about summary refs log tree commit diff
path: root/library/std/src/sync/poison/mutex.rs
diff options
context:
space:
mode:
authorPavel Grigorenko <GrigorenkoPV@ya.ru>2024-12-23 19:36:41 +0300
committerPavel Grigorenko <GrigorenkoPV@ya.ru>2025-01-02 15:21:41 +0300
commitee2ad4dfb1b7d3a07604efc6d9eb618d0fe3bf7d (patch)
tree363fdace20c9ca422a1571a205e7b9bd4803c5af /library/std/src/sync/poison/mutex.rs
parent41b579660c0af700d42abe5b71856098db007783 (diff)
downloadrust-ee2ad4dfb1b7d3a07604efc6d9eb618d0fe3bf7d.tar.gz
rust-ee2ad4dfb1b7d3a07604efc6d9eb618d0fe3bf7d.zip
Move some things to `std::sync::poison` and reexport them in `std::sync`
Diffstat (limited to 'library/std/src/sync/poison/mutex.rs')
-rw-r--r--library/std/src/sync/poison/mutex.rs849
1 files changed, 849 insertions, 0 deletions
diff --git a/library/std/src/sync/poison/mutex.rs b/library/std/src/sync/poison/mutex.rs
new file mode 100644
index 00000000000..e28c2090afe
--- /dev/null
+++ b/library/std/src/sync/poison/mutex.rs
@@ -0,0 +1,849 @@
+#[cfg(all(test, not(any(target_os = "emscripten", target_os = "wasi"))))]
+mod tests;
+
+use crate::cell::UnsafeCell;
+use crate::fmt;
+use crate::marker::PhantomData;
+use crate::mem::{self, ManuallyDrop};
+use crate::ops::{Deref, DerefMut};
+use crate::ptr::NonNull;
+use crate::sync::{LockResult, PoisonError, TryLockError, TryLockResult, poison};
+use crate::sys::sync as sys;
+
+/// A mutual exclusion primitive useful for protecting shared data
+///
+/// This mutex will block threads waiting for the lock to become available. The
+/// mutex can be created via a [`new`] constructor. Each mutex has a type parameter
+/// which represents the data that it is protecting. The data can only be accessed
+/// through the RAII guards returned from [`lock`] and [`try_lock`], which
+/// guarantees that the data is only ever accessed when the mutex is locked.
+///
+/// # Poisoning
+///
+/// The mutexes in this module implement a strategy called "poisoning" where a
+/// mutex is considered poisoned whenever a thread panics while holding the
+/// mutex. Once a mutex is poisoned, all other threads are unable to access the
+/// data by default as it is likely tainted (some invariant is not being
+/// upheld).
+///
+/// For a mutex, this means that the [`lock`] and [`try_lock`] methods return a
+/// [`Result`] which indicates whether a mutex has been poisoned or not. Most
+/// usage of a mutex will simply [`unwrap()`] these results, propagating panics
+/// among threads to ensure that a possibly invalid invariant is not witnessed.
+///
+/// A poisoned mutex, however, does not prevent all access to the underlying
+/// data. The [`PoisonError`] type has an [`into_inner`] method which will return
+/// the guard that would have otherwise been returned on a successful lock. This
+/// allows access to the data, despite the lock being poisoned.
+///
+/// [`new`]: Self::new
+/// [`lock`]: Self::lock
+/// [`try_lock`]: Self::try_lock
+/// [`unwrap()`]: Result::unwrap
+/// [`PoisonError`]: super::PoisonError
+/// [`into_inner`]: super::PoisonError::into_inner
+///
+/// # Examples
+///
+/// ```
+/// use std::sync::{Arc, Mutex};
+/// use std::thread;
+/// use std::sync::mpsc::channel;
+///
+/// const N: usize = 10;
+///
+/// // Spawn a few threads to increment a shared variable (non-atomically), and
+/// // let the main thread know once all increments are done.
+/// //
+/// // Here we're using an Arc to share memory among threads, and the data inside
+/// // the Arc is protected with a mutex.
+/// let data = Arc::new(Mutex::new(0));
+///
+/// let (tx, rx) = channel();
+/// for _ in 0..N {
+///     let (data, tx) = (Arc::clone(&data), tx.clone());
+///     thread::spawn(move || {
+///         // The shared state can only be accessed once the lock is held.
+///         // Our non-atomic increment is safe because we're the only thread
+///         // which can access the shared state when the lock is held.
+///         //
+///         // We unwrap() the return value to assert that we are not expecting
+///         // threads to ever fail while holding the lock.
+///         let mut data = data.lock().unwrap();
+///         *data += 1;
+///         if *data == N {
+///             tx.send(()).unwrap();
+///         }
+///         // the lock is unlocked here when `data` goes out of scope.
+///     });
+/// }
+///
+/// rx.recv().unwrap();
+/// ```
+///
+/// To recover from a poisoned mutex:
+///
+/// ```
+/// use std::sync::{Arc, Mutex};
+/// use std::thread;
+///
+/// let lock = Arc::new(Mutex::new(0_u32));
+/// let lock2 = Arc::clone(&lock);
+///
+/// let _ = thread::spawn(move || -> () {
+///     // This thread will acquire the mutex first, unwrapping the result of
+///     // `lock` because the lock has not been poisoned.
+///     let _guard = lock2.lock().unwrap();
+///
+///     // This panic while holding the lock (`_guard` is in scope) will poison
+///     // the mutex.
+///     panic!();
+/// }).join();
+///
+/// // The lock is poisoned by this point, but the returned result can be
+/// // pattern matched on to return the underlying guard on both branches.
+/// let mut guard = match lock.lock() {
+///     Ok(guard) => guard,
+///     Err(poisoned) => poisoned.into_inner(),
+/// };
+///
+/// *guard += 1;
+/// ```
+///
+/// To unlock a mutex guard sooner than the end of the enclosing scope,
+/// either create an inner scope or drop the guard manually.
+///
+/// ```
+/// use std::sync::{Arc, Mutex};
+/// use std::thread;
+///
+/// const N: usize = 3;
+///
+/// let data_mutex = Arc::new(Mutex::new(vec![1, 2, 3, 4]));
+/// let res_mutex = Arc::new(Mutex::new(0));
+///
+/// let mut threads = Vec::with_capacity(N);
+/// (0..N).for_each(|_| {
+///     let data_mutex_clone = Arc::clone(&data_mutex);
+///     let res_mutex_clone = Arc::clone(&res_mutex);
+///
+///     threads.push(thread::spawn(move || {
+///         // Here we use a block to limit the lifetime of the lock guard.
+///         let result = {
+///             let mut data = data_mutex_clone.lock().unwrap();
+///             // This is the result of some important and long-ish work.
+///             let result = data.iter().fold(0, |acc, x| acc + x * 2);
+///             data.push(result);
+///             result
+///             // The mutex guard gets dropped here, together with any other values
+///             // created in the critical section.
+///         };
+///         // The guard created here is a temporary dropped at the end of the statement, i.e.
+///         // the lock would not remain being held even if the thread did some additional work.
+///         *res_mutex_clone.lock().unwrap() += result;
+///     }));
+/// });
+///
+/// let mut data = data_mutex.lock().unwrap();
+/// // This is the result of some important and long-ish work.
+/// let result = data.iter().fold(0, |acc, x| acc + x * 2);
+/// data.push(result);
+/// // We drop the `data` explicitly because it's not necessary anymore and the
+/// // thread still has work to do. This allows other threads to start working on
+/// // the data immediately, without waiting for the rest of the unrelated work
+/// // to be done here.
+/// //
+/// // It's even more important here than in the threads because we `.join` the
+/// // threads after that. If we had not dropped the mutex guard, a thread could
+/// // be waiting forever for it, causing a deadlock.
+/// // As in the threads, a block could have been used instead of calling the
+/// // `drop` function.
+/// drop(data);
+/// // Here the mutex guard is not assigned to a variable and so, even if the
+/// // scope does not end after this line, the mutex is still released: there is
+/// // no deadlock.
+/// *res_mutex.lock().unwrap() += result;
+///
+/// threads.into_iter().for_each(|thread| {
+///     thread
+///         .join()
+///         .expect("The thread creating or execution failed !")
+/// });
+///
+/// assert_eq!(*res_mutex.lock().unwrap(), 800);
+/// ```
+///
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "Mutex")]
+pub struct Mutex<T: ?Sized> {
+    inner: sys::Mutex,
+    poison: poison::Flag,
+    data: UnsafeCell<T>,
+}
+
+// these are the only places where `T: Send` matters; all other
+// functionality works fine on a single thread.
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
+
+/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
+/// dropped (falls out of scope), the lock will be unlocked.
+///
+/// The data protected by the mutex can be accessed through this guard via its
+/// [`Deref`] and [`DerefMut`] implementations.
+///
+/// This structure is created by the [`lock`] and [`try_lock`] methods on
+/// [`Mutex`].
+///
+/// [`lock`]: Mutex::lock
+/// [`try_lock`]: Mutex::try_lock
+#[must_use = "if unused the Mutex will immediately unlock"]
+#[must_not_suspend = "holding a MutexGuard across suspend \
+                      points can cause deadlocks, delays, \
+                      and cause Futures to not implement `Send`"]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[clippy::has_significant_drop]
+#[cfg_attr(not(test), rustc_diagnostic_item = "MutexGuard")]
+pub struct MutexGuard<'a, T: ?Sized + 'a> {
+    lock: &'a Mutex<T>,
+    poison: poison::Guard,
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> !Send for MutexGuard<'_, T> {}
+#[stable(feature = "mutexguard", since = "1.19.0")]
+unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}
+
+/// An RAII mutex guard returned by `MutexGuard::map`, which can point to a
+/// subfield of the protected data. When this structure is dropped (falls out
+/// of scope), the lock will be unlocked.
+///
+/// The main difference between `MappedMutexGuard` and [`MutexGuard`] is that the
+/// former cannot be used with [`Condvar`], since that
+/// could introduce soundness issues if the locked object is modified by another
+/// thread while the `Mutex` is unlocked.
+///
+/// The data protected by the mutex can be accessed through this guard via its
+/// [`Deref`] and [`DerefMut`] implementations.
+///
+/// This structure is created by the [`map`] and [`try_map`] methods on
+/// [`MutexGuard`].
+///
+/// [`map`]: MutexGuard::map
+/// [`try_map`]: MutexGuard::try_map
+/// [`Condvar`]: crate::sync::Condvar
+#[must_use = "if unused the Mutex will immediately unlock"]
+#[must_not_suspend = "holding a MappedMutexGuard across suspend \
+                      points can cause deadlocks, delays, \
+                      and cause Futures to not implement `Send`"]
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+#[clippy::has_significant_drop]
+pub struct MappedMutexGuard<'a, T: ?Sized + 'a> {
+    // NB: we use a pointer instead of `&'a mut T` to avoid `noalias` violations, because a
+    // `MappedMutexGuard` argument doesn't hold uniqueness for its whole scope, only until it drops.
+    // `NonNull` is covariant over `T`, so we add a `PhantomData<&'a mut T>` field
+    // below for the correct variance over `T` (invariance).
+    data: NonNull<T>,
+    inner: &'a sys::Mutex,
+    poison_flag: &'a poison::Flag,
+    poison: poison::Guard,
+    _variance: PhantomData<&'a mut T>,
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+impl<T: ?Sized> !Send for MappedMutexGuard<'_, T> {}
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+unsafe impl<T: ?Sized + Sync> Sync for MappedMutexGuard<'_, T> {}
+
+impl<T> Mutex<T> {
+    /// Creates a new mutex in an unlocked state ready for use.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::Mutex;
+    ///
+    /// let mutex = Mutex::new(0);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    #[rustc_const_stable(feature = "const_locks", since = "1.63.0")]
+    #[inline]
+    pub const fn new(t: T) -> Mutex<T> {
+        Mutex { inner: sys::Mutex::new(), poison: poison::Flag::new(), data: UnsafeCell::new(t) }
+    }
+
+    /// Returns the contained value by cloning it.
+    ///
+    /// # Errors
+    ///
+    /// If another user of this mutex panicked while holding the mutex, then
+    /// this call will return an error instead.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(lock_value_accessors)]
+    ///
+    /// use std::sync::Mutex;
+    ///
+    /// let mut mutex = Mutex::new(7);
+    ///
+    /// assert_eq!(mutex.get_cloned().unwrap(), 7);
+    /// ```
+    #[unstable(feature = "lock_value_accessors", issue = "133407")]
+    pub fn get_cloned(&self) -> Result<T, PoisonError<()>>
+    where
+        T: Clone,
+    {
+        match self.lock() {
+            Ok(guard) => Ok((*guard).clone()),
+            Err(_) => Err(PoisonError::new(())),
+        }
+    }
+
+    /// Sets the contained value.
+    ///
+    /// # Errors
+    ///
+    /// If another user of this mutex panicked while holding the mutex, then
+    /// this call will return an error containing the provided `value` instead.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(lock_value_accessors)]
+    ///
+    /// use std::sync::Mutex;
+    ///
+    /// let mut mutex = Mutex::new(7);
+    ///
+    /// assert_eq!(mutex.get_cloned().unwrap(), 7);
+    /// mutex.set(11).unwrap();
+    /// assert_eq!(mutex.get_cloned().unwrap(), 11);
+    /// ```
+    #[unstable(feature = "lock_value_accessors", issue = "133407")]
+    pub fn set(&self, value: T) -> Result<(), PoisonError<T>> {
+        if mem::needs_drop::<T>() {
+            // If the contained value has non-trivial destructor, we
+            // call that destructor after the lock being released.
+            self.replace(value).map(drop)
+        } else {
+            match self.lock() {
+                Ok(mut guard) => {
+                    *guard = value;
+
+                    Ok(())
+                }
+                Err(_) => Err(PoisonError::new(value)),
+            }
+        }
+    }
+
+    /// Replaces the contained value with `value`, and returns the old contained value.
+    ///
+    /// # Errors
+    ///
+    /// If another user of this mutex panicked while holding the mutex, then
+    /// this call will return an error containing the provided `value` instead.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(lock_value_accessors)]
+    ///
+    /// use std::sync::Mutex;
+    ///
+    /// let mut mutex = Mutex::new(7);
+    ///
+    /// assert_eq!(mutex.replace(11).unwrap(), 7);
+    /// assert_eq!(mutex.get_cloned().unwrap(), 11);
+    /// ```
+    #[unstable(feature = "lock_value_accessors", issue = "133407")]
+    pub fn replace(&self, value: T) -> LockResult<T> {
+        match self.lock() {
+            Ok(mut guard) => Ok(mem::replace(&mut *guard, value)),
+            Err(_) => Err(PoisonError::new(value)),
+        }
+    }
+}
+
+impl<T: ?Sized> Mutex<T> {
+    /// Acquires a mutex, blocking the current thread until it is able to do so.
+    ///
+    /// This function will block the local thread until it is available to acquire
+    /// the mutex. Upon returning, the thread is the only thread with the lock
+    /// held. An RAII guard is returned to allow scoped unlock of the lock. When
+    /// the guard goes out of scope, the mutex will be unlocked.
+    ///
+    /// The exact behavior on locking a mutex in the thread which already holds
+    /// the lock is left unspecified. However, this function will not return on
+    /// the second call (it might panic or deadlock, for example).
+    ///
+    /// # Errors
+    ///
+    /// If another user of this mutex panicked while holding the mutex, then
+    /// this call will return an error once the mutex is acquired. The acquired
+    /// mutex guard will be contained in the returned error.
+    ///
+    /// # Panics
+    ///
+    /// This function might panic when called if the lock is already held by
+    /// the current thread.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex};
+    /// use std::thread;
+    ///
+    /// let mutex = Arc::new(Mutex::new(0));
+    /// let c_mutex = Arc::clone(&mutex);
+    ///
+    /// thread::spawn(move || {
+    ///     *c_mutex.lock().unwrap() = 10;
+    /// }).join().expect("thread::spawn failed");
+    /// assert_eq!(*mutex.lock().unwrap(), 10);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn lock(&self) -> LockResult<MutexGuard<'_, T>> {
+        unsafe {
+            self.inner.lock();
+            MutexGuard::new(self)
+        }
+    }
+
+    /// Attempts to acquire this lock.
+    ///
+    /// If the lock could not be acquired at this time, then [`Err`] is returned.
+    /// Otherwise, an RAII guard is returned. The lock will be unlocked when the
+    /// guard is dropped.
+    ///
+    /// This function does not block.
+    ///
+    /// # Errors
+    ///
+    /// If another user of this mutex panicked while holding the mutex, then
+    /// this call will return the [`Poisoned`] error if the mutex would
+    /// otherwise be acquired. An acquired lock guard will be contained
+    /// in the returned error.
+    ///
+    /// If the mutex could not be acquired because it is already locked, then
+    /// this call will return the [`WouldBlock`] error.
+    ///
+    /// [`Poisoned`]: TryLockError::Poisoned
+    /// [`WouldBlock`]: TryLockError::WouldBlock
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex};
+    /// use std::thread;
+    ///
+    /// let mutex = Arc::new(Mutex::new(0));
+    /// let c_mutex = Arc::clone(&mutex);
+    ///
+    /// thread::spawn(move || {
+    ///     let mut lock = c_mutex.try_lock();
+    ///     if let Ok(ref mut mutex) = lock {
+    ///         **mutex = 10;
+    ///     } else {
+    ///         println!("try_lock failed");
+    ///     }
+    /// }).join().expect("thread::spawn failed");
+    /// assert_eq!(*mutex.lock().unwrap(), 10);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> {
+        unsafe {
+            if self.inner.try_lock() {
+                Ok(MutexGuard::new(self)?)
+            } else {
+                Err(TryLockError::WouldBlock)
+            }
+        }
+    }
+
+    /// Determines whether the mutex is poisoned.
+    ///
+    /// If another thread is active, the mutex can still become poisoned at any
+    /// time. You should not trust a `false` value for program correctness
+    /// without additional synchronization.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex};
+    /// use std::thread;
+    ///
+    /// let mutex = Arc::new(Mutex::new(0));
+    /// let c_mutex = Arc::clone(&mutex);
+    ///
+    /// let _ = thread::spawn(move || {
+    ///     let _lock = c_mutex.lock().unwrap();
+    ///     panic!(); // the mutex gets poisoned
+    /// }).join();
+    /// assert_eq!(mutex.is_poisoned(), true);
+    /// ```
+    #[inline]
+    #[stable(feature = "sync_poison", since = "1.2.0")]
+    pub fn is_poisoned(&self) -> bool {
+        self.poison.get()
+    }
+
+    /// Clear the poisoned state from a mutex.
+    ///
+    /// If the mutex is poisoned, it will remain poisoned until this function is called. This
+    /// allows recovering from a poisoned state and marking that it has recovered. For example, if
+    /// the value is overwritten by a known-good value, then the mutex can be marked as
+    /// un-poisoned. Or possibly, the value could be inspected to determine if it is in a
+    /// consistent state, and if so the poison is removed.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex};
+    /// use std::thread;
+    ///
+    /// let mutex = Arc::new(Mutex::new(0));
+    /// let c_mutex = Arc::clone(&mutex);
+    ///
+    /// let _ = thread::spawn(move || {
+    ///     let _lock = c_mutex.lock().unwrap();
+    ///     panic!(); // the mutex gets poisoned
+    /// }).join();
+    ///
+    /// assert_eq!(mutex.is_poisoned(), true);
+    /// let x = mutex.lock().unwrap_or_else(|mut e| {
+    ///     **e.get_mut() = 1;
+    ///     mutex.clear_poison();
+    ///     e.into_inner()
+    /// });
+    /// assert_eq!(mutex.is_poisoned(), false);
+    /// assert_eq!(*x, 1);
+    /// ```
+    #[inline]
+    #[stable(feature = "mutex_unpoison", since = "1.77.0")]
+    pub fn clear_poison(&self) {
+        self.poison.clear();
+    }
+
+    /// Consumes this mutex, returning the underlying data.
+    ///
+    /// # Errors
+    ///
+    /// If another user of this mutex panicked while holding the mutex, then
+    /// this call will return an error containing the the underlying data
+    /// instead.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::Mutex;
+    ///
+    /// let mutex = Mutex::new(0);
+    /// assert_eq!(mutex.into_inner().unwrap(), 0);
+    /// ```
+    #[stable(feature = "mutex_into_inner", since = "1.6.0")]
+    pub fn into_inner(self) -> LockResult<T>
+    where
+        T: Sized,
+    {
+        let data = self.data.into_inner();
+        poison::map_result(self.poison.borrow(), |()| data)
+    }
+
+    /// Returns a mutable reference to the underlying data.
+    ///
+    /// Since this call borrows the `Mutex` mutably, no actual locking needs to
+    /// take place -- the mutable borrow statically guarantees no locks exist.
+    ///
+    /// # Errors
+    ///
+    /// If another user of this mutex panicked while holding the mutex, then
+    /// this call will return an error containing a mutable reference to the
+    /// underlying data instead.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::Mutex;
+    ///
+    /// let mut mutex = Mutex::new(0);
+    /// *mutex.get_mut().unwrap() = 10;
+    /// assert_eq!(*mutex.lock().unwrap(), 10);
+    /// ```
+    #[stable(feature = "mutex_get_mut", since = "1.6.0")]
+    pub fn get_mut(&mut self) -> LockResult<&mut T> {
+        let data = self.data.get_mut();
+        poison::map_result(self.poison.borrow(), |()| data)
+    }
+}
+
+#[stable(feature = "mutex_from", since = "1.24.0")]
+impl<T> From<T> for Mutex<T> {
+    /// Creates a new mutex in an unlocked state ready for use.
+    /// This is equivalent to [`Mutex::new`].
+    fn from(t: T) -> Self {
+        Mutex::new(t)
+    }
+}
+
+#[stable(feature = "mutex_default", since = "1.10.0")]
+impl<T: ?Sized + Default> Default for Mutex<T> {
+    /// Creates a `Mutex<T>`, with the `Default` value for T.
+    fn default() -> Mutex<T> {
+        Mutex::new(Default::default())
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        let mut d = f.debug_struct("Mutex");
+        match self.try_lock() {
+            Ok(guard) => {
+                d.field("data", &&*guard);
+            }
+            Err(TryLockError::Poisoned(err)) => {
+                d.field("data", &&**err.get_ref());
+            }
+            Err(TryLockError::WouldBlock) => {
+                d.field("data", &format_args!("<locked>"));
+            }
+        }
+        d.field("poisoned", &self.poison.get());
+        d.finish_non_exhaustive()
+    }
+}
+
+impl<'mutex, T: ?Sized> MutexGuard<'mutex, T> {
+    unsafe fn new(lock: &'mutex Mutex<T>) -> LockResult<MutexGuard<'mutex, T>> {
+        poison::map_result(lock.poison.guard(), |guard| MutexGuard { lock, poison: guard })
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Deref for MutexGuard<'_, T> {
+    type Target = T;
+
+    fn deref(&self) -> &T {
+        unsafe { &*self.lock.data.get() }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
+    fn deref_mut(&mut self) -> &mut T {
+        unsafe { &mut *self.lock.data.get() }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Drop for MutexGuard<'_, T> {
+    #[inline]
+    fn drop(&mut self) {
+        unsafe {
+            self.lock.poison.done(&self.poison);
+            self.lock.inner.unlock();
+        }
+    }
+}
+
+#[stable(feature = "std_debug", since = "1.16.0")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        fmt::Debug::fmt(&**self, f)
+    }
+}
+
+#[stable(feature = "std_guard_impls", since = "1.20.0")]
+impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        (**self).fmt(f)
+    }
+}
+
+pub fn guard_lock<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a sys::Mutex {
+    &guard.lock.inner
+}
+
+pub fn guard_poison<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a poison::Flag {
+    &guard.lock.poison
+}
+
+impl<'a, T: ?Sized> MutexGuard<'a, T> {
+    /// Makes a [`MappedMutexGuard`] for a component of the borrowed data, e.g.
+    /// an enum variant.
+    ///
+    /// The `Mutex` is already locked, so this cannot fail.
+    ///
+    /// This is an associated function that needs to be used as
+    /// `MutexGuard::map(...)`. A method would interfere with methods of the
+    /// same name on the contents of the `MutexGuard` used through `Deref`.
+    #[unstable(feature = "mapped_lock_guards", issue = "117108")]
+    pub fn map<U, F>(orig: Self, f: F) -> MappedMutexGuard<'a, U>
+    where
+        F: FnOnce(&mut T) -> &mut U,
+        U: ?Sized,
+    {
+        // SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `try_map`.
+        // The signature of the closure guarantees that it will not "leak" the lifetime of the reference
+        // passed to it. If the closure panics, the guard will be dropped.
+        let data = NonNull::from(f(unsafe { &mut *orig.lock.data.get() }));
+        let orig = ManuallyDrop::new(orig);
+        MappedMutexGuard {
+            data,
+            inner: &orig.lock.inner,
+            poison_flag: &orig.lock.poison,
+            poison: orig.poison.clone(),
+            _variance: PhantomData,
+        }
+    }
+
+    /// Makes a [`MappedMutexGuard`] for a component of the borrowed data. The
+    /// original guard is returned as an `Err(...)` if the closure returns
+    /// `None`.
+    ///
+    /// The `Mutex` is already locked, so this cannot fail.
+    ///
+    /// This is an associated function that needs to be used as
+    /// `MutexGuard::try_map(...)`. A method would interfere with methods of the
+    /// same name on the contents of the `MutexGuard` used through `Deref`.
+    #[doc(alias = "filter_map")]
+    #[unstable(feature = "mapped_lock_guards", issue = "117108")]
+    pub fn try_map<U, F>(orig: Self, f: F) -> Result<MappedMutexGuard<'a, U>, Self>
+    where
+        F: FnOnce(&mut T) -> Option<&mut U>,
+        U: ?Sized,
+    {
+        // SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `try_map`.
+        // The signature of the closure guarantees that it will not "leak" the lifetime of the reference
+        // passed to it. If the closure panics, the guard will be dropped.
+        match f(unsafe { &mut *orig.lock.data.get() }) {
+            Some(data) => {
+                let data = NonNull::from(data);
+                let orig = ManuallyDrop::new(orig);
+                Ok(MappedMutexGuard {
+                    data,
+                    inner: &orig.lock.inner,
+                    poison_flag: &orig.lock.poison,
+                    poison: orig.poison.clone(),
+                    _variance: PhantomData,
+                })
+            }
+            None => Err(orig),
+        }
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+impl<T: ?Sized> Deref for MappedMutexGuard<'_, T> {
+    type Target = T;
+
+    fn deref(&self) -> &T {
+        unsafe { self.data.as_ref() }
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+impl<T: ?Sized> DerefMut for MappedMutexGuard<'_, T> {
+    fn deref_mut(&mut self) -> &mut T {
+        unsafe { self.data.as_mut() }
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+impl<T: ?Sized> Drop for MappedMutexGuard<'_, T> {
+    #[inline]
+    fn drop(&mut self) {
+        unsafe {
+            self.poison_flag.done(&self.poison);
+            self.inner.unlock();
+        }
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for MappedMutexGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        fmt::Debug::fmt(&**self, f)
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+impl<T: ?Sized + fmt::Display> fmt::Display for MappedMutexGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        (**self).fmt(f)
+    }
+}
+
+impl<'a, T: ?Sized> MappedMutexGuard<'a, T> {
+    /// Makes a [`MappedMutexGuard`] for a component of the borrowed data, e.g.
+    /// an enum variant.
+    ///
+    /// The `Mutex` is already locked, so this cannot fail.
+    ///
+    /// This is an associated function that needs to be used as
+    /// `MappedMutexGuard::map(...)`. A method would interfere with methods of the
+    /// same name on the contents of the `MutexGuard` used through `Deref`.
+    #[unstable(feature = "mapped_lock_guards", issue = "117108")]
+    pub fn map<U, F>(mut orig: Self, f: F) -> MappedMutexGuard<'a, U>
+    where
+        F: FnOnce(&mut T) -> &mut U,
+        U: ?Sized,
+    {
+        // SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `try_map`.
+        // The signature of the closure guarantees that it will not "leak" the lifetime of the reference
+        // passed to it. If the closure panics, the guard will be dropped.
+        let data = NonNull::from(f(unsafe { orig.data.as_mut() }));
+        let orig = ManuallyDrop::new(orig);
+        MappedMutexGuard {
+            data,
+            inner: orig.inner,
+            poison_flag: orig.poison_flag,
+            poison: orig.poison.clone(),
+            _variance: PhantomData,
+        }
+    }
+
+    /// Makes a [`MappedMutexGuard`] for a component of the borrowed data. The
+    /// original guard is returned as an `Err(...)` if the closure returns
+    /// `None`.
+    ///
+    /// The `Mutex` is already locked, so this cannot fail.
+    ///
+    /// This is an associated function that needs to be used as
+    /// `MappedMutexGuard::try_map(...)`. A method would interfere with methods of the
+    /// same name on the contents of the `MutexGuard` used through `Deref`.
+    #[doc(alias = "filter_map")]
+    #[unstable(feature = "mapped_lock_guards", issue = "117108")]
+    pub fn try_map<U, F>(mut orig: Self, f: F) -> Result<MappedMutexGuard<'a, U>, Self>
+    where
+        F: FnOnce(&mut T) -> Option<&mut U>,
+        U: ?Sized,
+    {
+        // SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `try_map`.
+        // The signature of the closure guarantees that it will not "leak" the lifetime of the reference
+        // passed to it. If the closure panics, the guard will be dropped.
+        match f(unsafe { orig.data.as_mut() }) {
+            Some(data) => {
+                let data = NonNull::from(data);
+                let orig = ManuallyDrop::new(orig);
+                Ok(MappedMutexGuard {
+                    data,
+                    inner: orig.inner,
+                    poison_flag: orig.poison_flag,
+                    poison: orig.poison.clone(),
+                    _variance: PhantomData,
+                })
+            }
+            None => Err(orig),
+        }
+    }
+}