diff options
Diffstat (limited to 'compiler/rustc_abi/src')
| -rw-r--r-- | compiler/rustc_abi/src/callconv.rs | 16 | ||||
| -rw-r--r-- | compiler/rustc_abi/src/layout.rs | 104 | ||||
| -rw-r--r-- | compiler/rustc_abi/src/layout/ty.rs | 12 | ||||
| -rw-r--r-- | compiler/rustc_abi/src/lib.rs | 112 |
4 files changed, 133 insertions, 111 deletions
diff --git a/compiler/rustc_abi/src/callconv.rs b/compiler/rustc_abi/src/callconv.rs index 872cae59a4e..ee63e46e88c 100644 --- a/compiler/rustc_abi/src/callconv.rs +++ b/compiler/rustc_abi/src/callconv.rs @@ -6,9 +6,9 @@ mod abi { #[cfg(feature = "nightly")] use rustc_macros::HashStable_Generic; -#[cfg(feature = "nightly")] -use crate::{Abi, FieldsShape, TyAbiInterface, TyAndLayout}; use crate::{Align, HasDataLayout, Size}; +#[cfg(feature = "nightly")] +use crate::{BackendRepr, FieldsShape, TyAbiInterface, TyAndLayout}; #[cfg_attr(feature = "nightly", derive(HashStable_Generic))] #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] @@ -128,11 +128,11 @@ impl<'a, Ty> TyAndLayout<'a, Ty> { where Ty: TyAbiInterface<'a, C> + Copy, { - match self.abi { - Abi::Uninhabited => Err(Heterogeneous), + match self.backend_repr { + BackendRepr::Uninhabited => Err(Heterogeneous), // The primitive for this algorithm. - Abi::Scalar(scalar) => { + BackendRepr::Scalar(scalar) => { let kind = match scalar.primitive() { abi::Int(..) | abi::Pointer(_) => RegKind::Integer, abi::Float(_) => RegKind::Float, @@ -140,7 +140,7 @@ impl<'a, Ty> TyAndLayout<'a, Ty> { Ok(HomogeneousAggregate::Homogeneous(Reg { kind, size: self.size })) } - Abi::Vector { .. } => { + BackendRepr::Vector { .. } => { assert!(!self.is_zst()); Ok(HomogeneousAggregate::Homogeneous(Reg { kind: RegKind::Vector, @@ -148,7 +148,7 @@ impl<'a, Ty> TyAndLayout<'a, Ty> { })) } - Abi::ScalarPair(..) | Abi::Aggregate { sized: true } => { + BackendRepr::ScalarPair(..) | BackendRepr::Memory { sized: true } => { // Helper for computing `homogeneous_aggregate`, allowing a custom // starting offset (used below for handling variants). let from_fields_at = @@ -246,7 +246,7 @@ impl<'a, Ty> TyAndLayout<'a, Ty> { Ok(result) } } - Abi::Aggregate { sized: false } => Err(Heterogeneous), + BackendRepr::Memory { sized: false } => Err(Heterogeneous), } } } diff --git a/compiler/rustc_abi/src/layout.rs b/compiler/rustc_abi/src/layout.rs index 86de39b8f97..e6d66f608da 100644 --- a/compiler/rustc_abi/src/layout.rs +++ b/compiler/rustc_abi/src/layout.rs @@ -6,7 +6,7 @@ use rustc_index::Idx; use tracing::debug; use crate::{ - Abi, AbiAndPrefAlign, Align, FieldsShape, HasDataLayout, IndexSlice, IndexVec, Integer, + AbiAndPrefAlign, Align, BackendRepr, FieldsShape, HasDataLayout, IndexSlice, IndexVec, Integer, LayoutData, Niche, NonZeroUsize, Primitive, ReprOptions, Scalar, Size, StructKind, TagEncoding, Variants, WrappingRange, }; @@ -125,7 +125,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { offsets: [Size::ZERO, b_offset].into(), memory_index: [0, 1].into(), }, - abi: Abi::ScalarPair(a, b), + backend_repr: BackendRepr::ScalarPair(a, b), largest_niche, align, size, @@ -216,7 +216,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { LayoutData { variants: Variants::Single { index: VariantIdx::new(0) }, fields: FieldsShape::Primitive, - abi: Abi::Uninhabited, + backend_repr: BackendRepr::Uninhabited, largest_niche: None, align: dl.i8_align, size: Size::ZERO, @@ -331,7 +331,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { if let Ok(common) = common_non_zst_abi_and_align { // Discard valid range information and allow undef - let field_abi = field.abi.to_union(); + let field_abi = field.backend_repr.to_union(); if let Some((common_abi, common_align)) = common { if common_abi != field_abi { @@ -340,7 +340,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { } else { // Fields with the same non-Aggregate ABI should also // have the same alignment - if !matches!(common_abi, Abi::Aggregate { .. }) { + if !matches!(common_abi, BackendRepr::Memory { .. }) { assert_eq!( common_align, field.align.abi, "non-Aggregate field with matching ABI but differing alignment" @@ -369,11 +369,11 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { // If all non-ZST fields have the same ABI, we may forward that ABI // for the union as a whole, unless otherwise inhibited. let abi = match common_non_zst_abi_and_align { - Err(AbiMismatch) | Ok(None) => Abi::Aggregate { sized: true }, + Err(AbiMismatch) | Ok(None) => BackendRepr::Memory { sized: true }, Ok(Some((abi, _))) => { if abi.inherent_align(dl).map(|a| a.abi) != Some(align.abi) { // Mismatched alignment (e.g. union is #[repr(packed)]): disable opt - Abi::Aggregate { sized: true } + BackendRepr::Memory { sized: true } } else { abi } @@ -387,7 +387,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { Ok(LayoutData { variants: Variants::Single { index: only_variant_idx }, fields: FieldsShape::Union(union_field_count), - abi, + backend_repr: abi, largest_niche: None, align, size: size.align_to(align.abi), @@ -434,23 +434,23 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { // Already doesn't have any niches Scalar::Union { .. } => {} }; - match &mut st.abi { - Abi::Uninhabited => {} - Abi::Scalar(scalar) => hide_niches(scalar), - Abi::ScalarPair(a, b) => { + match &mut st.backend_repr { + BackendRepr::Uninhabited => {} + BackendRepr::Scalar(scalar) => hide_niches(scalar), + BackendRepr::ScalarPair(a, b) => { hide_niches(a); hide_niches(b); } - Abi::Vector { element, count: _ } => hide_niches(element), - Abi::Aggregate { sized: _ } => {} + BackendRepr::Vector { element, count: _ } => hide_niches(element), + BackendRepr::Memory { sized: _ } => {} } st.largest_niche = None; return Ok(st); } let (start, end) = scalar_valid_range; - match st.abi { - Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => { + match st.backend_repr { + BackendRepr::Scalar(ref mut scalar) | BackendRepr::ScalarPair(ref mut scalar, _) => { // Enlarging validity ranges would result in missed // optimizations, *not* wrongly assuming the inner // value is valid. e.g. unions already enlarge validity ranges, @@ -607,8 +607,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { } // It can't be a Scalar or ScalarPair because the offset isn't 0. - if !layout.abi.is_uninhabited() { - layout.abi = Abi::Aggregate { sized: true }; + if !layout.is_uninhabited() { + layout.backend_repr = BackendRepr::Memory { sized: true }; } layout.size += this_offset; @@ -627,26 +627,26 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { let same_size = size == variant_layouts[largest_variant_index].size; let same_align = align == variant_layouts[largest_variant_index].align; - let abi = if variant_layouts.iter().all(|v| v.abi.is_uninhabited()) { - Abi::Uninhabited + let abi = if variant_layouts.iter().all(|v| v.is_uninhabited()) { + BackendRepr::Uninhabited } else if same_size && same_align && others_zst { - match variant_layouts[largest_variant_index].abi { + match variant_layouts[largest_variant_index].backend_repr { // When the total alignment and size match, we can use the // same ABI as the scalar variant with the reserved niche. - Abi::Scalar(_) => Abi::Scalar(niche_scalar), - Abi::ScalarPair(first, second) => { + BackendRepr::Scalar(_) => BackendRepr::Scalar(niche_scalar), + BackendRepr::ScalarPair(first, second) => { // Only the niche is guaranteed to be initialised, // so use union layouts for the other primitive. if niche_offset == Size::ZERO { - Abi::ScalarPair(niche_scalar, second.to_union()) + BackendRepr::ScalarPair(niche_scalar, second.to_union()) } else { - Abi::ScalarPair(first.to_union(), niche_scalar) + BackendRepr::ScalarPair(first.to_union(), niche_scalar) } } - _ => Abi::Aggregate { sized: true }, + _ => BackendRepr::Memory { sized: true }, } } else { - Abi::Aggregate { sized: true } + BackendRepr::Memory { sized: true } }; let layout = LayoutData { @@ -664,7 +664,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { offsets: [niche_offset].into(), memory_index: [0].into(), }, - abi, + backend_repr: abi, largest_niche, size, align, @@ -833,14 +833,14 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { end: (max as u128 & tag_mask), }, }; - let mut abi = Abi::Aggregate { sized: true }; + let mut abi = BackendRepr::Memory { sized: true }; - if layout_variants.iter().all(|v| v.abi.is_uninhabited()) { - abi = Abi::Uninhabited; + if layout_variants.iter().all(|v| v.is_uninhabited()) { + abi = BackendRepr::Uninhabited; } else if tag.size(dl) == size { // Make sure we only use scalar layout when the enum is entirely its // own tag (i.e. it has no padding nor any non-ZST variant fields). - abi = Abi::Scalar(tag); + abi = BackendRepr::Scalar(tag); } else { // Try to use a ScalarPair for all tagged enums. // That's possible only if we can find a common primitive type for all variants. @@ -864,8 +864,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { break; } }; - let prim = match field.abi { - Abi::Scalar(scalar) => { + let prim = match field.backend_repr { + BackendRepr::Scalar(scalar) => { common_prim_initialized_in_all_variants &= matches!(scalar, Scalar::Initialized { .. }); scalar.primitive() @@ -934,7 +934,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { { // We can use `ScalarPair` only when it matches our // already computed layout (including `#[repr(C)]`). - abi = pair.abi; + abi = pair.backend_repr; } } } @@ -942,12 +942,14 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { // If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the // variants to ensure they are consistent. This is because a downcast is // semantically a NOP, and thus should not affect layout. - if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) { + if matches!(abi, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)) { for variant in &mut layout_variants { // We only do this for variants with fields; the others are not accessed anyway. // Also do not overwrite any already existing "clever" ABIs. - if variant.fields.count() > 0 && matches!(variant.abi, Abi::Aggregate { .. }) { - variant.abi = abi; + if variant.fields.count() > 0 + && matches!(variant.backend_repr, BackendRepr::Memory { .. }) + { + variant.backend_repr = abi; // Also need to bump up the size and alignment, so that the entire value fits // in here. variant.size = cmp::max(variant.size, size); @@ -970,7 +972,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { memory_index: [0].into(), }, largest_niche, - abi, + backend_repr: abi, align, size, max_repr_align, @@ -1252,7 +1254,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { } let mut layout_of_single_non_zst_field = None; let sized = unsized_field.is_none(); - let mut abi = Abi::Aggregate { sized }; + let mut abi = BackendRepr::Memory { sized }; let optimize_abi = !repr.inhibit_newtype_abi_optimization(); @@ -1270,16 +1272,16 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { // Field fills the struct and it has a scalar or scalar pair ABI. if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size { - match field.abi { + match field.backend_repr { // For plain scalars, or vectors of them, we can't unpack // newtypes for `#[repr(C)]`, as that affects C ABIs. - Abi::Scalar(_) | Abi::Vector { .. } if optimize_abi => { - abi = field.abi; + BackendRepr::Scalar(_) | BackendRepr::Vector { .. } if optimize_abi => { + abi = field.backend_repr; } // But scalar pairs are Rust-specific and get // treated as aggregates by C ABIs anyway. - Abi::ScalarPair(..) => { - abi = field.abi; + BackendRepr::ScalarPair(..) => { + abi = field.backend_repr; } _ => {} } @@ -1288,8 +1290,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { // Two non-ZST fields, and they're both scalars. (Some((i, a)), Some((j, b)), None) => { - match (a.abi, b.abi) { - (Abi::Scalar(a), Abi::Scalar(b)) => { + match (a.backend_repr, b.backend_repr) { + (BackendRepr::Scalar(a), BackendRepr::Scalar(b)) => { // Order by the memory placement, not source order. let ((i, a), (j, b)) = if offsets[i] < offsets[j] { ((i, a), (j, b)) @@ -1315,7 +1317,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { { // We can use `ScalarPair` only when it matches our // already computed layout (including `#[repr(C)]`). - abi = pair.abi; + abi = pair.backend_repr; } } _ => {} @@ -1325,8 +1327,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { _ => {} } } - if fields.iter().any(|f| f.abi.is_uninhabited()) { - abi = Abi::Uninhabited; + if fields.iter().any(|f| f.is_uninhabited()) { + abi = BackendRepr::Uninhabited; } let unadjusted_abi_align = if repr.transparent() { @@ -1344,7 +1346,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> { Ok(LayoutData { variants: Variants::Single { index: VariantIdx::new(0) }, fields: FieldsShape::Arbitrary { offsets, memory_index }, - abi, + backend_repr: abi, largest_niche, align, size, diff --git a/compiler/rustc_abi/src/layout/ty.rs b/compiler/rustc_abi/src/layout/ty.rs index e029e1426b2..062447ea03f 100644 --- a/compiler/rustc_abi/src/layout/ty.rs +++ b/compiler/rustc_abi/src/layout/ty.rs @@ -83,8 +83,8 @@ impl<'a> Layout<'a> { &self.0.0.variants } - pub fn abi(self) -> Abi { - self.0.0.abi + pub fn backend_repr(self) -> BackendRepr { + self.0.0.backend_repr } pub fn largest_niche(self) -> Option<Niche> { @@ -114,7 +114,7 @@ impl<'a> Layout<'a> { pub fn is_pointer_like(self, data_layout: &TargetDataLayout) -> bool { self.size() == data_layout.pointer_size && self.align().abi == data_layout.pointer_align.abi - && matches!(self.abi(), Abi::Scalar(Scalar::Initialized { .. })) + && matches!(self.backend_repr(), BackendRepr::Scalar(Scalar::Initialized { .. })) } } @@ -196,9 +196,9 @@ impl<'a, Ty> TyAndLayout<'a, Ty> { Ty: TyAbiInterface<'a, C>, C: HasDataLayout, { - match self.abi { - Abi::Scalar(scalar) => matches!(scalar.primitive(), Float(F32 | F64)), - Abi::Aggregate { .. } => { + match self.backend_repr { + BackendRepr::Scalar(scalar) => matches!(scalar.primitive(), Float(F32 | F64)), + BackendRepr::Memory { .. } => { if self.fields.count() == 1 && self.fields.offset(0).bytes() == 0 { self.field(cx, 0).is_single_fp_element(cx) } else { diff --git a/compiler/rustc_abi/src/lib.rs b/compiler/rustc_abi/src/lib.rs index 41922aee648..fac1122c4df 100644 --- a/compiler/rustc_abi/src/lib.rs +++ b/compiler/rustc_abi/src/lib.rs @@ -1344,11 +1344,19 @@ impl AddressSpace { pub const DATA: Self = AddressSpace(0); } -/// Describes how values of the type are passed by target ABIs, -/// in terms of categories of C types there are ABI rules for. +/// The way we represent values to the backend +/// +/// Previously this was conflated with the "ABI" a type is given, as in the platform-specific ABI. +/// In reality, this implies little about that, but is mostly used to describe the syntactic form +/// emitted for the backend, as most backends handle SSA values and blobs of memory differently. +/// The psABI may need consideration in doing so, but this enum does not constitute a promise for +/// how the value will be lowered to the calling convention, in itself. +/// +/// Generally, a codegen backend will prefer to handle smaller values as a scalar or short vector, +/// and larger values will usually prefer to be represented as memory. #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] #[cfg_attr(feature = "nightly", derive(HashStable_Generic))] -pub enum Abi { +pub enum BackendRepr { Uninhabited, Scalar(Scalar), ScalarPair(Scalar, Scalar), @@ -1356,19 +1364,23 @@ pub enum Abi { element: Scalar, count: u64, }, - Aggregate { + // FIXME: I sometimes use memory, sometimes use an IR aggregate! + Memory { /// If true, the size is exact, otherwise it's only a lower bound. sized: bool, }, } -impl Abi { +impl BackendRepr { /// Returns `true` if the layout corresponds to an unsized type. #[inline] pub fn is_unsized(&self) -> bool { match *self { - Abi::Uninhabited | Abi::Scalar(_) | Abi::ScalarPair(..) | Abi::Vector { .. } => false, - Abi::Aggregate { sized } => !sized, + BackendRepr::Uninhabited + | BackendRepr::Scalar(_) + | BackendRepr::ScalarPair(..) + | BackendRepr::Vector { .. } => false, + BackendRepr::Memory { sized } => !sized, } } @@ -1381,7 +1393,7 @@ impl Abi { #[inline] pub fn is_signed(&self) -> bool { match self { - Abi::Scalar(scal) => match scal.primitive() { + BackendRepr::Scalar(scal) => match scal.primitive() { Primitive::Int(_, signed) => signed, _ => false, }, @@ -1392,61 +1404,67 @@ impl Abi { /// Returns `true` if this is an uninhabited type #[inline] pub fn is_uninhabited(&self) -> bool { - matches!(*self, Abi::Uninhabited) + matches!(*self, BackendRepr::Uninhabited) } /// Returns `true` if this is a scalar type #[inline] pub fn is_scalar(&self) -> bool { - matches!(*self, Abi::Scalar(_)) + matches!(*self, BackendRepr::Scalar(_)) } /// Returns `true` if this is a bool #[inline] pub fn is_bool(&self) -> bool { - matches!(*self, Abi::Scalar(s) if s.is_bool()) + matches!(*self, BackendRepr::Scalar(s) if s.is_bool()) } /// Returns the fixed alignment of this ABI, if any is mandated. pub fn inherent_align<C: HasDataLayout>(&self, cx: &C) -> Option<AbiAndPrefAlign> { Some(match *self { - Abi::Scalar(s) => s.align(cx), - Abi::ScalarPair(s1, s2) => s1.align(cx).max(s2.align(cx)), - Abi::Vector { element, count } => { + BackendRepr::Scalar(s) => s.align(cx), + BackendRepr::ScalarPair(s1, s2) => s1.align(cx).max(s2.align(cx)), + BackendRepr::Vector { element, count } => { cx.data_layout().vector_align(element.size(cx) * count) } - Abi::Uninhabited | Abi::Aggregate { .. } => return None, + BackendRepr::Uninhabited | BackendRepr::Memory { .. } => return None, }) } /// Returns the fixed size of this ABI, if any is mandated. pub fn inherent_size<C: HasDataLayout>(&self, cx: &C) -> Option<Size> { Some(match *self { - Abi::Scalar(s) => { + BackendRepr::Scalar(s) => { // No padding in scalars. s.size(cx) } - Abi::ScalarPair(s1, s2) => { + BackendRepr::ScalarPair(s1, s2) => { // May have some padding between the pair. let field2_offset = s1.size(cx).align_to(s2.align(cx).abi); (field2_offset + s2.size(cx)).align_to(self.inherent_align(cx)?.abi) } - Abi::Vector { element, count } => { + BackendRepr::Vector { element, count } => { // No padding in vectors, except possibly for trailing padding // to make the size a multiple of align (e.g. for vectors of size 3). (element.size(cx) * count).align_to(self.inherent_align(cx)?.abi) } - Abi::Uninhabited | Abi::Aggregate { .. } => return None, + BackendRepr::Uninhabited | BackendRepr::Memory { .. } => return None, }) } /// Discard validity range information and allow undef. pub fn to_union(&self) -> Self { match *self { - Abi::Scalar(s) => Abi::Scalar(s.to_union()), - Abi::ScalarPair(s1, s2) => Abi::ScalarPair(s1.to_union(), s2.to_union()), - Abi::Vector { element, count } => Abi::Vector { element: element.to_union(), count }, - Abi::Uninhabited | Abi::Aggregate { .. } => Abi::Aggregate { sized: true }, + BackendRepr::Scalar(s) => BackendRepr::Scalar(s.to_union()), + BackendRepr::ScalarPair(s1, s2) => { + BackendRepr::ScalarPair(s1.to_union(), s2.to_union()) + } + BackendRepr::Vector { element, count } => { + BackendRepr::Vector { element: element.to_union(), count } + } + BackendRepr::Uninhabited | BackendRepr::Memory { .. } => { + BackendRepr::Memory { sized: true } + } } } @@ -1454,12 +1472,12 @@ impl Abi { match (self, other) { // Scalar, Vector, ScalarPair have `Scalar` in them where we ignore validity ranges. // We do *not* ignore the sign since it matters for some ABIs (e.g. s390x). - (Abi::Scalar(l), Abi::Scalar(r)) => l.primitive() == r.primitive(), + (BackendRepr::Scalar(l), BackendRepr::Scalar(r)) => l.primitive() == r.primitive(), ( - Abi::Vector { element: element_l, count: count_l }, - Abi::Vector { element: element_r, count: count_r }, + BackendRepr::Vector { element: element_l, count: count_l }, + BackendRepr::Vector { element: element_r, count: count_r }, ) => element_l.primitive() == element_r.primitive() && count_l == count_r, - (Abi::ScalarPair(l1, l2), Abi::ScalarPair(r1, r2)) => { + (BackendRepr::ScalarPair(l1, l2), BackendRepr::ScalarPair(r1, r2)) => { l1.primitive() == r1.primitive() && l2.primitive() == r2.primitive() } // Everything else must be strictly identical. @@ -1616,14 +1634,14 @@ pub struct LayoutData<FieldIdx: Idx, VariantIdx: Idx> { /// must be taken into account. pub variants: Variants<FieldIdx, VariantIdx>, - /// The `abi` defines how this data is passed between functions, and it defines - /// value restrictions via `valid_range`. + /// The `backend_repr` defines how this data will be represented to the codegen backend, + /// and encodes value restrictions via `valid_range`. /// /// Note that this is entirely orthogonal to the recursive structure defined by /// `variants` and `fields`; for example, `ManuallyDrop<Result<isize, isize>>` has - /// `Abi::ScalarPair`! So, even with non-`Aggregate` `abi`, `fields` and `variants` + /// `IrForm::ScalarPair`! So, even with non-`Memory` `backend_repr`, `fields` and `variants` /// have to be taken into account to find all fields of this layout. - pub abi: Abi, + pub backend_repr: BackendRepr, /// The leaf scalar with the largest number of invalid values /// (i.e. outside of its `valid_range`), if it exists. @@ -1646,15 +1664,15 @@ pub struct LayoutData<FieldIdx: Idx, VariantIdx: Idx> { impl<FieldIdx: Idx, VariantIdx: Idx> LayoutData<FieldIdx, VariantIdx> { /// Returns `true` if this is an aggregate type (including a ScalarPair!) pub fn is_aggregate(&self) -> bool { - match self.abi { - Abi::Uninhabited | Abi::Scalar(_) | Abi::Vector { .. } => false, - Abi::ScalarPair(..) | Abi::Aggregate { .. } => true, + match self.backend_repr { + BackendRepr::Uninhabited | BackendRepr::Scalar(_) | BackendRepr::Vector { .. } => false, + BackendRepr::ScalarPair(..) | BackendRepr::Memory { .. } => true, } } /// Returns `true` if this is an uninhabited type pub fn is_uninhabited(&self) -> bool { - self.abi.is_uninhabited() + self.backend_repr.is_uninhabited() } pub fn scalar<C: HasDataLayout>(cx: &C, scalar: Scalar) -> Self { @@ -1664,7 +1682,7 @@ impl<FieldIdx: Idx, VariantIdx: Idx> LayoutData<FieldIdx, VariantIdx> { LayoutData { variants: Variants::Single { index: VariantIdx::new(0) }, fields: FieldsShape::Primitive, - abi: Abi::Scalar(scalar), + backend_repr: BackendRepr::Scalar(scalar), largest_niche, size, align, @@ -1686,7 +1704,7 @@ where let LayoutData { size, align, - abi, + backend_repr, fields, largest_niche, variants, @@ -1696,7 +1714,7 @@ where f.debug_struct("Layout") .field("size", size) .field("align", align) - .field("abi", abi) + .field("abi", backend_repr) .field("fields", fields) .field("largest_niche", largest_niche) .field("variants", variants) @@ -1732,12 +1750,12 @@ impl<FieldIdx: Idx, VariantIdx: Idx> LayoutData<FieldIdx, VariantIdx> { /// Returns `true` if the layout corresponds to an unsized type. #[inline] pub fn is_unsized(&self) -> bool { - self.abi.is_unsized() + self.backend_repr.is_unsized() } #[inline] pub fn is_sized(&self) -> bool { - self.abi.is_sized() + self.backend_repr.is_sized() } /// Returns `true` if the type is sized and a 1-ZST (meaning it has size 0 and alignment 1). @@ -1750,10 +1768,12 @@ impl<FieldIdx: Idx, VariantIdx: Idx> LayoutData<FieldIdx, VariantIdx> { /// Note that this does *not* imply that the type is irrelevant for layout! It can still have /// non-trivial alignment constraints. You probably want to use `is_1zst` instead. pub fn is_zst(&self) -> bool { - match self.abi { - Abi::Scalar(_) | Abi::ScalarPair(..) | Abi::Vector { .. } => false, - Abi::Uninhabited => self.size.bytes() == 0, - Abi::Aggregate { sized } => sized && self.size.bytes() == 0, + match self.backend_repr { + BackendRepr::Scalar(_) | BackendRepr::ScalarPair(..) | BackendRepr::Vector { .. } => { + false + } + BackendRepr::Uninhabited => self.size.bytes() == 0, + BackendRepr::Memory { sized } => sized && self.size.bytes() == 0, } } @@ -1768,8 +1788,8 @@ impl<FieldIdx: Idx, VariantIdx: Idx> LayoutData<FieldIdx, VariantIdx> { // 2nd point is quite hard to check though. self.size == other.size && self.is_sized() == other.is_sized() - && self.abi.eq_up_to_validity(&other.abi) - && self.abi.is_bool() == other.abi.is_bool() + && self.backend_repr.eq_up_to_validity(&other.backend_repr) + && self.backend_repr.is_bool() == other.backend_repr.is_bool() && self.align.abi == other.align.abi && self.max_repr_align == other.max_repr_align && self.unadjusted_abi_align == other.unadjusted_abi_align |
