ref path) => { - let self_ty = maybe_qself.as_ref().map(|qself| self.to_ty(qself)); - let ty = AstConv::res_to_ty(self, self_ty, path, true); - (path.res, ty) - } - QPath::TypeRelative(ref qself, ref segment) => { - let ty = self.to_ty(qself); - - let res = if let hir::TyKind::Path(QPath::Resolved(_, ref path)) = qself.kind { - path.res - } else { - Res::Err - }; - let result = - AstConv::associated_path_to_ty(self, hir_id, path_span, ty, res, segment, true); - let ty = result.map(|(ty, _, _)| ty).unwrap_or_else(|_| self.tcx().ty_error()); - let result = result.map(|(_, kind, def_id)| (kind, def_id)); - - // Write back the new resolution. - self.write_resolution(hir_id, result); - - (result.map(|(kind, def_id)| Res::Def(kind, def_id)).unwrap_or(Res::Err), ty) - } - QPath::LangItem(lang_item, span) => { - self.resolve_lang_item_path(lang_item, span, hir_id) - } - } - } - - pub(super) fn resolve_lang_item_path( - &self, - lang_item: hir::LangItem, - span: Span, - hir_id: hir::HirId, - ) -> (Res, Ty<'tcx>) { - let def_id = self.tcx.require_lang_item(lang_item, Some(span)); - let def_kind = self.tcx.def_kind(def_id); - - let item_ty = if let DefKind::Variant = def_kind { - self.tcx.type_of(self.tcx.parent(def_id).expect("variant w/out parent")) - } else { - self.tcx.type_of(def_id) - }; - let substs = self.infcx.fresh_substs_for_item(span, def_id); - let ty = item_ty.subst(self.tcx, substs); - - self.write_resolution(hir_id, Ok((def_kind, def_id))); - self.add_required_obligations(span, def_id, &substs); - (Res::Def(def_kind, def_id), ty) - } - - /// Resolves an associated value path into a base type and associated constant, or method - /// resolution. The newly resolved definition is written into `type_dependent_defs`. - pub fn resolve_ty_and_res_ufcs<'b>( - &self, - qpath: &'b QPath<'b>, - hir_id: hir::HirId, - span: Span, - ) -> (Res, Option<Ty<'tcx>>, &'b [hir::PathSegment<'b>]) { - debug!("resolve_ty_and_res_ufcs: qpath={:?} hir_id={:?} span={:?}", qpath, hir_id, span); - let (ty, qself, item_segment) = match *qpath { - QPath::Resolved(ref opt_qself, ref path) => { - return ( - path.res, - opt_qself.as_ref().map(|qself| self.to_ty(qself)), - &path.segments[..], - ); - } - QPath::TypeRelative(ref qself, ref segment) => (self.to_ty(qself), qself, segment), - QPath::LangItem(..) => bug!("`resolve_ty_and_res_ufcs` called on `LangItem`"), - }; - if let Some(&cached_result) = self.typeck_results.borrow().type_dependent_defs().get(hir_id) - { - // Return directly on cache hit. This is useful to avoid doubly reporting - // errors with default match binding modes. See #44614. - let def = - cached_result.map(|(kind, def_id)| Res::Def(kind, def_id)).unwrap_or(Res::Err); - return (def, Some(ty), slice::from_ref(&**item_segment)); - } - let item_name = item_segment.ident; - let result = self.resolve_ufcs(span, item_name, ty, hir_id).or_else(|error| { - let result = match error { - method::MethodError::PrivateMatch(kind, def_id, _) => Ok((kind, def_id)), - _ => Err(ErrorReported), - }; - if item_name.name != kw::Invalid { - if let Some(mut e) = self.report_method_error( - span, - ty, - item_name, - SelfSource::QPath(qself), - error, - None, - ) { - e.emit(); - } - } - result - }); - - // Write back the new resolution. - self.write_resolution(hir_id, result); - ( - result.map(|(kind, def_id)| Res::Def(kind, def_id)).unwrap_or(Res::Err), - Some(ty), - slice::from_ref(&**item_segment), - ) - } - - pub fn check_decl_initializer( - &self, - local: &'tcx hir::Local<'tcx>, - init: &'tcx hir::Expr<'tcx>, - ) -> Ty<'tcx> { - // FIXME(tschottdorf): `contains_explicit_ref_binding()` must be removed - // for #42640 (default match binding modes). - // - // See #44848. - let ref_bindings = local.pat.contains_explicit_ref_binding(); - - let local_ty = self.local_ty(init.span, local.hir_id).revealed_ty; - if let Some(m) = ref_bindings { - // Somewhat subtle: if we have a `ref` binding in the pattern, - // we want to avoid introducing coercions for the RHS. This is - // both because it helps preserve sanity and, in the case of - // ref mut, for soundness (issue #23116). In particular, in - // the latter case, we need to be clear that the type of the - // referent for the reference that results is *equal to* the - // type of the place it is referencing, and not some - // supertype thereof. - let init_ty = self.check_expr_with_needs(init, Needs::maybe_mut_place(m)); - self.demand_eqtype(init.span, local_ty, init_ty); - init_ty - } else { - self.check_expr_coercable_to_type(init, local_ty, None) - } - } - - /// Type check a `let` statement. - pub fn check_decl_local(&self, local: &'tcx hir::Local<'tcx>) { - // Determine and write the type which we'll check the pattern against. - let ty = self.local_ty(local.span, local.hir_id).decl_ty; - self.write_ty(local.hir_id, ty); - - // Type check the initializer. - if let Some(ref init) = local.init { - let init_ty = self.check_decl_initializer(local, &init); - self.overwrite_local_ty_if_err(local, ty, init_ty); - } - - // Does the expected pattern type originate from an expression and what is the span? - let (origin_expr, ty_span) = match (local.ty, local.init) { - (Some(ty), _) => (false, Some(ty.span)), // Bias towards the explicit user type. - (_, Some(init)) => (true, Some(init.span)), // No explicit type; so use the scrutinee. - _ => (false, None), // We have `let $pat;`, so the expected type is unconstrained. - }; - - // Type check the pattern. Override if necessary to avoid knock-on errors. - self.check_pat_top(&local.pat, ty, ty_span, origin_expr); - let pat_ty = self.node_ty(local.pat.hir_id); - self.overwrite_local_ty_if_err(local, ty, pat_ty); - } - - fn overwrite_local_ty_if_err( - &self, - local: &'tcx hir::Local<'tcx>, - decl_ty: Ty<'tcx>, - ty: Ty<'tcx>, - ) { - if ty.references_error() { - // Override the types everywhere with `err()` to avoid knock on errors. - self.write_ty(local.hir_id, ty); - self.write_ty(local.pat.hir_id, ty); - let local_ty = LocalTy { decl_ty, revealed_ty: ty }; - self.locals.borrow_mut().insert(local.hir_id, local_ty); - self.locals.borrow_mut().insert(local.pat.hir_id, local_ty); - } - } - - pub(super) fn suggest_semicolon_at_end(&self, span: Span, err: &mut DiagnosticBuilder<'_>) { - err.span_suggestion_short( - span.shrink_to_hi(), - "consider using a semicolon here", - ";".to_string(), - Applicability::MachineApplicable, - ); - } - - pub fn check_stmt(&self, stmt: &'tcx hir::Stmt<'tcx>) { - // Don't do all the complex logic below for `DeclItem`. - match stmt.kind { - hir::StmtKind::Item(..) => return, - hir::StmtKind::Local(..) | hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => {} - } - - self.warn_if_unreachable(stmt.hir_id, stmt.span, "statement"); - - // Hide the outer diverging and `has_errors` flags. - let old_diverges = self.diverges.replace(Diverges::Maybe); - let old_has_errors = self.has_errors.replace(false); - - match stmt.kind { - hir::StmtKind::Local(ref l) => { - self.check_decl_local(&l); - } - // Ignore for now. - hir::StmtKind::Item(_) => {} - hir::StmtKind::Expr(ref expr) => { - // Check with expected type of `()`. - self.check_expr_has_type_or_error(&expr, self.tcx.mk_unit(), |err| { - self.suggest_semicolon_at_end(expr.span, err); - }); - } - hir::StmtKind::Semi(ref expr) => { - self.check_expr(&expr); - } - } - - // Combine the diverging and `has_error` flags. - self.diverges.set(self.diverges.get() | old_diverges); - self.has_errors.set(self.has_errors.get() | old_has_errors); - } - - pub fn check_block_no_value(&self, blk: &'tcx hir::Block<'tcx>) { - let unit = self.tcx.mk_unit(); - let ty = self.check_block_with_expected(blk, ExpectHasType(unit)); - - // if the block produces a `!` value, that can always be - // (effectively) coerced to unit. - if !ty.is_never() { - self.demand_suptype(blk.span, unit, ty); - } - } - - /// If `expr` is a `match` expression that has only one non-`!` arm, use that arm's tail - /// expression's `Span`, otherwise return `expr.span`. This is done to give better errors - /// when given code like the following: - /// ```text - /// if false { return 0i32; } else { 1u32 } - /// // ^^^^ point at this instead of the whole `if` expression - /// ``` - fn get_expr_coercion_span(&self, expr: &hir::Expr<'_>) -> rustc_span::Span { - if let hir::ExprKind::Match(_, arms, _) = &expr.kind { - let arm_spans: Vec<Span> = arms - .iter() - .filter_map(|arm| { - self.in_progress_typeck_results - .and_then(|typeck_results| { - typeck_results.borrow().node_type_opt(arm.body.hir_id) - }) - .and_then(|arm_ty| { - if arm_ty.is_never() { - None - } else { - Some(match &arm.body.kind { - // Point at the tail expression when possible. - hir::ExprKind::Block(block, _) => { - block.expr.as_ref().map(|e| e.span).unwrap_or(block.span) - } - _ => arm.body.span, - }) - } - }) - }) - .collect(); - if arm_spans.len() == 1 { - return arm_spans[0]; - } - } - expr.span - } - - pub(super) fn check_block_with_expected( - &self, - blk: &'tcx hir::Block<'tcx>, - expected: Expectation<'tcx>, - ) -> Ty<'tcx> { - let prev = { - let mut fcx_ps = self.ps.borrow_mut(); - let unsafety_state = fcx_ps.recurse(blk); - replace(&mut *fcx_ps, unsafety_state) - }; - - // In some cases, blocks have just one exit, but other blocks - // can be targeted by multiple breaks. This can happen both - // with labeled blocks as well as when we desugar - // a `try { ... }` expression. - // - // Example 1: - // - // 'a: { if true { break 'a Err(()); } Ok(()) } - // - // Here we would wind up with two coercions, one from - // `Err(())` and the other from the tail expression - // `Ok(())`. If the tail expression is omitted, that's a - // "forced unit" -- unless the block diverges, in which - // case we can ignore the tail expression (e.g., `'a: { - // break 'a 22; }` would not force the type of the block - // to be `()`). - let tail_expr = blk.expr.as_ref(); - let coerce_to_ty = expected.coercion_target_type(self, blk.span); - let coerce = if blk.targeted_by_break { - CoerceMany::new(coerce_to_ty) - } else { - let tail_expr: &[&hir::Expr<'_>] = match tail_expr { - Some(e) => slice::from_ref(e), - None => &[], - }; - CoerceMany::with_coercion_sites(coerce_to_ty, tail_expr) - }; - - let prev_diverges = self.diverges.get(); - let ctxt = BreakableCtxt { coerce: Some(coerce), may_break: false }; - - let (ctxt, ()) = self.with_breakable_ctxt(blk.hir_id, ctxt, || { - for s in blk.stmts { - self.check_stmt(s); - } - - // check the tail expression **without** holding the - // `enclosing_breakables` lock below. - let tail_expr_ty = tail_expr.map(|t| self.check_expr_with_expectation(t, expected)); - - let mut enclosing_breakables = self.enclosing_breakables.borrow_mut(); - let ctxt = enclosing_breakables.find_breakable(blk.hir_id); - let coerce = ctxt.coerce.as_mut().unwrap(); - if let Some(tail_expr_ty) = tail_expr_ty { - let tail_expr = tail_expr.unwrap(); - let span = self.get_expr_coercion_span(tail_expr); - let cause = self.cause(span, ObligationCauseCode::BlockTailExpression(blk.hir_id)); - coerce.coerce(self, &cause, tail_expr, tail_expr_ty); - } else { - // Subtle: if there is no explicit tail expression, - // that is typically equivalent to a tail expression - // of `()` -- except if the block diverges. In that - // case, there is no value supplied from the tail - // expression (assuming there are no other breaks, - // this implies that the type of the block will be - // `!`). - // - // #41425 -- label the implicit `()` as being the - // "found type" here, rather than the "expected type". - if !self.diverges.get().is_always() { - // #50009 -- Do not point at the entire fn block span, point at the return type - // span, as it is the cause of the requirement, and - // `consider_hint_about_removing_semicolon` will point at the last expression - // if it were a relevant part of the error. This improves usability in editors - // that highlight errors inline. - let mut sp = blk.span; - let mut fn_span = None; - if let Some((decl, ident)) = self.get_parent_fn_decl(blk.hir_id) { - let ret_sp = decl.output.span(); - if let Some(block_sp) = self.parent_item_span(blk.hir_id) { - // HACK: on some cases (`ui/liveness/liveness-issue-2163.rs`) the - // output would otherwise be incorrect and even misleading. Make sure - // the span we're aiming at correspond to a `fn` body. - if block_sp == blk.span { - sp = ret_sp; - fn_span = Some(ident.span); - } - } - } - coerce.coerce_forced_unit( - self, - &self.misc(sp), - &mut |err| { - if let Some(expected_ty) = expected.only_has_type(self) { - self.consider_hint_about_removing_semicolon(blk, expected_ty, err); - } - if let Some(fn_span) = fn_span { - err.span_label( - fn_span, - "implicitly returns `()` as its body has no tail or `return` \ - expression", - ); - } - }, - false, - ); - } - } - }); - - if ctxt.may_break { - // If we can break from the block, then the block's exit is always reachable - // (... as long as the entry is reachable) - regardless of the tail of the block. - self.diverges.set(prev_diverges); - } - - let mut ty = ctxt.coerce.unwrap().complete(self); - - if self.has_errors.get() || ty.references_error() { - ty = self.tcx.ty_error() - } - - self.write_ty(blk.hir_id, ty); - - *self.ps.borrow_mut() = prev; - ty - } - - fn parent_item_span(&self, id: hir::HirId) -> Option<Span> { - let node = self.tcx.hir().get(self.tcx.hir().get_parent_item(id)); - match node { - Node::Item(&hir::Item { kind: hir::ItemKind::Fn(_, _, body_id), .. }) - | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(_, body_id), .. }) => { - let body = self.tcx.hir().body(body_id); - if let ExprKind::Block(block, _) = &body.value.kind { - return Some(block.span); - } - } - _ => {} - } - None - } - - /// Given a function block's `HirId`, returns its `FnDecl` if it exists, or `None` otherwise. - fn get_parent_fn_decl(&self, blk_id: hir::HirId) -> Option<(&'tcx hir::FnDecl<'tcx>, Ident)> { - let parent = self.tcx.hir().get(self.tcx.hir().get_parent_item(blk_id)); - self.get_node_fn_decl(parent).map(|(fn_decl, ident, _)| (fn_decl, ident)) - } - - /// Given a function `Node`, return its `FnDecl` if it exists, or `None` otherwise. - pub(super) fn get_node_fn_decl( - &self, - node: Node<'tcx>, - ) -> Option<(&'tcx hir::FnDecl<'tcx>, Ident, bool)> { - match node { - Node::Item(&hir::Item { ident, kind: hir::ItemKind::Fn(ref sig, ..), .. }) => { - // This is less than ideal, it will not suggest a return type span on any - // method called `main`, regardless of whether it is actually the entry point, - // but it will still present it as the reason for the expected type. - Some((&sig.decl, ident, ident.name != sym::main)) - } - Node::TraitItem(&hir::TraitItem { - ident, - kind: hir::TraitItemKind::Fn(ref sig, ..), - .. - }) => Some((&sig.decl, ident, true)), - Node::ImplItem(&hir::ImplItem { - ident, - kind: hir::ImplItemKind::Fn(ref sig, ..), - .. - }) => Some((&sig.decl, ident, false)), - _ => None, - } - } - - /// Given a `HirId`, return the `FnDecl` of the method it is enclosed by and whether a - /// suggestion can be made, `None` otherwise. - pub fn get_fn_decl(&self, blk_id: hir::HirId) -> Option<(&'tcx hir::FnDecl<'tcx>, bool)> { - // Get enclosing Fn, if it is a function or a trait method, unless there's a `loop` or - // `while` before reaching it, as block tail returns are not available in them. - self.tcx.hir().get_return_block(blk_id).and_then(|blk_id| { - let parent = self.tcx.hir().get(blk_id); - self.get_node_fn_decl(parent).map(|(fn_decl, _, is_main)| (fn_decl, is_main)) - }) - } - - /// On implicit return expressions with mismatched types, provides the following suggestions: - /// - /// - Points out the method's return type as the reason for the expected type. - /// - Possible missing semicolon. - /// - Possible missing return type if the return type is the default, and not `fn main()`. - pub fn suggest_mismatched_types_on_tail( - &self, - err: &mut DiagnosticBuilder<'_>, - expr: &'tcx hir::Expr<'tcx>, - expected: Ty<'tcx>, - found: Ty<'tcx>, - cause_span: Span, - blk_id: hir::HirId, - ) -> bool { - let expr = expr.peel_drop_temps(); - self.suggest_missing_semicolon(err, expr, expected, cause_span); - let mut pointing_at_return_type = false; - if let Some((fn_decl, can_suggest)) = self.get_fn_decl(blk_id) { - pointing_at_return_type = - self.suggest_missing_return_type(err, &fn_decl, expected, found, can_suggest); - } - pointing_at_return_type - } - - /// When encountering an fn-like ctor that needs to unify with a value, check whether calling - /// the ctor would successfully solve the type mismatch and if so, suggest it: - /// ``` - /// fn foo(x: usize) -> usize { x } - /// let x: usize = foo; // suggest calling the `foo` function: `foo(42)` - /// ``` - fn suggest_fn_call( - &self, - err: &mut DiagnosticBuilder<'_>, - expr: &hir::Expr<'_>, - expected: Ty<'tcx>, - found: Ty<'tcx>, - ) -> bool { - let hir = self.tcx.hir(); - let (def_id, sig) = match *found.kind() { - ty::FnDef(def_id, _) => (def_id, found.fn_sig(self.tcx)), - ty::Closure(def_id, substs) => (def_id, substs.as_closure().sig()), - _ => return false, - }; - - let sig = self.replace_bound_vars_with_fresh_vars(expr.span, infer::FnCall, &sig).0; - let sig = self.normalize_associated_types_in(expr.span, &sig); - if self.can_coerce(sig.output(), expected) { - let (mut sugg_call, applicability) = if sig.inputs().is_empty() { - (String::new(), Applicability::MachineApplicable) - } else { - ("...".to_string(), Applicability::HasPlaceholders) - }; - let mut msg = "call this function"; - match hir.get_if_local(def_id) { - Some( - Node::Item(hir::Item { kind: ItemKind::Fn(.., body_id), .. }) - | Node::ImplItem(hir::ImplItem { - kind: hir::ImplItemKind::Fn(_, body_id), .. - }) - | Node::TraitItem(hir::TraitItem { - kind: hir::TraitItemKind::Fn(.., hir::TraitFn::Provided(body_id)), - .. - }), - ) => { - let body = hir.body(*body_id); - sugg_call = body - .params - .iter() - .map(|param| match ¶m.pat.kind { - hir::PatKind::Binding(_, _, ident, None) - if ident.name != kw::SelfLower => - { - ident.to_string() - } - _ => "_".to_string(), - }) - .collect::<Vec<_>>() - .join(", "); - } - Some(Node::Expr(hir::Expr { - kind: ExprKind::Closure(_, _, body_id, _, _), - span: full_closure_span, - .. - })) => { - if *full_closure_span == expr.span { - return false; - } - msg = "call this closure"; - let body = hir.body(*body_id); - sugg_call = body - .params - .iter() - .map(|param| match ¶m.pat.kind { - hir::PatKind::Binding(_, _, ident, None) - if ident.name != kw::SelfLower => - { - ident.to_string() - } - _ => "_".to_string(), - }) - .collect::<Vec<_>>() - .join(", "); - } - Some(Node::Ctor(hir::VariantData::Tuple(fields, _))) => { - sugg_call = fields.iter().map(|_| "_").collect::<Vec<_>>().join(", "); - match def_id.as_local().map(|def_id| hir.def_kind(def_id)) { - Some(DefKind::Ctor(hir::def::CtorOf::Variant, _)) => { - msg = "instantiate this tuple variant"; - } - Some(DefKind::Ctor(CtorOf::Struct, _)) => { - msg = "instantiate this tuple struct"; - } - _ => {} - } - } - Some(Node::ForeignItem(hir::ForeignItem { - kind: hir::ForeignItemKind::Fn(_, idents, _), - .. - })) => { - sugg_call = idents - .iter() - .map(|ident| { - if ident.name != kw::SelfLower { - ident.to_string() - } else { - "_".to_string() - } - }) - .collect::<Vec<_>>() - .join(", ") - } - Some(Node::TraitItem(hir::TraitItem { - kind: hir::TraitItemKind::Fn(.., hir::TraitFn::Required(idents)), - .. - })) => { - sugg_call = idents - .iter() - .map(|ident| { - if ident.name != kw::SelfLower { - ident.to_string() - } else { - "_".to_string() - } - }) - .collect::<Vec<_>>() - .join(", ") - } - _ => {} - } - err.span_suggestion_verbose( - expr.span.shrink_to_hi(), - &format!("use parentheses to {}", msg), - format!("({})", sugg_call), - applicability, - ); - return true; - } - false - } - - pub fn suggest_deref_ref_or_into( - &self, - err: &mut DiagnosticBuilder<'_>, - expr: &hir::Expr<'_>, - expected: Ty<'tcx>, - found: Ty<'tcx>, - expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>, - ) { - if let Some((sp, msg, suggestion, applicability)) = self.check_ref(expr, found, expected) { - err.span_suggestion(sp, msg, suggestion, applicability); - } else if let (ty::FnDef(def_id, ..), true) = - (&found.kind(), self.suggest_fn_call(err, expr, expected, found)) - { - if let Some(sp) = self.tcx.hir().span_if_local(*def_id) { - let sp = self.sess().source_map().guess_head_span(sp); - err.span_label(sp, &format!("{} defined here", found)); - } - } else if !self.check_for_cast(err, expr, found, expected, expected_ty_expr) { - let is_struct_pat_shorthand_field = - self.is_hir_id_from_struct_pattern_shorthand_field(expr.hir_id, expr.span); - let methods = self.get_conversion_methods(expr.span, expected, found, expr.hir_id); - if let Ok(expr_text) = self.sess().source_map().span_to_snippet(expr.span) { - let mut suggestions = iter::repeat(&expr_text) - .zip(methods.iter()) - .filter_map(|(receiver, method)| { - let method_call = format!(".{}()", method.ident); - if receiver.ends_with(&method_call) { - None // do not suggest code that is already there (#53348) - } else { - let method_call_list = [".to_vec()", ".to_string()"]; - let sugg = if receiver.ends_with(".clone()") - && method_call_list.contains(&method_call.as_str()) - { - let max_len = receiver.rfind('.').unwrap(); - format!("{}{}", &receiver[..max_len], method_call) - } else { - if expr.precedence().order() < ExprPrecedence::MethodCall.order() { - format!("({}){}", receiver, method_call) - } else { - format!("{}{}", receiver, method_call) - } - }; - Some(if is_struct_pat_shorthand_field { - format!("{}: {}", receiver, sugg) - } else { - sugg - }) - } - }) - .peekable(); - if suggestions.peek().is_some() { - err.span_suggestions( - expr.span, - "try using a conversion method", - suggestions, - Applicability::MaybeIncorrect, - ); - } - } - } - } - - /// When encountering the expected boxed value allocated in the stack, suggest allocating it - /// in the heap by calling `Box::new()`. - pub(super) fn suggest_boxing_when_appropriate( - &self, - err: &mut DiagnosticBuilder<'_>, - expr: &hir::Expr<'_>, - expected: Ty<'tcx>, - found: Ty<'tcx>, - ) { - if self.tcx.hir().is_inside_const_context(expr.hir_id) { - // Do not suggest `Box::new` in const context. - return; - } - if !expected.is_box() || found.is_box() { - return; - } - let boxed_found = self.tcx.mk_box(found); - if let (true, Ok(snippet)) = ( - self.can_coerce(boxed_found, expected), - self.sess().source_map().span_to_snippet(expr.span), - ) { - err.span_suggestion( - expr.span, - "store this in the heap by calling `Box::new`", - format!("Box::new({})", snippet), - Applicability::MachineApplicable, - ); - err.note( - "for more on the distinction between the stack and the heap, read \ - https://doc.rust-lang.org/book/ch15-01-box.html, \ - https://doc.rust-lang.org/rust-by-example/std/box.html, and \ - https://doc.rust-lang.org/std/boxed/index.html", - ); - } - } - - pub(super) fn note_internal_mutation_in_method( - &self, - err: &mut DiagnosticBuilder<'_>, - expr: &hir::Expr<'_>, - expected: Ty<'tcx>, - found: Ty<'tcx>, - ) { - if found != self.tcx.types.unit { - return; - } - if let ExprKind::MethodCall(path_segment, _, [rcvr, ..], _) = expr.kind { - if self - .typeck_results - .borrow() - .expr_ty_adjusted_opt(rcvr) - .map_or(true, |ty| expected.peel_refs() != ty.peel_refs()) - { - return; - } - let mut sp = MultiSpan::from_span(path_segment.ident.span); - sp.push_span_label( - path_segment.ident.span, - format!( - "this call modifies {} in-place", - match rcvr.kind { - ExprKind::Path(QPath::Resolved( - None, - hir::Path { segments: [segment], .. }, - )) => format!("`{}`", segment.ident), - _ => "its receiver".to_string(), - } - ), - ); - sp.push_span_label( - rcvr.span, - "you probably want to use this value after calling the method...".to_string(), - ); - err.span_note( - sp, - &format!("method `{}` modifies its receiver in-place", path_segment.ident), - ); - err.note(&format!("...instead of the `()` output of method `{}`", path_segment.ident)); - } - } - - /// When encountering an `impl Future` where `BoxFuture` is expected, suggest `Box::pin`. - pub(super) fn suggest_calling_boxed_future_when_appropriate( - &self, - err: &mut DiagnosticBuilder<'_>, - expr: &hir::Expr<'_>, - expected: Ty<'tcx>, - found: Ty<'tcx>, - ) -> bool { - // Handle #68197. - - if self.tcx.hir().is_inside_const_context(expr.hir_id) { - // Do not suggest `Box::new` in const context. - return false; - } - let pin_did = self.tcx.lang_items().pin_type(); - match expected.kind() { - ty::Adt(def, _) if Some(def.did) != pin_did => return false, - // This guards the `unwrap` and `mk_box` below. - _ if pin_did.is_none() || self.tcx.lang_items().owned_box().is_none() => return false, - _ => {} - } - let boxed_found = self.tcx.mk_box(found); - let new_found = self.tcx.mk_lang_item(boxed_found, LangItem::Pin).unwrap(); - if let (true, Ok(snippet)) = ( - self.can_coerce(new_found, expected), - self.sess().source_map().span_to_snippet(expr.span), - ) { - match found.kind() { - ty::Adt(def, _) if def.is_box() => { - err.help("use `Box::pin`"); - } - _ => { - err.span_suggestion( - expr.span, - "you need to pin and box this expression", - format!("Box::pin({})", snippet), - Applicability::MachineApplicable, - ); - } - } - true - } else { - false - } - } - - /// A common error is to forget to add a semicolon at the end of a block, e.g., - /// - /// ``` - /// fn foo() { - /// bar_that_returns_u32() - /// } - /// ``` - /// - /// This routine checks if the return expression in a block would make sense on its own as a - /// statement and the return type has been left as default or has been specified as `()`. If so, - /// it suggests adding a semicolon. - fn suggest_missing_semicolon( - &self, - err: &mut DiagnosticBuilder<'_>, - expression: &'tcx hir::Expr<'tcx>, - expected: Ty<'tcx>, - cause_span: Span, - ) { - if expected.is_unit() { - // `BlockTailExpression` only relevant if the tail expr would be - // useful on its own. - match expression.kind { - ExprKind::Call(..) - | ExprKind::MethodCall(..) - | ExprKind::Loop(..) - | ExprKind::Match(..) - | ExprKind::Block(..) => { - err.span_suggestion( - cause_span.shrink_to_hi(), - "try adding a semicolon", - ";".to_string(), - Applicability::MachineApplicable, - ); - } - _ => (), - } - } - } - - /// A possible error is to forget to add a return type that is needed: - /// - /// ``` - /// fn foo() { - /// bar_that_returns_u32() - /// } - /// ``` - /// - /// This routine checks if the return type is left as default, the method is not part of an - /// `impl` block and that it isn't the `main` method. If so, it suggests setting the return - /// type. - pub(super) fn suggest_missing_return_type( - &self, - err: &mut DiagnosticBuilder<'_>, - fn_decl: &hir::FnDecl<'_>, - expected: Ty<'tcx>, - found: Ty<'tcx>, - can_suggest: bool, - ) -> bool { - // Only suggest changing the return type for methods that - // haven't set a return type at all (and aren't `fn main()` or an impl). - match (&fn_decl.output, found.is_suggestable(), can_suggest, expected.is_unit()) { - (&hir::FnRetTy::DefaultReturn(span), true, true, true) => { - err.span_suggestion( - span, - "try adding a return type", - format!("-> {} ", self.resolve_vars_with_obligations(found)), - Applicability::MachineApplicable, - ); - true - } - (&hir::FnRetTy::DefaultReturn(span), false, true, true) => { - err.span_label(span, "possibly return type missing here?"); - true - } - (&hir::FnRetTy::DefaultReturn(span), _, false, true) => { - // `fn main()` must return `()`, do not suggest changing return type - err.span_label(span, "expected `()` because of default return type"); - true - } - // expectation was caused by something else, not the default return - (&hir::FnRetTy::DefaultReturn(_), _, _, false) => false, - (&hir::FnRetTy::Return(ref ty), _, _, _) => { - // Only point to return type if the expected type is the return type, as if they - // are not, the expectation must have been caused by something else. - debug!("suggest_missing_return_type: return type {:?} node {:?}", ty, ty.kind); - let sp = ty.span; - let ty = AstConv::ast_ty_to_ty(self, ty); - debug!("suggest_missing_return_type: return type {:?}", ty); - debug!("suggest_missing_return_type: expected type {:?}", ty); - if ty.kind() == expected.kind() { - err.span_label(sp, format!("expected `{}` because of return type", expected)); - return true; - } - false - } - } - } - - /// A possible error is to forget to add `.await` when using futures: - /// - /// ``` - /// async fn make_u32() -> u32 { - /// 22 - /// } - /// - /// fn take_u32(x: u32) {} - /// - /// async fn foo() { - /// let x = make_u32(); - /// take_u32(x); - /// } - /// ``` - /// - /// This routine checks if the found type `T` implements `Future<Output=U>` where `U` is the - /// expected type. If this is the case, and we are inside of an async body, it suggests adding - /// `.await` to the tail of the expression. - pub(super) fn suggest_missing_await( - &self, - err: &mut DiagnosticBuilder<'_>, - expr: &hir::Expr<'_>, - expected: Ty<'tcx>, - found: Ty<'tcx>, - ) { - debug!("suggest_missing_await: expr={:?} expected={:?}, found={:?}", expr, expected, found); - // `.await` is not permitted outside of `async` bodies, so don't bother to suggest if the - // body isn't `async`. - let item_id = self.tcx().hir().get_parent_node(self.body_id); - if let Some(body_id) = self.tcx().hir().maybe_body_owned_by(item_id) { - let body = self.tcx().hir().body(body_id); - if let Some(hir::GeneratorKind::Async(_)) = body.generator_kind { - let sp = expr.span; - // Check for `Future` implementations by constructing a predicate to - // prove: `<T as Future>::Output == U` - let future_trait = self.tcx.require_lang_item(LangItem::Future, Some(sp)); - let item_def_id = self - .tcx - .associated_items(future_trait) - .in_definition_order() - .next() - .unwrap() - .def_id; - // `<T as Future>::Output` - let projection_ty = ty::ProjectionTy { - // `T` - substs: self - .tcx - .mk_substs_trait(found, self.fresh_substs_for_item(sp, item_def_id)), - // `Future::Output` - item_def_id, - }; - - let predicate = ty::PredicateAtom::Projection(ty::ProjectionPredicate { - projection_ty, - ty: expected, - }) - .potentially_quantified(self.tcx, ty::PredicateKind::ForAll); - let obligation = traits::Obligation::new(self.misc(sp), self.param_env, predicate); - - debug!("suggest_missing_await: trying obligation {:?}", obligation); - - if self.infcx.predicate_may_hold(&obligation) { - debug!("suggest_missing_await: obligation held: {:?}", obligation); - if let Ok(code) = self.sess().source_map().span_to_snippet(sp) { - err.span_suggestion( - sp, - "consider using `.await` here", - format!("{}.await", code), - Applicability::MaybeIncorrect, - ); - } else { - debug!("suggest_missing_await: no snippet for {:?}", sp); - } - } else { - debug!("suggest_missing_await: obligation did not hold: {:?}", obligation) - } - } - } - } - - pub(super) fn suggest_missing_parentheses( - &self, - err: &mut DiagnosticBuilder<'_>, - expr: &hir::Expr<'_>, - ) { - let sp = self.tcx.sess.source_map().start_point(expr.span); - if let Some(sp) = self.tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp) { - // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }` - self.tcx.sess.parse_sess.expr_parentheses_needed(err, *sp, None); - } - } - - pub(super) fn note_need_for_fn_pointer( - &self, - err: &mut DiagnosticBuilder<'_>, - expected: Ty<'tcx>, - found: Ty<'tcx>, - ) { - let (sig, did, substs) = match (&expected.kind(), &found.kind()) { - (ty::FnDef(did1, substs1), ty::FnDef(did2, substs2)) => { - let sig1 = self.tcx.fn_sig(*did1).subst(self.tcx, substs1); - let sig2 = self.tcx.fn_sig(*did2).subst(self.tcx, substs2); - if sig1 != sig2 { - return; - } - err.note( - "different `fn` items always have unique types, even if their signatures are \ - the same", - ); - (sig1, *did1, substs1) - } - (ty::FnDef(did, substs), ty::FnPtr(sig2)) => { - let sig1 = self.tcx.fn_sig(*did).subst(self.tcx, substs); - if sig1 != *sig2 { - return; - } - (sig1, *did, substs) - } - _ => return, - }; - err.help(&format!("change the expected type to be function pointer `{}`", sig)); - err.help(&format!( - "if the expected type is due to type inference, cast the expected `fn` to a function \ - pointer: `{} as {}`", - self.tcx.def_path_str_with_substs(did, substs), - sig - )); - } - - /// A common error is to add an extra semicolon: - /// - /// ``` - /// fn foo() -> usize { - /// 22; - /// } - /// ``` - /// - /// This routine checks if the final statement in a block is an - /// expression with an explicit semicolon whose type is compatible - /// with `expected_ty`. If so, it suggests removing the semicolon. - fn consider_hint_about_removing_semicolon( - &self, - blk: &'tcx hir::Block<'tcx>, - expected_ty: Ty<'tcx>, - err: &mut DiagnosticBuilder<'_>, - ) { - if let Some(span_semi) = self.could_remove_semicolon(blk, expected_ty) { - err.span_suggestion( - span_semi, - "consider removing this semicolon", - String::new(), - Applicability::MachineApplicable, - ); - } - } - - pub(super) fn could_remove_semicolon( - &self, - blk: &'tcx hir::Block<'tcx>, - expected_ty: Ty<'tcx>, - ) -> Option<Span> { - // Be helpful when the user wrote `{... expr;}` and - // taking the `;` off is enough to fix the error. - let last_stmt = blk.stmts.last()?; - let last_expr = match last_stmt.kind { - hir::StmtKind::Semi(ref e) => e, - _ => return None, - }; - let last_expr_ty = self.node_ty(last_expr.hir_id); - if matches!(last_expr_ty.kind(), ty::Error(_)) - || self.can_sub(self.param_env, last_expr_ty, expected_ty).is_err() - { - return None; - } - let original_span = original_sp(last_stmt.span, blk.span); - Some(original_span.with_lo(original_span.hi() - BytePos(1))) - } - - // Instantiates the given path, which must refer to an item with the given - // number of type parameters and type. - pub fn instantiate_value_path( - &self, - segments: &[hir::PathSegment<'_>], - self_ty: Option<Ty<'tcx>>, - res: Res, - span: Span, - hir_id: hir::HirId, - ) -> (Ty<'tcx>, Res) { - debug!( - "instantiate_value_path(segments={:?}, self_ty={:?}, res={:?}, hir_id={})", - segments, self_ty, res, hir_id, - ); - - let tcx = self.tcx; - - let path_segs = match res { - Res::Local(_) | Res::SelfCtor(_) => vec![], - Res::Def(kind, def_id) => { - AstConv::def_ids_for_value_path_segments(self, segments, self_ty, kind, def_id) - } - _ => bug!("instantiate_value_path on {:?}", res), - }; - - let mut user_self_ty = None; - let mut is_alias_variant_ctor = false; - match res { - Res::Def(DefKind::Ctor(CtorOf::Variant, _), _) => { - if let Some(self_ty) = self_ty { - let adt_def = self_ty.ty_adt_def().unwrap(); - user_self_ty = Some(UserSelfTy { impl_def_id: adt_def.did, self_ty }); - is_alias_variant_ctor = true; - } - } - Res::Def(DefKind::AssocFn | DefKind::AssocConst, def_id) => { - let container = tcx.associated_item(def_id).container; - debug!("instantiate_value_path: def_id={:?} container={:?}", def_id, container); - match container { - ty::TraitContainer(trait_did) => { - callee::check_legal_trait_for_method_call(tcx, span, None, trait_did) - } - ty::ImplContainer(impl_def_id) => { - if segments.len() == 1 { - // `<T>::assoc` will end up here, and so - // can `T::assoc`. It this came from an - // inherent impl, we need to record the - // `T` for posterity (see `UserSelfTy` for - // details). - let self_ty = self_ty.expect("UFCS sugared assoc missing Self"); - user_self_ty = Some(UserSelfTy { impl_def_id, self_ty }); - } - } - } - } - _ => {} - } - - // Now that we have categorized what space the parameters for each - // segment belong to, let's sort out the parameters that the user - // provided (if any) into their appropriate spaces. We'll also report - // errors if type parameters are provided in an inappropriate place. - - let generic_segs: FxHashSet<_> = path_segs.iter().map(|PathSeg(_, index)| index).collect(); - let generics_has_err = AstConv::prohibit_generics( - self, - segments.iter().enumerate().filter_map(|(index, seg)| { - if !generic_segs.contains(&index) || is_alias_variant_ctor { - Some(seg) - } else { - None - } - }), - ); - - if let Res::Local(hid) = res { - let ty = self.local_ty(span, hid).decl_ty; - let ty = self.normalize_associated_types_in(span, &ty); - self.write_ty(hir_id, ty); - return (ty, res); - } - - if generics_has_err { - // Don't try to infer type parameters when prohibited generic arguments were given. - user_self_ty = None; - } - - // Now we have to compare the types that the user *actually* - // provided against the types that were *expected*. If the user - // did not provide any types, then we want to substitute inference - // variables. If the user provided some types, we may still need - // to add defaults. If the user provided *too many* types, that's - // a problem. - - let mut infer_args_for_err = FxHashSet::default(); - for &PathSeg(def_id, index) in &path_segs { - let seg = &segments[index]; - let generics = tcx.generics_of(def_id); - // Argument-position `impl Trait` is treated as a normal generic - // parameter internally, but we don't allow users to specify the - // parameter's value explicitly, so we have to do some error- - // checking here. - if let GenericArgCountResult { - correct: Err(GenericArgCountMismatch { reported: Some(ErrorReported), .. }), - .. - } = AstConv::check_generic_arg_count_for_call( - tcx, span, &generics, &seg, false, // `is_method_call` - ) { - infer_args_for_err.insert(index); - self.set_tainted_by_errors(); // See issue #53251. - } - } - - let has_self = path_segs - .last() - .map(|PathSeg(def_id, _)| tcx.generics_of(*def_id).has_self) - .unwrap_or(false); - - let (res, self_ctor_substs) = if let Res::SelfCtor(impl_def_id) = res { - let ty = self.normalize_ty(span, tcx.at(span).type_of(impl_def_id)); - match *ty.kind() { - ty::Adt(adt_def, substs) if adt_def.has_ctor() => { - let variant = adt_def.non_enum_variant(); - let ctor_def_id = variant.ctor_def_id.unwrap(); - ( - Res::Def(DefKind::Ctor(CtorOf::Struct, variant.ctor_kind), ctor_def_id), - Some(substs), - ) - } - _ => { - let mut err = tcx.sess.struct_span_err( - span, - "the `Self` constructor can only be used with tuple or unit structs", - ); - if let Some(adt_def) = ty.ty_adt_def() { - match adt_def.adt_kind() { - AdtKind::Enum => { - err.help("did you mean to use one of the enum's variants?"); - } - AdtKind::Struct | AdtKind::Union => { - err.span_suggestion( - span, - "use curly brackets", - String::from("Self { /* fields */ }"), - Applicability::HasPlaceholders, - ); - } - } - } - err.emit(); - - return (tcx.ty_error(), res); - } - } - } else { - (res, None) - }; - let def_id = res.def_id(); - - // The things we are substituting into the type should not contain - // escaping late-bound regions, and nor should the base type scheme. - let ty = tcx.type_of(def_id); - - let arg_count = GenericArgCountResult { - explicit_late_bound: ExplicitLateBound::No, - correct: if infer_args_for_err.is_empty() { - Ok(()) - } else { - Err(GenericArgCountMismatch::default()) - }, - }; - - let substs = self_ctor_substs.unwrap_or_else(|| { - AstConv::create_substs_for_generic_args( - tcx, - def_id, - &[][..], - has_self, - self_ty, - arg_count, - // Provide the generic args, and whether types should be inferred. - |def_id| { - if let Some(&PathSeg(_, index)) = - path_segs.iter().find(|&PathSeg(did, _)| *did == def_id) - { - // If we've encountered an `impl Trait`-related error, we're just - // going to infer the arguments for better error messages. - if !infer_args_for_err.contains(&index) { - // Check whether the user has provided generic arguments. - if let Some(ref data) = segments[index].args { - return (Some(data), segments[index].infer_args); - } - } - return (None, segments[index].infer_args); - } - - (None, true) - }, - // Provide substitutions for parameters for which (valid) arguments have been provided. - |param, arg| match (¶m.kind, arg) { - (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => { - AstConv::ast_region_to_region(self, lt, Some(param)).into() - } - (GenericParamDefKind::Type { .. }, GenericArg::Type(ty)) => { - self.to_ty(ty).into() - } - (GenericParamDefKind::Const, GenericArg::Const(ct)) => { - self.const_arg_to_const(&ct.value, param.def_id).into() - } - _ => unreachable!(), - }, - // Provide substitutions for parameters for which arguments are inferred. - |substs, param, infer_args| { - match param.kind { - GenericParamDefKind::Lifetime => { - self.re_infer(Some(param), span).unwrap().into() - } - GenericParamDefKind::Type { has_default, .. } => { - if !infer_args && has_default { - // If we have a default, then we it doesn't matter that we're not - // inferring the type arguments: we provide the default where any - // is missing. - let default = tcx.type_of(param.def_id); - self.normalize_ty( - span, - default.subst_spanned(tcx, substs.unwrap(), Some(span)), - ) - .into() - } else { - // If no type arguments were provided, we have to infer them. - // This case also occurs as a result of some malformed input, e.g. - // a lifetime argument being given instead of a type parameter. - // Using inference instead of `Error` gives better error messages. - self.var_for_def(span, param) - } - } - GenericParamDefKind::Const => { - // FIXME(const_generics:defaults) - // No const parameters were provided, we have to infer them. - self.var_for_def(span, param) - } - } - }, - ) - }); - assert!(!substs.has_escaping_bound_vars()); - assert!(!ty.has_escaping_bound_vars()); - - // First, store the "user substs" for later. - self.write_user_type_annotation_from_substs(hir_id, def_id, substs, user_self_ty); - - self.add_required_obligations(span, def_id, &substs); - - // Substitute the values for the type parameters into the type of - // the referenced item. - let ty_substituted = self.instantiate_type_scheme(span, &substs, &ty); - - if let Some(UserSelfTy { impl_def_id, self_ty }) = user_self_ty { - // In the case of `Foo<T>::method` and `<Foo<T>>::method`, if `method` - // is inherent, there is no `Self` parameter; instead, the impl needs - // type parameters, which we can infer by unifying the provided `Self` - // with the substituted impl type. - // This also occurs for an enum variant on a type alias. - let ty = tcx.type_of(impl_def_id); - - let impl_ty = self.instantiate_type_scheme(span, &substs, &ty); - match self.at(&self.misc(span), self.param_env).sup(impl_ty, self_ty) { - Ok(ok) => self.register_infer_ok_obligations(ok), - Err(_) => { - self.tcx.sess.delay_span_bug( - span, - &format!( - "instantiate_value_path: (UFCS) {:?} was a subtype of {:?} but now is not?", - self_ty, - impl_ty, - ), - ); - } - } - } - - self.check_rustc_args_require_const(def_id, hir_id, span); - - debug!("instantiate_value_path: type of {:?} is {:?}", hir_id, ty_substituted); - self.write_substs(hir_id, substs); - - (ty_substituted, res) - } - - /// Add all the obligations that are required, substituting and normalized appropriately. - fn add_required_obligations(&self, span: Span, def_id: DefId, substs: &SubstsRef<'tcx>) { - let (bounds, spans) = self.instantiate_bounds(span, def_id, &substs); - - for (i, mut obligation) in traits::predicates_for_generics( - traits::ObligationCause::new(span, self.body_id, traits::ItemObligation(def_id)), - self.param_env, - bounds, - ) - .enumerate() - { - // This makes the error point at the bound, but we want to point at the argument - if let Some(span) = spans.get(i) { - obligation.cause.make_mut().code = traits::BindingObligation(def_id, *span); - } - self.register_predicate(obligation); - } - } - - fn check_rustc_args_require_const(&self, def_id: DefId, hir_id: hir::HirId, span: Span) { - // We're only interested in functions tagged with - // #[rustc_args_required_const], so ignore anything that's not. - if !self.tcx.has_attr(def_id, sym::rustc_args_required_const) { - return; - } - - // If our calling expression is indeed the function itself, we're good! - // If not, generate an error that this can only be called directly. - if let Node::Expr(expr) = self.tcx.hir().get(self.tcx.hir().get_parent_node(hir_id)) { - if let ExprKind::Call(ref callee, ..) = expr.kind { - if callee.hir_id == hir_id { - return; - } - } - } - - self.tcx.sess.span_err( - span, - "this function can only be invoked directly, not through a function pointer", - ); - } - - /// Resolves `typ` by a single level if `typ` is a type variable. - /// If no resolution is possible, then an error is reported. - /// Numeric inference variables may be left unresolved. - pub fn structurally_resolved_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> { - let ty = self.resolve_vars_with_obligations(ty); - if !ty.is_ty_var() { - ty - } else { - if !self.is_tainted_by_errors() { - self.emit_inference_failure_err((**self).body_id, sp, ty.into(), E0282) - .note("type must be known at this point") - .emit(); - } - let err = self.tcx.ty_error(); - self.demand_suptype(sp, err, ty); - err - } - } - - pub(super) fn with_breakable_ctxt<F: FnOnce() -> R, R>( - &self, - id: hir::HirId, - ctxt: BreakableCtxt<'tcx>, - f: F, - ) -> (BreakableCtxt<'tcx>, R) { - let index; - { - let mut enclosing_breakables = self.enclosing_breakables.borrow_mut(); - index = enclosing_breakables.stack.len(); - enclosing_breakables.by_id.insert(id, index); - enclosing_breakables.stack.push(ctxt); - } - let result = f(); - let ctxt = { - let mut enclosing_breakables = self.enclosing_breakables.borrow_mut(); - debug_assert!(enclosing_breakables.stack.len() == index + 1); - enclosing_breakables.by_id.remove(&id).expect("missing breakable context"); - enclosing_breakables.stack.pop().expect("missing breakable context") - }; - (ctxt, result) - } - - /// Instantiate a QueryResponse in a probe context, without a - /// good ObligationCause. - pub(super) fn probe_instantiate_query_response( - &self, - span: Span, - original_values: &OriginalQueryValues<'tcx>, - query_result: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>, - ) -> InferResult<'tcx, Ty<'tcx>> { - self.instantiate_query_response_and_region_obligations( - &traits::ObligationCause::misc(span, self.body_id), - self.param_env, - original_values, - query_result, - ) - } - - /// Returns `true` if an expression is contained inside the LHS of an assignment expression. - pub(super) fn expr_in_place(&self, mut expr_id: hir::HirId) -> bool { - let mut contained_in_place = false; - - while let hir::Node::Expr(parent_expr) = - self.tcx.hir().get(self.tcx.hir().get_parent_node(expr_id)) - { - match &parent_expr.kind { - hir::ExprKind::Assign(lhs, ..) | hir::ExprKind::AssignOp(_, lhs, ..) => { - if lhs.hir_id == expr_id { - contained_in_place = true; - break; - } - } - _ => (), - } - expr_id = parent_expr.hir_id; - } - - contained_in_place - } -} -impl<'a, 'tcx> Deref for FnCtxt<'a, 'tcx> { - type Target = Inherited<'a, 'tcx>; - fn deref(&self) -> &Self::Target { - &self.inh - } -} - -impl<'a, 'tcx> AstConv<'tcx> for FnCtxt<'a, 'tcx> { - fn tcx<'b>(&'b self) -> TyCtxt<'tcx> { - self.tcx - } - - fn item_def_id(&self) -> Option<DefId> { - None - } - - fn default_constness_for_trait_bounds(&self) -> hir::Constness { - // FIXME: refactor this into a method - let node = self.tcx.hir().get(self.body_id); - if let Some(fn_like) = FnLikeNode::from_node(node) { - fn_like.constness() - } else { - hir::Constness::NotConst - } - } - - fn get_type_parameter_bounds(&self, _: Span, def_id: DefId) -> ty::GenericPredicates<'tcx> { - let tcx = self.tcx; - let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local()); - let item_id = tcx.hir().ty_param_owner(hir_id); - let item_def_id = tcx.hir().local_def_id(item_id); - let generics = tcx.generics_of(item_def_id); - let index = generics.param_def_id_to_index[&def_id]; - ty::GenericPredicates { - parent: None, - predicates: tcx.arena.alloc_from_iter( - self.param_env.caller_bounds().iter().filter_map(|predicate| { - match predicate.skip_binders() { - ty::PredicateAtom::Trait(data, _) if data.self_ty().is_param(index) => { - // HACK(eddyb) should get the original `Span`. - let span = tcx.def_span(def_id); - Some((predicate, span)) - } - _ => None, - } - }), - ), - } - } - - fn re_infer(&self, def: Option<&ty::GenericParamDef>, span: Span) -> Option<ty::Region<'tcx>> { - let v = match def { - Some(def) => infer::EarlyBoundRegion(span, def.name), - None => infer::MiscVariable(span), - }; - Some(self.next_region_var(v)) - } - - fn allow_ty_infer(&self) -> bool { - true - } - - fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> { - if let Some(param) = param { - if let GenericArgKind::Type(ty) = self.var_for_def(span, param).unpack() { - return ty; - } - unreachable!() - } else { - self.next_ty_var(TypeVariableOrigin { - kind: TypeVariableOriginKind::TypeInference, - span, - }) - } - } - - fn ct_infer( - &self, - ty: Ty<'tcx>, - param: Option<&ty::GenericParamDef>, - span: Span, - ) -> &'tcx Const<'tcx> { - if let Some(param) = param { - if let GenericArgKind::Const(ct) = self.var_for_def(span, param).unpack() { - return ct; - } - unreachable!() - } else { - self.next_const_var( - ty, - ConstVariableOrigin { kind: ConstVariableOriginKind::ConstInference, span }, - ) - } - } - - fn projected_ty_from_poly_trait_ref( - &self, - span: Span, - item_def_id: DefId, - item_segment: &hir::PathSegment<'_>, - poly_trait_ref: ty::PolyTraitRef<'tcx>, - ) -> Ty<'tcx> { - let (trait_ref, _) = self.replace_bound_vars_with_fresh_vars( - span, - infer::LateBoundRegionConversionTime::AssocTypeProjection(item_def_id), - &poly_trait_ref, - ); - - let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item( - self, - self.tcx, - span, - item_def_id, - item_segment, - trait_ref.substs, - ); - - self.tcx().mk_projection(item_def_id, item_substs) - } - - fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx> { - if ty.has_escaping_bound_vars() { - ty // FIXME: normalization and escaping regions - } else { - self.normalize_associated_types_in(span, &ty) - } - } - - fn set_tainted_by_errors(&self) { - self.infcx.set_tainted_by_errors() - } - - fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, _span: Span) { - self.write_ty(hir_id, ty) - } -} diff --git a/compiler/rustc_typeck/src/check/fn_ctxt/_impl.rs b/compiler/rustc_typeck/src/check/fn_ctxt/_impl.rs new file mode 100644 index 00000000000..017b0abd1d6 --- /dev/null +++ b/compiler/rustc_typeck/src/check/fn_ctxt/_impl.rs @@ -0,0 +1,1469 @@ +use crate::astconv::{ + AstConv, ExplicitLateBound, GenericArgCountMismatch, GenericArgCountResult, PathSeg, +}; +use crate::check::callee::{self, DeferredCallResolution}; +use crate::check::method::{self, MethodCallee, SelfSource}; +use crate::check::{BreakableCtxt, Diverges, Expectation, FallbackMode, FnCtxt, LocalTy}; + +use rustc_data_structures::captures::Captures; +use rustc_data_structures::fx::FxHashSet; +use rustc_errors::{Applicability, DiagnosticBuilder, ErrorReported}; +use rustc_hir as hir; +use rustc_hir::def::{CtorOf, DefKind, Res}; +use rustc_hir::def_id::DefId; +use rustc_hir::lang_items::LangItem; +use rustc_hir::{ExprKind, GenericArg, Node, QPath}; +use rustc_infer::infer::canonical::{Canonical, OriginalQueryValues, QueryResponse}; +use rustc_infer::infer::error_reporting::TypeAnnotationNeeded::E0282; +use rustc_infer::infer::{InferOk, InferResult}; +use rustc_middle::ty::adjustment::{Adjust, Adjustment, AutoBorrow, AutoBorrowMutability}; +use rustc_middle::ty::fold::TypeFoldable; +use rustc_middle::ty::subst::{ + self, GenericArgKind, InternalSubsts, Subst, SubstsRef, UserSelfTy, UserSubsts, +}; +use rustc_middle::ty::{ + self, AdtKind, CanonicalUserType, DefIdTree, GenericParamDefKind, ToPolyTraitRef, ToPredicate, + Ty, UserType, +}; +use rustc_session::lint; +use rustc_span::hygiene::DesugaringKind; +use rustc_span::source_map::{original_sp, DUMMY_SP}; +use rustc_span::symbol::{kw, sym, Ident}; +use rustc_span::{self, BytePos, MultiSpan, Span}; +use rustc_trait_selection::infer::InferCtxtExt as _; +use rustc_trait_selection::opaque_types::InferCtxtExt as _; +use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _; +use rustc_trait_selection::traits::{self, ObligationCauseCode, TraitEngine, TraitEngineExt}; + +use std::collections::hash_map::Entry; +use std::slice; + +impl<'a, 'tcx> FnCtxt<'a, 'tcx> { + /// Produces warning on the given node, if the current point in the + /// function is unreachable, and there hasn't been another warning. + pub(in super::super) fn warn_if_unreachable(&self, id: hir::HirId, span: Span, kind: &str) { + // FIXME: Combine these two 'if' expressions into one once + // let chains are implemented + if let Diverges::Always { span: orig_span, custom_note } = self.diverges.get() { + // If span arose from a desugaring of `if` or `while`, then it is the condition itself, + // which diverges, that we are about to lint on. This gives suboptimal diagnostics. + // Instead, stop here so that the `if`- or `while`-expression's block is linted instead. + if !span.is_desugaring(DesugaringKind::CondTemporary) + && !span.is_desugaring(DesugaringKind::Async) + && !orig_span.is_desugaring(DesugaringKind::Await) + { + self.diverges.set(Diverges::WarnedAlways); + + debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind); + + self.tcx().struct_span_lint_hir(lint::builtin::UNREACHABLE_CODE, id, span, |lint| { + let msg = format!("unreachable {}", kind); + lint.build(&msg) + .span_label(span, &msg) + .span_label( + orig_span, + custom_note + .unwrap_or("any code following this expression is unreachable"), + ) + .emit(); + }) + } + } + } + + /// Resolves type and const variables in `ty` if possible. Unlike the infcx + /// version (resolve_vars_if_possible), this version will + /// also select obligations if it seems useful, in an effort + /// to get more type information. + pub(in super::super) fn resolve_vars_with_obligations(&self, mut ty: Ty<'tcx>) -> Ty<'tcx> { + debug!("resolve_vars_with_obligations(ty={:?})", ty); + + // No Infer()? Nothing needs doing. + if !ty.has_infer_types_or_consts() { + debug!("resolve_vars_with_obligations: ty={:?}", ty); + return ty; + } + + // If `ty` is a type variable, see whether we already know what it is. + ty = self.resolve_vars_if_possible(&ty); + if !ty.has_infer_types_or_consts() { + debug!("resolve_vars_with_obligations: ty={:?}", ty); + return ty; + } + + // If not, try resolving pending obligations as much as + // possible. This can help substantially when there are + // indirect dependencies that don't seem worth tracking + // precisely. + self.select_obligations_where_possible(false, |_| {}); + ty = self.resolve_vars_if_possible(&ty); + + debug!("resolve_vars_with_obligations: ty={:?}", ty); + ty + } + + pub(in super::super) fn record_deferred_call_resolution( + &self, + closure_def_id: DefId, + r: DeferredCallResolution<'tcx>, + ) { + let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut(); + deferred_call_resolutions.entry(closure_def_id).or_default().push(r); + } + + pub(in super::super) fn remove_deferred_call_resolutions( + &self, + closure_def_id: DefId, + ) -> Vec<DeferredCallResolution<'tcx>> { + let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut(); + deferred_call_resolutions.remove(&closure_def_id).unwrap_or(vec![]) + } + + pub fn tag(&self) -> String { + format!("{:p}", self) + } + + pub fn local_ty(&self, span: Span, nid: hir::HirId) -> LocalTy<'tcx> { + self.locals.borrow().get(&nid).cloned().unwrap_or_else(|| { + span_bug!(span, "no type for local variable {}", self.tcx.hir().node_to_string(nid)) + }) + } + + #[inline] + pub fn write_ty(&self, id: hir::HirId, ty: Ty<'tcx>) { + debug!( + "write_ty({:?}, {:?}) in fcx {}", + id, + self.resolve_vars_if_possible(&ty), + self.tag() + ); + self.typeck_results.borrow_mut().node_types_mut().insert(id, ty); + + if ty.references_error() { + self.has_errors.set(true); + self.set_tainted_by_errors(); + } + } + + pub fn write_field_index(&self, hir_id: hir::HirId, index: usize) { + self.typeck_results.borrow_mut().field_indices_mut().insert(hir_id, index); + } + + pub(in super::super) fn write_resolution( + &self, + hir_id: hir::HirId, + r: Result<(DefKind, DefId), ErrorReported>, + ) { + self.typeck_results.borrow_mut().type_dependent_defs_mut().insert(hir_id, r); + } + + pub fn write_method_call(&self, hir_id: hir::HirId, method: MethodCallee<'tcx>) { + debug!("write_method_call(hir_id={:?}, method={:?})", hir_id, method); + self.write_resolution(hir_id, Ok((DefKind::AssocFn, method.def_id))); + self.write_substs(hir_id, method.substs); + + // When the method is confirmed, the `method.substs` includes + // parameters from not just the method, but also the impl of + // the method -- in particular, the `Self` type will be fully + // resolved. However, those are not something that the "user + // specified" -- i.e., those types come from the inferred type + // of the receiver, not something the user wrote. So when we + // create the user-substs, we want to replace those earlier + // types with just the types that the user actually wrote -- + // that is, those that appear on the *method itself*. + // + // As an example, if the user wrote something like + // `foo.bar::<u32>(...)` -- the `Self` type here will be the + // type of `foo` (possibly adjusted), but we don't want to + // include that. We want just the `[_, u32]` part. + if !method.substs.is_noop() { + let method_generics = self.tcx.generics_of(method.def_id); + if !method_generics.params.is_empty() { + let user_type_annotation = self.infcx.probe(|_| { + let user_substs = UserSubsts { + substs: InternalSubsts::for_item(self.tcx, method.def_id, |param, _| { + let i = param.index as usize; + if i < method_generics.parent_count { + self.infcx.var_for_def(DUMMY_SP, param) + } else { + method.substs[i] + } + }), + user_self_ty: None, // not relevant here + }; + + self.infcx.canonicalize_user_type_annotation(&UserType::TypeOf( + method.def_id, + user_substs, + )) + }); + + debug!("write_method_call: user_type_annotation={:?}", user_type_annotation); + self.write_user_type_annotation(hir_id, user_type_annotation); + } + } + } + + pub fn write_substs(&self, node_id: hir::HirId, substs: SubstsRef<'tcx>) { + if !substs.is_noop() { + debug!("write_substs({:?}, {:?}) in fcx {}", node_id, substs, self.tag()); + + self.typeck_results.borrow_mut().node_substs_mut().insert(node_id, substs); + } + } + + /// Given the substs that we just converted from the HIR, try to + /// canonicalize them and store them as user-given substitutions + /// (i.e., substitutions that must be respected by the NLL check). + /// + /// This should be invoked **before any unifications have + /// occurred**, so that annotations like `Vec<_>` are preserved + /// properly. + pub fn write_user_type_annotation_from_substs( + &self, + hir_id: hir::HirId, + def_id: DefId, + substs: SubstsRef<'tcx>, + user_self_ty: Option<UserSelfTy<'tcx>>, + ) { + debug!( + "write_user_type_annotation_from_substs: hir_id={:?} def_id={:?} substs={:?} \ + user_self_ty={:?} in fcx {}", + hir_id, + def_id, + substs, + user_self_ty, + self.tag(), + ); + + if Self::can_contain_user_lifetime_bounds((substs, user_self_ty)) { + let canonicalized = self.infcx.canonicalize_user_type_annotation(&UserType::TypeOf( + def_id, + UserSubsts { substs, user_self_ty }, + )); + debug!("write_user_type_annotation_from_substs: canonicalized={:?}", canonicalized); + self.write_user_type_annotation(hir_id, canonicalized); + } + } + + pub fn write_user_type_annotation( + &self, + hir_id: hir::HirId, + canonical_user_type_annotation: CanonicalUserType<'tcx>, + ) { + debug!( + "write_user_type_annotation: hir_id={:?} canonical_user_type_annotation={:?} tag={}", + hir_id, + canonical_user_type_annotation, + self.tag(), + ); + + if !canonical_user_type_annotation.is_identity() { + self.typeck_results + .borrow_mut() + .user_provided_types_mut() + .insert(hir_id, canonical_user_type_annotation); + } else { + debug!("write_user_type_annotation: skipping identity substs"); + } + } + + pub fn apply_adjustments(&self, expr: &hir::Expr<'_>, adj: Vec<Adjustment<'tcx>>) { + debug!("apply_adjustments(expr={:?}, adj={:?})", expr, adj); + + if adj.is_empty() { + return; + } + + let autoborrow_mut = adj.iter().any(|adj| { + matches!(adj, &Adjustment { + kind: Adjust::Borrow(AutoBorrow::Ref(_, AutoBorrowMutability::Mut { .. })), + .. + }) + }); + + match self.typeck_results.borrow_mut().adjustments_mut().entry(expr.hir_id) { + Entry::Vacant(entry) => { + entry.insert(adj); + } + Entry::Occupied(mut entry) => { + debug!(" - composing on top of {:?}", entry.get()); + match (&entry.get()[..], &adj[..]) { + // Applying any adjustment on top of a NeverToAny + // is a valid NeverToAny adjustment, because it can't + // be reached. + (&[Adjustment { kind: Adjust::NeverToAny, .. }], _) => return, + (&[ + Adjustment { kind: Adjust::Deref(_), .. }, + Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(..)), .. }, + ], &[ + Adjustment { kind: Adjust::Deref(_), .. }, + .. // Any following adjustments are allowed. + ]) => { + // A reborrow has no effect before a dereference. + } + // FIXME: currently we never try to compose autoderefs + // and ReifyFnPointer/UnsafeFnPointer, but we could. + _ => + bug!("while adjusting {:?}, can't compose {:?} and {:?}", + expr, entry.get(), adj) + }; + *entry.get_mut() = adj; + } + } + + // If there is an mutable auto-borrow, it is equivalent to `&mut <expr>`. + // In this case implicit use of `Deref` and `Index` within `<expr>` should + // instead be `DerefMut` and `IndexMut`, so fix those up. + if autoborrow_mut { + self.convert_place_derefs_to_mutable(expr); + } + } + + /// Basically whenever we are converting from a type scheme into + /// the fn body space, we always want to normalize associated + /// types as well. This function combines the two. + fn instantiate_type_scheme<T>(&self, span: Span, substs: SubstsRef<'tcx>, value: &T) -> T + where + T: TypeFoldable<'tcx>, + { + let value = value.subst(self.tcx, substs); + let result = self.normalize_associated_types_in(span, &value); + debug!("instantiate_type_scheme(value={:?}, substs={:?}) = {:?}", value, substs, result); + result + } + + /// As `instantiate_type_scheme`, but for the bounds found in a + /// generic type scheme. + pub(in super::super) fn instantiate_bounds( + &self, + span: Span, + def_id: DefId, + substs: SubstsRef<'tcx>, + ) -> (ty::InstantiatedPredicates<'tcx>, Vec<Span>) { + let bounds = self.tcx.predicates_of(def_id); + let spans: Vec<Span> = bounds.predicates.iter().map(|(_, span)| *span).collect(); + let result = bounds.instantiate(self.tcx, substs); + let result = self.normalize_associated_types_in(span, &result); + debug!( + "instantiate_bounds(bounds={:?}, substs={:?}) = {:?}, {:?}", + bounds, substs, result, spans, + ); + (result, spans) + } + + /// Replaces the opaque types from the given value with type variables, + /// and records the `OpaqueTypeMap` for later use during writeback. See + /// `InferCtxt::instantiate_opaque_types` for more details. + pub(in super::super) fn instantiate_opaque_types_from_value<T: TypeFoldable<'tcx>>( + &self, + parent_id: hir::HirId, + value: &T, + value_span: Span, + ) -> T { + let parent_def_id = self.tcx.hir().local_def_id(parent_id); + debug!( + "instantiate_opaque_types_from_value(parent_def_id={:?}, value={:?})", + parent_def_id, value + ); + + let (value, opaque_type_map) = + self.register_infer_ok_obligations(self.instantiate_opaque_types( + parent_def_id, + self.body_id, + self.param_env, + value, + value_span, + )); + + let mut opaque_types = self.opaque_types.borrow_mut(); + let mut opaque_types_vars = self.opaque_types_vars.borrow_mut(); + for (ty, decl) in opaque_type_map { + let _ = opaque_types.insert(ty, decl); + let _ = opaque_types_vars.insert(decl.concrete_ty, decl.opaque_type); + } + + value + } + + pub(in super::super) fn normalize_associated_types_in<T>(&self, span: Span, value: &T) -> T + where + T: TypeFoldable<'tcx>, + { + self.inh.normalize_associated_types_in(span, self.body_id, self.param_env, value) + } + + pub(in super::super) fn normalize_associated_types_in_as_infer_ok<T>( + &self, + span: Span, + value: &T, + ) -> InferOk<'tcx, T> + where + T: TypeFoldable<'tcx>, + { + self.inh.partially_normalize_associated_types_in(span, self.body_id, self.param_env, value) + } + + pub fn require_type_meets( + &self, + ty: Ty<'tcx>, + span: Span, + code: traits::ObligationCauseCode<'tcx>, + def_id: DefId, + ) { + self.register_bound(ty, def_id, traits::ObligationCause::new(span, self.body_id, code)); + } + + pub fn require_type_is_sized( + &self, + ty: Ty<'tcx>, + span: Span, + code: traits::ObligationCauseCode<'tcx>, + ) { + if !ty.references_error() { + let lang_item = self.tcx.require_lang_item(LangItem::Sized, None); + self.require_type_meets(ty, span, code, lang_item); + } + } + + pub fn require_type_is_sized_deferred( + &self, + ty: Ty<'tcx>, + span: Span, + code: traits::ObligationCauseCode<'tcx>, + ) { + if !ty.references_error() { + self.deferred_sized_obligations.borrow_mut().push((ty, span, code)); + } + } + + pub fn register_bound( + &self, + ty: Ty<'tcx>, + def_id: DefId, + cause: traits::ObligationCause<'tcx>, + ) { + if !ty.references_error() { + self.fulfillment_cx.borrow_mut().register_bound( + self, + self.param_env, + ty, + def_id, + cause, + ); + } + } + + pub fn to_ty(&self, ast_t: &hir::Ty<'_>) -> Ty<'tcx> { + let t = AstConv::ast_ty_to_ty(self, ast_t); + self.register_wf_obligation(t.into(), ast_t.span, traits::MiscObligation); + t + } + + pub fn to_ty_saving_user_provided_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> { + let ty = self.to_ty(ast_ty); + debug!("to_ty_saving_user_provided_ty: ty={:?}", ty); + + if Self::can_contain_user_lifetime_bounds(ty) { + let c_ty = self.infcx.canonicalize_response(&UserType::Ty(ty)); + debug!("to_ty_saving_user_provided_ty: c_ty={:?}", c_ty); + self.typeck_results.borrow_mut().user_provided_types_mut().insert(ast_ty.hir_id, c_ty); + } + + ty + } + + pub fn to_const(&self, ast_c: &hir::AnonConst) -> &'tcx ty::Const<'tcx> { + let const_def_id = self.tcx.hir().local_def_id(ast_c.hir_id); + let c = ty::Const::from_anon_const(self.tcx, const_def_id); + self.register_wf_obligation( + c.into(), + self.tcx.hir().span(ast_c.hir_id), + ObligationCauseCode::MiscObligation, + ); + c + } + + pub fn const_arg_to_const( + &self, + ast_c: &hir::AnonConst, + param_def_id: DefId, + ) -> &'tcx ty::Const<'tcx> { + let const_def = ty::WithOptConstParam { + did: self.tcx.hir().local_def_id(ast_c.hir_id), + const_param_did: Some(param_def_id), + }; + let c = ty::Const::from_opt_const_arg_anon_const(self.tcx, const_def); + self.register_wf_obligation( + c.into(), + self.tcx.hir().span(ast_c.hir_id), + ObligationCauseCode::MiscObligation, + ); + c + } + + // If the type given by the user has free regions, save it for later, since + // NLL would like to enforce those. Also pass in types that involve + // projections, since those can resolve to `'static` bounds (modulo #54940, + // which hopefully will be fixed by the time you see this comment, dear + // reader, although I have my doubts). Also pass in types with inference + // types, because they may be repeated. Other sorts of things are already + // sufficiently enforced with erased regions. =) + fn can_contain_user_lifetime_bounds<T>(t: T) -> bool + where + T: TypeFoldable<'tcx>, + { + t.has_free_regions() || t.has_projections() || t.has_infer_types() + } + + pub fn node_ty(&self, id: hir::HirId) -> Ty<'tcx> { + match self.typeck_results.borrow().node_types().get(id) { + Some(&t) => t, + None if self.is_tainted_by_errors() => self.tcx.ty_error(), + None => { + bug!( + "no type for node {}: {} in fcx {}", + id, + self.tcx.hir().node_to_string(id), + self.tag() + ); + } + } + } + + /// Registers an obligation for checking later, during regionck, that `arg` is well-formed. + pub fn register_wf_obligation( + &self, + arg: subst::GenericArg<'tcx>, + span: Span, + code: traits::ObligationCauseCode<'tcx>, + ) { + // WF obligations never themselves fail, so no real need to give a detailed cause: + let cause = traits::ObligationCause::new(span, self.body_id, code); + self.register_predicate(traits::Obligation::new( + cause, + self.param_env, + ty::PredicateAtom::WellFormed(arg).to_predicate(self.tcx), + )); + } + + /// Registers obligations that all `substs` are well-formed. + pub fn add_wf_bounds(&self, substs: SubstsRef<'tcx>, expr: &hir::Expr<'_>) { + for arg in substs.iter().filter(|arg| { + matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..)) + }) { + self.register_wf_obligation(arg, expr.span, traits::MiscObligation); + } + } + + /// Given a fully substituted set of bounds (`generic_bounds`), and the values with which each + /// type/region parameter was instantiated (`substs`), creates and registers suitable + /// trait/region obligations. + /// + /// For example, if there is a function: + /// + /// ``` + /// fn foo<'a,T:'a>(...) + /// ``` + /// + /// and a reference: + /// + /// ``` + /// let f = foo; + /// ``` + /// + /// Then we will create a fresh region variable `'$0` and a fresh type variable `$1` for `'a` + /// and `T`. This routine will add a region obligation `$1:'$0` and register it locally. + pub fn add_obligations_for_parameters( + &self, + cause: traits::ObligationCause<'tcx>, + predicates: ty::InstantiatedPredicates<'tcx>, + ) { + assert!(!predicates.has_escaping_bound_vars()); + + debug!("add_obligations_for_parameters(predicates={:?})", predicates); + + for obligation in traits::predicates_for_generics(cause, self.param_env, predicates) { + self.register_predicate(obligation); + } + } + + // FIXME(arielb1): use this instead of field.ty everywhere + // Only for fields! Returns <none> for methods> + // Indifferent to privacy flags + pub fn field_ty( + &self, + span: Span, + field: &'tcx ty::FieldDef, + substs: SubstsRef<'tcx>, + ) -> Ty<'tcx> { + self.normalize_associated_types_in(span, &field.ty(self.tcx, substs)) + } + + pub(in super::super) fn resolve_generator_interiors(&self, def_id: DefId) { + let mut generators = self.deferred_generator_interiors.borrow_mut(); + for (body_id, interior, kind) in generators.drain(..) { + self.select_obligations_where_possible(false, |_| {}); + crate::check::generator_interior::resolve_interior( + self, def_id, body_id, interior, kind, + ); + } + } + + // Tries to apply a fallback to `ty` if it is an unsolved variable. + // + // - Unconstrained ints are replaced with `i32`. + // + // - Unconstrained floats are replaced with with `f64`. + // + // - Non-numerics get replaced with `!` when `#![feature(never_type_fallback)]` + // is enabled. Otherwise, they are replaced with `()`. + // + // Fallback becomes very dubious if we have encountered type-checking errors. + // In that case, fallback to Error. + // The return value indicates whether fallback has occurred. + pub(in super::super) fn fallback_if_possible(&self, ty: Ty<'tcx>, mode: FallbackMode) -> bool { + use rustc_middle::ty::error::UnconstrainedNumeric::Neither; + use rustc_middle::ty::error::UnconstrainedNumeric::{UnconstrainedFloat, UnconstrainedInt}; + + assert!(ty.is_ty_infer()); + let fallback = match self.type_is_unconstrained_numeric(ty) { + _ if self.is_tainted_by_errors() => self.tcx().ty_error(), + UnconstrainedInt => self.tcx.types.i32, + UnconstrainedFloat => self.tcx.types.f64, + Neither if self.type_var_diverges(ty) => self.tcx.mk_diverging_default(), + Neither => { + // This type variable was created from the instantiation of an opaque + // type. The fact that we're attempting to perform fallback for it + // means that the function neither constrained it to a concrete + // type, nor to the opaque type itself. + // + // For example, in this code: + // + //``` + // type MyType = impl Copy; + // fn defining_use() -> MyType { true } + // fn other_use() -> MyType { defining_use() } + // ``` + // + // `defining_use` will constrain the instantiated inference + // variable to `bool`, while `other_use` will constrain + // the instantiated inference variable to `MyType`. + // + // When we process opaque types during writeback, we + // will handle cases like `other_use`, and not count + // them as defining usages + // + // However, we also need to handle cases like this: + // + // ```rust + // pub type Foo = impl Copy; + // fn produce() -> Option<Foo> { + // None + // } + // ``` + // + // In the above snippet, the inference variable created by + // instantiating `Option<Foo>` will be completely unconstrained. + // We treat this as a non-defining use by making the inference + // variable fall back to the opaque type itself. + if let FallbackMode::All = mode { + if let Some(opaque_ty) = self.opaque_types_vars.borrow().get(ty) { + debug!( + "fallback_if_possible: falling back opaque type var {:?} to {:?}", + ty, opaque_ty + ); + *opaque_ty + } else { + return false; + } + } else { + return false; + } + } + }; + debug!("fallback_if_possible: defaulting `{:?}` to `{:?}`", ty, fallback); + self.demand_eqtype(rustc_span::DUMMY_SP, ty, fallback); + true + } + + pub(in super::super) fn select_all_obligations_or_error(&self) { + debug!("select_all_obligations_or_error"); + if let Err(errors) = self.fulfillment_cx.borrow_mut().select_all_or_error(&self) { + self.report_fulfillment_errors(&errors, self.inh.body_id, false); + } + } + + /// Select as many obligations as we can at present. + pub(in super::super) fn select_obligations_where_possible( + &self, + fallback_has_occurred: bool, + mutate_fullfillment_errors: impl Fn(&mut Vec<traits::FulfillmentError<'tcx>>), + ) { + let result = self.fulfillment_cx.borrow_mut().select_where_possible(self); + if let Err(mut errors) = result { + mutate_fullfillment_errors(&mut errors); + self.report_fulfillment_errors(&errors, self.inh.body_id, fallback_has_occurred); + } + } + + /// For the overloaded place expressions (`*x`, `x[3]`), the trait + /// returns a type of `&T`, but the actual type we assign to the + /// *expression* is `T`. So this function just peels off the return + /// type by one layer to yield `T`. + pub(in super::super) fn make_overloaded_place_return_type( + &self, + method: MethodCallee<'tcx>, + ) -> ty::TypeAndMut<'tcx> { + // extract method return type, which will be &T; + let ret_ty = method.sig.output(); + + // method returns &T, but the type as visible to user is T, so deref + ret_ty.builtin_deref(true).unwrap() + } + + fn self_type_matches_expected_vid( + &self, + trait_ref: ty::PolyTraitRef<'tcx>, + expected_vid: ty::TyVid, + ) -> bool { + let self_ty = self.shallow_resolve(trait_ref.skip_binder().self_ty()); + debug!( + "self_type_matches_expected_vid(trait_ref={:?}, self_ty={:?}, expected_vid={:?})", + trait_ref, self_ty, expected_vid + ); + match *self_ty.kind() { + ty::Infer(ty::TyVar(found_vid)) => { + // FIXME: consider using `sub_root_var` here so we + // can see through subtyping. + let found_vid = self.root_var(found_vid); + debug!("self_type_matches_expected_vid - found_vid={:?}", found_vid); + expected_vid == found_vid + } + _ => false, + } + } + + pub(in super::super) fn obligations_for_self_ty<'b>( + &'b self, + self_ty: ty::TyVid, + ) -> impl Iterator<Item = (ty::PolyTraitRef<'tcx>, traits::PredicateObligation<'tcx>)> + + Captures<'tcx> + + 'b { + // FIXME: consider using `sub_root_var` here so we + // can see through subtyping. + let ty_var_root = self.root_var(self_ty); + debug!( + "obligations_for_self_ty: self_ty={:?} ty_var_root={:?} pending_obligations={:?}", + self_ty, + ty_var_root, + self.fulfillment_cx.borrow().pending_obligations() + ); + + self.fulfillment_cx + .borrow() + .pending_obligations() + .into_iter() + .filter_map(move |obligation| { + match obligation.predicate.skip_binders() { + ty::PredicateAtom::Projection(data) => { + Some((ty::Binder::bind(data).to_poly_trait_ref(self.tcx), obligation)) + } + ty::PredicateAtom::Trait(data, _) => { + Some((ty::Binder::bind(data).to_poly_trait_ref(), obligation)) + } + ty::PredicateAtom::Subtype(..) => None, + ty::PredicateAtom::RegionOutlives(..) => None, + ty::PredicateAtom::TypeOutlives(..) => None, + ty::PredicateAtom::WellFormed(..) => None, + ty::PredicateAtom::ObjectSafe(..) => None, + ty::PredicateAtom::ConstEvaluatable(..) => None, + ty::PredicateAtom::ConstEquate(..) => None, + // N.B., this predicate is created by breaking down a + // `ClosureType: FnFoo()` predicate, where + // `ClosureType` represents some `Closure`. It can't + // possibly be referring to the current closure, + // because we haven't produced the `Closure` for + // this closure yet; this is exactly why the other + // code is looking for a self type of a unresolved + // inference variable. + ty::PredicateAtom::ClosureKind(..) => None, + ty::PredicateAtom::TypeWellFormedFromEnv(..) => None, + } + }) + .filter(move |(tr, _)| self.self_type_matches_expected_vid(*tr, ty_var_root)) + } + + pub(in super::super) fn type_var_is_sized(&self, self_ty: ty::TyVid) -> bool { + self.obligations_for_self_ty(self_ty) + .any(|(tr, _)| Some(tr.def_id()) == self.tcx.lang_items().sized_trait()) + } + + pub(in super::super) fn err_args(&self, len: usize) -> Vec<Ty<'tcx>> { + vec![self.tcx.ty_error(); len] + } + + /// Unifies the output type with the expected type early, for more coercions + /// and forward type information on the input expressions. + pub(in super::super) fn expected_inputs_for_expected_output( + &self, + call_span: Span, + expected_ret: Expectation<'tcx>, + formal_ret: Ty<'tcx>, + formal_args: &[Ty<'tcx>], + ) -> Vec<Ty<'tcx>> { + let formal_ret = self.resolve_vars_with_obligations(formal_ret); + let ret_ty = match expected_ret.only_has_type(self) { + Some(ret) => ret, + None => return Vec::new(), + }; + let expect_args = self + .fudge_inference_if_ok(|| { + // Attempt to apply a subtyping relationship between the formal + // return type (likely containing type variables if the function + // is polymorphic) and the expected return type. + // No argument expectations are produced if unification fails. + let origin = self.misc(call_span); + let ures = self.at(&origin, self.param_env).sup(ret_ty, &formal_ret); + + // FIXME(#27336) can't use ? here, Try::from_error doesn't default + // to identity so the resulting type is not constrained. + match ures { + Ok(ok) => { + // Process any obligations locally as much as + // we can. We don't care if some things turn + // out unconstrained or ambiguous, as we're + // just trying to get hints here. + self.save_and_restore_in_snapshot_flag(|_| { + let mut fulfill = TraitEngine::new(self.tcx); + for obligation in ok.obligations { + fulfill.register_predicate_obligation(self, obligation); + } + fulfill.select_where_possible(self) + }) + .map_err(|_| ())?; + } + Err(_) => return Err(()), + } + + // Record all the argument types, with the substitutions + // produced from the above subtyping unification. + Ok(formal_args.iter().map(|ty| self.resolve_vars_if_possible(ty)).collect()) + }) + .unwrap_or_default(); + debug!( + "expected_inputs_for_expected_output(formal={:?} -> {:?}, expected={:?} -> {:?})", + formal_args, formal_ret, expect_args, expected_ret + ); + expect_args + } + + pub(in super::super) fn resolve_lang_item_path( + &self, + lang_item: hir::LangItem, + span: Span, + hir_id: hir::HirId, + ) -> (Res, Ty<'tcx>) { + let def_id = self.tcx.require_lang_item(lang_item, Some(span)); + let def_kind = self.tcx.def_kind(def_id); + + let item_ty = if let DefKind::Variant = def_kind { + self.tcx.type_of(self.tcx.parent(def_id).expect("variant w/out parent")) + } else { + self.tcx.type_of(def_id) + }; + let substs = self.infcx.fresh_substs_for_item(span, def_id); + let ty = item_ty.subst(self.tcx, substs); + + self.write_resolution(hir_id, Ok((def_kind, def_id))); + self.add_required_obligations(span, def_id, &substs); + (Res::Def(def_kind, def_id), ty) + } + + /// Resolves an associated value path into a base type and associated constant, or method + /// resolution. The newly resolved definition is written into `type_dependent_defs`. + pub fn resolve_ty_and_res_ufcs<'b>( + &self, + qpath: &'b QPath<'b>, + hir_id: hir::HirId, + span: Span, + ) -> (Res, Option<Ty<'tcx>>, &'b [hir::PathSegment<'b>]) { + debug!("resolve_ty_and_res_ufcs: qpath={:?} hir_id={:?} span={:?}", qpath, hir_id, span); + let (ty, qself, item_segment) = match *qpath { + QPath::Resolved(ref opt_qself, ref path) => { + return ( + path.res, + opt_qself.as_ref().map(|qself| self.to_ty(qself)), + &path.segments[..], + ); + } + QPath::TypeRelative(ref qself, ref segment) => (self.to_ty(qself), qself, segment), + QPath::LangItem(..) => bug!("`resolve_ty_and_res_ufcs` called on `LangItem`"), + }; + if let Some(&cached_result) = self.typeck_results.borrow().type_dependent_defs().get(hir_id) + { + // Return directly on cache hit. This is useful to avoid doubly reporting + // errors with default match binding modes. See #44614. + let def = + cached_result.map(|(kind, def_id)| Res::Def(kind, def_id)).unwrap_or(Res::Err); + return (def, Some(ty), slice::from_ref(&**item_segment)); + } + let item_name = item_segment.ident; + let result = self.resolve_ufcs(span, item_name, ty, hir_id).or_else(|error| { + let result = match error { + method::MethodError::PrivateMatch(kind, def_id, _) => Ok((kind, def_id)), + _ => Err(ErrorReported), + }; + if item_name.name != kw::Invalid { + if let Some(mut e) = self.report_method_error( + span, + ty, + item_name, + SelfSource::QPath(qself), + error, + None, + ) { + e.emit(); + } + } + result + }); + + // Write back the new resolution. + self.write_resolution(hir_id, result); + ( + result.map(|(kind, def_id)| Res::Def(kind, def_id)).unwrap_or(Res::Err), + Some(ty), + slice::from_ref(&**item_segment), + ) + } + + /// Given a function `Node`, return its `FnDecl` if it exists, or `None` otherwise. + pub(in super::super) fn get_node_fn_decl( + &self, + node: Node<'tcx>, + ) -> Option<(&'tcx hir::FnDecl<'tcx>, Ident, bool)> { + match node { + Node::Item(&hir::Item { ident, kind: hir::ItemKind::Fn(ref sig, ..), .. }) => { + // This is less than ideal, it will not suggest a return type span on any + // method called `main`, regardless of whether it is actually the entry point, + // but it will still present it as the reason for the expected type. + Some((&sig.decl, ident, ident.name != sym::main)) + } + Node::TraitItem(&hir::TraitItem { + ident, + kind: hir::TraitItemKind::Fn(ref sig, ..), + .. + }) => Some((&sig.decl, ident, true)), + Node::ImplItem(&hir::ImplItem { + ident, + kind: hir::ImplItemKind::Fn(ref sig, ..), + .. + }) => Some((&sig.decl, ident, false)), + _ => None, + } + } + + /// Given a `HirId`, return the `FnDecl` of the method it is enclosed by and whether a + /// suggestion can be made, `None` otherwise. + pub fn get_fn_decl(&self, blk_id: hir::HirId) -> Option<(&'tcx hir::FnDecl<'tcx>, bool)> { + // Get enclosing Fn, if it is a function or a trait method, unless there's a `loop` or + // `while` before reaching it, as block tail returns are not available in them. + self.tcx.hir().get_return_block(blk_id).and_then(|blk_id| { + let parent = self.tcx.hir().get(blk_id); + self.get_node_fn_decl(parent).map(|(fn_decl, _, is_main)| (fn_decl, is_main)) + }) + } + + pub(in super::super) fn note_internal_mutation_in_method( + &self, + err: &mut DiagnosticBuilder<'_>, + expr: &hir::Expr<'_>, + expected: Ty<'tcx>, + found: Ty<'tcx>, + ) { + if found != self.tcx.types.unit { + return; + } + if let ExprKind::MethodCall(path_segment, _, [rcvr, ..], _) = expr.kind { + if self + .typeck_results + .borrow() + .expr_ty_adjusted_opt(rcvr) + .map_or(true, |ty| expected.peel_refs() != ty.peel_refs()) + { + return; + } + let mut sp = MultiSpan::from_span(path_segment.ident.span); + sp.push_span_label( + path_segment.ident.span, + format!( + "this call modifies {} in-place", + match rcvr.kind { + ExprKind::Path(QPath::Resolved( + None, + hir::Path { segments: [segment], .. }, + )) => format!("`{}`", segment.ident), + _ => "its receiver".to_string(), + } + ), + ); + sp.push_span_label( + rcvr.span, + "you probably want to use this value after calling the method...".to_string(), + ); + err.span_note( + sp, + &format!("method `{}` modifies its receiver in-place", path_segment.ident), + ); + err.note(&format!("...instead of the `()` output of method `{}`", path_segment.ident)); + } + } + + pub(in super::super) fn note_need_for_fn_pointer( + &self, + err: &mut DiagnosticBuilder<'_>, + expected: Ty<'tcx>, + found: Ty<'tcx>, + ) { + let (sig, did, substs) = match (&expected.kind(), &found.kind()) { + (ty::FnDef(did1, substs1), ty::FnDef(did2, substs2)) => { + let sig1 = self.tcx.fn_sig(*did1).subst(self.tcx, substs1); + let sig2 = self.tcx.fn_sig(*did2).subst(self.tcx, substs2); + if sig1 != sig2 { + return; + } + err.note( + "different `fn` items always have unique types, even if their signatures are \ + the same", + ); + (sig1, *did1, substs1) + } + (ty::FnDef(did, substs), ty::FnPtr(sig2)) => { + let sig1 = self.tcx.fn_sig(*did).subst(self.tcx, substs); + if sig1 != *sig2 { + return; + } + (sig1, *did, substs) + } + _ => return, + }; + err.help(&format!("change the expected type to be function pointer `{}`", sig)); + err.help(&format!( + "if the expected type is due to type inference, cast the expected `fn` to a function \ + pointer: `{} as {}`", + self.tcx.def_path_str_with_substs(did, substs), + sig + )); + } + + pub(in super::super) fn could_remove_semicolon( + &self, + blk: &'tcx hir::Block<'tcx>, + expected_ty: Ty<'tcx>, + ) -> Option<Span> { + // Be helpful when the user wrote `{... expr;}` and + // taking the `;` off is enough to fix the error. + let last_stmt = blk.stmts.last()?; + let last_expr = match last_stmt.kind { + hir::StmtKind::Semi(ref e) => e, + _ => return None, + }; + let last_expr_ty = self.node_ty(last_expr.hir_id); + if matches!(last_expr_ty.kind(), ty::Error(_)) + || self.can_sub(self.param_env, last_expr_ty, expected_ty).is_err() + { + return None; + } + let original_span = original_sp(last_stmt.span, blk.span); + Some(original_span.with_lo(original_span.hi() - BytePos(1))) + } + + // Instantiates the given path, which must refer to an item with the given + // number of type parameters and type. + pub fn instantiate_value_path( + &self, + segments: &[hir::PathSegment<'_>], + self_ty: Option<Ty<'tcx>>, + res: Res, + span: Span, + hir_id: hir::HirId, + ) -> (Ty<'tcx>, Res) { + debug!( + "instantiate_value_path(segments={:?}, self_ty={:?}, res={:?}, hir_id={})", + segments, self_ty, res, hir_id, + ); + + let tcx = self.tcx; + + let path_segs = match res { + Res::Local(_) | Res::SelfCtor(_) => vec![], + Res::Def(kind, def_id) => { + AstConv::def_ids_for_value_path_segments(self, segments, self_ty, kind, def_id) + } + _ => bug!("instantiate_value_path on {:?}", res), + }; + + let mut user_self_ty = None; + let mut is_alias_variant_ctor = false; + match res { + Res::Def(DefKind::Ctor(CtorOf::Variant, _), _) => { + if let Some(self_ty) = self_ty { + let adt_def = self_ty.ty_adt_def().unwrap(); + user_self_ty = Some(UserSelfTy { impl_def_id: adt_def.did, self_ty }); + is_alias_variant_ctor = true; + } + } + Res::Def(DefKind::AssocFn | DefKind::AssocConst, def_id) => { + let container = tcx.associated_item(def_id).container; + debug!("instantiate_value_path: def_id={:?} container={:?}", def_id, container); + match container { + ty::TraitContainer(trait_did) => { + callee::check_legal_trait_for_method_call(tcx, span, None, trait_did) + } + ty::ImplContainer(impl_def_id) => { + if segments.len() == 1 { + // `<T>::assoc` will end up here, and so + // can `T::assoc`. It this came from an + // inherent impl, we need to record the + // `T` for posterity (see `UserSelfTy` for + // details). + let self_ty = self_ty.expect("UFCS sugared assoc missing Self"); + user_self_ty = Some(UserSelfTy { impl_def_id, self_ty }); + } + } + } + } + _ => {} + } + + // Now that we have categorized what space the parameters for each + // segment belong to, let's sort out the parameters that the user + // provided (if any) into their appropriate spaces. We'll also report + // errors if type parameters are provided in an inappropriate place. + + let generic_segs: FxHashSet<_> = path_segs.iter().map(|PathSeg(_, index)| index).collect(); + let generics_has_err = AstConv::prohibit_generics( + self, + segments.iter().enumerate().filter_map(|(index, seg)| { + if !generic_segs.contains(&index) || is_alias_variant_ctor { + Some(seg) + } else { + None + } + }), + ); + + if let Res::Local(hid) = res { + let ty = self.local_ty(span, hid).decl_ty; + let ty = self.normalize_associated_types_in(span, &ty); + self.write_ty(hir_id, ty); + return (ty, res); + } + + if generics_has_err { + // Don't try to infer type parameters when prohibited generic arguments were given. + user_self_ty = None; + } + + // Now we have to compare the types that the user *actually* + // provided against the types that were *expected*. If the user + // did not provide any types, then we want to substitute inference + // variables. If the user provided some types, we may still need + // to add defaults. If the user provided *too many* types, that's + // a problem. + + let mut infer_args_for_err = FxHashSet::default(); + for &PathSeg(def_id, index) in &path_segs { + let seg = &segments[index]; + let generics = tcx.generics_of(def_id); + // Argument-position `impl Trait` is treated as a normal generic + // parameter internally, but we don't allow users to specify the + // parameter's value explicitly, so we have to do some error- + // checking here. + if let GenericArgCountResult { + correct: Err(GenericArgCountMismatch { reported: Some(ErrorReported), .. }), + .. + } = AstConv::check_generic_arg_count_for_call( + tcx, span, &generics, &seg, false, // `is_method_call` + ) { + infer_args_for_err.insert(index); + self.set_tainted_by_errors(); // See issue #53251. + } + } + + let has_self = path_segs + .last() + .map(|PathSeg(def_id, _)| tcx.generics_of(*def_id).has_self) + .unwrap_or(false); + + let (res, self_ctor_substs) = if let Res::SelfCtor(impl_def_id) = res { + let ty = self.normalize_ty(span, tcx.at(span).type_of(impl_def_id)); + match *ty.kind() { + ty::Adt(adt_def, substs) if adt_def.has_ctor() => { + let variant = adt_def.non_enum_variant(); + let ctor_def_id = variant.ctor_def_id.unwrap(); + ( + Res::Def(DefKind::Ctor(CtorOf::Struct, variant.ctor_kind), ctor_def_id), + Some(substs), + ) + } + _ => { + let mut err = tcx.sess.struct_span_err( + span, + "the `Self` constructor can only be used with tuple or unit structs", + ); + if let Some(adt_def) = ty.ty_adt_def() { + match adt_def.adt_kind() { + AdtKind::Enum => { + err.help("did you mean to use one of the enum's variants?"); + } + AdtKind::Struct | AdtKind::Union => { + err.span_suggestion( + span, + "use curly brackets", + String::from("Self { /* fields */ }"), + Applicability::HasPlaceholders, + ); + } + } + } + err.emit(); + + return (tcx.ty_error(), res); + } + } + } else { + (res, None) + }; + let def_id = res.def_id(); + + // The things we are substituting into the type should not contain + // escaping late-bound regions, and nor should the base type scheme. + let ty = tcx.type_of(def_id); + + let arg_count = GenericArgCountResult { + explicit_late_bound: ExplicitLateBound::No, + correct: if infer_args_for_err.is_empty() { + Ok(()) + } else { + Err(GenericArgCountMismatch::default()) + }, + }; + + let substs = self_ctor_substs.unwrap_or_else(|| { + AstConv::create_substs_for_generic_args( + tcx, + def_id, + &[][..], + has_self, + self_ty, + arg_count, + // Provide the generic args, and whether types should be inferred. + |def_id| { + if let Some(&PathSeg(_, index)) = + path_segs.iter().find(|&PathSeg(did, _)| *did == def_id) + { + // If we've encountered an `impl Trait`-related error, we're just + // going to infer the arguments for better error messages. + if !infer_args_for_err.contains(&index) { + // Check whether the user has provided generic arguments. + if let Some(ref data) = segments[index].args { + return (Some(data), segments[index].infer_args); + } + } + return (None, segments[index].infer_args); + } + + (None, true) + }, + // Provide substitutions for parameters for which (valid) arguments have been provided. + |param, arg| match (¶m.kind, arg) { + (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => { + AstConv::ast_region_to_region(self, lt, Some(param)).into() + } + (GenericParamDefKind::Type { .. }, GenericArg::Type(ty)) => { + self.to_ty(ty).into() + } + (GenericParamDefKind::Const, GenericArg::Const(ct)) => { + self.const_arg_to_const(&ct.value, param.def_id).into() + } + _ => unreachable!(), + }, + // Provide substitutions for parameters for which arguments are inferred. + |substs, param, infer_args| { + match param.kind { + GenericParamDefKind::Lifetime => { + self.re_infer(Some(param), span).unwrap().into() + } + GenericParamDefKind::Type { has_default, .. } => { + if !infer_args && has_default { + // If we have a default, then we it doesn't matter that we're not + // inferring the type arguments: we provide the default where any + // is missing. + let default = tcx.type_of(param.def_id); + self.normalize_ty( + span, + default.subst_spanned(tcx, substs.unwrap(), Some(span)), + ) + .into() + } else { + // If no type arguments were provided, we have to infer them. + // This case also occurs as a result of some malformed input, e.g. + // a lifetime argument being given instead of a type parameter. + // Using inference instead of `Error` gives better error messages. + self.var_for_def(span, param) + } + } + GenericParamDefKind::Const => { + // FIXME(const_generics:defaults) + // No const parameters were provided, we have to infer them. + self.var_for_def(span, param) + } + } + }, + ) + }); + assert!(!substs.has_escaping_bound_vars()); + assert!(!ty.has_escaping_bound_vars()); + + // First, store the "user substs" for later. + self.write_user_type_annotation_from_substs(hir_id, def_id, substs, user_self_ty); + + self.add_required_obligations(span, def_id, &substs); + + // Substitute the values for the type parameters into the type of + // the referenced item. + let ty_substituted = self.instantiate_type_scheme(span, &substs, &ty); + + if let Some(UserSelfTy { impl_def_id, self_ty }) = user_self_ty { + // In the case of `Foo<T>::method` and `<Foo<T>>::method`, if `method` + // is inherent, there is no `Self` parameter; instead, the impl needs + // type parameters, which we can infer by unifying the provided `Self` + // with the substituted impl type. + // This also occurs for an enum variant on a type alias. + let ty = tcx.type_of(impl_def_id); + + let impl_ty = self.instantiate_type_scheme(span, &substs, &ty); + match self.at(&self.misc(span), self.param_env).sup(impl_ty, self_ty) { + Ok(ok) => self.register_infer_ok_obligations(ok), + Err(_) => { + self.tcx.sess.delay_span_bug( + span, + &format!( + "instantiate_value_path: (UFCS) {:?} was a subtype of {:?} but now is not?", + self_ty, + impl_ty, + ), + ); + } + } + } + + self.check_rustc_args_require_const(def_id, hir_id, span); + + debug!("instantiate_value_path: type of {:?} is {:?}", hir_id, ty_substituted); + self.write_substs(hir_id, substs); + + (ty_substituted, res) + } + + /// Add all the obligations that are required, substituting and normalized appropriately. + fn add_required_obligations(&self, span: Span, def_id: DefId, substs: &SubstsRef<'tcx>) { + let (bounds, spans) = self.instantiate_bounds(span, def_id, &substs); + + for (i, mut obligation) in traits::predicates_for_generics( + traits::ObligationCause::new(span, self.body_id, traits::ItemObligation(def_id)), + self.param_env, + bounds, + ) + .enumerate() + { + // This makes the error point at the bound, but we want to point at the argument + if let Some(span) = spans.get(i) { + obligation.cause.make_mut().code = traits::BindingObligation(def_id, *span); + } + self.register_predicate(obligation); + } + } + + /// Resolves `typ` by a single level if `typ` is a type variable. + /// If no resolution is possible, then an error is reported. + /// Numeric inference variables may be left unresolved. + pub fn structurally_resolved_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> { + let ty = self.resolve_vars_with_obligations(ty); + if !ty.is_ty_var() { + ty + } else { + if !self.is_tainted_by_errors() { + self.emit_inference_failure_err((**self).body_id, sp, ty.into(), E0282) + .note("type must be known at this point") + .emit(); + } + let err = self.tcx.ty_error(); + self.demand_suptype(sp, err, ty); + err + } + } + + pub(in super::super) fn with_breakable_ctxt<F: FnOnce() -> R, R>( + &self, + id: hir::HirId, + ctxt: BreakableCtxt<'tcx>, + f: F, + ) -> (BreakableCtxt<'tcx>, R) { + let index; + { + let mut enclosing_breakables = self.enclosing_breakables.borrow_mut(); + index = enclosing_breakables.stack.len(); + enclosing_breakables.by_id.insert(id, index); + enclosing_breakables.stack.push(ctxt); + } + let result = f(); + let ctxt = { + let mut enclosing_breakables = self.enclosing_breakables.borrow_mut(); + debug_assert!(enclosing_breakables.stack.len() == index + 1); + enclosing_breakables.by_id.remove(&id).expect("missing breakable context"); + enclosing_breakables.stack.pop().expect("missing breakable context") + }; + (ctxt, result) + } + + /// Instantiate a QueryResponse in a probe context, without a + /// good ObligationCause. + pub(in super::super) fn probe_instantiate_query_response( + &self, + span: Span, + original_values: &OriginalQueryValues<'tcx>, + query_result: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>, + ) -> InferResult<'tcx, Ty<'tcx>> { + self.instantiate_query_response_and_region_obligations( + &traits::ObligationCause::misc(span, self.body_id), + self.param_env, + original_values, + query_result, + ) + } + + /// Returns `true` if an expression is contained inside the LHS of an assignment expression. + pub(in super::super) fn expr_in_place(&self, mut expr_id: hir::HirId) -> bool { + let mut contained_in_place = false; + + while let hir::Node::Expr(parent_expr) = + self.tcx.hir().get(self.tcx.hir().get_parent_node(expr_id)) + { + match &parent_expr.kind { + hir::ExprKind::Assign(lhs, ..) | hir::ExprKind::AssignOp(_, lhs, ..) => { + if lhs.hir_id == expr_id { + contained_in_place = true; + break; + } + } + _ => (), + } + expr_id = parent_expr.hir_id; + } + + contained_in_place + } +} diff --git a/compiler/rustc_typeck/src/check/fn_ctxt/checks.rs b/compiler/rustc_typeck/src/check/fn_ctxt/checks.rs new file mode 100644 index 00000000000..3224e04ee49 --- /dev/null +++ b/compiler/rustc_typeck/src/check/fn_ctxt/checks.rs @@ -0,0 +1,979 @@ +use crate::astconv::AstConv; +use crate::check::coercion::CoerceMany; +use crate::check::method::MethodCallee; +use crate::check::Expectation::*; +use crate::check::TupleArgumentsFlag::*; +use crate::check::{ + potentially_plural_count, struct_span_err, BreakableCtxt, Diverges, Expectation, FnCtxt, + LocalTy, Needs, TupleArgumentsFlag, +}; + +use rustc_ast as ast; +use rustc_errors::{Applicability, DiagnosticBuilder, DiagnosticId}; +use rustc_hir as hir; +use rustc_hir::def::{DefKind, Res}; +use rustc_hir::def_id::DefId; +use rustc_hir::{ExprKind, Node, QPath}; +use rustc_middle::ty::adjustment::AllowTwoPhase; +use rustc_middle::ty::fold::TypeFoldable; +use rustc_middle::ty::{self, Ty}; +use rustc_session::Session; +use rustc_span::symbol::{sym, Ident}; +use rustc_span::{self, Span}; +use rustc_trait_selection::traits::{self, ObligationCauseCode}; + +use std::mem::replace; +use std::slice; + +impl<'a, 'tcx> FnCtxt<'a, 'tcx> { + pub(in super::super) fn check_casts(&self) { + let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut(); + for cast in deferred_cast_checks.drain(..) { + cast.check(self); + } + } + + pub(in super::super) fn check_method_argument_types( + &self, + sp: Span, + expr: &'tcx hir::Expr<'tcx>, + method: Result<MethodCallee<'tcx>, ()>, + args_no_rcvr: &'tcx [hir::Expr<'tcx>], + tuple_arguments: TupleArgumentsFlag, + expected: Expectation<'tcx>, + ) -> Ty<'tcx> { + let has_error = match method { + Ok(method) => method.substs.references_error() || method.sig.references_error(), + Err(_) => true, + }; + if has_error { + let err_inputs = self.err_args(args_no_rcvr.len()); + + let err_inputs = match tuple_arguments { + DontTupleArguments => err_inputs, + TupleArguments => vec![self.tcx.intern_tup(&err_inputs[..])], + }; + + self.check_argument_types( + sp, + expr, + &err_inputs[..], + &[], + args_no_rcvr, + false, + tuple_arguments, + None, + ); + return self.tcx.ty_error(); + } + + let method = method.unwrap(); + // HACK(eddyb) ignore self in the definition (see above). + let expected_arg_tys = self.expected_inputs_for_expected_output( + sp, + expected, + method.sig.output(), + &method.sig.inputs()[1..], + ); + self.check_argument_types( + sp, + expr, + &method.sig.inputs()[1..], + &expected_arg_tys[..], + args_no_rcvr, + method.sig.c_variadic, + tuple_arguments, + self.tcx.hir().span_if_local(method.def_id), + ); + method.sig.output() + } + + /// Generic function that factors out common logic from function calls, + /// method calls and overloaded operators. + pub(in super::super) fn check_argument_types( + &self, + sp: Span, + expr: &'tcx hir::Expr<'tcx>, + fn_inputs: &[Ty<'tcx>], + expected_arg_tys: &[Ty<'tcx>], + args: &'tcx [hir::Expr<'tcx>], + c_variadic: bool, + tuple_arguments: TupleArgumentsFlag, + def_span: Option<Span>, + ) { + let tcx = self.tcx; + // Grab the argument types, supplying fresh type variables + // if the wrong number of arguments were supplied + let supplied_arg_count = if tuple_arguments == DontTupleArguments { args.len() } else { 1 }; + + // All the input types from the fn signature must outlive the call + // so as to validate implied bounds. + for (&fn_input_ty, arg_expr) in fn_inputs.iter().zip(args.iter()) { + self.register_wf_obligation(fn_input_ty.into(), arg_expr.span, traits::MiscObligation); + } + + let expected_arg_count = fn_inputs.len(); + + let param_count_error = |expected_count: usize, + arg_count: usize, + error_code: &str, + c_variadic: bool, + sugg_unit: bool| { + let (span, start_span, args) = match &expr.kind { + hir::ExprKind::Call(hir::Expr { span, .. }, args) => (*span, *span, &args[..]), + hir::ExprKind::MethodCall(path_segment, span, args, _) => ( + *span, + // `sp` doesn't point at the whole `foo.bar()`, only at `bar`. + path_segment + .args + .and_then(|args| args.args.iter().last()) + // Account for `foo.bar::<T>()`. + .map(|arg| { + // Skip the closing `>`. + tcx.sess + .source_map() + .next_point(tcx.sess.source_map().next_point(arg.span())) + }) + .unwrap_or(*span), + &args[1..], // Skip the receiver. + ), + k => span_bug!(sp, "checking argument types on a non-call: `{:?}`", k), + }; + let arg_spans = if args.is_empty() { + // foo() + // ^^^-- supplied 0 arguments + // | + // expected 2 arguments + vec![tcx.sess.source_map().next_point(start_span).with_hi(sp.hi())] + } else { + // foo(1, 2, 3) + // ^^^ - - - supplied 3 arguments + // | + // expected 2 arguments + args.iter().map(|arg| arg.span).collect::<Vec<Span>>() + }; + + let mut err = tcx.sess.struct_span_err_with_code( + span, + &format!( + "this function takes {}{} but {} {} supplied", + if c_variadic { "at least " } else { "" }, + potentially_plural_count(expected_count, "argument"), + potentially_plural_count(arg_count, "argument"), + if arg_count == 1 { "was" } else { "were" } + ), + DiagnosticId::Error(error_code.to_owned()), + ); + let label = format!("supplied {}", potentially_plural_count(arg_count, "argument")); + for (i, span) in arg_spans.into_iter().enumerate() { + err.span_label( + span, + if arg_count == 0 || i + 1 == arg_count { &label } else { "" }, + ); + } + + if let Some(def_s) = def_span.map(|sp| tcx.sess.source_map().guess_head_span(sp)) { + err.span_label(def_s, "defined here"); + } + if sugg_unit { + let sugg_span = tcx.sess.source_map().end_point(expr.span); + // remove closing `)` from the span + let sugg_span = sugg_span.shrink_to_lo(); + err.span_suggestion( + sugg_span, + "expected the unit value `()`; create it with empty parentheses", + String::from("()"), + Applicability::MachineApplicable, + ); + } else { + err.span_label( + span, + format!( + "expected {}{}", + if c_variadic { "at least " } else { "" }, + potentially_plural_count(expected_count, "argument") + ), + ); + } + err.emit(); + }; + + let mut expected_arg_tys = expected_arg_tys.to_vec(); + + let formal_tys = if tuple_arguments == TupleArguments { + let tuple_type = self.structurally_resolved_type(sp, fn_inputs[0]); + match tuple_type.kind() { + ty::Tuple(arg_types) if arg_types.len() != args.len() => { + param_count_error(arg_types.len(), args.len(), "E0057", false, false); + expected_arg_tys = vec![]; + self.err_args(args.len()) + } + ty::Tuple(arg_types) => { + expected_arg_tys = match expected_arg_tys.get(0) { + Some(&ty) => match ty.kind() { + ty::Tuple(ref tys) => tys.iter().map(|k| k.expect_ty()).collect(), + _ => vec![], + }, + None => vec![], + }; + arg_types.iter().map(|k| k.expect_ty()).collect() + } + _ => { + struct_span_err!( + tcx.sess, + sp, + E0059, + "cannot use call notation; the first type parameter \ + for the function trait is neither a tuple nor unit" + ) + .emit(); + expected_arg_tys = vec![]; + self.err_args(args.len()) + } + } + } else if expected_arg_count == supplied_arg_count { + fn_inputs.to_vec() + } else if c_variadic { + if supplied_arg_count >= expected_arg_count { + fn_inputs.to_vec() + } else { + param_count_error(expected_arg_count, supplied_arg_count, "E0060", true, false); + expected_arg_tys = vec![]; + self.err_args(supplied_arg_count) + } + } else { + // is the missing argument of type `()`? + let sugg_unit = if expected_arg_tys.len() == 1 && supplied_arg_count == 0 { + self.resolve_vars_if_possible(&expected_arg_tys[0]).is_unit() + } else if fn_inputs.len() == 1 && supplied_arg_count == 0 { + self.resolve_vars_if_possible(&fn_inputs[0]).is_unit() + } else { + false + }; + param_count_error(expected_arg_count, supplied_arg_count, "E0061", false, sugg_unit); + + expected_arg_tys = vec![]; + self.err_args(supplied_arg_count) + }; + + debug!( + "check_argument_types: formal_tys={:?}", + formal_tys.iter().map(|t| self.ty_to_string(*t)).collect::<Vec<String>>() + ); + + // If there is no expectation, expect formal_tys. + let expected_arg_tys = + if !expected_arg_tys.is_empty() { expected_arg_tys } else { formal_tys.clone() }; + + let mut final_arg_types: Vec<(usize, Ty<'_>, Ty<'_>)> = vec![]; + + // Check the arguments. + // We do this in a pretty awful way: first we type-check any arguments + // that are not closures, then we type-check the closures. This is so + // that we have more information about the types of arguments when we + // type-check the functions. This isn't really the right way to do this. + for &check_closures in &[false, true] { + debug!("check_closures={}", check_closures); + + // More awful hacks: before we check argument types, try to do + // an "opportunistic" trait resolution of any trait bounds on + // the call. This helps coercions. + if check_closures { + self.select_obligations_where_possible(false, |errors| { + self.point_at_type_arg_instead_of_call_if_possible(errors, expr); + self.point_at_arg_instead_of_call_if_possible( + errors, + &final_arg_types[..], + sp, + &args, + ); + }) + } + + // For C-variadic functions, we don't have a declared type for all of + // the arguments hence we only do our usual type checking with + // the arguments who's types we do know. + let t = if c_variadic { + expected_arg_count + } else if tuple_arguments == TupleArguments { + args.len() + } else { + supplied_arg_count + }; + for (i, arg) in args.iter().take(t).enumerate() { + // Warn only for the first loop (the "no closures" one). + // Closure arguments themselves can't be diverging, but + // a previous argument can, e.g., `foo(panic!(), || {})`. + if !check_closures { + self.warn_if_unreachable(arg.hir_id, arg.span, "expression"); + } + + let is_closure = match arg.kind { + ExprKind::Closure(..) => true, + _ => false, + }; + + if is_closure != check_closures { + continue; + } + + debug!("checking the argument"); + let formal_ty = formal_tys[i]; + + // The special-cased logic below has three functions: + // 1. Provide as good of an expected type as possible. + let expected = Expectation::rvalue_hint(self, expected_arg_tys[i]); + + let checked_ty = self.check_expr_with_expectation(&arg, expected); + + // 2. Coerce to the most detailed type that could be coerced + // to, which is `expected_ty` if `rvalue_hint` returns an + // `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise. + let coerce_ty = expected.only_has_type(self).unwrap_or(formal_ty); + // We're processing function arguments so we definitely want to use + // two-phase borrows. + self.demand_coerce(&arg, checked_ty, coerce_ty, None, AllowTwoPhase::Yes); + final_arg_types.push((i, checked_ty, coerce_ty)); + + // 3. Relate the expected type and the formal one, + // if the expected type was used for the coercion. + self.demand_suptype(arg.span, formal_ty, coerce_ty); + } + } + + // We also need to make sure we at least write the ty of the other + // arguments which we skipped above. + if c_variadic { + fn variadic_error<'tcx>(s: &Session, span: Span, t: Ty<'tcx>, cast_ty: &str) { + use crate::structured_errors::{StructuredDiagnostic, VariadicError}; + VariadicError::new(s, span, t, cast_ty).diagnostic().emit(); + } + + for arg in args.iter().skip(expected_arg_count) { + let arg_ty = self.check_expr(&arg); + + // There are a few types which get autopromoted when passed via varargs + // in C but we just error out instead and require explicit casts. + let arg_ty = self.structurally_resolved_type(arg.span, arg_ty); + match arg_ty.kind() { + ty::Float(ast::FloatTy::F32) => { + variadic_error(tcx.sess, arg.span, arg_ty, "c_double"); + } + ty::Int(ast::IntTy::I8 | ast::IntTy::I16) | ty::Bool => { + variadic_error(tcx.sess, arg.span, arg_ty, "c_int"); + } + ty::Uint(ast::UintTy::U8 | ast::UintTy::U16) => { + variadic_error(tcx.sess, arg.span, arg_ty, "c_uint"); + } + ty::FnDef(..) => { + let ptr_ty = self.tcx.mk_fn_ptr(arg_ty.fn_sig(self.tcx)); + let ptr_ty = self.resolve_vars_if_possible(&ptr_ty); + variadic_error(tcx.sess, arg.span, arg_ty, &ptr_ty.to_string()); + } + _ => {} + } + } + } + } + + // AST fragment checking + pub(in super::super) fn check_lit( + &self, + lit: &hir::Lit, + expected: Expectation<'tcx>, + ) -> Ty<'tcx> { + let tcx = self.tcx; + + match lit.node { + ast::LitKind::Str(..) => tcx.mk_static_str(), + ast::LitKind::ByteStr(ref v) => { + tcx.mk_imm_ref(tcx.lifetimes.re_static, tcx.mk_array(tcx.types.u8, v.len() as u64)) + } + ast::LitKind::Byte(_) => tcx.types.u8, + ast::LitKind::Char(_) => tcx.types.char, + ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => tcx.mk_mach_int(t), + ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => tcx.mk_mach_uint(t), + ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => { + let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() { + ty::Int(_) | ty::Uint(_) => Some(ty), + ty::Char => Some(tcx.types.u8), + ty::RawPtr(..) => Some(tcx.types.usize), + ty::FnDef(..) | ty::FnPtr(_) => Some(tcx.types.usize), + _ => None, + }); + opt_ty.unwrap_or_else(|| self.next_int_var()) + } + ast::LitKind::Float(_, ast::LitFloatType::Suffixed(t)) => tcx.mk_mach_float(t), + ast::LitKind::Float(_, ast::LitFloatType::Unsuffixed) => { + let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() { + ty::Float(_) => Some(ty), + _ => None, + }); + opt_ty.unwrap_or_else(|| self.next_float_var()) + } + ast::LitKind::Bool(_) => tcx.types.bool, + ast::LitKind::Err(_) => tcx.ty_error(), + } + } + + pub fn check_struct_path( + &self, + qpath: &QPath<'_>, + hir_id: hir::HirId, + ) -> Option<(&'tcx ty::VariantDef, Ty<'tcx>)> { + let path_span = qpath.qself_span(); + let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, hir_id); + let variant = match def { + Res::Err => { + self.set_tainted_by_errors(); + return None; + } + Res::Def(DefKind::Variant, _) => match ty.kind() { + ty::Adt(adt, substs) => Some((adt.variant_of_res(def), adt.did, substs)), + _ => bug!("unexpected type: {:?}", ty), + }, + Res::Def(DefKind::Struct | DefKind::Union | DefKind::TyAlias | DefKind::AssocTy, _) + | Res::SelfTy(..) => match ty.kind() { + ty::Adt(adt, substs) if !adt.is_enum() => { + Some((adt.non_enum_variant(), adt.did, substs)) + } + _ => None, + }, + _ => bug!("unexpected definition: {:?}", def), + }; + + if let Some((variant, did, substs)) = variant { + debug!("check_struct_path: did={:?} substs={:?}", did, substs); + self.write_user_type_annotation_from_substs(hir_id, did, substs, None); + + // Check bounds on type arguments used in the path. + let (bounds, _) = self.instantiate_bounds(path_span, did, substs); + let cause = + traits::ObligationCause::new(path_span, self.body_id, traits::ItemObligation(did)); + self.add_obligations_for_parameters(cause, bounds); + + Some((variant, ty)) + } else { + struct_span_err!( + self.tcx.sess, + path_span, + E0071, + "expected struct, variant or union type, found {}", + ty.sort_string(self.tcx) + ) + .span_label(path_span, "not a struct") + .emit(); + None + } + } + + pub fn check_decl_initializer( + &self, + local: &'tcx hir::Local<'tcx>, + init: &'tcx hir::Expr<'tcx>, + ) -> Ty<'tcx> { + // FIXME(tschottdorf): `contains_explicit_ref_binding()` must be removed + // for #42640 (default match binding modes). + // + // See #44848. + let ref_bindings = local.pat.contains_explicit_ref_binding(); + + let local_ty = self.local_ty(init.span, local.hir_id).revealed_ty; + if let Some(m) = ref_bindings { + // Somewhat subtle: if we have a `ref` binding in the pattern, + // we want to avoid introducing coercions for the RHS. This is + // both because it helps preserve sanity and, in the case of + // ref mut, for soundness (issue #23116). In particular, in + // the latter case, we need to be clear that the type of the + // referent for the reference that results is *equal to* the + // type of the place it is referencing, and not some + // supertype thereof. + let init_ty = self.check_expr_with_needs(init, Needs::maybe_mut_place(m)); + self.demand_eqtype(init.span, local_ty, init_ty); + init_ty + } else { + self.check_expr_coercable_to_type(init, local_ty, None) + } + } + + /// Type check a `let` statement. + pub fn check_decl_local(&self, local: &'tcx hir::Local<'tcx>) { + // Determine and write the type which we'll check the pattern against. + let ty = self.local_ty(local.span, local.hir_id).decl_ty; + self.write_ty(local.hir_id, ty); + + // Type check the initializer. + if let Some(ref init) = local.init { + let init_ty = self.check_decl_initializer(local, &init); + self.overwrite_local_ty_if_err(local, ty, init_ty); + } + + // Does the expected pattern type originate from an expression and what is the span? + let (origin_expr, ty_span) = match (local.ty, local.init) { + (Some(ty), _) => (false, Some(ty.span)), // Bias towards the explicit user type. + (_, Some(init)) => (true, Some(init.span)), // No explicit type; so use the scrutinee. + _ => (false, None), // We have `let $pat;`, so the expected type is unconstrained. + }; + + // Type check the pattern. Override if necessary to avoid knock-on errors. + self.check_pat_top(&local.pat, ty, ty_span, origin_expr); + let pat_ty = self.node_ty(local.pat.hir_id); + self.overwrite_local_ty_if_err(local, ty, pat_ty); + } + + pub fn check_stmt(&self, stmt: &'tcx hir::Stmt<'tcx>) { + // Don't do all the complex logic below for `DeclItem`. + match stmt.kind { + hir::StmtKind::Item(..) => return, + hir::StmtKind::Local(..) | hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => {} + } + + self.warn_if_unreachable(stmt.hir_id, stmt.span, "statement"); + + // Hide the outer diverging and `has_errors` flags. + let old_diverges = self.diverges.replace(Diverges::Maybe); + let old_has_errors = self.has_errors.replace(false); + + match stmt.kind { + hir::StmtKind::Local(ref l) => { + self.check_decl_local(&l); + } + // Ignore for now. + hir::StmtKind::Item(_) => {} + hir::StmtKind::Expr(ref expr) => { + // Check with expected type of `()`. + self.check_expr_has_type_or_error(&expr, self.tcx.mk_unit(), |err| { + self.suggest_semicolon_at_end(expr.span, err); + }); + } + hir::StmtKind::Semi(ref expr) => { + self.check_expr(&expr); + } + } + + // Combine the diverging and `has_error` flags. + self.diverges.set(self.diverges.get() | old_diverges); + self.has_errors.set(self.has_errors.get() | old_has_errors); + } + + pub fn check_block_no_value(&self, blk: &'tcx hir::Block<'tcx>) { + let unit = self.tcx.mk_unit(); + let ty = self.check_block_with_expected(blk, ExpectHasType(unit)); + + // if the block produces a `!` value, that can always be + // (effectively) coerced to unit. + if !ty.is_never() { + self.demand_suptype(blk.span, unit, ty); + } + } + + pub(in super::super) fn check_block_with_expected( + &self, + blk: &'tcx hir::Block<'tcx>, + expected: Expectation<'tcx>, + ) -> Ty<'tcx> { + let prev = { + let mut fcx_ps = self.ps.borrow_mut(); + let unsafety_state = fcx_ps.recurse(blk); + replace(&mut *fcx_ps, unsafety_state) + }; + + // In some cases, blocks have just one exit, but other blocks + // can be targeted by multiple breaks. This can happen both + // with labeled blocks as well as when we desugar + // a `try { ... }` expression. + // + // Example 1: + // + // 'a: { if true { break 'a Err(()); } Ok(()) } + // + // Here we would wind up with two coercions, one from + // `Err(())` and the other from the tail expression + // `Ok(())`. If the tail expression is omitted, that's a + // "forced unit" -- unless the block diverges, in which + // case we can ignore the tail expression (e.g., `'a: { + // break 'a 22; }` would not force the type of the block + // to be `()`). + let tail_expr = blk.expr.as_ref(); + let coerce_to_ty = expected.coercion_target_type(self, blk.span); + let coerce = if blk.targeted_by_break { + CoerceMany::new(coerce_to_ty) + } else { + let tail_expr: &[&hir::Expr<'_>] = match tail_expr { + Some(e) => slice::from_ref(e), + None => &[], + }; + CoerceMany::with_coercion_sites(coerce_to_ty, tail_expr) + }; + + let prev_diverges = self.diverges.get(); + let ctxt = BreakableCtxt { coerce: Some(coerce), may_break: false }; + + let (ctxt, ()) = self.with_breakable_ctxt(blk.hir_id, ctxt, || { + for s in blk.stmts { + self.check_stmt(s); + } + + // check the tail expression **without** holding the + // `enclosing_breakables` lock below. + let tail_expr_ty = tail_expr.map(|t| self.check_expr_with_expectation(t, expected)); + + let mut enclosing_breakables = self.enclosing_breakables.borrow_mut(); + let ctxt = enclosing_breakables.find_breakable(blk.hir_id); + let coerce = ctxt.coerce.as_mut().unwrap(); + if let Some(tail_expr_ty) = tail_expr_ty { + let tail_expr = tail_expr.unwrap(); + let span = self.get_expr_coercion_span(tail_expr); + let cause = self.cause(span, ObligationCauseCode::BlockTailExpression(blk.hir_id)); + coerce.coerce(self, &cause, tail_expr, tail_expr_ty); + } else { + // Subtle: if there is no explicit tail expression, + // that is typically equivalent to a tail expression + // of `()` -- except if the block diverges. In that + // case, there is no value supplied from the tail + // expression (assuming there are no other breaks, + // this implies that the type of the block will be + // `!`). + // + // #41425 -- label the implicit `()` as being the + // "found type" here, rather than the "expected type". + if !self.diverges.get().is_always() { + // #50009 -- Do not point at the entire fn block span, point at the return type + // span, as it is the cause of the requirement, and + // `consider_hint_about_removing_semicolon` will point at the last expression + // if it were a relevant part of the error. This improves usability in editors + // that highlight errors inline. + let mut sp = blk.span; + let mut fn_span = None; + if let Some((decl, ident)) = self.get_parent_fn_decl(blk.hir_id) { + let ret_sp = decl.output.span(); + if let Some(block_sp) = self.parent_item_span(blk.hir_id) { + // HACK: on some cases (`ui/liveness/liveness-issue-2163.rs`) the + // output would otherwise be incorrect and even misleading. Make sure + // the span we're aiming at correspond to a `fn` body. + if block_sp == blk.span { + sp = ret_sp; + fn_span = Some(ident.span); + } + } + } + coerce.coerce_forced_unit( + self, + &self.misc(sp), + &mut |err| { + if let Some(expected_ty) = expected.only_has_type(self) { + self.consider_hint_about_removing_semicolon(blk, expected_ty, err); + } + if let Some(fn_span) = fn_span { + err.span_label( + fn_span, + "implicitly returns `()` as its body has no tail or `return` \ + expression", + ); + } + }, + false, + ); + } + } + }); + + if ctxt.may_break { + // If we can break from the block, then the block's exit is always reachable + // (... as long as the entry is reachable) - regardless of the tail of the block. + self.diverges.set(prev_diverges); + } + + let mut ty = ctxt.coerce.unwrap().complete(self); + + if self.has_errors.get() || ty.references_error() { + ty = self.tcx.ty_error() + } + + self.write_ty(blk.hir_id, ty); + + *self.ps.borrow_mut() = prev; + ty + } + + pub(in super::super) fn check_rustc_args_require_const( + &self, + def_id: DefId, + hir_id: hir::HirId, + span: Span, + ) { + // We're only interested in functions tagged with + // #[rustc_args_required_const], so ignore anything that's not. + if !self.tcx.has_attr(def_id, sym::rustc_args_required_const) { + return; + } + + // If our calling expression is indeed the function itself, we're good! + // If not, generate an error that this can only be called directly. + if let Node::Expr(expr) = self.tcx.hir().get(self.tcx.hir().get_parent_node(hir_id)) { + if let ExprKind::Call(ref callee, ..) = expr.kind { + if callee.hir_id == hir_id { + return; + } + } + } + + self.tcx.sess.span_err( + span, + "this function can only be invoked directly, not through a function pointer", + ); + } + + /// A common error is to add an extra semicolon: + /// + /// ``` + /// fn foo() -> usize { + /// 22; + /// } + /// ``` + /// + /// This routine checks if the final statement in a block is an + /// expression with an explicit semicolon whose type is compatible + /// with `expected_ty`. If so, it suggests removing the semicolon. + fn consider_hint_about_removing_semicolon( + &self, + blk: &'tcx hir::Block<'tcx>, + expected_ty: Ty<'tcx>, + err: &mut DiagnosticBuilder<'_>, + ) { + if let Some(span_semi) = self.could_remove_semicolon(blk, expected_ty) { + err.span_suggestion( + span_semi, + "consider removing this semicolon", + String::new(), + Applicability::MachineApplicable, + ); + } + } + + fn parent_item_span(&self, id: hir::HirId) -> Option<Span> { + let node = self.tcx.hir().get(self.tcx.hir().get_parent_item(id)); + match node { + Node::Item(&hir::Item { kind: hir::ItemKind::Fn(_, _, body_id), .. }) + | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(_, body_id), .. }) => { + let body = self.tcx.hir().body(body_id); + if let ExprKind::Block(block, _) = &body.value.kind { + return Some(block.span); + } + } + _ => {} + } + None + } + + /// Given a function block's `HirId`, returns its `FnDecl` if it exists, or `None` otherwise. + fn get_parent_fn_decl(&self, blk_id: hir::HirId) -> Option<(&'tcx hir::FnDecl<'tcx>, Ident)> { + let parent = self.tcx.hir().get(self.tcx.hir().get_parent_item(blk_id)); + self.get_node_fn_decl(parent).map(|(fn_decl, ident, _)| (fn_decl, ident)) + } + + /// If `expr` is a `match` expression that has only one non-`!` arm, use that arm's tail + /// expression's `Span`, otherwise return `expr.span`. This is done to give better errors + /// when given code like the following: + /// ```text + /// if false { return 0i32; } else { 1u32 } + /// // ^^^^ point at this instead of the whole `if` expression + /// ``` + fn get_expr_coercion_span(&self, expr: &hir::Expr<'_>) -> rustc_span::Span { + if let hir::ExprKind::Match(_, arms, _) = &expr.kind { + let arm_spans: Vec<Span> = arms + .iter() + .filter_map(|arm| { + self.in_progress_typeck_results + .and_then(|typeck_results| { + typeck_results.borrow().node_type_opt(arm.body.hir_id) + }) + .and_then(|arm_ty| { + if arm_ty.is_never() { + None + } else { + Some(match &arm.body.kind { + // Point at the tail expression when possible. + hir::ExprKind::Block(block, _) => { + block.expr.as_ref().map(|e| e.span).unwrap_or(block.span) + } + _ => arm.body.span, + }) + } + }) + }) + .collect(); + if arm_spans.len() == 1 { + return arm_spans[0]; + } + } + expr.span + } + + fn overwrite_local_ty_if_err( + &self, + local: &'tcx hir::Local<'tcx>, + decl_ty: Ty<'tcx>, + ty: Ty<'tcx>, + ) { + if ty.references_error() { + // Override the types everywhere with `err()` to avoid knock on errors. + self.write_ty(local.hir_id, ty); + self.write_ty(local.pat.hir_id, ty); + let local_ty = LocalTy { decl_ty, revealed_ty: ty }; + self.locals.borrow_mut().insert(local.hir_id, local_ty); + self.locals.borrow_mut().insert(local.pat.hir_id, local_ty); + } + } + + // Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary. + // The newly resolved definition is written into `type_dependent_defs`. + fn finish_resolving_struct_path( + &self, + qpath: &QPath<'_>, + path_span: Span, + hir_id: hir::HirId, + ) -> (Res, Ty<'tcx>) { + match *qpath { + QPath::Resolved(ref maybe_qself, ref path) => { + let self_ty = maybe_qself.as_ref().map(|qself| self.to_ty(qself)); + let ty = AstConv::res_to_ty(self, self_ty, path, true); + (path.res, ty) + } + QPath::TypeRelative(ref qself, ref segment) => { + let ty = self.to_ty(qself); + + let res = if let hir::TyKind::Path(QPath::Resolved(_, ref path)) = qself.kind { + path.res + } else { + Res::Err + }; + let result = + AstConv::associated_path_to_ty(self, hir_id, path_span, ty, res, segment, true); + let ty = result.map(|(ty, _, _)| ty).unwrap_or_else(|_| self.tcx().ty_error()); + let result = result.map(|(_, kind, def_id)| (kind, def_id)); + + // Write back the new resolution. + self.write_resolution(hir_id, result); + + (result.map(|(kind, def_id)| Res::Def(kind, def_id)).unwrap_or(Res::Err), ty) + } + QPath::LangItem(lang_item, span) => { + self.resolve_lang_item_path(lang_item, span, hir_id) + } + } + } + + /// Given a vec of evaluated `FulfillmentError`s and an `fn` call argument expressions, we walk + /// the checked and coerced types for each argument to see if any of the `FulfillmentError`s + /// reference a type argument. The reason to walk also the checked type is that the coerced type + /// can be not easily comparable with predicate type (because of coercion). If the types match + /// for either checked or coerced type, and there's only *one* argument that does, we point at + /// the corresponding argument's expression span instead of the `fn` call path span. + fn point_at_arg_instead_of_call_if_possible( + &self, + errors: &mut Vec<traits::FulfillmentError<'tcx>>, + final_arg_types: &[(usize, Ty<'tcx>, Ty<'tcx>)], + call_sp: Span, + args: &'tcx [hir::Expr<'tcx>], + ) { + // We *do not* do this for desugared call spans to keep good diagnostics when involving + // the `?` operator. + if call_sp.desugaring_kind().is_some() { + return; + } + + for error in errors { + // Only if the cause is somewhere inside the expression we want try to point at arg. + // Otherwise, it means that the cause is somewhere else and we should not change + // anything because we can break the correct span. + if !call_sp.contains(error.obligation.cause.span) { + continue; + } + + if let ty::PredicateAtom::Trait(predicate, _) = + error.obligation.predicate.skip_binders() + { + // Collect the argument position for all arguments that could have caused this + // `FulfillmentError`. + let mut referenced_in = final_arg_types + .iter() + .map(|&(i, checked_ty, _)| (i, checked_ty)) + .chain(final_arg_types.iter().map(|&(i, _, coerced_ty)| (i, coerced_ty))) + .flat_map(|(i, ty)| { + let ty = self.resolve_vars_if_possible(&ty); + // We walk the argument type because the argument's type could have + // been `Option<T>`, but the `FulfillmentError` references `T`. + if ty.walk().any(|arg| arg == predicate.self_ty().into()) { + Some(i) + } else { + None + } + }) + .collect::<Vec<usize>>(); + + // Both checked and coerced types could have matched, thus we need to remove + // duplicates. + + // We sort primitive type usize here and can use unstable sort + referenced_in.sort_unstable(); + referenced_in.dedup(); + + if let (Some(ref_in), None) = (referenced_in.pop(), referenced_in.pop()) { + // We make sure that only *one* argument matches the obligation failure + // and we assign the obligation's span to its expression's. + error.obligation.cause.make_mut().span = args[ref_in].span; + error.points_at_arg_span = true; + } + } + } + } + + /// Given a vec of evaluated `FulfillmentError`s and an `fn` call expression, we walk the + /// `PathSegment`s and resolve their type parameters to see if any of the `FulfillmentError`s + /// were caused by them. If they were, we point at the corresponding type argument's span + /// instead of the `fn` call path span. + fn point_at_type_arg_instead_of_call_if_possible( + &self, + errors: &mut Vec<traits::FulfillmentError<'tcx>>, + call_expr: &'tcx hir::Expr<'tcx>, + ) { + if let hir::ExprKind::Call(path, _) = &call_expr.kind { + if let hir::ExprKind::Path(qpath) = &path.kind { + if let hir::QPath::Resolved(_, path) = &qpath { + for error in errors { + if let ty::PredicateAtom::Trait(predicate, _) = + error.obligation.predicate.skip_binders() + { + // If any of the type arguments in this path segment caused the + // `FullfillmentError`, point at its span (#61860). + for arg in path + .segments + .iter() + .filter_map(|seg| seg.args.as_ref()) + .flat_map(|a| a.args.iter()) + { + if let hir::GenericArg::Type(hir_ty) = &arg { + if let hir::TyKind::Path(hir::QPath::TypeRelative(..)) = + &hir_ty.kind + { + // Avoid ICE with associated types. As this is best + // effort only, it's ok to ignore the case. It + // would trigger in `is_send::<T::AssocType>();` + // from `typeck-default-trait-impl-assoc-type.rs`. + } else { + let ty = AstConv::ast_ty_to_ty(self, hir_ty); + let ty = self.resolve_vars_if_possible(&ty); + if ty == predicate.self_ty() { + error.obligation.cause.make_mut().span = hir_ty.span; + } + } + } + } + } + } + } + } + } + } +} diff --git a/compiler/rustc_typeck/src/check/fn_ctxt/mod.rs b/compiler/rustc_typeck/src/check/fn_ctxt/mod.rs new file mode 100644 index 00000000000..72c3b233ed9 --- /dev/null +++ b/compiler/rustc_typeck/src/check/fn_ctxt/mod.rs @@ -0,0 +1,295 @@ +mod _impl; +mod checks; +mod suggestions; + +pub use _impl::*; +pub use checks::*; +pub use suggestions::*; + +use crate::astconv::AstConv; +use crate::check::coercion::DynamicCoerceMany; +use crate::check::{Diverges, EnclosingBreakables, Inherited, UnsafetyState}; + +use rustc_hir as hir; +use rustc_hir::def_id::DefId; +use rustc_infer::infer; +use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind}; +use rustc_infer::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind}; +use rustc_middle::hir::map::blocks::FnLikeNode; +use rustc_middle::ty::fold::TypeFoldable; +use rustc_middle::ty::subst::GenericArgKind; +use rustc_middle::ty::{self, Const, Ty, TyCtxt}; +use rustc_session::Session; +use rustc_span::{self, Span}; +use rustc_trait_selection::traits::{ObligationCause, ObligationCauseCode}; + +use std::cell::{Cell, RefCell}; +use std::ops::Deref; + +pub struct FnCtxt<'a, 'tcx> { + pub(super) body_id: hir::HirId, + + /// The parameter environment used for proving trait obligations + /// in this function. This can change when we descend into + /// closures (as they bring new things into scope), hence it is + /// not part of `Inherited` (as of the time of this writing, + /// closures do not yet change the environment, but they will + /// eventually). + pub(super) param_env: ty::ParamEnv<'tcx>, + + /// Number of errors that had been reported when we started + /// checking this function. On exit, if we find that *more* errors + /// have been reported, we will skip regionck and other work that + /// expects the types within the function to be consistent. + // FIXME(matthewjasper) This should not exist, and it's not correct + // if type checking is run in parallel. + err_count_on_creation: usize, + + /// If `Some`, this stores coercion information for returned + /// expressions. If `None`, this is in a context where return is + /// inappropriate, such as a const expression. + /// + /// This is a `RefCell<DynamicCoerceMany>`, which means that we + /// can track all the return expressions and then use them to + /// compute a useful coercion from the set, similar to a match + /// expression or other branching context. You can use methods + /// like `expected_ty` to access the declared return type (if + /// any). + pub(super) ret_coercion: Option<RefCell<DynamicCoerceMany<'tcx>>>, + + pub(super) ret_coercion_impl_trait: Option<Ty<'tcx>>, + + pub(super) ret_type_span: Option<Span>, + + /// Used exclusively to reduce cost of advanced evaluation used for + /// more helpful diagnostics. + pub(super) in_tail_expr: bool, + + /// First span of a return site that we find. Used in error messages. + pub(super) ret_coercion_span: RefCell<Option<Span>>, + + pub(super) resume_yield_tys: Option<(Ty<'tcx>, Ty<'tcx>)>, + + pub(super) ps: RefCell<UnsafetyState>, + + /// Whether the last checked node generates a divergence (e.g., + /// `return` will set this to `Always`). In general, when entering + /// an expression or other node in the tree, the initial value + /// indicates whether prior parts of the containing expression may + /// have diverged. It is then typically set to `Maybe` (and the + /// old value remembered) for processing the subparts of the + /// current expression. As each subpart is processed, they may set + /// the flag to `Always`, etc. Finally, at the end, we take the + /// result and "union" it with the original value, so that when we + /// return the flag indicates if any subpart of the parent + /// expression (up to and including this part) has diverged. So, + /// if you read it after evaluating a subexpression `X`, the value + /// you get indicates whether any subexpression that was + /// evaluating up to and including `X` diverged. + /// + /// We currently use this flag only for diagnostic purposes: + /// + /// - To warn about unreachable code: if, after processing a + /// sub-expression but before we have applied the effects of the + /// current node, we see that the flag is set to `Always`, we + /// can issue a warning. This corresponds to something like + /// `foo(return)`; we warn on the `foo()` expression. (We then + /// update the flag to `WarnedAlways` to suppress duplicate + /// reports.) Similarly, if we traverse to a fresh statement (or + /// tail expression) from a `Always` setting, we will issue a + /// warning. This corresponds to something like `{return; + /// foo();}` or `{return; 22}`, where we would warn on the + /// `foo()` or `22`. + /// + /// An expression represents dead code if, after checking it, + /// the diverges flag is set to something other than `Maybe`. + pub(super) diverges: Cell<Diverges>, + + /// Whether any child nodes have any type errors. + pub(super) has_errors: Cell<bool>, + + pub(super) enclosing_breakables: RefCell<EnclosingBreakables<'tcx>>, + + pub(super) inh: &'a Inherited<'a, 'tcx>, +} + +impl<'a, 'tcx> FnCtxt<'a, 'tcx> { + pub fn new( + inh: &'a Inherited<'a, 'tcx>, + param_env: ty::ParamEnv<'tcx>, + body_id: hir::HirId, + ) -> FnCtxt<'a, 'tcx> { + FnCtxt { + body_id, + param_env, + err_count_on_creation: inh.tcx.sess.err_count(), + ret_coercion: None, + ret_coercion_impl_trait: None, + ret_type_span: None, + in_tail_expr: false, + ret_coercion_span: RefCell::new(None), + resume_yield_tys: None, + ps: RefCell::new(UnsafetyState::function(hir::Unsafety::Normal, hir::CRATE_HIR_ID)), + diverges: Cell::new(Diverges::Maybe), + has_errors: Cell::new(false), + enclosing_breakables: RefCell::new(EnclosingBreakables { + stack: Vec::new(), + by_id: Default::default(), + }), + inh, + } + } + + pub fn cause(&self, span: Span, code: ObligationCauseCode<'tcx>) -> ObligationCause<'tcx> { + ObligationCause::new(span, self.body_id, code) + } + + pub fn misc(&self, span: Span) -> ObligationCause<'tcx> { + self.cause(span, ObligationCauseCode::MiscObligation) + } + + pub fn sess(&self) -> &Session { + &self.tcx.sess + } + + pub fn errors_reported_since_creation(&self) -> bool { + self.tcx.sess.err_count() > self.err_count_on_creation + } +} + +impl<'a, 'tcx> Deref for FnCtxt<'a, 'tcx> { + type Target = Inherited<'a, 'tcx>; + fn deref(&self) -> &Self::Target { + &self.inh + } +} + +impl<'a, 'tcx> AstConv<'tcx> for FnCtxt<'a, 'tcx> { + fn tcx<'b>(&'b self) -> TyCtxt<'tcx> { + self.tcx + } + + fn item_def_id(&self) -> Option<DefId> { + None + } + + fn default_constness_for_trait_bounds(&self) -> hir::Constness { + // FIXME: refactor this into a method + let node = self.tcx.hir().get(self.body_id); + if let Some(fn_like) = FnLikeNode::from_node(node) { + fn_like.constness() + } else { + hir::Constness::NotConst + } + } + + fn get_type_parameter_bounds(&self, _: Span, def_id: DefId) -> ty::GenericPredicates<'tcx> { + let tcx = self.tcx; + let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local()); + let item_id = tcx.hir().ty_param_owner(hir_id); + let item_def_id = tcx.hir().local_def_id(item_id); + let generics = tcx.generics_of(item_def_id); + let index = generics.param_def_id_to_index[&def_id]; + ty::GenericPredicates { + parent: None, + predicates: tcx.arena.alloc_from_iter( + self.param_env.caller_bounds().iter().filter_map(|predicate| { + match predicate.skip_binders() { + ty::PredicateAtom::Trait(data, _) if data.self_ty().is_param(index) => { + // HACK(eddyb) should get the original `Span`. + let span = tcx.def_span(def_id); + Some((predicate, span)) + } + _ => None, + } + }), + ), + } + } + + fn re_infer(&self, def: Option<&ty::GenericParamDef>, span: Span) -> Option<ty::Region<'tcx>> { + let v = match def { + Some(def) => infer::EarlyBoundRegion(span, def.name), + None => infer::MiscVariable(span), + }; + Some(self.next_region_var(v)) + } + + fn allow_ty_infer(&self) -> bool { + true + } + + fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> { + if let Some(param) = param { + if let GenericArgKind::Type(ty) = self.var_for_def(span, param).unpack() { + return ty; + } + unreachable!() + } else { + self.next_ty_var(TypeVariableOrigin { + kind: TypeVariableOriginKind::TypeInference, + span, + }) + } + } + + fn ct_infer( + &self, + ty: Ty<'tcx>, + param: Option<&ty::GenericParamDef>, + span: Span, + ) -> &'tcx Const<'tcx> { + if let Some(param) = param { + if let GenericArgKind::Const(ct) = self.var_for_def(span, param).unpack() { + return ct; + } + unreachable!() + } else { + self.next_const_var( + ty, + ConstVariableOrigin { kind: ConstVariableOriginKind::ConstInference, span }, + ) + } + } + + fn projected_ty_from_poly_trait_ref( + &self, + span: Span, + item_def_id: DefId, + item_segment: &hir::PathSegment<'_>, + poly_trait_ref: ty::PolyTraitRef<'tcx>, + ) -> Ty<'tcx> { + let (trait_ref, _) = self.replace_bound_vars_with_fresh_vars( + span, + infer::LateBoundRegionConversionTime::AssocTypeProjection(item_def_id), + &poly_trait_ref, + ); + + let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item( + self, + self.tcx, + span, + item_def_id, + item_segment, + trait_ref.substs, + ); + + self.tcx().mk_projection(item_def_id, item_substs) + } + + fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx> { + if ty.has_escaping_bound_vars() { + ty // FIXME: normalization and escaping regions + } else { + self.normalize_associated_types_in(span, &ty) + } + } + + fn set_tainted_by_errors(&self) { + self.infcx.set_tainted_by_errors() + } + + fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, _span: Span) { + self.write_ty(hir_id, ty) + } +} diff --git a/compiler/rustc_typeck/src/check/fn_ctxt/suggestions.rs b/compiler/rustc_typeck/src/check/fn_ctxt/suggestions.rs new file mode 100644 index 00000000000..9bad02c41b4 --- /dev/null +++ b/compiler/rustc_typeck/src/check/fn_ctxt/suggestions.rs @@ -0,0 +1,528 @@ +use super::FnCtxt; +use crate::astconv::AstConv; + +use rustc_ast::util::parser::ExprPrecedence; +use rustc_span::{self, Span}; +use rustc_trait_selection::traits; + +use rustc_errors::{Applicability, DiagnosticBuilder}; +use rustc_hir as hir; +use rustc_hir::def::{CtorOf, DefKind}; +use rustc_hir::lang_items::LangItem; +use rustc_hir::{ExprKind, ItemKind, Node}; +use rustc_infer::infer; +use rustc_middle::ty::{self, Ty}; +use rustc_span::symbol::kw; +use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _; + +use std::iter; + +impl<'a, 'tcx> FnCtxt<'a, 'tcx> { + pub(in super::super) fn suggest_semicolon_at_end( + &self, + span: Span, + err: &mut DiagnosticBuilder<'_>, + ) { + err.span_suggestion_short( + span.shrink_to_hi(), + "consider using a semicolon here", + ";".to_string(), + Applicability::MachineApplicable, + ); + } + + /// On implicit return expressions with mismatched types, provides the following suggestions: + /// + /// - Points out the method's return type as the reason for the expected type. + /// - Possible missing semicolon. + /// - Possible missing return type if the return type is the default, and not `fn main()`. + pub fn suggest_mismatched_types_on_tail( + &self, + err: &mut DiagnosticBuilder<'_>, + expr: &'tcx hir::Expr<'tcx>, + expected: Ty<'tcx>, + found: Ty<'tcx>, + cause_span: Span, + blk_id: hir::HirId, + ) -> bool { + let expr = expr.peel_drop_temps(); + self.suggest_missing_semicolon(err, expr, expected, cause_span); + let mut pointing_at_return_type = false; + if let Some((fn_decl, can_suggest)) = self.get_fn_decl(blk_id) { + pointing_at_return_type = + self.suggest_missing_return_type(err, &fn_decl, expected, found, can_suggest); + } + pointing_at_return_type + } + + /// When encountering an fn-like ctor that needs to unify with a value, check whether calling + /// the ctor would successfully solve the type mismatch and if so, suggest it: + /// ``` + /// fn foo(x: usize) -> usize { x } + /// let x: usize = foo; // suggest calling the `foo` function: `foo(42)` + /// ``` + fn suggest_fn_call( + &self, + err: &mut DiagnosticBuilder<'_>, + expr: &hir::Expr<'_>, + expected: Ty<'tcx>, + found: Ty<'tcx>, + ) -> bool { + let hir = self.tcx.hir(); + let (def_id, sig) = match *found.kind() { + ty::FnDef(def_id, _) => (def_id, found.fn_sig(self.tcx)), + ty::Closure(def_id, substs) => (def_id, substs.as_closure().sig()), + _ => return false, + }; + + let sig = self.replace_bound_vars_with_fresh_vars(expr.span, infer::FnCall, &sig).0; + let sig = self.normalize_associated_types_in(expr.span, &sig); + if self.can_coerce(sig.output(), expected) { + let (mut sugg_call, applicability) = if sig.inputs().is_empty() { + (String::new(), Applicability::MachineApplicable) + } else { + ("...".to_string(), Applicability::HasPlaceholders) + }; + let mut msg = "call this function"; + match hir.get_if_local(def_id) { + Some( + Node::Item(hir::Item { kind: ItemKind::Fn(.., body_id), .. }) + | Node::ImplItem(hir::ImplItem { + kind: hir::ImplItemKind::Fn(_, body_id), .. + }) + | Node::TraitItem(hir::TraitItem { + kind: hir::TraitItemKind::Fn(.., hir::TraitFn::Provided(body_id)), + .. + }), + ) => { + let body = hir.body(*body_id); + sugg_call = body + .params + .iter() + .map(|param| match ¶m.pat.kind { + hir::PatKind::Binding(_, _, ident, None) + if ident.name != kw::SelfLower => + { + ident.to_string() + } + _ => "_".to_string(), + }) + .collect::<Vec<_>>() + .join(", "); + } + Some(Node::Expr(hir::Expr { + kind: ExprKind::Closure(_, _, body_id, _, _), + span: full_closure_span, + .. + })) => { + if *full_closure_span == expr.span { + return false; + } + msg = "call this closure"; + let body = hir.body(*body_id); + sugg_call = body + .params + .iter() + .map(|param| match ¶m.pat.kind { + hir::PatKind::Binding(_, _, ident, None) + if ident.name != kw::SelfLower => + { + ident.to_string() + } + _ => "_".to_string(), + }) + .collect::<Vec<_>>() + .join(", "); + } + Some(Node::Ctor(hir::VariantData::Tuple(fields, _))) => { + sugg_call = fields.iter().map(|_| "_").collect::<Vec<_>>().join(", "); + match def_id.as_local().map(|def_id| hir.def_kind(def_id)) { + Some(DefKind::Ctor(hir::def::CtorOf::Variant, _)) => { + msg = "instantiate this tuple variant"; + } + Some(DefKind::Ctor(CtorOf::Struct, _)) => { + msg = "instantiate this tuple struct"; + } + _ => {} + } + } + Some(Node::ForeignItem(hir::ForeignItem { + kind: hir::ForeignItemKind::Fn(_, idents, _), + .. + })) => { + sugg_call = idents + .iter() + .map(|ident| { + if ident.name != kw::SelfLower { + ident.to_string() + } else { + "_".to_string() + } + }) + .collect::<Vec<_>>() + .join(", ") + } + Some(Node::TraitItem(hir::TraitItem { + kind: hir::TraitItemKind::Fn(.., hir::TraitFn::Required(idents)), + .. + })) => { + sugg_call = idents + .iter() + .map(|ident| { + if ident.name != kw::SelfLower { + ident.to_string() + } else { + "_".to_string() + } + }) + .collect::<Vec<_>>() + .join(", ") + } + _ => {} + } + err.span_suggestion_verbose( + expr.span.shrink_to_hi(), + &format!("use parentheses to {}", msg), + format!("({})", sugg_call), + applicability, + ); + return true; + } + false + } + + pub fn suggest_deref_ref_or_into( + &self, + err: &mut DiagnosticBuilder<'_>, + expr: &hir::Expr<'_>, + expected: Ty<'tcx>, + found: Ty<'tcx>, + expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>, + ) { + if let Some((sp, msg, suggestion, applicability)) = self.check_ref(expr, found, expected) { + err.span_suggestion(sp, msg, suggestion, applicability); + } else if let (ty::FnDef(def_id, ..), true) = + (&found.kind(), self.suggest_fn_call(err, expr, expected, found)) + { + if let Some(sp) = self.tcx.hir().span_if_local(*def_id) { + let sp = self.sess().source_map().guess_head_span(sp); + err.span_label(sp, &format!("{} defined here", found)); + } + } else if !self.check_for_cast(err, expr, found, expected, expected_ty_expr) { + let is_struct_pat_shorthand_field = + self.is_hir_id_from_struct_pattern_shorthand_field(expr.hir_id, expr.span); + let methods = self.get_conversion_methods(expr.span, expected, found, expr.hir_id); + if let Ok(expr_text) = self.sess().source_map().span_to_snippet(expr.span) { + let mut suggestions = iter::repeat(&expr_text) + .zip(methods.iter()) + .filter_map(|(receiver, method)| { + let method_call = format!(".{}()", method.ident); + if receiver.ends_with(&method_call) { + None // do not suggest code that is already there (#53348) + } else { + let method_call_list = [".to_vec()", ".to_string()"]; + let sugg = if receiver.ends_with(".clone()") + && method_call_list.contains(&method_call.as_str()) + { + let max_len = receiver.rfind('.').unwrap(); + format!("{}{}", &receiver[..max_len], method_call) + } else { + if expr.precedence().order() < ExprPrecedence::MethodCall.order() { + format!("({}){}", receiver, method_call) + } else { + format!("{}{}", receiver, method_call) + } + }; + Some(if is_struct_pat_shorthand_field { + format!("{}: {}", receiver, sugg) + } else { + sugg + }) + } + }) + .peekable(); + if suggestions.peek().is_some() { + err.span_suggestions( + expr.span, + "try using a conversion method", + suggestions, + Applicability::MaybeIncorrect, + ); + } + } + } + } + + /// When encountering the expected boxed value allocated in the stack, suggest allocating it + /// in the heap by calling `Box::new()`. + pub(in super::super) fn suggest_boxing_when_appropriate( + &self, + err: &mut DiagnosticBuilder<'_>, + expr: &hir::Expr<'_>, + expected: Ty<'tcx>, + found: Ty<'tcx>, + ) { + if self.tcx.hir().is_inside_const_context(expr.hir_id) { + // Do not suggest `Box::new` in const context. + return; + } + if !expected.is_box() || found.is_box() { + return; + } + let boxed_found = self.tcx.mk_box(found); + if let (true, Ok(snippet)) = ( + self.can_coerce(boxed_found, expected), + self.sess().source_map().span_to_snippet(expr.span), + ) { + err.span_suggestion( + expr.span, + "store this in the heap by calling `Box::new`", + format!("Box::new({})", snippet), + Applicability::MachineApplicable, + ); + err.note( + "for more on the distinction between the stack and the heap, read \ + https://doc.rust-lang.org/book/ch15-01-box.html, \ + https://doc.rust-lang.org/rust-by-example/std/box.html, and \ + https://doc.rust-lang.org/std/boxed/index.html", + ); + } + } + + /// When encountering an `impl Future` where `BoxFuture` is expected, suggest `Box::pin`. + pub(in super::super) fn suggest_calling_boxed_future_when_appropriate( + &self, + err: &mut DiagnosticBuilder<'_>, + expr: &hir::Expr<'_>, + expected: Ty<'tcx>, + found: Ty<'tcx>, + ) -> bool { + // Handle #68197. + + if self.tcx.hir().is_inside_const_context(expr.hir_id) { + // Do not suggest `Box::new` in const context. + return false; + } + let pin_did = self.tcx.lang_items().pin_type(); + match expected.kind() { + ty::Adt(def, _) if Some(def.did) != pin_did => return false, + // This guards the `unwrap` and `mk_box` below. + _ if pin_did.is_none() || self.tcx.lang_items().owned_box().is_none() => return false, + _ => {} + } + let boxed_found = self.tcx.mk_box(found); + let new_found = self.tcx.mk_lang_item(boxed_found, LangItem::Pin).unwrap(); + if let (true, Ok(snippet)) = ( + self.can_coerce(new_found, expected), + self.sess().source_map().span_to_snippet(expr.span), + ) { + match found.kind() { + ty::Adt(def, _) if def.is_box() => { + err.help("use `Box::pin`"); + } + _ => { + err.span_suggestion( + expr.span, + "you need to pin and box this expression", + format!("Box::pin({})", snippet), + Applicability::MachineApplicable, + ); + } + } + true + } else { + false + } + } + + /// A common error is to forget to add a semicolon at the end of a block, e.g., + /// + /// ``` + /// fn foo() { + /// bar_that_returns_u32() + /// } + /// ``` + /// + /// This routine checks if the return expression in a block would make sense on its own as a + /// statement and the return type has been left as default or has been specified as `()`. If so, + /// it suggests adding a semicolon. + fn suggest_missing_semicolon( + &self, + err: &mut DiagnosticBuilder<'_>, + expression: &'tcx hir::Expr<'tcx>, + expected: Ty<'tcx>, + cause_span: Span, + ) { + if expected.is_unit() { + // `BlockTailExpression` only relevant if the tail expr would be + // useful on its own. + match expression.kind { + ExprKind::Call(..) + | ExprKind::MethodCall(..) + | ExprKind::Loop(..) + | ExprKind::Match(..) + | ExprKind::Block(..) => { + err.span_suggestion( + cause_span.shrink_to_hi(), + "try adding a semicolon", + ";".to_string(), + Applicability::MachineApplicable, + ); + } + _ => (), + } + } + } + + /// A possible error is to forget to add a return type that is needed: + /// + /// ``` + /// fn foo() { + /// bar_that_returns_u32() + /// } + /// ``` + /// + /// This routine checks if the return type is left as default, the method is not part of an + /// `impl` block and that it isn't the `main` method. If so, it suggests setting the return + /// type. + pub(in super::super) fn suggest_missing_return_type( + &self, + err: &mut DiagnosticBuilder<'_>, + fn_decl: &hir::FnDecl<'_>, + expected: Ty<'tcx>, + found: Ty<'tcx>, + can_suggest: bool, + ) -> bool { + // Only suggest changing the return type for methods that + // haven't set a return type at all (and aren't `fn main()` or an impl). + match (&fn_decl.output, found.is_suggestable(), can_suggest, expected.is_unit()) { + (&hir::FnRetTy::DefaultReturn(span), true, true, true) => { + err.span_suggestion( + span, + "try adding a return type", + format!("-> {} ", self.resolve_vars_with_obligations(found)), + Applicability::MachineApplicable, + ); + true + } + (&hir::FnRetTy::DefaultReturn(span), false, true, true) => { + err.span_label(span, "possibly return type missing here?"); + true + } + (&hir::FnRetTy::DefaultReturn(span), _, false, true) => { + // `fn main()` must return `()`, do not suggest changing return type + err.span_label(span, "expected `()` because of default return type"); + true + } + // expectation was caused by something else, not the default return + (&hir::FnRetTy::DefaultReturn(_), _, _, false) => false, + (&hir::FnRetTy::Return(ref ty), _, _, _) => { + // Only point to return type if the expected type is the return type, as if they + // are not, the expectation must have been caused by something else. + debug!("suggest_missing_return_type: return type {:?} node {:?}", ty, ty.kind); + let sp = ty.span; + let ty = AstConv::ast_ty_to_ty(self, ty); + debug!("suggest_missing_return_type: return type {:?}", ty); + debug!("suggest_missing_return_type: expected type {:?}", ty); + if ty.kind() == expected.kind() { + err.span_label(sp, format!("expected `{}` because of return type", expected)); + return true; + } + false + } + } + } + + /// A possible error is to forget to add `.await` when using futures: + /// + /// ``` + /// async fn make_u32() -> u32 { + /// 22 + /// } + /// + /// fn take_u32(x: u32) {} + /// + /// async fn foo() { + /// let x = make_u32(); + /// take_u32(x); + /// } + /// ``` + /// + /// This routine checks if the found type `T` implements `Future<Output=U>` where `U` is the + /// expected type. If this is the case, and we are inside of an async body, it suggests adding + /// `.await` to the tail of the expression. + pub(in super::super) fn suggest_missing_await( + &self, + err: &mut DiagnosticBuilder<'_>, + expr: &hir::Expr<'_>, + expected: Ty<'tcx>, + found: Ty<'tcx>, + ) { + debug!("suggest_missing_await: expr={:?} expected={:?}, found={:?}", expr, expected, found); + // `.await` is not permitted outside of `async` bodies, so don't bother to suggest if the + // body isn't `async`. + let item_id = self.tcx().hir().get_parent_node(self.body_id); + if let Some(body_id) = self.tcx().hir().maybe_body_owned_by(item_id) { + let body = self.tcx().hir().body(body_id); + if let Some(hir::GeneratorKind::Async(_)) = body.generator_kind { + let sp = expr.span; + // Check for `Future` implementations by constructing a predicate to + // prove: `<T as Future>::Output == U` + let future_trait = self.tcx.require_lang_item(LangItem::Future, Some(sp)); + let item_def_id = self + .tcx + .associated_items(future_trait) + .in_definition_order() + .next() + .unwrap() + .def_id; + // `<T as Future>::Output` + let projection_ty = ty::ProjectionTy { + // `T` + substs: self + .tcx + .mk_substs_trait(found, self.fresh_substs_for_item(sp, item_def_id)), + // `Future::Output` + item_def_id, + }; + + let predicate = ty::PredicateAtom::Projection(ty::ProjectionPredicate { + projection_ty, + ty: expected, + }) + .potentially_quantified(self.tcx, ty::PredicateKind::ForAll); + let obligation = traits::Obligation::new(self.misc(sp), self.param_env, predicate); + + debug!("suggest_missing_await: trying obligation {:?}", obligation); + + if self.infcx.predicate_may_hold(&obligation) { + debug!("suggest_missing_await: obligation held: {:?}", obligation); + if let Ok(code) = self.sess().source_map().span_to_snippet(sp) { + err.span_suggestion( + sp, + "consider using `.await` here", + format!("{}.await", code), + Applicability::MaybeIncorrect, + ); + } else { + debug!("suggest_missing_await: no snippet for {:?}", sp); + } + } else { + debug!("suggest_missing_await: obligation did not hold: {:?}", obligation) + } + } + } + } + + pub(in super::super) fn suggest_missing_parentheses( + &self, + err: &mut DiagnosticBuilder<'_>, + expr: &hir::Expr<'_>, + ) { + let sp = self.tcx.sess.source_map().start_point(expr.span); + if let Some(sp) = self.tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp) { + // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }` + self.tcx.sess.parse_sess.expr_parentheses_needed(err, *sp, None); + } + } +} diff --git a/compiler/rustc_typeck/src/check/mod.rs b/compiler/rustc_typeck/src/check/mod.rs index 1cb6ae21a47..24ffe944128 100644 --- a/compiler/rustc_typeck/src/check/mod.rs +++ b/compiler/rustc_typeck/src/check/mod.rs @@ -96,7 +96,7 @@ use check::{ pub use check::{check_item_type, check_wf_new}; pub use diverges::Diverges; pub use expectation::Expectation; -pub use fn_ctxt::FnCtxt; +pub use fn_ctxt::*; pub use inherited::{Inherited, InheritedBuilder}; use crate::astconv::AstConv; |
