about summary refs log tree commit diff
path: root/compiler/rustc_abi/src/callconv.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_abi/src/callconv.rs')
-rw-r--r--compiler/rustc_abi/src/callconv.rs254
1 files changed, 254 insertions, 0 deletions
diff --git a/compiler/rustc_abi/src/callconv.rs b/compiler/rustc_abi/src/callconv.rs
new file mode 100644
index 00000000000..2ecac8a9df1
--- /dev/null
+++ b/compiler/rustc_abi/src/callconv.rs
@@ -0,0 +1,254 @@
+mod abi {
+    pub(crate) use crate::Primitive::*;
+    pub(crate) use crate::Variants;
+}
+
+use rustc_macros::HashStable_Generic;
+
+use crate::{Abi, Align, FieldsShape, HasDataLayout, Size, TyAbiInterface, TyAndLayout};
+
+#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
+pub enum RegKind {
+    Integer,
+    Float,
+    Vector,
+}
+
+#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
+pub struct Reg {
+    pub kind: RegKind,
+    pub size: Size,
+}
+
+macro_rules! reg_ctor {
+    ($name:ident, $kind:ident, $bits:expr) => {
+        pub fn $name() -> Reg {
+            Reg { kind: RegKind::$kind, size: Size::from_bits($bits) }
+        }
+    };
+}
+
+impl Reg {
+    reg_ctor!(i8, Integer, 8);
+    reg_ctor!(i16, Integer, 16);
+    reg_ctor!(i32, Integer, 32);
+    reg_ctor!(i64, Integer, 64);
+    reg_ctor!(i128, Integer, 128);
+
+    reg_ctor!(f32, Float, 32);
+    reg_ctor!(f64, Float, 64);
+}
+
+impl Reg {
+    pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
+        let dl = cx.data_layout();
+        match self.kind {
+            RegKind::Integer => match self.size.bits() {
+                1 => dl.i1_align.abi,
+                2..=8 => dl.i8_align.abi,
+                9..=16 => dl.i16_align.abi,
+                17..=32 => dl.i32_align.abi,
+                33..=64 => dl.i64_align.abi,
+                65..=128 => dl.i128_align.abi,
+                _ => panic!("unsupported integer: {self:?}"),
+            },
+            RegKind::Float => match self.size.bits() {
+                16 => dl.f16_align.abi,
+                32 => dl.f32_align.abi,
+                64 => dl.f64_align.abi,
+                128 => dl.f128_align.abi,
+                _ => panic!("unsupported float: {self:?}"),
+            },
+            RegKind::Vector => dl.vector_align(self.size).abi,
+        }
+    }
+}
+
+/// Return value from the `homogeneous_aggregate` test function.
+#[derive(Copy, Clone, Debug)]
+pub enum HomogeneousAggregate {
+    /// Yes, all the "leaf fields" of this struct are passed in the
+    /// same way (specified in the `Reg` value).
+    Homogeneous(Reg),
+
+    /// There are no leaf fields at all.
+    NoData,
+}
+
+/// Error from the `homogeneous_aggregate` test function, indicating
+/// there are distinct leaf fields passed in different ways,
+/// or this is uninhabited.
+#[derive(Copy, Clone, Debug)]
+pub struct Heterogeneous;
+
+impl HomogeneousAggregate {
+    /// If this is a homogeneous aggregate, returns the homogeneous
+    /// unit, else `None`.
+    pub fn unit(self) -> Option<Reg> {
+        match self {
+            HomogeneousAggregate::Homogeneous(reg) => Some(reg),
+            HomogeneousAggregate::NoData => None,
+        }
+    }
+
+    /// Try to combine two `HomogeneousAggregate`s, e.g. from two fields in
+    /// the same `struct`. Only succeeds if only one of them has any data,
+    /// or both units are identical.
+    fn merge(self, other: HomogeneousAggregate) -> Result<HomogeneousAggregate, Heterogeneous> {
+        match (self, other) {
+            (x, HomogeneousAggregate::NoData) | (HomogeneousAggregate::NoData, x) => Ok(x),
+
+            (HomogeneousAggregate::Homogeneous(a), HomogeneousAggregate::Homogeneous(b)) => {
+                if a != b {
+                    return Err(Heterogeneous);
+                }
+                Ok(self)
+            }
+        }
+    }
+}
+
+impl<'a, Ty> TyAndLayout<'a, Ty> {
+    /// Returns `true` if this is an aggregate type (including a ScalarPair!)
+    pub fn is_aggregate(&self) -> bool {
+        match self.abi {
+            Abi::Uninhabited | Abi::Scalar(_) | Abi::Vector { .. } => false,
+            Abi::ScalarPair(..) | Abi::Aggregate { .. } => true,
+        }
+    }
+
+    /// Returns `Homogeneous` if this layout is an aggregate containing fields of
+    /// only a single type (e.g., `(u32, u32)`). Such aggregates are often
+    /// special-cased in ABIs.
+    ///
+    /// Note: We generally ignore 1-ZST fields when computing this value (see #56877).
+    ///
+    /// This is public so that it can be used in unit tests, but
+    /// should generally only be relevant to the ABI details of
+    /// specific targets.
+    pub fn homogeneous_aggregate<C>(&self, cx: &C) -> Result<HomogeneousAggregate, Heterogeneous>
+    where
+        Ty: TyAbiInterface<'a, C> + Copy,
+    {
+        match self.abi {
+            Abi::Uninhabited => Err(Heterogeneous),
+
+            // The primitive for this algorithm.
+            Abi::Scalar(scalar) => {
+                let kind = match scalar.primitive() {
+                    abi::Int(..) | abi::Pointer(_) => RegKind::Integer,
+                    abi::Float(_) => RegKind::Float,
+                };
+                Ok(HomogeneousAggregate::Homogeneous(Reg { kind, size: self.size }))
+            }
+
+            Abi::Vector { .. } => {
+                assert!(!self.is_zst());
+                Ok(HomogeneousAggregate::Homogeneous(Reg {
+                    kind: RegKind::Vector,
+                    size: self.size,
+                }))
+            }
+
+            Abi::ScalarPair(..) | Abi::Aggregate { sized: true } => {
+                // Helper for computing `homogeneous_aggregate`, allowing a custom
+                // starting offset (used below for handling variants).
+                let from_fields_at =
+                    |layout: Self,
+                     start: Size|
+                     -> Result<(HomogeneousAggregate, Size), Heterogeneous> {
+                        let is_union = match layout.fields {
+                            FieldsShape::Primitive => {
+                                unreachable!("aggregates can't have `FieldsShape::Primitive`")
+                            }
+                            FieldsShape::Array { count, .. } => {
+                                assert_eq!(start, Size::ZERO);
+
+                                let result = if count > 0 {
+                                    layout.field(cx, 0).homogeneous_aggregate(cx)?
+                                } else {
+                                    HomogeneousAggregate::NoData
+                                };
+                                return Ok((result, layout.size));
+                            }
+                            FieldsShape::Union(_) => true,
+                            FieldsShape::Arbitrary { .. } => false,
+                        };
+
+                        let mut result = HomogeneousAggregate::NoData;
+                        let mut total = start;
+
+                        for i in 0..layout.fields.count() {
+                            let field = layout.field(cx, i);
+                            if field.is_1zst() {
+                                // No data here and no impact on layout, can be ignored.
+                                // (We might be able to also ignore all aligned ZST but that's less clear.)
+                                continue;
+                            }
+
+                            if !is_union && total != layout.fields.offset(i) {
+                                // This field isn't just after the previous one we considered, abort.
+                                return Err(Heterogeneous);
+                            }
+
+                            result = result.merge(field.homogeneous_aggregate(cx)?)?;
+
+                            // Keep track of the offset (without padding).
+                            let size = field.size;
+                            if is_union {
+                                total = total.max(size);
+                            } else {
+                                total += size;
+                            }
+                        }
+
+                        Ok((result, total))
+                    };
+
+                let (mut result, mut total) = from_fields_at(*self, Size::ZERO)?;
+
+                match &self.variants {
+                    abi::Variants::Single { .. } => {}
+                    abi::Variants::Multiple { variants, .. } => {
+                        // Treat enum variants like union members.
+                        // HACK(eddyb) pretend the `enum` field (discriminant)
+                        // is at the start of every variant (otherwise the gap
+                        // at the start of all variants would disqualify them).
+                        //
+                        // NB: for all tagged `enum`s (which include all non-C-like
+                        // `enum`s with defined FFI representation), this will
+                        // match the homogeneous computation on the equivalent
+                        // `struct { tag; union { variant1; ... } }` and/or
+                        // `union { struct { tag; variant1; } ... }`
+                        // (the offsets of variant fields should be identical
+                        // between the two for either to be a homogeneous aggregate).
+                        let variant_start = total;
+                        for variant_idx in variants.indices() {
+                            let (variant_result, variant_total) =
+                                from_fields_at(self.for_variant(cx, variant_idx), variant_start)?;
+
+                            result = result.merge(variant_result)?;
+                            total = total.max(variant_total);
+                        }
+                    }
+                }
+
+                // There needs to be no padding.
+                if total != self.size {
+                    Err(Heterogeneous)
+                } else {
+                    match result {
+                        HomogeneousAggregate::Homogeneous(_) => {
+                            assert_ne!(total, Size::ZERO);
+                        }
+                        HomogeneousAggregate::NoData => {
+                            assert_eq!(total, Size::ZERO);
+                        }
+                    }
+                    Ok(result)
+                }
+            }
+            Abi::Aggregate { sized: false } => Err(Heterogeneous),
+        }
+    }
+}