diff options
| author | Pavel Grigorenko <GrigorenkoPV@ya.ru> | 2024-12-23 19:36:41 +0300 |
|---|---|---|
| committer | Pavel Grigorenko <GrigorenkoPV@ya.ru> | 2025-01-02 15:21:41 +0300 |
| commit | ee2ad4dfb1b7d3a07604efc6d9eb618d0fe3bf7d (patch) | |
| tree | 363fdace20c9ca422a1571a205e7b9bd4803c5af /library/std/src/sync/poison/mutex.rs | |
| parent | 41b579660c0af700d42abe5b71856098db007783 (diff) | |
| download | rust-ee2ad4dfb1b7d3a07604efc6d9eb618d0fe3bf7d.tar.gz rust-ee2ad4dfb1b7d3a07604efc6d9eb618d0fe3bf7d.zip | |
Move some things to `std::sync::poison` and reexport them in `std::sync`
Diffstat (limited to 'library/std/src/sync/poison/mutex.rs')
| -rw-r--r-- | library/std/src/sync/poison/mutex.rs | 849 |
1 files changed, 849 insertions, 0 deletions
diff --git a/library/std/src/sync/poison/mutex.rs b/library/std/src/sync/poison/mutex.rs new file mode 100644 index 00000000000..e28c2090afe --- /dev/null +++ b/library/std/src/sync/poison/mutex.rs @@ -0,0 +1,849 @@ +#[cfg(all(test, not(any(target_os = "emscripten", target_os = "wasi"))))] +mod tests; + +use crate::cell::UnsafeCell; +use crate::fmt; +use crate::marker::PhantomData; +use crate::mem::{self, ManuallyDrop}; +use crate::ops::{Deref, DerefMut}; +use crate::ptr::NonNull; +use crate::sync::{LockResult, PoisonError, TryLockError, TryLockResult, poison}; +use crate::sys::sync as sys; + +/// A mutual exclusion primitive useful for protecting shared data +/// +/// This mutex will block threads waiting for the lock to become available. The +/// mutex can be created via a [`new`] constructor. Each mutex has a type parameter +/// which represents the data that it is protecting. The data can only be accessed +/// through the RAII guards returned from [`lock`] and [`try_lock`], which +/// guarantees that the data is only ever accessed when the mutex is locked. +/// +/// # Poisoning +/// +/// The mutexes in this module implement a strategy called "poisoning" where a +/// mutex is considered poisoned whenever a thread panics while holding the +/// mutex. Once a mutex is poisoned, all other threads are unable to access the +/// data by default as it is likely tainted (some invariant is not being +/// upheld). +/// +/// For a mutex, this means that the [`lock`] and [`try_lock`] methods return a +/// [`Result`] which indicates whether a mutex has been poisoned or not. Most +/// usage of a mutex will simply [`unwrap()`] these results, propagating panics +/// among threads to ensure that a possibly invalid invariant is not witnessed. +/// +/// A poisoned mutex, however, does not prevent all access to the underlying +/// data. The [`PoisonError`] type has an [`into_inner`] method which will return +/// the guard that would have otherwise been returned on a successful lock. This +/// allows access to the data, despite the lock being poisoned. +/// +/// [`new`]: Self::new +/// [`lock`]: Self::lock +/// [`try_lock`]: Self::try_lock +/// [`unwrap()`]: Result::unwrap +/// [`PoisonError`]: super::PoisonError +/// [`into_inner`]: super::PoisonError::into_inner +/// +/// # Examples +/// +/// ``` +/// use std::sync::{Arc, Mutex}; +/// use std::thread; +/// use std::sync::mpsc::channel; +/// +/// const N: usize = 10; +/// +/// // Spawn a few threads to increment a shared variable (non-atomically), and +/// // let the main thread know once all increments are done. +/// // +/// // Here we're using an Arc to share memory among threads, and the data inside +/// // the Arc is protected with a mutex. +/// let data = Arc::new(Mutex::new(0)); +/// +/// let (tx, rx) = channel(); +/// for _ in 0..N { +/// let (data, tx) = (Arc::clone(&data), tx.clone()); +/// thread::spawn(move || { +/// // The shared state can only be accessed once the lock is held. +/// // Our non-atomic increment is safe because we're the only thread +/// // which can access the shared state when the lock is held. +/// // +/// // We unwrap() the return value to assert that we are not expecting +/// // threads to ever fail while holding the lock. +/// let mut data = data.lock().unwrap(); +/// *data += 1; +/// if *data == N { +/// tx.send(()).unwrap(); +/// } +/// // the lock is unlocked here when `data` goes out of scope. +/// }); +/// } +/// +/// rx.recv().unwrap(); +/// ``` +/// +/// To recover from a poisoned mutex: +/// +/// ``` +/// use std::sync::{Arc, Mutex}; +/// use std::thread; +/// +/// let lock = Arc::new(Mutex::new(0_u32)); +/// let lock2 = Arc::clone(&lock); +/// +/// let _ = thread::spawn(move || -> () { +/// // This thread will acquire the mutex first, unwrapping the result of +/// // `lock` because the lock has not been poisoned. +/// let _guard = lock2.lock().unwrap(); +/// +/// // This panic while holding the lock (`_guard` is in scope) will poison +/// // the mutex. +/// panic!(); +/// }).join(); +/// +/// // The lock is poisoned by this point, but the returned result can be +/// // pattern matched on to return the underlying guard on both branches. +/// let mut guard = match lock.lock() { +/// Ok(guard) => guard, +/// Err(poisoned) => poisoned.into_inner(), +/// }; +/// +/// *guard += 1; +/// ``` +/// +/// To unlock a mutex guard sooner than the end of the enclosing scope, +/// either create an inner scope or drop the guard manually. +/// +/// ``` +/// use std::sync::{Arc, Mutex}; +/// use std::thread; +/// +/// const N: usize = 3; +/// +/// let data_mutex = Arc::new(Mutex::new(vec![1, 2, 3, 4])); +/// let res_mutex = Arc::new(Mutex::new(0)); +/// +/// let mut threads = Vec::with_capacity(N); +/// (0..N).for_each(|_| { +/// let data_mutex_clone = Arc::clone(&data_mutex); +/// let res_mutex_clone = Arc::clone(&res_mutex); +/// +/// threads.push(thread::spawn(move || { +/// // Here we use a block to limit the lifetime of the lock guard. +/// let result = { +/// let mut data = data_mutex_clone.lock().unwrap(); +/// // This is the result of some important and long-ish work. +/// let result = data.iter().fold(0, |acc, x| acc + x * 2); +/// data.push(result); +/// result +/// // The mutex guard gets dropped here, together with any other values +/// // created in the critical section. +/// }; +/// // The guard created here is a temporary dropped at the end of the statement, i.e. +/// // the lock would not remain being held even if the thread did some additional work. +/// *res_mutex_clone.lock().unwrap() += result; +/// })); +/// }); +/// +/// let mut data = data_mutex.lock().unwrap(); +/// // This is the result of some important and long-ish work. +/// let result = data.iter().fold(0, |acc, x| acc + x * 2); +/// data.push(result); +/// // We drop the `data` explicitly because it's not necessary anymore and the +/// // thread still has work to do. This allows other threads to start working on +/// // the data immediately, without waiting for the rest of the unrelated work +/// // to be done here. +/// // +/// // It's even more important here than in the threads because we `.join` the +/// // threads after that. If we had not dropped the mutex guard, a thread could +/// // be waiting forever for it, causing a deadlock. +/// // As in the threads, a block could have been used instead of calling the +/// // `drop` function. +/// drop(data); +/// // Here the mutex guard is not assigned to a variable and so, even if the +/// // scope does not end after this line, the mutex is still released: there is +/// // no deadlock. +/// *res_mutex.lock().unwrap() += result; +/// +/// threads.into_iter().for_each(|thread| { +/// thread +/// .join() +/// .expect("The thread creating or execution failed !") +/// }); +/// +/// assert_eq!(*res_mutex.lock().unwrap(), 800); +/// ``` +/// +#[stable(feature = "rust1", since = "1.0.0")] +#[cfg_attr(not(test), rustc_diagnostic_item = "Mutex")] +pub struct Mutex<T: ?Sized> { + inner: sys::Mutex, + poison: poison::Flag, + data: UnsafeCell<T>, +} + +// these are the only places where `T: Send` matters; all other +// functionality works fine on a single thread. +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<T: ?Sized + Send> Send for Mutex<T> {} +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {} + +/// An RAII implementation of a "scoped lock" of a mutex. When this structure is +/// dropped (falls out of scope), the lock will be unlocked. +/// +/// The data protected by the mutex can be accessed through this guard via its +/// [`Deref`] and [`DerefMut`] implementations. +/// +/// This structure is created by the [`lock`] and [`try_lock`] methods on +/// [`Mutex`]. +/// +/// [`lock`]: Mutex::lock +/// [`try_lock`]: Mutex::try_lock +#[must_use = "if unused the Mutex will immediately unlock"] +#[must_not_suspend = "holding a MutexGuard across suspend \ + points can cause deadlocks, delays, \ + and cause Futures to not implement `Send`"] +#[stable(feature = "rust1", since = "1.0.0")] +#[clippy::has_significant_drop] +#[cfg_attr(not(test), rustc_diagnostic_item = "MutexGuard")] +pub struct MutexGuard<'a, T: ?Sized + 'a> { + lock: &'a Mutex<T>, + poison: poison::Guard, +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: ?Sized> !Send for MutexGuard<'_, T> {} +#[stable(feature = "mutexguard", since = "1.19.0")] +unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {} + +/// An RAII mutex guard returned by `MutexGuard::map`, which can point to a +/// subfield of the protected data. When this structure is dropped (falls out +/// of scope), the lock will be unlocked. +/// +/// The main difference between `MappedMutexGuard` and [`MutexGuard`] is that the +/// former cannot be used with [`Condvar`], since that +/// could introduce soundness issues if the locked object is modified by another +/// thread while the `Mutex` is unlocked. +/// +/// The data protected by the mutex can be accessed through this guard via its +/// [`Deref`] and [`DerefMut`] implementations. +/// +/// This structure is created by the [`map`] and [`try_map`] methods on +/// [`MutexGuard`]. +/// +/// [`map`]: MutexGuard::map +/// [`try_map`]: MutexGuard::try_map +/// [`Condvar`]: crate::sync::Condvar +#[must_use = "if unused the Mutex will immediately unlock"] +#[must_not_suspend = "holding a MappedMutexGuard across suspend \ + points can cause deadlocks, delays, \ + and cause Futures to not implement `Send`"] +#[unstable(feature = "mapped_lock_guards", issue = "117108")] +#[clippy::has_significant_drop] +pub struct MappedMutexGuard<'a, T: ?Sized + 'a> { + // NB: we use a pointer instead of `&'a mut T` to avoid `noalias` violations, because a + // `MappedMutexGuard` argument doesn't hold uniqueness for its whole scope, only until it drops. + // `NonNull` is covariant over `T`, so we add a `PhantomData<&'a mut T>` field + // below for the correct variance over `T` (invariance). + data: NonNull<T>, + inner: &'a sys::Mutex, + poison_flag: &'a poison::Flag, + poison: poison::Guard, + _variance: PhantomData<&'a mut T>, +} + +#[unstable(feature = "mapped_lock_guards", issue = "117108")] +impl<T: ?Sized> !Send for MappedMutexGuard<'_, T> {} +#[unstable(feature = "mapped_lock_guards", issue = "117108")] +unsafe impl<T: ?Sized + Sync> Sync for MappedMutexGuard<'_, T> {} + +impl<T> Mutex<T> { + /// Creates a new mutex in an unlocked state ready for use. + /// + /// # Examples + /// + /// ``` + /// use std::sync::Mutex; + /// + /// let mutex = Mutex::new(0); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[rustc_const_stable(feature = "const_locks", since = "1.63.0")] + #[inline] + pub const fn new(t: T) -> Mutex<T> { + Mutex { inner: sys::Mutex::new(), poison: poison::Flag::new(), data: UnsafeCell::new(t) } + } + + /// Returns the contained value by cloning it. + /// + /// # Errors + /// + /// If another user of this mutex panicked while holding the mutex, then + /// this call will return an error instead. + /// + /// # Examples + /// + /// ``` + /// #![feature(lock_value_accessors)] + /// + /// use std::sync::Mutex; + /// + /// let mut mutex = Mutex::new(7); + /// + /// assert_eq!(mutex.get_cloned().unwrap(), 7); + /// ``` + #[unstable(feature = "lock_value_accessors", issue = "133407")] + pub fn get_cloned(&self) -> Result<T, PoisonError<()>> + where + T: Clone, + { + match self.lock() { + Ok(guard) => Ok((*guard).clone()), + Err(_) => Err(PoisonError::new(())), + } + } + + /// Sets the contained value. + /// + /// # Errors + /// + /// If another user of this mutex panicked while holding the mutex, then + /// this call will return an error containing the provided `value` instead. + /// + /// # Examples + /// + /// ``` + /// #![feature(lock_value_accessors)] + /// + /// use std::sync::Mutex; + /// + /// let mut mutex = Mutex::new(7); + /// + /// assert_eq!(mutex.get_cloned().unwrap(), 7); + /// mutex.set(11).unwrap(); + /// assert_eq!(mutex.get_cloned().unwrap(), 11); + /// ``` + #[unstable(feature = "lock_value_accessors", issue = "133407")] + pub fn set(&self, value: T) -> Result<(), PoisonError<T>> { + if mem::needs_drop::<T>() { + // If the contained value has non-trivial destructor, we + // call that destructor after the lock being released. + self.replace(value).map(drop) + } else { + match self.lock() { + Ok(mut guard) => { + *guard = value; + + Ok(()) + } + Err(_) => Err(PoisonError::new(value)), + } + } + } + + /// Replaces the contained value with `value`, and returns the old contained value. + /// + /// # Errors + /// + /// If another user of this mutex panicked while holding the mutex, then + /// this call will return an error containing the provided `value` instead. + /// + /// # Examples + /// + /// ``` + /// #![feature(lock_value_accessors)] + /// + /// use std::sync::Mutex; + /// + /// let mut mutex = Mutex::new(7); + /// + /// assert_eq!(mutex.replace(11).unwrap(), 7); + /// assert_eq!(mutex.get_cloned().unwrap(), 11); + /// ``` + #[unstable(feature = "lock_value_accessors", issue = "133407")] + pub fn replace(&self, value: T) -> LockResult<T> { + match self.lock() { + Ok(mut guard) => Ok(mem::replace(&mut *guard, value)), + Err(_) => Err(PoisonError::new(value)), + } + } +} + +impl<T: ?Sized> Mutex<T> { + /// Acquires a mutex, blocking the current thread until it is able to do so. + /// + /// This function will block the local thread until it is available to acquire + /// the mutex. Upon returning, the thread is the only thread with the lock + /// held. An RAII guard is returned to allow scoped unlock of the lock. When + /// the guard goes out of scope, the mutex will be unlocked. + /// + /// The exact behavior on locking a mutex in the thread which already holds + /// the lock is left unspecified. However, this function will not return on + /// the second call (it might panic or deadlock, for example). + /// + /// # Errors + /// + /// If another user of this mutex panicked while holding the mutex, then + /// this call will return an error once the mutex is acquired. The acquired + /// mutex guard will be contained in the returned error. + /// + /// # Panics + /// + /// This function might panic when called if the lock is already held by + /// the current thread. + /// + /// # Examples + /// + /// ``` + /// use std::sync::{Arc, Mutex}; + /// use std::thread; + /// + /// let mutex = Arc::new(Mutex::new(0)); + /// let c_mutex = Arc::clone(&mutex); + /// + /// thread::spawn(move || { + /// *c_mutex.lock().unwrap() = 10; + /// }).join().expect("thread::spawn failed"); + /// assert_eq!(*mutex.lock().unwrap(), 10); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn lock(&self) -> LockResult<MutexGuard<'_, T>> { + unsafe { + self.inner.lock(); + MutexGuard::new(self) + } + } + + /// Attempts to acquire this lock. + /// + /// If the lock could not be acquired at this time, then [`Err`] is returned. + /// Otherwise, an RAII guard is returned. The lock will be unlocked when the + /// guard is dropped. + /// + /// This function does not block. + /// + /// # Errors + /// + /// If another user of this mutex panicked while holding the mutex, then + /// this call will return the [`Poisoned`] error if the mutex would + /// otherwise be acquired. An acquired lock guard will be contained + /// in the returned error. + /// + /// If the mutex could not be acquired because it is already locked, then + /// this call will return the [`WouldBlock`] error. + /// + /// [`Poisoned`]: TryLockError::Poisoned + /// [`WouldBlock`]: TryLockError::WouldBlock + /// + /// # Examples + /// + /// ``` + /// use std::sync::{Arc, Mutex}; + /// use std::thread; + /// + /// let mutex = Arc::new(Mutex::new(0)); + /// let c_mutex = Arc::clone(&mutex); + /// + /// thread::spawn(move || { + /// let mut lock = c_mutex.try_lock(); + /// if let Ok(ref mut mutex) = lock { + /// **mutex = 10; + /// } else { + /// println!("try_lock failed"); + /// } + /// }).join().expect("thread::spawn failed"); + /// assert_eq!(*mutex.lock().unwrap(), 10); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> { + unsafe { + if self.inner.try_lock() { + Ok(MutexGuard::new(self)?) + } else { + Err(TryLockError::WouldBlock) + } + } + } + + /// Determines whether the mutex is poisoned. + /// + /// If another thread is active, the mutex can still become poisoned at any + /// time. You should not trust a `false` value for program correctness + /// without additional synchronization. + /// + /// # Examples + /// + /// ``` + /// use std::sync::{Arc, Mutex}; + /// use std::thread; + /// + /// let mutex = Arc::new(Mutex::new(0)); + /// let c_mutex = Arc::clone(&mutex); + /// + /// let _ = thread::spawn(move || { + /// let _lock = c_mutex.lock().unwrap(); + /// panic!(); // the mutex gets poisoned + /// }).join(); + /// assert_eq!(mutex.is_poisoned(), true); + /// ``` + #[inline] + #[stable(feature = "sync_poison", since = "1.2.0")] + pub fn is_poisoned(&self) -> bool { + self.poison.get() + } + + /// Clear the poisoned state from a mutex. + /// + /// If the mutex is poisoned, it will remain poisoned until this function is called. This + /// allows recovering from a poisoned state and marking that it has recovered. For example, if + /// the value is overwritten by a known-good value, then the mutex can be marked as + /// un-poisoned. Or possibly, the value could be inspected to determine if it is in a + /// consistent state, and if so the poison is removed. + /// + /// # Examples + /// + /// ``` + /// use std::sync::{Arc, Mutex}; + /// use std::thread; + /// + /// let mutex = Arc::new(Mutex::new(0)); + /// let c_mutex = Arc::clone(&mutex); + /// + /// let _ = thread::spawn(move || { + /// let _lock = c_mutex.lock().unwrap(); + /// panic!(); // the mutex gets poisoned + /// }).join(); + /// + /// assert_eq!(mutex.is_poisoned(), true); + /// let x = mutex.lock().unwrap_or_else(|mut e| { + /// **e.get_mut() = 1; + /// mutex.clear_poison(); + /// e.into_inner() + /// }); + /// assert_eq!(mutex.is_poisoned(), false); + /// assert_eq!(*x, 1); + /// ``` + #[inline] + #[stable(feature = "mutex_unpoison", since = "1.77.0")] + pub fn clear_poison(&self) { + self.poison.clear(); + } + + /// Consumes this mutex, returning the underlying data. + /// + /// # Errors + /// + /// If another user of this mutex panicked while holding the mutex, then + /// this call will return an error containing the the underlying data + /// instead. + /// + /// # Examples + /// + /// ``` + /// use std::sync::Mutex; + /// + /// let mutex = Mutex::new(0); + /// assert_eq!(mutex.into_inner().unwrap(), 0); + /// ``` + #[stable(feature = "mutex_into_inner", since = "1.6.0")] + pub fn into_inner(self) -> LockResult<T> + where + T: Sized, + { + let data = self.data.into_inner(); + poison::map_result(self.poison.borrow(), |()| data) + } + + /// Returns a mutable reference to the underlying data. + /// + /// Since this call borrows the `Mutex` mutably, no actual locking needs to + /// take place -- the mutable borrow statically guarantees no locks exist. + /// + /// # Errors + /// + /// If another user of this mutex panicked while holding the mutex, then + /// this call will return an error containing a mutable reference to the + /// underlying data instead. + /// + /// # Examples + /// + /// ``` + /// use std::sync::Mutex; + /// + /// let mut mutex = Mutex::new(0); + /// *mutex.get_mut().unwrap() = 10; + /// assert_eq!(*mutex.lock().unwrap(), 10); + /// ``` + #[stable(feature = "mutex_get_mut", since = "1.6.0")] + pub fn get_mut(&mut self) -> LockResult<&mut T> { + let data = self.data.get_mut(); + poison::map_result(self.poison.borrow(), |()| data) + } +} + +#[stable(feature = "mutex_from", since = "1.24.0")] +impl<T> From<T> for Mutex<T> { + /// Creates a new mutex in an unlocked state ready for use. + /// This is equivalent to [`Mutex::new`]. + fn from(t: T) -> Self { + Mutex::new(t) + } +} + +#[stable(feature = "mutex_default", since = "1.10.0")] +impl<T: ?Sized + Default> Default for Mutex<T> { + /// Creates a `Mutex<T>`, with the `Default` value for T. + fn default() -> Mutex<T> { + Mutex::new(Default::default()) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + let mut d = f.debug_struct("Mutex"); + match self.try_lock() { + Ok(guard) => { + d.field("data", &&*guard); + } + Err(TryLockError::Poisoned(err)) => { + d.field("data", &&**err.get_ref()); + } + Err(TryLockError::WouldBlock) => { + d.field("data", &format_args!("<locked>")); + } + } + d.field("poisoned", &self.poison.get()); + d.finish_non_exhaustive() + } +} + +impl<'mutex, T: ?Sized> MutexGuard<'mutex, T> { + unsafe fn new(lock: &'mutex Mutex<T>) -> LockResult<MutexGuard<'mutex, T>> { + poison::map_result(lock.poison.guard(), |guard| MutexGuard { lock, poison: guard }) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: ?Sized> Deref for MutexGuard<'_, T> { + type Target = T; + + fn deref(&self) -> &T { + unsafe { &*self.lock.data.get() } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: ?Sized> DerefMut for MutexGuard<'_, T> { + fn deref_mut(&mut self) -> &mut T { + unsafe { &mut *self.lock.data.get() } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl<T: ?Sized> Drop for MutexGuard<'_, T> { + #[inline] + fn drop(&mut self) { + unsafe { + self.lock.poison.done(&self.poison); + self.lock.inner.unlock(); + } + } +} + +#[stable(feature = "std_debug", since = "1.16.0")] +impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +#[stable(feature = "std_guard_impls", since = "1.20.0")] +impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + (**self).fmt(f) + } +} + +pub fn guard_lock<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a sys::Mutex { + &guard.lock.inner +} + +pub fn guard_poison<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a poison::Flag { + &guard.lock.poison +} + +impl<'a, T: ?Sized> MutexGuard<'a, T> { + /// Makes a [`MappedMutexGuard`] for a component of the borrowed data, e.g. + /// an enum variant. + /// + /// The `Mutex` is already locked, so this cannot fail. + /// + /// This is an associated function that needs to be used as + /// `MutexGuard::map(...)`. A method would interfere with methods of the + /// same name on the contents of the `MutexGuard` used through `Deref`. + #[unstable(feature = "mapped_lock_guards", issue = "117108")] + pub fn map<U, F>(orig: Self, f: F) -> MappedMutexGuard<'a, U> + where + F: FnOnce(&mut T) -> &mut U, + U: ?Sized, + { + // SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard + // was created, and have been upheld throughout `map` and/or `try_map`. + // The signature of the closure guarantees that it will not "leak" the lifetime of the reference + // passed to it. If the closure panics, the guard will be dropped. + let data = NonNull::from(f(unsafe { &mut *orig.lock.data.get() })); + let orig = ManuallyDrop::new(orig); + MappedMutexGuard { + data, + inner: &orig.lock.inner, + poison_flag: &orig.lock.poison, + poison: orig.poison.clone(), + _variance: PhantomData, + } + } + + /// Makes a [`MappedMutexGuard`] for a component of the borrowed data. The + /// original guard is returned as an `Err(...)` if the closure returns + /// `None`. + /// + /// The `Mutex` is already locked, so this cannot fail. + /// + /// This is an associated function that needs to be used as + /// `MutexGuard::try_map(...)`. A method would interfere with methods of the + /// same name on the contents of the `MutexGuard` used through `Deref`. + #[doc(alias = "filter_map")] + #[unstable(feature = "mapped_lock_guards", issue = "117108")] + pub fn try_map<U, F>(orig: Self, f: F) -> Result<MappedMutexGuard<'a, U>, Self> + where + F: FnOnce(&mut T) -> Option<&mut U>, + U: ?Sized, + { + // SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard + // was created, and have been upheld throughout `map` and/or `try_map`. + // The signature of the closure guarantees that it will not "leak" the lifetime of the reference + // passed to it. If the closure panics, the guard will be dropped. + match f(unsafe { &mut *orig.lock.data.get() }) { + Some(data) => { + let data = NonNull::from(data); + let orig = ManuallyDrop::new(orig); + Ok(MappedMutexGuard { + data, + inner: &orig.lock.inner, + poison_flag: &orig.lock.poison, + poison: orig.poison.clone(), + _variance: PhantomData, + }) + } + None => Err(orig), + } + } +} + +#[unstable(feature = "mapped_lock_guards", issue = "117108")] +impl<T: ?Sized> Deref for MappedMutexGuard<'_, T> { + type Target = T; + + fn deref(&self) -> &T { + unsafe { self.data.as_ref() } + } +} + +#[unstable(feature = "mapped_lock_guards", issue = "117108")] +impl<T: ?Sized> DerefMut for MappedMutexGuard<'_, T> { + fn deref_mut(&mut self) -> &mut T { + unsafe { self.data.as_mut() } + } +} + +#[unstable(feature = "mapped_lock_guards", issue = "117108")] +impl<T: ?Sized> Drop for MappedMutexGuard<'_, T> { + #[inline] + fn drop(&mut self) { + unsafe { + self.poison_flag.done(&self.poison); + self.inner.unlock(); + } + } +} + +#[unstable(feature = "mapped_lock_guards", issue = "117108")] +impl<T: ?Sized + fmt::Debug> fmt::Debug for MappedMutexGuard<'_, T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +#[unstable(feature = "mapped_lock_guards", issue = "117108")] +impl<T: ?Sized + fmt::Display> fmt::Display for MappedMutexGuard<'_, T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + (**self).fmt(f) + } +} + +impl<'a, T: ?Sized> MappedMutexGuard<'a, T> { + /// Makes a [`MappedMutexGuard`] for a component of the borrowed data, e.g. + /// an enum variant. + /// + /// The `Mutex` is already locked, so this cannot fail. + /// + /// This is an associated function that needs to be used as + /// `MappedMutexGuard::map(...)`. A method would interfere with methods of the + /// same name on the contents of the `MutexGuard` used through `Deref`. + #[unstable(feature = "mapped_lock_guards", issue = "117108")] + pub fn map<U, F>(mut orig: Self, f: F) -> MappedMutexGuard<'a, U> + where + F: FnOnce(&mut T) -> &mut U, + U: ?Sized, + { + // SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard + // was created, and have been upheld throughout `map` and/or `try_map`. + // The signature of the closure guarantees that it will not "leak" the lifetime of the reference + // passed to it. If the closure panics, the guard will be dropped. + let data = NonNull::from(f(unsafe { orig.data.as_mut() })); + let orig = ManuallyDrop::new(orig); + MappedMutexGuard { + data, + inner: orig.inner, + poison_flag: orig.poison_flag, + poison: orig.poison.clone(), + _variance: PhantomData, + } + } + + /// Makes a [`MappedMutexGuard`] for a component of the borrowed data. The + /// original guard is returned as an `Err(...)` if the closure returns + /// `None`. + /// + /// The `Mutex` is already locked, so this cannot fail. + /// + /// This is an associated function that needs to be used as + /// `MappedMutexGuard::try_map(...)`. A method would interfere with methods of the + /// same name on the contents of the `MutexGuard` used through `Deref`. + #[doc(alias = "filter_map")] + #[unstable(feature = "mapped_lock_guards", issue = "117108")] + pub fn try_map<U, F>(mut orig: Self, f: F) -> Result<MappedMutexGuard<'a, U>, Self> + where + F: FnOnce(&mut T) -> Option<&mut U>, + U: ?Sized, + { + // SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard + // was created, and have been upheld throughout `map` and/or `try_map`. + // The signature of the closure guarantees that it will not "leak" the lifetime of the reference + // passed to it. If the closure panics, the guard will be dropped. + match f(unsafe { orig.data.as_mut() }) { + Some(data) => { + let data = NonNull::from(data); + let orig = ManuallyDrop::new(orig); + Ok(MappedMutexGuard { + data, + inner: orig.inner, + poison_flag: orig.poison_flag, + poison: orig.poison.clone(), + _variance: PhantomData, + }) + } + None => Err(orig), + } + } +} |
