about summary refs log tree commit diff
path: root/compiler/rustc_apfloat/src/ieee.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_apfloat/src/ieee.rs')
-rw-r--r--compiler/rustc_apfloat/src/ieee.rs2757
1 files changed, 0 insertions, 2757 deletions
diff --git a/compiler/rustc_apfloat/src/ieee.rs b/compiler/rustc_apfloat/src/ieee.rs
deleted file mode 100644
index 2286712f025..00000000000
--- a/compiler/rustc_apfloat/src/ieee.rs
+++ /dev/null
@@ -1,2757 +0,0 @@
-use crate::{Category, ExpInt, IEK_INF, IEK_NAN, IEK_ZERO};
-use crate::{Float, FloatConvert, ParseError, Round, Status, StatusAnd};
-
-use core::cmp::{self, Ordering};
-use core::fmt::{self, Write};
-use core::marker::PhantomData;
-use core::mem;
-use core::ops::Neg;
-use smallvec::{smallvec, SmallVec};
-
-#[must_use]
-pub struct IeeeFloat<S> {
-    /// Absolute significand value (including the integer bit).
-    sig: [Limb; 1],
-
-    /// The signed unbiased exponent of the value.
-    exp: ExpInt,
-
-    /// What kind of floating point number this is.
-    category: Category,
-
-    /// Sign bit of the number.
-    sign: bool,
-
-    marker: PhantomData<S>,
-}
-
-/// Fundamental unit of big integer arithmetic, but also
-/// large to store the largest significands by itself.
-type Limb = u128;
-const LIMB_BITS: usize = 128;
-fn limbs_for_bits(bits: usize) -> usize {
-    (bits + LIMB_BITS - 1) / LIMB_BITS
-}
-
-/// Enum that represents what fraction of the LSB truncated bits of an fp number
-/// represent.
-///
-/// This essentially combines the roles of guard and sticky bits.
-#[must_use]
-#[derive(Copy, Clone, PartialEq, Eq, Debug)]
-enum Loss {
-    // Example of truncated bits:
-    ExactlyZero,  // 000000
-    LessThanHalf, // 0xxxxx  x's not all zero
-    ExactlyHalf,  // 100000
-    MoreThanHalf, // 1xxxxx  x's not all zero
-}
-
-/// Represents floating point arithmetic semantics.
-pub trait Semantics: Sized {
-    /// Total number of bits in the in-memory format.
-    const BITS: usize;
-
-    /// Number of bits in the significand. This includes the integer bit.
-    const PRECISION: usize;
-
-    /// The largest E such that 2<sup>E</sup> is representable; this matches the
-    /// definition of IEEE 754.
-    const MAX_EXP: ExpInt;
-
-    /// The smallest E such that 2<sup>E</sup> is a normalized number; this
-    /// matches the definition of IEEE 754.
-    const MIN_EXP: ExpInt = -Self::MAX_EXP + 1;
-
-    /// The significand bit that marks NaN as quiet.
-    const QNAN_BIT: usize = Self::PRECISION - 2;
-
-    /// The significand bitpattern to mark a NaN as quiet.
-    /// NOTE: for X87DoubleExtended we need to set two bits instead of 2.
-    const QNAN_SIGNIFICAND: Limb = 1 << Self::QNAN_BIT;
-
-    fn from_bits(bits: u128) -> IeeeFloat<Self> {
-        assert!(Self::BITS > Self::PRECISION);
-
-        let sign = bits & (1 << (Self::BITS - 1));
-        let exponent = (bits & !sign) >> (Self::PRECISION - 1);
-        let mut r = IeeeFloat {
-            sig: [bits & ((1 << (Self::PRECISION - 1)) - 1)],
-            // Convert the exponent from its bias representation to a signed integer.
-            exp: (exponent as ExpInt) - Self::MAX_EXP,
-            category: Category::Zero,
-            sign: sign != 0,
-            marker: PhantomData,
-        };
-
-        if r.exp == Self::MIN_EXP - 1 && r.sig == [0] {
-            // Exponent, significand meaningless.
-            r.category = Category::Zero;
-        } else if r.exp == Self::MAX_EXP + 1 && r.sig == [0] {
-            // Exponent, significand meaningless.
-            r.category = Category::Infinity;
-        } else if r.exp == Self::MAX_EXP + 1 && r.sig != [0] {
-            // Sign, exponent, significand meaningless.
-            r.category = Category::NaN;
-        } else {
-            r.category = Category::Normal;
-            if r.exp == Self::MIN_EXP - 1 {
-                // Denormal.
-                r.exp = Self::MIN_EXP;
-            } else {
-                // Set integer bit.
-                sig::set_bit(&mut r.sig, Self::PRECISION - 1);
-            }
-        }
-
-        r
-    }
-
-    fn to_bits(x: IeeeFloat<Self>) -> u128 {
-        assert!(Self::BITS > Self::PRECISION);
-
-        // Split integer bit from significand.
-        let integer_bit = sig::get_bit(&x.sig, Self::PRECISION - 1);
-        let mut significand = x.sig[0] & ((1 << (Self::PRECISION - 1)) - 1);
-        let exponent = match x.category {
-            Category::Normal => {
-                if x.exp == Self::MIN_EXP && !integer_bit {
-                    // Denormal.
-                    Self::MIN_EXP - 1
-                } else {
-                    x.exp
-                }
-            }
-            Category::Zero => {
-                // FIXME(eddyb) Maybe we should guarantee an invariant instead?
-                significand = 0;
-                Self::MIN_EXP - 1
-            }
-            Category::Infinity => {
-                // FIXME(eddyb) Maybe we should guarantee an invariant instead?
-                significand = 0;
-                Self::MAX_EXP + 1
-            }
-            Category::NaN => Self::MAX_EXP + 1,
-        };
-
-        // Convert the exponent from a signed integer to its bias representation.
-        let exponent = (exponent + Self::MAX_EXP) as u128;
-
-        ((x.sign as u128) << (Self::BITS - 1)) | (exponent << (Self::PRECISION - 1)) | significand
-    }
-}
-
-impl<S> Copy for IeeeFloat<S> {}
-impl<S> Clone for IeeeFloat<S> {
-    fn clone(&self) -> Self {
-        *self
-    }
-}
-
-macro_rules! ieee_semantics {
-    ($($name:ident = $sem:ident($bits:tt : $exp_bits:tt)),*) => {
-        $(pub struct $sem;)*
-        $(pub type $name = IeeeFloat<$sem>;)*
-        $(impl Semantics for $sem {
-            const BITS: usize = $bits;
-            const PRECISION: usize = ($bits - 1 - $exp_bits) + 1;
-            const MAX_EXP: ExpInt = (1 << ($exp_bits - 1)) - 1;
-        })*
-    }
-}
-
-ieee_semantics! {
-    Half = HalfS(16:5),
-    Single = SingleS(32:8),
-    Double = DoubleS(64:11),
-    Quad = QuadS(128:15)
-}
-
-pub struct X87DoubleExtendedS;
-pub type X87DoubleExtended = IeeeFloat<X87DoubleExtendedS>;
-impl Semantics for X87DoubleExtendedS {
-    const BITS: usize = 80;
-    const PRECISION: usize = 64;
-    const MAX_EXP: ExpInt = (1 << (15 - 1)) - 1;
-
-    /// For x87 extended precision, we want to make a NaN, not a
-    /// pseudo-NaN. Maybe we should expose the ability to make
-    /// pseudo-NaNs?
-    const QNAN_SIGNIFICAND: Limb = 0b11 << Self::QNAN_BIT;
-
-    /// Integer bit is explicit in this format. Intel hardware (387 and later)
-    /// does not support these bit patterns:
-    ///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
-    ///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
-    ///  exponent = 0, integer bit 1 ("pseudodenormal")
-    ///  exponent != 0 nor all 1's, integer bit 0 ("unnormal")
-    /// At the moment, the first two are treated as NaNs, the second two as Normal.
-    fn from_bits(bits: u128) -> IeeeFloat<Self> {
-        let sign = bits & (1 << (Self::BITS - 1));
-        let exponent = (bits & !sign) >> Self::PRECISION;
-        let mut r = IeeeFloat {
-            sig: [bits & ((1 << (Self::PRECISION - 1)) - 1)],
-            // Convert the exponent from its bias representation to a signed integer.
-            exp: (exponent as ExpInt) - Self::MAX_EXP,
-            category: Category::Zero,
-            sign: sign != 0,
-            marker: PhantomData,
-        };
-
-        if r.exp == Self::MIN_EXP - 1 && r.sig == [0] {
-            // Exponent, significand meaningless.
-            r.category = Category::Zero;
-        } else if r.exp == Self::MAX_EXP + 1 && r.sig == [1 << (Self::PRECISION - 1)] {
-            // Exponent, significand meaningless.
-            r.category = Category::Infinity;
-        } else if r.exp == Self::MAX_EXP + 1 && r.sig != [1 << (Self::PRECISION - 1)] {
-            // Sign, exponent, significand meaningless.
-            r.category = Category::NaN;
-        } else {
-            r.category = Category::Normal;
-            if r.exp == Self::MIN_EXP - 1 {
-                // Denormal.
-                r.exp = Self::MIN_EXP;
-            }
-        }
-
-        r
-    }
-
-    fn to_bits(x: IeeeFloat<Self>) -> u128 {
-        // Get integer bit from significand.
-        let integer_bit = sig::get_bit(&x.sig, Self::PRECISION - 1);
-        let mut significand = x.sig[0] & ((1 << Self::PRECISION) - 1);
-        let exponent = match x.category {
-            Category::Normal => {
-                if x.exp == Self::MIN_EXP && !integer_bit {
-                    // Denormal.
-                    Self::MIN_EXP - 1
-                } else {
-                    x.exp
-                }
-            }
-            Category::Zero => {
-                // FIXME(eddyb) Maybe we should guarantee an invariant instead?
-                significand = 0;
-                Self::MIN_EXP - 1
-            }
-            Category::Infinity => {
-                // FIXME(eddyb) Maybe we should guarantee an invariant instead?
-                significand = 1 << (Self::PRECISION - 1);
-                Self::MAX_EXP + 1
-            }
-            Category::NaN => Self::MAX_EXP + 1,
-        };
-
-        // Convert the exponent from a signed integer to its bias representation.
-        let exponent = (exponent + Self::MAX_EXP) as u128;
-
-        ((x.sign as u128) << (Self::BITS - 1)) | (exponent << Self::PRECISION) | significand
-    }
-}
-
-float_common_impls!(IeeeFloat<S>);
-
-impl<S: Semantics> PartialEq for IeeeFloat<S> {
-    fn eq(&self, rhs: &Self) -> bool {
-        self.partial_cmp(rhs) == Some(Ordering::Equal)
-    }
-}
-
-impl<S: Semantics> PartialOrd for IeeeFloat<S> {
-    fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
-        match (self.category, rhs.category) {
-            (Category::NaN, _) | (_, Category::NaN) => None,
-
-            (Category::Infinity, Category::Infinity) => Some((!self.sign).cmp(&(!rhs.sign))),
-
-            (Category::Zero, Category::Zero) => Some(Ordering::Equal),
-
-            (Category::Infinity, _) | (Category::Normal, Category::Zero) => {
-                Some((!self.sign).cmp(&self.sign))
-            }
-
-            (_, Category::Infinity) | (Category::Zero, Category::Normal) => {
-                Some(rhs.sign.cmp(&(!rhs.sign)))
-            }
-
-            (Category::Normal, Category::Normal) => {
-                // Two normal numbers. Do they have the same sign?
-                Some((!self.sign).cmp(&(!rhs.sign)).then_with(|| {
-                    // Compare absolute values; invert result if negative.
-                    let result = self.cmp_abs_normal(*rhs);
-
-                    if self.sign { result.reverse() } else { result }
-                }))
-            }
-        }
-    }
-}
-
-impl<S> Neg for IeeeFloat<S> {
-    type Output = Self;
-    fn neg(mut self) -> Self {
-        self.sign = !self.sign;
-        self
-    }
-}
-
-/// Prints this value as a decimal string.
-///
-/// \param precision The maximum number of digits of
-///   precision to output. If there are fewer digits available,
-///   zero padding will not be used unless the value is
-///   integral and small enough to be expressed in
-///   precision digits. 0 means to use the natural
-///   precision of the number.
-/// \param width The maximum number of zeros to
-///   consider inserting before falling back to scientific
-///   notation. 0 means to always use scientific notation.
-///
-/// \param alternate Indicate whether to remove the trailing zero in
-///   fraction part or not. Also setting this parameter to true forces
-///   producing of output more similar to default printf behavior.
-///   Specifically the lower e is used as exponent delimiter and exponent
-///   always contains no less than two digits.
-///
-/// Number       precision    width      Result
-/// ------       ---------    -----      ------
-/// 1.01E+4              5        2       10100
-/// 1.01E+4              4        2       1.01E+4
-/// 1.01E+4              5        1       1.01E+4
-/// 1.01E-2              5        2       0.0101
-/// 1.01E-2              4        2       0.0101
-/// 1.01E-2              4        1       1.01E-2
-impl<S: Semantics> fmt::Display for IeeeFloat<S> {
-    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        let width = f.width().unwrap_or(3);
-        let alternate = f.alternate();
-
-        match self.category {
-            Category::Infinity => {
-                if self.sign {
-                    return f.write_str("-Inf");
-                } else {
-                    return f.write_str("+Inf");
-                }
-            }
-
-            Category::NaN => return f.write_str("NaN"),
-
-            Category::Zero => {
-                if self.sign {
-                    f.write_char('-')?;
-                }
-
-                if width == 0 {
-                    if alternate {
-                        f.write_str("0.0")?;
-                        if let Some(n) = f.precision() {
-                            for _ in 1..n {
-                                f.write_char('0')?;
-                            }
-                        }
-                        f.write_str("e+00")?;
-                    } else {
-                        f.write_str("0.0E+0")?;
-                    }
-                } else {
-                    f.write_char('0')?;
-                }
-                return Ok(());
-            }
-
-            Category::Normal => {}
-        }
-
-        if self.sign {
-            f.write_char('-')?;
-        }
-
-        // We use enough digits so the number can be round-tripped back to an
-        // APFloat. The formula comes from "How to Print Floating-Point Numbers
-        // Accurately" by Steele and White.
-        // FIXME: Using a formula based purely on the precision is conservative;
-        // we can print fewer digits depending on the actual value being printed.
-
-        // precision = 2 + floor(S::PRECISION / lg_2(10))
-        let precision = f.precision().unwrap_or(2 + S::PRECISION * 59 / 196);
-
-        // Decompose the number into an APInt and an exponent.
-        let mut exp = self.exp - (S::PRECISION as ExpInt - 1);
-        let mut sig = vec![self.sig[0]];
-
-        // Ignore trailing binary zeros.
-        let trailing_zeros = sig[0].trailing_zeros();
-        let _: Loss = sig::shift_right(&mut sig, &mut exp, trailing_zeros as usize);
-
-        // Change the exponent from 2^e to 10^e.
-        if exp == 0 {
-            // Nothing to do.
-        } else if exp > 0 {
-            // Just shift left.
-            let shift = exp as usize;
-            sig.resize(limbs_for_bits(S::PRECISION + shift), 0);
-            sig::shift_left(&mut sig, &mut exp, shift);
-        } else {
-            // exp < 0
-            let mut texp = -exp as usize;
-
-            // We transform this using the identity:
-            //   (N)(2^-e) == (N)(5^e)(10^-e)
-
-            // Multiply significand by 5^e.
-            //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
-            let mut sig_scratch = vec![];
-            let mut p5 = vec![];
-            let mut p5_scratch = vec![];
-            while texp != 0 {
-                if p5.is_empty() {
-                    p5.push(5);
-                } else {
-                    p5_scratch.resize(p5.len() * 2, 0);
-                    let _: Loss =
-                        sig::mul(&mut p5_scratch, &mut 0, &p5, &p5, p5.len() * 2 * LIMB_BITS);
-                    while p5_scratch.last() == Some(&0) {
-                        p5_scratch.pop();
-                    }
-                    mem::swap(&mut p5, &mut p5_scratch);
-                }
-                if texp & 1 != 0 {
-                    sig_scratch.resize(sig.len() + p5.len(), 0);
-                    let _: Loss = sig::mul(
-                        &mut sig_scratch,
-                        &mut 0,
-                        &sig,
-                        &p5,
-                        (sig.len() + p5.len()) * LIMB_BITS,
-                    );
-                    while sig_scratch.last() == Some(&0) {
-                        sig_scratch.pop();
-                    }
-                    mem::swap(&mut sig, &mut sig_scratch);
-                }
-                texp >>= 1;
-            }
-        }
-
-        // Fill the buffer.
-        let mut buffer = vec![];
-
-        // Ignore digits from the significand until it is no more
-        // precise than is required for the desired precision.
-        // 196/59 is a very slight overestimate of lg_2(10).
-        let required = (precision * 196 + 58) / 59;
-        let mut discard_digits = sig::omsb(&sig).saturating_sub(required) * 59 / 196;
-        let mut in_trail = true;
-        while !sig.is_empty() {
-            // Perform short division by 10 to extract the rightmost digit.
-            // rem <- sig % 10
-            // sig <- sig / 10
-            let mut rem = 0;
-
-            // Use 64-bit division and remainder, with 32-bit chunks from sig.
-            sig::each_chunk(&mut sig, 32, |chunk| {
-                let chunk = chunk as u32;
-                let combined = ((rem as u64) << 32) | (chunk as u64);
-                rem = (combined % 10) as u8;
-                (combined / 10) as u32 as Limb
-            });
-
-            // Reduce the significand to avoid wasting time dividing 0's.
-            while sig.last() == Some(&0) {
-                sig.pop();
-            }
-
-            let digit = rem;
-
-            // Ignore digits we don't need.
-            if discard_digits > 0 {
-                discard_digits -= 1;
-                exp += 1;
-                continue;
-            }
-
-            // Drop trailing zeros.
-            if in_trail && digit == 0 {
-                exp += 1;
-            } else {
-                in_trail = false;
-                buffer.push(b'0' + digit);
-            }
-        }
-
-        assert!(!buffer.is_empty(), "no characters in buffer!");
-
-        // Drop down to precision.
-        // FIXME: don't do more precise calculations above than are required.
-        if buffer.len() > precision {
-            // The most significant figures are the last ones in the buffer.
-            let mut first_sig = buffer.len() - precision;
-
-            // Round.
-            // FIXME: this probably shouldn't use 'round half up'.
-
-            // Rounding down is just a truncation, except we also want to drop
-            // trailing zeros from the new result.
-            if buffer[first_sig - 1] < b'5' {
-                while first_sig < buffer.len() && buffer[first_sig] == b'0' {
-                    first_sig += 1;
-                }
-            } else {
-                // Rounding up requires a decimal add-with-carry. If we continue
-                // the carry, the newly-introduced zeros will just be truncated.
-                for x in &mut buffer[first_sig..] {
-                    if *x == b'9' {
-                        first_sig += 1;
-                    } else {
-                        *x += 1;
-                        break;
-                    }
-                }
-            }
-
-            exp += first_sig as ExpInt;
-            buffer.drain(..first_sig);
-
-            // If we carried through, we have exactly one digit of precision.
-            if buffer.is_empty() {
-                buffer.push(b'1');
-            }
-        }
-
-        let digits = buffer.len();
-
-        // Check whether we should use scientific notation.
-        let scientific = if width == 0 {
-            true
-        } else if exp >= 0 {
-            // 765e3 --> 765000
-            //              ^^^
-            // But we shouldn't make the number look more precise than it is.
-            exp as usize > width || digits + exp as usize > precision
-        } else {
-            // Power of the most significant digit.
-            let msd = exp + (digits - 1) as ExpInt;
-            if msd >= 0 {
-                // 765e-2 == 7.65
-                false
-            } else {
-                // 765e-5 == 0.00765
-                //           ^ ^^
-                -msd as usize > width
-            }
-        };
-
-        // Scientific formatting is pretty straightforward.
-        if scientific {
-            exp += digits as ExpInt - 1;
-
-            f.write_char(buffer[digits - 1] as char)?;
-            f.write_char('.')?;
-            let truncate_zero = !alternate;
-            if digits == 1 && truncate_zero {
-                f.write_char('0')?;
-            } else {
-                for &d in buffer[..digits - 1].iter().rev() {
-                    f.write_char(d as char)?;
-                }
-            }
-            // Fill with zeros up to precision.
-            if !truncate_zero && precision > digits - 1 {
-                for _ in 0..=precision - digits {
-                    f.write_char('0')?;
-                }
-            }
-            // For alternate we use lower 'e'.
-            f.write_char(if alternate { 'e' } else { 'E' })?;
-
-            // Exponent always at least two digits if we do not truncate zeros.
-            if truncate_zero {
-                write!(f, "{:+}", exp)?;
-            } else {
-                write!(f, "{:+03}", exp)?;
-            }
-
-            return Ok(());
-        }
-
-        // Non-scientific, positive exponents.
-        if exp >= 0 {
-            for &d in buffer.iter().rev() {
-                f.write_char(d as char)?;
-            }
-            for _ in 0..exp {
-                f.write_char('0')?;
-            }
-            return Ok(());
-        }
-
-        // Non-scientific, negative exponents.
-        let unit_place = -exp as usize;
-        if unit_place < digits {
-            for &d in buffer[unit_place..].iter().rev() {
-                f.write_char(d as char)?;
-            }
-            f.write_char('.')?;
-            for &d in buffer[..unit_place].iter().rev() {
-                f.write_char(d as char)?;
-            }
-        } else {
-            f.write_str("0.")?;
-            for _ in digits..unit_place {
-                f.write_char('0')?;
-            }
-            for &d in buffer.iter().rev() {
-                f.write_char(d as char)?;
-            }
-        }
-
-        Ok(())
-    }
-}
-
-impl<S: Semantics> fmt::Debug for IeeeFloat<S> {
-    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        write!(
-            f,
-            "{}({:?} | {}{:?} * 2^{})",
-            self,
-            self.category,
-            if self.sign { "-" } else { "+" },
-            self.sig,
-            self.exp
-        )
-    }
-}
-
-impl<S: Semantics> Float for IeeeFloat<S> {
-    const BITS: usize = S::BITS;
-    const PRECISION: usize = S::PRECISION;
-    const MAX_EXP: ExpInt = S::MAX_EXP;
-    const MIN_EXP: ExpInt = S::MIN_EXP;
-
-    const ZERO: Self = IeeeFloat {
-        sig: [0],
-        exp: S::MIN_EXP - 1,
-        category: Category::Zero,
-        sign: false,
-        marker: PhantomData,
-    };
-
-    const INFINITY: Self = IeeeFloat {
-        sig: [0],
-        exp: S::MAX_EXP + 1,
-        category: Category::Infinity,
-        sign: false,
-        marker: PhantomData,
-    };
-
-    // FIXME(eddyb) remove when qnan becomes const fn.
-    const NAN: Self = IeeeFloat {
-        sig: [S::QNAN_SIGNIFICAND],
-        exp: S::MAX_EXP + 1,
-        category: Category::NaN,
-        sign: false,
-        marker: PhantomData,
-    };
-
-    fn qnan(payload: Option<u128>) -> Self {
-        IeeeFloat {
-            sig: [S::QNAN_SIGNIFICAND
-                | payload.map_or(0, |payload| {
-                    // Zero out the excess bits of the significand.
-                    payload & ((1 << S::QNAN_BIT) - 1)
-                })],
-            exp: S::MAX_EXP + 1,
-            category: Category::NaN,
-            sign: false,
-            marker: PhantomData,
-        }
-    }
-
-    fn snan(payload: Option<u128>) -> Self {
-        let mut snan = Self::qnan(payload);
-
-        // We always have to clear the QNaN bit to make it an SNaN.
-        sig::clear_bit(&mut snan.sig, S::QNAN_BIT);
-
-        // If there are no bits set in the payload, we have to set
-        // *something* to make it a NaN instead of an infinity;
-        // conventionally, this is the next bit down from the QNaN bit.
-        if snan.sig[0] & !S::QNAN_SIGNIFICAND == 0 {
-            sig::set_bit(&mut snan.sig, S::QNAN_BIT - 1);
-        }
-
-        snan
-    }
-
-    fn largest() -> Self {
-        // We want (in interchange format):
-        //   exponent = 1..10
-        //   significand = 1..1
-        IeeeFloat {
-            sig: [(1 << S::PRECISION) - 1],
-            exp: S::MAX_EXP,
-            category: Category::Normal,
-            sign: false,
-            marker: PhantomData,
-        }
-    }
-
-    // We want (in interchange format):
-    //   exponent = 0..0
-    //   significand = 0..01
-    const SMALLEST: Self = IeeeFloat {
-        sig: [1],
-        exp: S::MIN_EXP,
-        category: Category::Normal,
-        sign: false,
-        marker: PhantomData,
-    };
-
-    fn smallest_normalized() -> Self {
-        // We want (in interchange format):
-        //   exponent = 0..0
-        //   significand = 10..0
-        IeeeFloat {
-            sig: [1 << (S::PRECISION - 1)],
-            exp: S::MIN_EXP,
-            category: Category::Normal,
-            sign: false,
-            marker: PhantomData,
-        }
-    }
-
-    fn add_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
-        let status = match (self.category, rhs.category) {
-            (Category::Infinity, Category::Infinity) => {
-                // Differently signed infinities can only be validly
-                // subtracted.
-                if self.sign != rhs.sign {
-                    self = Self::NAN;
-                    Status::INVALID_OP
-                } else {
-                    Status::OK
-                }
-            }
-
-            // Sign may depend on rounding mode; handled below.
-            (_, Category::Zero) | (Category::NaN, _) | (Category::Infinity, Category::Normal) => {
-                Status::OK
-            }
-
-            (Category::Zero, _) | (_, Category::NaN | Category::Infinity) => {
-                self = rhs;
-                Status::OK
-            }
-
-            // This return code means it was not a simple case.
-            (Category::Normal, Category::Normal) => {
-                let loss = sig::add_or_sub(
-                    &mut self.sig,
-                    &mut self.exp,
-                    &mut self.sign,
-                    &mut [rhs.sig[0]],
-                    rhs.exp,
-                    rhs.sign,
-                );
-                let status;
-                self = unpack!(status=, self.normalize(round, loss));
-
-                // Can only be zero if we lost no fraction.
-                assert!(self.category != Category::Zero || loss == Loss::ExactlyZero);
-
-                status
-            }
-        };
-
-        // If two numbers add (exactly) to zero, IEEE 754 decrees it is a
-        // positive zero unless rounding to minus infinity, except that
-        // adding two like-signed zeroes gives that zero.
-        if self.category == Category::Zero
-            && (rhs.category != Category::Zero || self.sign != rhs.sign)
-        {
-            self.sign = round == Round::TowardNegative;
-        }
-
-        status.and(self)
-    }
-
-    fn mul_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
-        self.sign ^= rhs.sign;
-
-        match (self.category, rhs.category) {
-            (Category::NaN, _) => {
-                self.sign = false;
-                Status::OK.and(self)
-            }
-
-            (_, Category::NaN) => {
-                self.sign = false;
-                self.category = Category::NaN;
-                self.sig = rhs.sig;
-                Status::OK.and(self)
-            }
-
-            (Category::Zero, Category::Infinity) | (Category::Infinity, Category::Zero) => {
-                Status::INVALID_OP.and(Self::NAN)
-            }
-
-            (_, Category::Infinity) | (Category::Infinity, _) => {
-                self.category = Category::Infinity;
-                Status::OK.and(self)
-            }
-
-            (Category::Zero, _) | (_, Category::Zero) => {
-                self.category = Category::Zero;
-                Status::OK.and(self)
-            }
-
-            (Category::Normal, Category::Normal) => {
-                self.exp += rhs.exp;
-                let mut wide_sig = [0; 2];
-                let loss =
-                    sig::mul(&mut wide_sig, &mut self.exp, &self.sig, &rhs.sig, S::PRECISION);
-                self.sig = [wide_sig[0]];
-                let mut status;
-                self = unpack!(status=, self.normalize(round, loss));
-                if loss != Loss::ExactlyZero {
-                    status |= Status::INEXACT;
-                }
-                status.and(self)
-            }
-        }
-    }
-
-    fn mul_add_r(mut self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self> {
-        // If and only if all arguments are normal do we need to do an
-        // extended-precision calculation.
-        if !self.is_finite_non_zero() || !multiplicand.is_finite_non_zero() || !addend.is_finite() {
-            let mut status;
-            self = unpack!(status=, self.mul_r(multiplicand, round));
-
-            // FS can only be Status::OK or Status::INVALID_OP. There is no more work
-            // to do in the latter case. The IEEE-754R standard says it is
-            // implementation-defined in this case whether, if ADDEND is a
-            // quiet NaN, we raise invalid op; this implementation does so.
-            //
-            // If we need to do the addition we can do so with normal
-            // precision.
-            if status == Status::OK {
-                self = unpack!(status=, self.add_r(addend, round));
-            }
-            return status.and(self);
-        }
-
-        // Post-multiplication sign, before addition.
-        self.sign ^= multiplicand.sign;
-
-        // Allocate space for twice as many bits as the original significand, plus one
-        // extra bit for the addition to overflow into.
-        assert!(limbs_for_bits(S::PRECISION * 2 + 1) <= 2);
-        let mut wide_sig = sig::widening_mul(self.sig[0], multiplicand.sig[0]);
-
-        let mut loss = Loss::ExactlyZero;
-        let mut omsb = sig::omsb(&wide_sig);
-        self.exp += multiplicand.exp;
-
-        // Assume the operands involved in the multiplication are single-precision
-        // FP, and the two multiplicants are:
-        //     lhs = a23 . a22 ... a0 * 2^e1
-        //     rhs = b23 . b22 ... b0 * 2^e2
-        // the result of multiplication is:
-        //     lhs = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
-        // Note that there are three significant bits at the left-hand side of the
-        // radix point: two for the multiplication, and an overflow bit for the
-        // addition (that will always be zero at this point). Move the radix point
-        // toward left by two bits, and adjust exponent accordingly.
-        self.exp += 2;
-
-        if addend.is_non_zero() {
-            // Normalize our MSB to one below the top bit to allow for overflow.
-            let ext_precision = 2 * S::PRECISION + 1;
-            if omsb != ext_precision - 1 {
-                assert!(ext_precision > omsb);
-                sig::shift_left(&mut wide_sig, &mut self.exp, (ext_precision - 1) - omsb);
-            }
-
-            // The intermediate result of the multiplication has "2 * S::PRECISION"
-            // significant bit; adjust the addend to be consistent with mul result.
-            let mut ext_addend_sig = [addend.sig[0], 0];
-
-            // Extend the addend significand to ext_precision - 1. This guarantees
-            // that the high bit of the significand is zero (same as wide_sig),
-            // so the addition will overflow (if it does overflow at all) into the top bit.
-            sig::shift_left(&mut ext_addend_sig, &mut 0, ext_precision - 1 - S::PRECISION);
-            loss = sig::add_or_sub(
-                &mut wide_sig,
-                &mut self.exp,
-                &mut self.sign,
-                &mut ext_addend_sig,
-                addend.exp + 1,
-                addend.sign,
-            );
-
-            omsb = sig::omsb(&wide_sig);
-        }
-
-        // Convert the result having "2 * S::PRECISION" significant-bits back to the one
-        // having "S::PRECISION" significant-bits. First, move the radix point from
-        // position "2*S::PRECISION - 1" to "S::PRECISION - 1". The exponent need to be
-        // adjusted by "2*S::PRECISION - 1" - "S::PRECISION - 1" = "S::PRECISION".
-        self.exp -= S::PRECISION as ExpInt + 1;
-
-        // In case MSB resides at the left-hand side of radix point, shift the
-        // mantissa right by some amount to make sure the MSB reside right before
-        // the radix point (i.e., "MSB . rest-significant-bits").
-        if omsb > S::PRECISION {
-            let bits = omsb - S::PRECISION;
-            loss = sig::shift_right(&mut wide_sig, &mut self.exp, bits).combine(loss);
-        }
-
-        self.sig[0] = wide_sig[0];
-
-        let mut status;
-        self = unpack!(status=, self.normalize(round, loss));
-        if loss != Loss::ExactlyZero {
-            status |= Status::INEXACT;
-        }
-
-        // If two numbers add (exactly) to zero, IEEE 754 decrees it is a
-        // positive zero unless rounding to minus infinity, except that
-        // adding two like-signed zeroes gives that zero.
-        if self.category == Category::Zero
-            && !status.intersects(Status::UNDERFLOW)
-            && self.sign != addend.sign
-        {
-            self.sign = round == Round::TowardNegative;
-        }
-
-        status.and(self)
-    }
-
-    fn div_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
-        self.sign ^= rhs.sign;
-
-        match (self.category, rhs.category) {
-            (Category::NaN, _) => {
-                self.sign = false;
-                Status::OK.and(self)
-            }
-
-            (_, Category::NaN) => {
-                self.category = Category::NaN;
-                self.sig = rhs.sig;
-                self.sign = false;
-                Status::OK.and(self)
-            }
-
-            (Category::Infinity, Category::Infinity) | (Category::Zero, Category::Zero) => {
-                Status::INVALID_OP.and(Self::NAN)
-            }
-
-            (Category::Infinity | Category::Zero, _) => Status::OK.and(self),
-
-            (Category::Normal, Category::Infinity) => {
-                self.category = Category::Zero;
-                Status::OK.and(self)
-            }
-
-            (Category::Normal, Category::Zero) => {
-                self.category = Category::Infinity;
-                Status::DIV_BY_ZERO.and(self)
-            }
-
-            (Category::Normal, Category::Normal) => {
-                self.exp -= rhs.exp;
-                let dividend = self.sig[0];
-                let loss = sig::div(
-                    &mut self.sig,
-                    &mut self.exp,
-                    &mut [dividend],
-                    &mut [rhs.sig[0]],
-                    S::PRECISION,
-                );
-                let mut status;
-                self = unpack!(status=, self.normalize(round, loss));
-                if loss != Loss::ExactlyZero {
-                    status |= Status::INEXACT;
-                }
-                status.and(self)
-            }
-        }
-    }
-
-    fn c_fmod(mut self, rhs: Self) -> StatusAnd<Self> {
-        match (self.category, rhs.category) {
-            (Category::NaN, _)
-            | (Category::Zero, Category::Infinity | Category::Normal)
-            | (Category::Normal, Category::Infinity) => Status::OK.and(self),
-
-            (_, Category::NaN) => {
-                self.sign = false;
-                self.category = Category::NaN;
-                self.sig = rhs.sig;
-                Status::OK.and(self)
-            }
-
-            (Category::Infinity, _) | (_, Category::Zero) => Status::INVALID_OP.and(Self::NAN),
-
-            (Category::Normal, Category::Normal) => {
-                while self.is_finite_non_zero()
-                    && rhs.is_finite_non_zero()
-                    && self.cmp_abs_normal(rhs) != Ordering::Less
-                {
-                    let mut v = rhs.scalbn(self.ilogb() - rhs.ilogb());
-                    if self.cmp_abs_normal(v) == Ordering::Less {
-                        v = v.scalbn(-1);
-                    }
-                    v.sign = self.sign;
-
-                    let status;
-                    self = unpack!(status=, self - v);
-                    assert_eq!(status, Status::OK);
-                }
-                Status::OK.and(self)
-            }
-        }
-    }
-
-    fn round_to_integral(self, round: Round) -> StatusAnd<Self> {
-        // If the exponent is large enough, we know that this value is already
-        // integral, and the arithmetic below would potentially cause it to saturate
-        // to +/-Inf. Bail out early instead.
-        if self.is_finite_non_zero() && self.exp + 1 >= S::PRECISION as ExpInt {
-            return Status::OK.and(self);
-        }
-
-        // The algorithm here is quite simple: we add 2^(p-1), where p is the
-        // precision of our format, and then subtract it back off again. The choice
-        // of rounding modes for the addition/subtraction determines the rounding mode
-        // for our integral rounding as well.
-        // NOTE: When the input value is negative, we do subtraction followed by
-        // addition instead.
-        assert!(S::PRECISION <= 128);
-        let mut status;
-        let magic_const = unpack!(status=, Self::from_u128(1 << (S::PRECISION - 1)));
-        let magic_const = magic_const.copy_sign(self);
-
-        if status != Status::OK {
-            return status.and(self);
-        }
-
-        let mut r = self;
-        r = unpack!(status=, r.add_r(magic_const, round));
-        if status != Status::OK && status != Status::INEXACT {
-            return status.and(self);
-        }
-
-        // Restore the input sign to handle 0.0/-0.0 cases correctly.
-        r.sub_r(magic_const, round).map(|r| r.copy_sign(self))
-    }
-
-    fn next_up(mut self) -> StatusAnd<Self> {
-        // Compute nextUp(x), handling each float category separately.
-        match self.category {
-            Category::Infinity => {
-                if self.sign {
-                    // nextUp(-inf) = -largest
-                    Status::OK.and(-Self::largest())
-                } else {
-                    // nextUp(+inf) = +inf
-                    Status::OK.and(self)
-                }
-            }
-            Category::NaN => {
-                // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
-                // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
-                //                     change the payload.
-                if self.is_signaling() {
-                    // For consistency, propagate the sign of the sNaN to the qNaN.
-                    Status::INVALID_OP.and(Self::NAN.copy_sign(self))
-                } else {
-                    Status::OK.and(self)
-                }
-            }
-            Category::Zero => {
-                // nextUp(pm 0) = +smallest
-                Status::OK.and(Self::SMALLEST)
-            }
-            Category::Normal => {
-                // nextUp(-smallest) = -0
-                if self.is_smallest() && self.sign {
-                    return Status::OK.and(-Self::ZERO);
-                }
-
-                // nextUp(largest) == INFINITY
-                if self.is_largest() && !self.sign {
-                    return Status::OK.and(Self::INFINITY);
-                }
-
-                // Excluding the integral bit. This allows us to test for binade boundaries.
-                let sig_mask = (1 << (S::PRECISION - 1)) - 1;
-
-                // nextUp(normal) == normal + inc.
-                if self.sign {
-                    // If we are negative, we need to decrement the significand.
-
-                    // We only cross a binade boundary that requires adjusting the exponent
-                    // if:
-                    //   1. exponent != S::MIN_EXP. This implies we are not in the
-                    //   smallest binade or are dealing with denormals.
-                    //   2. Our significand excluding the integral bit is all zeros.
-                    let crossing_binade_boundary =
-                        self.exp != S::MIN_EXP && self.sig[0] & sig_mask == 0;
-
-                    // Decrement the significand.
-                    //
-                    // We always do this since:
-                    //   1. If we are dealing with a non-binade decrement, by definition we
-                    //   just decrement the significand.
-                    //   2. If we are dealing with a normal -> normal binade decrement, since
-                    //   we have an explicit integral bit the fact that all bits but the
-                    //   integral bit are zero implies that subtracting one will yield a
-                    //   significand with 0 integral bit and 1 in all other spots. Thus we
-                    //   must just adjust the exponent and set the integral bit to 1.
-                    //   3. If we are dealing with a normal -> denormal binade decrement,
-                    //   since we set the integral bit to 0 when we represent denormals, we
-                    //   just decrement the significand.
-                    sig::decrement(&mut self.sig);
-
-                    if crossing_binade_boundary {
-                        // Our result is a normal number. Do the following:
-                        // 1. Set the integral bit to 1.
-                        // 2. Decrement the exponent.
-                        sig::set_bit(&mut self.sig, S::PRECISION - 1);
-                        self.exp -= 1;
-                    }
-                } else {
-                    // If we are positive, we need to increment the significand.
-
-                    // We only cross a binade boundary that requires adjusting the exponent if
-                    // the input is not a denormal and all of said input's significand bits
-                    // are set. If all of said conditions are true: clear the significand, set
-                    // the integral bit to 1, and increment the exponent. If we have a
-                    // denormal always increment since moving denormals and the numbers in the
-                    // smallest normal binade have the same exponent in our representation.
-                    let crossing_binade_boundary =
-                        !self.is_denormal() && self.sig[0] & sig_mask == sig_mask;
-
-                    if crossing_binade_boundary {
-                        self.sig = [0];
-                        sig::set_bit(&mut self.sig, S::PRECISION - 1);
-                        assert_ne!(
-                            self.exp,
-                            S::MAX_EXP,
-                            "We can not increment an exponent beyond the MAX_EXP \
-                             allowed by the given floating point semantics."
-                        );
-                        self.exp += 1;
-                    } else {
-                        sig::increment(&mut self.sig);
-                    }
-                }
-                Status::OK.and(self)
-            }
-        }
-    }
-
-    fn from_bits(input: u128) -> Self {
-        // Dispatch to semantics.
-        S::from_bits(input)
-    }
-
-    fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self> {
-        IeeeFloat {
-            sig: [input],
-            exp: S::PRECISION as ExpInt - 1,
-            category: Category::Normal,
-            sign: false,
-            marker: PhantomData,
-        }
-        .normalize(round, Loss::ExactlyZero)
-    }
-
-    fn from_str_r(mut s: &str, mut round: Round) -> Result<StatusAnd<Self>, ParseError> {
-        if s.is_empty() {
-            return Err(ParseError("Invalid string length"));
-        }
-
-        // Handle special cases.
-        match s {
-            "inf" | "INFINITY" => return Ok(Status::OK.and(Self::INFINITY)),
-            "-inf" | "-INFINITY" => return Ok(Status::OK.and(-Self::INFINITY)),
-            "nan" | "NaN" => return Ok(Status::OK.and(Self::NAN)),
-            "-nan" | "-NaN" => return Ok(Status::OK.and(-Self::NAN)),
-            _ => {}
-        }
-
-        // Handle a leading minus sign.
-        let minus = s.starts_with('-');
-        if minus || s.starts_with('+') {
-            s = &s[1..];
-            if s.is_empty() {
-                return Err(ParseError("String has no digits"));
-            }
-        }
-
-        // Adjust the rounding mode for the absolute value below.
-        if minus {
-            round = -round;
-        }
-
-        let r = if s.starts_with("0x") || s.starts_with("0X") {
-            s = &s[2..];
-            if s.is_empty() {
-                return Err(ParseError("Invalid string"));
-            }
-            Self::from_hexadecimal_string(s, round)?
-        } else {
-            Self::from_decimal_string(s, round)?
-        };
-
-        Ok(r.map(|r| if minus { -r } else { r }))
-    }
-
-    fn to_bits(self) -> u128 {
-        // Dispatch to semantics.
-        S::to_bits(self)
-    }
-
-    fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128> {
-        // The result of trying to convert a number too large.
-        let overflow = if self.sign {
-            // Negative numbers cannot be represented as unsigned.
-            0
-        } else {
-            // Largest unsigned integer of the given width.
-            !0 >> (128 - width)
-        };
-
-        *is_exact = false;
-
-        match self.category {
-            Category::NaN => Status::INVALID_OP.and(0),
-
-            Category::Infinity => Status::INVALID_OP.and(overflow),
-
-            Category::Zero => {
-                // Negative zero can't be represented as an int.
-                *is_exact = !self.sign;
-                Status::OK.and(0)
-            }
-
-            Category::Normal => {
-                let mut r = 0;
-
-                // Step 1: place our absolute value, with any fraction truncated, in
-                // the destination.
-                let truncated_bits = if self.exp < 0 {
-                    // Our absolute value is less than one; truncate everything.
-                    // For exponent -1 the integer bit represents .5, look at that.
-                    // For smaller exponents leftmost truncated bit is 0.
-                    S::PRECISION - 1 + (-self.exp) as usize
-                } else {
-                    // We want the most significant (exponent + 1) bits; the rest are
-                    // truncated.
-                    let bits = self.exp as usize + 1;
-
-                    // Hopelessly large in magnitude?
-                    if bits > width {
-                        return Status::INVALID_OP.and(overflow);
-                    }
-
-                    if bits < S::PRECISION {
-                        // We truncate (S::PRECISION - bits) bits.
-                        r = self.sig[0] >> (S::PRECISION - bits);
-                        S::PRECISION - bits
-                    } else {
-                        // We want at least as many bits as are available.
-                        r = self.sig[0] << (bits - S::PRECISION);
-                        0
-                    }
-                };
-
-                // Step 2: work out any lost fraction, and increment the absolute
-                // value if we would round away from zero.
-                let mut loss = Loss::ExactlyZero;
-                if truncated_bits > 0 {
-                    loss = Loss::through_truncation(&self.sig, truncated_bits);
-                    if loss != Loss::ExactlyZero
-                        && self.round_away_from_zero(round, loss, truncated_bits)
-                    {
-                        r = r.wrapping_add(1);
-                        if r == 0 {
-                            return Status::INVALID_OP.and(overflow); // Overflow.
-                        }
-                    }
-                }
-
-                // Step 3: check if we fit in the destination.
-                if r > overflow {
-                    return Status::INVALID_OP.and(overflow);
-                }
-
-                if loss == Loss::ExactlyZero {
-                    *is_exact = true;
-                    Status::OK.and(r)
-                } else {
-                    Status::INEXACT.and(r)
-                }
-            }
-        }
-    }
-
-    fn cmp_abs_normal(self, rhs: Self) -> Ordering {
-        assert!(self.is_finite_non_zero());
-        assert!(rhs.is_finite_non_zero());
-
-        // If exponents are equal, do an unsigned comparison of the significands.
-        self.exp.cmp(&rhs.exp).then_with(|| sig::cmp(&self.sig, &rhs.sig))
-    }
-
-    fn bitwise_eq(self, rhs: Self) -> bool {
-        if self.category != rhs.category || self.sign != rhs.sign {
-            return false;
-        }
-
-        if self.category == Category::Zero || self.category == Category::Infinity {
-            return true;
-        }
-
-        if self.is_finite_non_zero() && self.exp != rhs.exp {
-            return false;
-        }
-
-        self.sig == rhs.sig
-    }
-
-    fn is_negative(self) -> bool {
-        self.sign
-    }
-
-    fn is_denormal(self) -> bool {
-        self.is_finite_non_zero()
-            && self.exp == S::MIN_EXP
-            && !sig::get_bit(&self.sig, S::PRECISION - 1)
-    }
-
-    fn is_signaling(self) -> bool {
-        // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
-        // first bit of the trailing significand being 0.
-        self.is_nan() && !sig::get_bit(&self.sig, S::QNAN_BIT)
-    }
-
-    fn category(self) -> Category {
-        self.category
-    }
-
-    fn get_exact_inverse(self) -> Option<Self> {
-        // Special floats and denormals have no exact inverse.
-        if !self.is_finite_non_zero() {
-            return None;
-        }
-
-        // Check that the number is a power of two by making sure that only the
-        // integer bit is set in the significand.
-        if self.sig != [1 << (S::PRECISION - 1)] {
-            return None;
-        }
-
-        // Get the inverse.
-        let mut reciprocal = Self::from_u128(1).value;
-        let status;
-        reciprocal = unpack!(status=, reciprocal / self);
-        if status != Status::OK {
-            return None;
-        }
-
-        // Avoid multiplication with a denormal, it is not safe on all platforms and
-        // may be slower than a normal division.
-        if reciprocal.is_denormal() {
-            return None;
-        }
-
-        assert!(reciprocal.is_finite_non_zero());
-        assert_eq!(reciprocal.sig, [1 << (S::PRECISION - 1)]);
-
-        Some(reciprocal)
-    }
-
-    fn ilogb(mut self) -> ExpInt {
-        if self.is_nan() {
-            return IEK_NAN;
-        }
-        if self.is_zero() {
-            return IEK_ZERO;
-        }
-        if self.is_infinite() {
-            return IEK_INF;
-        }
-        if !self.is_denormal() {
-            return self.exp;
-        }
-
-        let sig_bits = (S::PRECISION - 1) as ExpInt;
-        self.exp += sig_bits;
-        self = self.normalize(Round::NearestTiesToEven, Loss::ExactlyZero).value;
-        self.exp - sig_bits
-    }
-
-    fn scalbn_r(mut self, exp: ExpInt, round: Round) -> Self {
-        // If exp is wildly out-of-scale, simply adding it to self.exp will
-        // overflow; clamp it to a safe range before adding, but ensure that the range
-        // is large enough that the clamp does not change the result. The range we
-        // need to support is the difference between the largest possible exponent and
-        // the normalized exponent of half the smallest denormal.
-
-        let sig_bits = (S::PRECISION - 1) as i32;
-        let max_change = S::MAX_EXP as i32 - (S::MIN_EXP as i32 - sig_bits) + 1;
-
-        // Clamp to one past the range ends to let normalize handle overflow.
-        let exp_change = cmp::min(cmp::max(exp as i32, -max_change - 1), max_change);
-        self.exp = self.exp.saturating_add(exp_change as ExpInt);
-        self = self.normalize(round, Loss::ExactlyZero).value;
-        if self.is_nan() {
-            sig::set_bit(&mut self.sig, S::QNAN_BIT);
-        }
-        self
-    }
-
-    fn frexp_r(mut self, exp: &mut ExpInt, round: Round) -> Self {
-        *exp = self.ilogb();
-
-        // Quiet signalling nans.
-        if *exp == IEK_NAN {
-            sig::set_bit(&mut self.sig, S::QNAN_BIT);
-            return self;
-        }
-
-        if *exp == IEK_INF {
-            return self;
-        }
-
-        // 1 is added because frexp is defined to return a normalized fraction in
-        // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0).
-        if *exp == IEK_ZERO {
-            *exp = 0;
-        } else {
-            *exp += 1;
-        }
-        self.scalbn_r(-*exp, round)
-    }
-}
-
-impl<S: Semantics, T: Semantics> FloatConvert<IeeeFloat<T>> for IeeeFloat<S> {
-    fn convert_r(self, round: Round, loses_info: &mut bool) -> StatusAnd<IeeeFloat<T>> {
-        let mut r = IeeeFloat {
-            sig: self.sig,
-            exp: self.exp,
-            category: self.category,
-            sign: self.sign,
-            marker: PhantomData,
-        };
-
-        // x86 has some unusual NaNs which cannot be represented in any other
-        // format; note them here.
-        fn is_x87_double_extended<S: Semantics>() -> bool {
-            S::QNAN_SIGNIFICAND == X87DoubleExtendedS::QNAN_SIGNIFICAND
-        }
-        let x87_special_nan = is_x87_double_extended::<S>()
-            && !is_x87_double_extended::<T>()
-            && r.category == Category::NaN
-            && (r.sig[0] & S::QNAN_SIGNIFICAND) != S::QNAN_SIGNIFICAND;
-
-        // If this is a truncation of a denormal number, and the target semantics
-        // has larger exponent range than the source semantics (this can happen
-        // when truncating from PowerPC double-double to double format), the
-        // right shift could lose result mantissa bits. Adjust exponent instead
-        // of performing excessive shift.
-        let mut shift = T::PRECISION as ExpInt - S::PRECISION as ExpInt;
-        if shift < 0 && r.is_finite_non_zero() {
-            let mut exp_change = sig::omsb(&r.sig) as ExpInt - S::PRECISION as ExpInt;
-            if r.exp + exp_change < T::MIN_EXP {
-                exp_change = T::MIN_EXP - r.exp;
-            }
-            if exp_change < shift {
-                exp_change = shift;
-            }
-            if exp_change < 0 {
-                shift -= exp_change;
-                r.exp += exp_change;
-            }
-        }
-
-        // If this is a truncation, perform the shift.
-        let loss = if shift < 0 && (r.is_finite_non_zero() || r.category == Category::NaN) {
-            sig::shift_right(&mut r.sig, &mut 0, -shift as usize)
-        } else {
-            Loss::ExactlyZero
-        };
-
-        // If this is an extension, perform the shift.
-        if shift > 0 && (r.is_finite_non_zero() || r.category == Category::NaN) {
-            sig::shift_left(&mut r.sig, &mut 0, shift as usize);
-        }
-
-        let status;
-        if r.is_finite_non_zero() {
-            r = unpack!(status=, r.normalize(round, loss));
-            *loses_info = status != Status::OK;
-        } else if r.category == Category::NaN {
-            *loses_info = loss != Loss::ExactlyZero || x87_special_nan;
-
-            // For x87 extended precision, we want to make a NaN, not a special NaN if
-            // the input wasn't special either.
-            if !x87_special_nan && is_x87_double_extended::<T>() {
-                sig::set_bit(&mut r.sig, T::PRECISION - 1);
-            }
-
-            // Convert of sNaN creates qNaN and raises an exception (invalid op).
-            // This also guarantees that a sNaN does not become Inf on a truncation
-            // that loses all payload bits.
-            if self.is_signaling() {
-                // Quiet signaling NaN.
-                sig::set_bit(&mut r.sig, T::QNAN_BIT);
-                status = Status::INVALID_OP;
-            } else {
-                status = Status::OK;
-            }
-        } else {
-            *loses_info = false;
-            status = Status::OK;
-        }
-
-        status.and(r)
-    }
-}
-
-impl<S: Semantics> IeeeFloat<S> {
-    /// Handle positive overflow. We either return infinity or
-    /// the largest finite number. For negative overflow,
-    /// negate the `round` argument before calling.
-    fn overflow_result(round: Round) -> StatusAnd<Self> {
-        match round {
-            // Infinity?
-            Round::NearestTiesToEven | Round::NearestTiesToAway | Round::TowardPositive => {
-                (Status::OVERFLOW | Status::INEXACT).and(Self::INFINITY)
-            }
-            // Otherwise we become the largest finite number.
-            Round::TowardNegative | Round::TowardZero => Status::INEXACT.and(Self::largest()),
-        }
-    }
-
-    /// Returns `true` if, when truncating the current number, with `bit` the
-    /// new LSB, with the given lost fraction and rounding mode, the result
-    /// would need to be rounded away from zero (i.e., by increasing the
-    /// signficand). This routine must work for `Category::Zero` of both signs, and
-    /// `Category::Normal` numbers.
-    fn round_away_from_zero(&self, round: Round, loss: Loss, bit: usize) -> bool {
-        // NaNs and infinities should not have lost fractions.
-        assert!(self.is_finite_non_zero() || self.is_zero());
-
-        // Current callers never pass this so we don't handle it.
-        assert_ne!(loss, Loss::ExactlyZero);
-
-        match round {
-            Round::NearestTiesToAway => loss == Loss::ExactlyHalf || loss == Loss::MoreThanHalf,
-            Round::NearestTiesToEven => {
-                if loss == Loss::MoreThanHalf {
-                    return true;
-                }
-
-                // Our zeros don't have a significand to test.
-                if loss == Loss::ExactlyHalf && self.category != Category::Zero {
-                    return sig::get_bit(&self.sig, bit);
-                }
-
-                false
-            }
-            Round::TowardZero => false,
-            Round::TowardPositive => !self.sign,
-            Round::TowardNegative => self.sign,
-        }
-    }
-
-    fn normalize(mut self, round: Round, mut loss: Loss) -> StatusAnd<Self> {
-        if !self.is_finite_non_zero() {
-            return Status::OK.and(self);
-        }
-
-        // Before rounding normalize the exponent of Category::Normal numbers.
-        let mut omsb = sig::omsb(&self.sig);
-
-        if omsb > 0 {
-            // OMSB is numbered from 1. We want to place it in the integer
-            // bit numbered PRECISION if possible, with a compensating change in
-            // the exponent.
-            let mut final_exp = self.exp.saturating_add(omsb as ExpInt - S::PRECISION as ExpInt);
-
-            // If the resulting exponent is too high, overflow according to
-            // the rounding mode.
-            if final_exp > S::MAX_EXP {
-                let round = if self.sign { -round } else { round };
-                return Self::overflow_result(round).map(|r| r.copy_sign(self));
-            }
-
-            // Subnormal numbers have exponent MIN_EXP, and their MSB
-            // is forced based on that.
-            if final_exp < S::MIN_EXP {
-                final_exp = S::MIN_EXP;
-            }
-
-            // Shifting left is easy as we don't lose precision.
-            if final_exp < self.exp {
-                assert_eq!(loss, Loss::ExactlyZero);
-
-                let exp_change = (self.exp - final_exp) as usize;
-                sig::shift_left(&mut self.sig, &mut self.exp, exp_change);
-
-                return Status::OK.and(self);
-            }
-
-            // Shift right and capture any new lost fraction.
-            if final_exp > self.exp {
-                let exp_change = (final_exp - self.exp) as usize;
-                loss = sig::shift_right(&mut self.sig, &mut self.exp, exp_change).combine(loss);
-
-                // Keep OMSB up-to-date.
-                omsb = omsb.saturating_sub(exp_change);
-            }
-        }
-
-        // Now round the number according to round given the lost
-        // fraction.
-
-        // As specified in IEEE 754, since we do not trap we do not report
-        // underflow for exact results.
-        if loss == Loss::ExactlyZero {
-            // Canonicalize zeros.
-            if omsb == 0 {
-                self.category = Category::Zero;
-            }
-
-            return Status::OK.and(self);
-        }
-
-        // Increment the significand if we're rounding away from zero.
-        if self.round_away_from_zero(round, loss, 0) {
-            if omsb == 0 {
-                self.exp = S::MIN_EXP;
-            }
-
-            // We should never overflow.
-            assert_eq!(sig::increment(&mut self.sig), 0);
-            omsb = sig::omsb(&self.sig);
-
-            // Did the significand increment overflow?
-            if omsb == S::PRECISION + 1 {
-                // Renormalize by incrementing the exponent and shifting our
-                // significand right one. However if we already have the
-                // maximum exponent we overflow to infinity.
-                if self.exp == S::MAX_EXP {
-                    self.category = Category::Infinity;
-
-                    return (Status::OVERFLOW | Status::INEXACT).and(self);
-                }
-
-                let _: Loss = sig::shift_right(&mut self.sig, &mut self.exp, 1);
-
-                return Status::INEXACT.and(self);
-            }
-        }
-
-        // The normal case - we were and are not denormal, and any
-        // significand increment above didn't overflow.
-        if omsb == S::PRECISION {
-            return Status::INEXACT.and(self);
-        }
-
-        // We have a non-zero denormal.
-        assert!(omsb < S::PRECISION);
-
-        // Canonicalize zeros.
-        if omsb == 0 {
-            self.category = Category::Zero;
-        }
-
-        // The Category::Zero case is a denormal that underflowed to zero.
-        (Status::UNDERFLOW | Status::INEXACT).and(self)
-    }
-
-    fn from_hexadecimal_string(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> {
-        let mut r = IeeeFloat {
-            sig: [0],
-            exp: 0,
-            category: Category::Normal,
-            sign: false,
-            marker: PhantomData,
-        };
-
-        let mut any_digits = false;
-        let mut has_exp = false;
-        let mut bit_pos = LIMB_BITS as isize;
-        let mut loss = None;
-
-        // Without leading or trailing zeros, irrespective of the dot.
-        let mut first_sig_digit = None;
-        let mut dot = s.len();
-
-        for (p, c) in s.char_indices() {
-            // Skip leading zeros and any (hexa)decimal point.
-            if c == '.' {
-                if dot != s.len() {
-                    return Err(ParseError("String contains multiple dots"));
-                }
-                dot = p;
-            } else if let Some(hex_value) = c.to_digit(16) {
-                any_digits = true;
-
-                if first_sig_digit.is_none() {
-                    if hex_value == 0 {
-                        continue;
-                    }
-                    first_sig_digit = Some(p);
-                }
-
-                // Store the number while we have space.
-                bit_pos -= 4;
-                if bit_pos >= 0 {
-                    r.sig[0] |= (hex_value as Limb) << bit_pos;
-                // If zero or one-half (the hexadecimal digit 8) are followed
-                // by non-zero, they're a little more than zero or one-half.
-                } else if let Some(ref mut loss) = loss {
-                    if hex_value != 0 {
-                        if *loss == Loss::ExactlyZero {
-                            *loss = Loss::LessThanHalf;
-                        }
-                        if *loss == Loss::ExactlyHalf {
-                            *loss = Loss::MoreThanHalf;
-                        }
-                    }
-                } else {
-                    loss = Some(match hex_value {
-                        0 => Loss::ExactlyZero,
-                        1..=7 => Loss::LessThanHalf,
-                        8 => Loss::ExactlyHalf,
-                        9..=15 => Loss::MoreThanHalf,
-                        _ => unreachable!(),
-                    });
-                }
-            } else if c == 'p' || c == 'P' {
-                if !any_digits {
-                    return Err(ParseError("Significand has no digits"));
-                }
-
-                if dot == s.len() {
-                    dot = p;
-                }
-
-                let mut chars = s[p + 1..].chars().peekable();
-
-                // Adjust for the given exponent.
-                let exp_minus = chars.peek() == Some(&'-');
-                if exp_minus || chars.peek() == Some(&'+') {
-                    chars.next();
-                }
-
-                for c in chars {
-                    if let Some(value) = c.to_digit(10) {
-                        has_exp = true;
-                        r.exp = r.exp.saturating_mul(10).saturating_add(value as ExpInt);
-                    } else {
-                        return Err(ParseError("Invalid character in exponent"));
-                    }
-                }
-                if !has_exp {
-                    return Err(ParseError("Exponent has no digits"));
-                }
-
-                if exp_minus {
-                    r.exp = -r.exp;
-                }
-
-                break;
-            } else {
-                return Err(ParseError("Invalid character in significand"));
-            }
-        }
-        if !any_digits {
-            return Err(ParseError("Significand has no digits"));
-        }
-
-        // Hex floats require an exponent but not a hexadecimal point.
-        if !has_exp {
-            return Err(ParseError("Hex strings require an exponent"));
-        }
-
-        // Ignore the exponent if we are zero.
-        let first_sig_digit = match first_sig_digit {
-            Some(p) => p,
-            None => return Ok(Status::OK.and(Self::ZERO)),
-        };
-
-        // Calculate the exponent adjustment implicit in the number of
-        // significant digits and adjust for writing the significand starting
-        // at the most significant nibble.
-        let exp_adjustment = if dot > first_sig_digit {
-            ExpInt::try_from(dot - first_sig_digit).unwrap()
-        } else {
-            -ExpInt::try_from(first_sig_digit - dot - 1).unwrap()
-        };
-        let exp_adjustment = exp_adjustment
-            .saturating_mul(4)
-            .saturating_sub(1)
-            .saturating_add(S::PRECISION as ExpInt)
-            .saturating_sub(LIMB_BITS as ExpInt);
-        r.exp = r.exp.saturating_add(exp_adjustment);
-
-        Ok(r.normalize(round, loss.unwrap_or(Loss::ExactlyZero)))
-    }
-
-    fn from_decimal_string(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> {
-        // Given a normal decimal floating point number of the form
-        //
-        //   dddd.dddd[eE][+-]ddd
-        //
-        // where the decimal point and exponent are optional, fill out the
-        // variables below. Exponent is appropriate if the significand is
-        // treated as an integer, and normalized_exp if the significand
-        // is taken to have the decimal point after a single leading
-        // non-zero digit.
-        //
-        // If the value is zero, first_sig_digit is None.
-
-        let mut any_digits = false;
-        let mut dec_exp = 0i32;
-
-        // Without leading or trailing zeros, irrespective of the dot.
-        let mut first_sig_digit = None;
-        let mut last_sig_digit = 0;
-        let mut dot = s.len();
-
-        for (p, c) in s.char_indices() {
-            if c == '.' {
-                if dot != s.len() {
-                    return Err(ParseError("String contains multiple dots"));
-                }
-                dot = p;
-            } else if let Some(dec_value) = c.to_digit(10) {
-                any_digits = true;
-
-                if dec_value != 0 {
-                    if first_sig_digit.is_none() {
-                        first_sig_digit = Some(p);
-                    }
-                    last_sig_digit = p;
-                }
-            } else if c == 'e' || c == 'E' {
-                if !any_digits {
-                    return Err(ParseError("Significand has no digits"));
-                }
-
-                if dot == s.len() {
-                    dot = p;
-                }
-
-                let mut chars = s[p + 1..].chars().peekable();
-
-                // Adjust for the given exponent.
-                let exp_minus = chars.peek() == Some(&'-');
-                if exp_minus || chars.peek() == Some(&'+') {
-                    chars.next();
-                }
-
-                any_digits = false;
-                for c in chars {
-                    if let Some(value) = c.to_digit(10) {
-                        any_digits = true;
-                        dec_exp = dec_exp.saturating_mul(10).saturating_add(value as i32);
-                    } else {
-                        return Err(ParseError("Invalid character in exponent"));
-                    }
-                }
-                if !any_digits {
-                    return Err(ParseError("Exponent has no digits"));
-                }
-
-                if exp_minus {
-                    dec_exp = -dec_exp;
-                }
-
-                break;
-            } else {
-                return Err(ParseError("Invalid character in significand"));
-            }
-        }
-        if !any_digits {
-            return Err(ParseError("Significand has no digits"));
-        }
-
-        // Test if we have a zero number allowing for non-zero exponents.
-        let first_sig_digit = match first_sig_digit {
-            Some(p) => p,
-            None => return Ok(Status::OK.and(Self::ZERO)),
-        };
-
-        // Adjust the exponents for any decimal point.
-        if dot > last_sig_digit {
-            dec_exp = dec_exp.saturating_add((dot - last_sig_digit - 1) as i32);
-        } else {
-            dec_exp = dec_exp.saturating_sub((last_sig_digit - dot) as i32);
-        }
-        let significand_digits = last_sig_digit - first_sig_digit + 1
-            - (dot > first_sig_digit && dot < last_sig_digit) as usize;
-        let normalized_exp = dec_exp.saturating_add(significand_digits as i32 - 1);
-
-        // Handle the cases where exponents are obviously too large or too
-        // small. Writing L for log 10 / log 2, a number d.ddddd*10^dec_exp
-        // definitely overflows if
-        //
-        //       (dec_exp - 1) * L >= MAX_EXP
-        //
-        // and definitely underflows to zero where
-        //
-        //       (dec_exp + 1) * L <= MIN_EXP - PRECISION
-        //
-        // With integer arithmetic the tightest bounds for L are
-        //
-        //       93/28 < L < 196/59            [ numerator <= 256 ]
-        //       42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
-
-        // Check for MAX_EXP.
-        if normalized_exp.saturating_sub(1).saturating_mul(42039) >= 12655 * S::MAX_EXP as i32 {
-            // Overflow and round.
-            return Ok(Self::overflow_result(round));
-        }
-
-        // Check for MIN_EXP.
-        if normalized_exp.saturating_add(1).saturating_mul(28738)
-            <= 8651 * (S::MIN_EXP as i32 - S::PRECISION as i32)
-        {
-            // Underflow to zero and round.
-            let r =
-                if round == Round::TowardPositive { IeeeFloat::SMALLEST } else { IeeeFloat::ZERO };
-            return Ok((Status::UNDERFLOW | Status::INEXACT).and(r));
-        }
-
-        // A tight upper bound on number of bits required to hold an
-        // N-digit decimal integer is N * 196 / 59. Allocate enough space
-        // to hold the full significand, and an extra limb required by
-        // tcMultiplyPart.
-        let max_limbs = limbs_for_bits(1 + 196 * significand_digits / 59);
-        let mut dec_sig: SmallVec<[Limb; 1]> = SmallVec::with_capacity(max_limbs);
-
-        // Convert to binary efficiently - we do almost all multiplication
-        // in a Limb. When this would overflow do we do a single
-        // bignum multiplication, and then revert again to multiplication
-        // in a Limb.
-        let mut chars = s[first_sig_digit..=last_sig_digit].chars();
-        loop {
-            let mut val = 0;
-            let mut multiplier = 1;
-
-            loop {
-                let dec_value = match chars.next() {
-                    Some('.') => continue,
-                    Some(c) => c.to_digit(10).unwrap(),
-                    None => break,
-                };
-
-                multiplier *= 10;
-                val = val * 10 + dec_value as Limb;
-
-                // The maximum number that can be multiplied by ten with any
-                // digit added without overflowing a Limb.
-                if multiplier > (!0 - 9) / 10 {
-                    break;
-                }
-            }
-
-            // If we've consumed no digits, we're done.
-            if multiplier == 1 {
-                break;
-            }
-
-            // Multiply out the current limb.
-            let mut carry = val;
-            for x in &mut dec_sig {
-                let [low, mut high] = sig::widening_mul(*x, multiplier);
-
-                // Now add carry.
-                let (low, overflow) = low.overflowing_add(carry);
-                high += overflow as Limb;
-
-                *x = low;
-                carry = high;
-            }
-
-            // If we had carry, we need another limb (likely but not guaranteed).
-            if carry > 0 {
-                dec_sig.push(carry);
-            }
-        }
-
-        // Calculate pow(5, abs(dec_exp)) into `pow5_full`.
-        // The *_calc Vec's are reused scratch space, as an optimization.
-        let (pow5_full, mut pow5_calc, mut sig_calc, mut sig_scratch_calc) = {
-            let mut power = dec_exp.abs() as usize;
-
-            const FIRST_EIGHT_POWERS: [Limb; 8] = [1, 5, 25, 125, 625, 3125, 15625, 78125];
-
-            let mut p5_scratch = smallvec![];
-            let mut p5: SmallVec<[Limb; 1]> = smallvec![FIRST_EIGHT_POWERS[4]];
-
-            let mut r_scratch = smallvec![];
-            let mut r: SmallVec<[Limb; 1]> = smallvec![FIRST_EIGHT_POWERS[power & 7]];
-            power >>= 3;
-
-            while power > 0 {
-                // Calculate pow(5,pow(2,n+3)).
-                p5_scratch.resize(p5.len() * 2, 0);
-                let _: Loss = sig::mul(&mut p5_scratch, &mut 0, &p5, &p5, p5.len() * 2 * LIMB_BITS);
-                while p5_scratch.last() == Some(&0) {
-                    p5_scratch.pop();
-                }
-                mem::swap(&mut p5, &mut p5_scratch);
-
-                if power & 1 != 0 {
-                    r_scratch.resize(r.len() + p5.len(), 0);
-                    let _: Loss =
-                        sig::mul(&mut r_scratch, &mut 0, &r, &p5, (r.len() + p5.len()) * LIMB_BITS);
-                    while r_scratch.last() == Some(&0) {
-                        r_scratch.pop();
-                    }
-                    mem::swap(&mut r, &mut r_scratch);
-                }
-
-                power >>= 1;
-            }
-
-            (r, r_scratch, p5, p5_scratch)
-        };
-
-        // Attempt dec_sig * 10^dec_exp with increasing precision.
-        let mut attempt = 0;
-        loop {
-            let calc_precision = (LIMB_BITS << attempt) - 1;
-            attempt += 1;
-
-            let calc_normal_from_limbs = |sig: &mut SmallVec<[Limb; 1]>,
-                                          limbs: &[Limb]|
-             -> StatusAnd<ExpInt> {
-                sig.resize(limbs_for_bits(calc_precision), 0);
-                let (mut loss, mut exp) = sig::from_limbs(sig, limbs, calc_precision);
-
-                // Before rounding normalize the exponent of Category::Normal numbers.
-                let mut omsb = sig::omsb(sig);
-
-                assert_ne!(omsb, 0);
-
-                // OMSB is numbered from 1. We want to place it in the integer
-                // bit numbered PRECISION if possible, with a compensating change in
-                // the exponent.
-                let final_exp = exp.saturating_add(omsb as ExpInt - calc_precision as ExpInt);
-
-                // Shifting left is easy as we don't lose precision.
-                if final_exp < exp {
-                    assert_eq!(loss, Loss::ExactlyZero);
-
-                    let exp_change = (exp - final_exp) as usize;
-                    sig::shift_left(sig, &mut exp, exp_change);
-
-                    return Status::OK.and(exp);
-                }
-
-                // Shift right and capture any new lost fraction.
-                if final_exp > exp {
-                    let exp_change = (final_exp - exp) as usize;
-                    loss = sig::shift_right(sig, &mut exp, exp_change).combine(loss);
-
-                    // Keep OMSB up-to-date.
-                    omsb = omsb.saturating_sub(exp_change);
-                }
-
-                assert_eq!(omsb, calc_precision);
-
-                // Now round the number according to round given the lost
-                // fraction.
-
-                // As specified in IEEE 754, since we do not trap we do not report
-                // underflow for exact results.
-                if loss == Loss::ExactlyZero {
-                    return Status::OK.and(exp);
-                }
-
-                // Increment the significand if we're rounding away from zero.
-                if loss == Loss::MoreThanHalf || loss == Loss::ExactlyHalf && sig::get_bit(sig, 0) {
-                    // We should never overflow.
-                    assert_eq!(sig::increment(sig), 0);
-                    omsb = sig::omsb(sig);
-
-                    // Did the significand increment overflow?
-                    if omsb == calc_precision + 1 {
-                        let _: Loss = sig::shift_right(sig, &mut exp, 1);
-
-                        return Status::INEXACT.and(exp);
-                    }
-                }
-
-                // The normal case - we were and are not denormal, and any
-                // significand increment above didn't overflow.
-                Status::INEXACT.and(exp)
-            };
-
-            let status;
-            let mut exp = unpack!(status=,
-                calc_normal_from_limbs(&mut sig_calc, &dec_sig));
-            let pow5_status;
-            let pow5_exp = unpack!(pow5_status=,
-                calc_normal_from_limbs(&mut pow5_calc, &pow5_full));
-
-            // Add dec_exp, as 10^n = 5^n * 2^n.
-            exp += dec_exp as ExpInt;
-
-            let mut used_bits = S::PRECISION;
-            let mut truncated_bits = calc_precision - used_bits;
-
-            let half_ulp_err1 = (status != Status::OK) as Limb;
-            let (calc_loss, half_ulp_err2);
-            if dec_exp >= 0 {
-                exp += pow5_exp;
-
-                sig_scratch_calc.resize(sig_calc.len() + pow5_calc.len(), 0);
-                calc_loss = sig::mul(
-                    &mut sig_scratch_calc,
-                    &mut exp,
-                    &sig_calc,
-                    &pow5_calc,
-                    calc_precision,
-                );
-                mem::swap(&mut sig_calc, &mut sig_scratch_calc);
-
-                half_ulp_err2 = (pow5_status != Status::OK) as Limb;
-            } else {
-                exp -= pow5_exp;
-
-                sig_scratch_calc.resize(sig_calc.len(), 0);
-                calc_loss = sig::div(
-                    &mut sig_scratch_calc,
-                    &mut exp,
-                    &mut sig_calc,
-                    &mut pow5_calc,
-                    calc_precision,
-                );
-                mem::swap(&mut sig_calc, &mut sig_scratch_calc);
-
-                // Denormal numbers have less precision.
-                if exp < S::MIN_EXP {
-                    truncated_bits += (S::MIN_EXP - exp) as usize;
-                    used_bits = calc_precision.saturating_sub(truncated_bits);
-                }
-                // Extra half-ulp lost in reciprocal of exponent.
-                half_ulp_err2 =
-                    2 * (pow5_status != Status::OK || calc_loss != Loss::ExactlyZero) as Limb;
-            }
-
-            // Both sig::mul and sig::div return the
-            // result with the integer bit set.
-            assert!(sig::get_bit(&sig_calc, calc_precision - 1));
-
-            // The error from the true value, in half-ulps, on multiplying two
-            // floating point numbers, which differ from the value they
-            // approximate by at most half_ulp_err1 and half_ulp_err2 half-ulps, is strictly less
-            // than the returned value.
-            //
-            // See "How to Read Floating Point Numbers Accurately" by William D Clinger.
-            assert!(half_ulp_err1 < 2 || half_ulp_err2 < 2 || (half_ulp_err1 + half_ulp_err2 < 8));
-
-            let inexact = (calc_loss != Loss::ExactlyZero) as Limb;
-            let half_ulp_err = if half_ulp_err1 + half_ulp_err2 == 0 {
-                inexact * 2 // <= inexact half-ulps.
-            } else {
-                inexact + 2 * (half_ulp_err1 + half_ulp_err2)
-            };
-
-            let ulps_from_boundary = {
-                let bits = calc_precision - used_bits - 1;
-
-                let i = bits / LIMB_BITS;
-                let limb = sig_calc[i] & (!0 >> (LIMB_BITS - 1 - bits % LIMB_BITS));
-                let boundary = match round {
-                    Round::NearestTiesToEven | Round::NearestTiesToAway => 1 << (bits % LIMB_BITS),
-                    _ => 0,
-                };
-                if i == 0 {
-                    let delta = limb.wrapping_sub(boundary);
-                    cmp::min(delta, delta.wrapping_neg())
-                } else if limb == boundary {
-                    if !sig::is_all_zeros(&sig_calc[1..i]) {
-                        !0 // A lot.
-                    } else {
-                        sig_calc[0]
-                    }
-                } else if limb == boundary.wrapping_sub(1) {
-                    if sig_calc[1..i].iter().any(|&x| x.wrapping_neg() != 1) {
-                        !0 // A lot.
-                    } else {
-                        sig_calc[0].wrapping_neg()
-                    }
-                } else {
-                    !0 // A lot.
-                }
-            };
-
-            // Are we guaranteed to round correctly if we truncate?
-            if ulps_from_boundary.saturating_mul(2) >= half_ulp_err {
-                let mut r = IeeeFloat {
-                    sig: [0],
-                    exp,
-                    category: Category::Normal,
-                    sign: false,
-                    marker: PhantomData,
-                };
-                sig::extract(&mut r.sig, &sig_calc, used_bits, calc_precision - used_bits);
-                // If we extracted less bits above we must adjust our exponent
-                // to compensate for the implicit right shift.
-                r.exp += (S::PRECISION - used_bits) as ExpInt;
-                let loss = Loss::through_truncation(&sig_calc, truncated_bits);
-                return Ok(r.normalize(round, loss));
-            }
-        }
-    }
-}
-
-impl Loss {
-    /// Combine the effect of two lost fractions.
-    fn combine(self, less_significant: Loss) -> Loss {
-        let mut more_significant = self;
-        if less_significant != Loss::ExactlyZero {
-            if more_significant == Loss::ExactlyZero {
-                more_significant = Loss::LessThanHalf;
-            } else if more_significant == Loss::ExactlyHalf {
-                more_significant = Loss::MoreThanHalf;
-            }
-        }
-
-        more_significant
-    }
-
-    /// Returns the fraction lost were a bignum truncated losing the least
-    /// significant `bits` bits.
-    fn through_truncation(limbs: &[Limb], bits: usize) -> Loss {
-        if bits == 0 {
-            return Loss::ExactlyZero;
-        }
-
-        let half_bit = bits - 1;
-        let half_limb = half_bit / LIMB_BITS;
-        let (half_limb, rest) = if half_limb < limbs.len() {
-            (limbs[half_limb], &limbs[..half_limb])
-        } else {
-            (0, limbs)
-        };
-        let half = 1 << (half_bit % LIMB_BITS);
-        let has_half = half_limb & half != 0;
-        let has_rest = half_limb & (half - 1) != 0 || !sig::is_all_zeros(rest);
-
-        match (has_half, has_rest) {
-            (false, false) => Loss::ExactlyZero,
-            (false, true) => Loss::LessThanHalf,
-            (true, false) => Loss::ExactlyHalf,
-            (true, true) => Loss::MoreThanHalf,
-        }
-    }
-}
-
-/// Implementation details of IeeeFloat significands, such as big integer arithmetic.
-/// As a rule of thumb, no functions in this module should dynamically allocate.
-mod sig {
-    use super::{limbs_for_bits, ExpInt, Limb, Loss, LIMB_BITS};
-    use core::cmp::Ordering;
-    use core::iter;
-    use core::mem;
-
-    pub(super) fn is_all_zeros(limbs: &[Limb]) -> bool {
-        limbs.iter().all(|&l| l == 0)
-    }
-
-    /// One, not zero, based LSB. That is, returns 0 for a zeroed significand.
-    pub(super) fn olsb(limbs: &[Limb]) -> usize {
-        limbs
-            .iter()
-            .enumerate()
-            .find(|(_, &limb)| limb != 0)
-            .map_or(0, |(i, limb)| i * LIMB_BITS + limb.trailing_zeros() as usize + 1)
-    }
-
-    /// One, not zero, based MSB. That is, returns 0 for a zeroed significand.
-    pub(super) fn omsb(limbs: &[Limb]) -> usize {
-        limbs
-            .iter()
-            .enumerate()
-            .rfind(|(_, &limb)| limb != 0)
-            .map_or(0, |(i, limb)| (i + 1) * LIMB_BITS - limb.leading_zeros() as usize)
-    }
-
-    /// Comparison (unsigned) of two significands.
-    pub(super) fn cmp(a: &[Limb], b: &[Limb]) -> Ordering {
-        assert_eq!(a.len(), b.len());
-        for (a, b) in a.iter().zip(b).rev() {
-            match a.cmp(b) {
-                Ordering::Equal => {}
-                o => return o,
-            }
-        }
-
-        Ordering::Equal
-    }
-
-    /// Extracts the given bit.
-    pub(super) fn get_bit(limbs: &[Limb], bit: usize) -> bool {
-        limbs[bit / LIMB_BITS] & (1 << (bit % LIMB_BITS)) != 0
-    }
-
-    /// Sets the given bit.
-    pub(super) fn set_bit(limbs: &mut [Limb], bit: usize) {
-        limbs[bit / LIMB_BITS] |= 1 << (bit % LIMB_BITS);
-    }
-
-    /// Clear the given bit.
-    pub(super) fn clear_bit(limbs: &mut [Limb], bit: usize) {
-        limbs[bit / LIMB_BITS] &= !(1 << (bit % LIMB_BITS));
-    }
-
-    /// Shifts `dst` left `bits` bits, subtract `bits` from its exponent.
-    pub(super) fn shift_left(dst: &mut [Limb], exp: &mut ExpInt, bits: usize) {
-        if bits > 0 {
-            // Our exponent should not underflow.
-            *exp = exp.checked_sub(bits as ExpInt).unwrap();
-
-            // Jump is the inter-limb jump; shift is the intra-limb shift.
-            let jump = bits / LIMB_BITS;
-            let shift = bits % LIMB_BITS;
-
-            for i in (0..dst.len()).rev() {
-                let mut limb;
-
-                if i < jump {
-                    limb = 0;
-                } else {
-                    // dst[i] comes from the two limbs src[i - jump] and, if we have
-                    // an intra-limb shift, src[i - jump - 1].
-                    limb = dst[i - jump];
-                    if shift > 0 {
-                        limb <<= shift;
-                        if i > jump {
-                            limb |= dst[i - jump - 1] >> (LIMB_BITS - shift);
-                        }
-                    }
-                }
-
-                dst[i] = limb;
-            }
-        }
-    }
-
-    /// Shifts `dst` right `bits` bits noting lost fraction.
-    pub(super) fn shift_right(dst: &mut [Limb], exp: &mut ExpInt, bits: usize) -> Loss {
-        let loss = Loss::through_truncation(dst, bits);
-
-        if bits > 0 {
-            // Our exponent should not overflow.
-            *exp = exp.checked_add(bits as ExpInt).unwrap();
-
-            // Jump is the inter-limb jump; shift is the intra-limb shift.
-            let jump = bits / LIMB_BITS;
-            let shift = bits % LIMB_BITS;
-
-            // Perform the shift. This leaves the most significant `bits` bits
-            // of the result at zero.
-            for i in 0..dst.len() {
-                let mut limb;
-
-                if i + jump >= dst.len() {
-                    limb = 0;
-                } else {
-                    limb = dst[i + jump];
-                    if shift > 0 {
-                        limb >>= shift;
-                        if i + jump + 1 < dst.len() {
-                            limb |= dst[i + jump + 1] << (LIMB_BITS - shift);
-                        }
-                    }
-                }
-
-                dst[i] = limb;
-            }
-        }
-
-        loss
-    }
-
-    /// Copies the bit vector of width `src_bits` from `src`, starting at bit SRC_LSB,
-    /// to `dst`, such that the bit SRC_LSB becomes the least significant bit of `dst`.
-    /// All high bits above `src_bits` in `dst` are zero-filled.
-    pub(super) fn extract(dst: &mut [Limb], src: &[Limb], src_bits: usize, src_lsb: usize) {
-        if src_bits == 0 {
-            return;
-        }
-
-        let dst_limbs = limbs_for_bits(src_bits);
-        assert!(dst_limbs <= dst.len());
-
-        let src = &src[src_lsb / LIMB_BITS..];
-        dst[..dst_limbs].copy_from_slice(&src[..dst_limbs]);
-
-        let shift = src_lsb % LIMB_BITS;
-        let _: Loss = shift_right(&mut dst[..dst_limbs], &mut 0, shift);
-
-        // We now have (dst_limbs * LIMB_BITS - shift) bits from `src`
-        // in `dst`.  If this is less that src_bits, append the rest, else
-        // clear the high bits.
-        let n = dst_limbs * LIMB_BITS - shift;
-        if n < src_bits {
-            let mask = (1 << (src_bits - n)) - 1;
-            dst[dst_limbs - 1] |= (src[dst_limbs] & mask) << (n % LIMB_BITS);
-        } else if n > src_bits && src_bits % LIMB_BITS > 0 {
-            dst[dst_limbs - 1] &= (1 << (src_bits % LIMB_BITS)) - 1;
-        }
-
-        // Clear high limbs.
-        for x in &mut dst[dst_limbs..] {
-            *x = 0;
-        }
-    }
-
-    /// We want the most significant PRECISION bits of `src`. There may not
-    /// be that many; extract what we can.
-    pub(super) fn from_limbs(dst: &mut [Limb], src: &[Limb], precision: usize) -> (Loss, ExpInt) {
-        let omsb = omsb(src);
-
-        if precision <= omsb {
-            extract(dst, src, precision, omsb - precision);
-            (Loss::through_truncation(src, omsb - precision), omsb as ExpInt - 1)
-        } else {
-            extract(dst, src, omsb, 0);
-            (Loss::ExactlyZero, precision as ExpInt - 1)
-        }
-    }
-
-    /// For every consecutive chunk of `bits` bits from `limbs`,
-    /// going from most significant to the least significant bits,
-    /// call `f` to transform those bits and store the result back.
-    pub(super) fn each_chunk<F: FnMut(Limb) -> Limb>(limbs: &mut [Limb], bits: usize, mut f: F) {
-        assert_eq!(LIMB_BITS % bits, 0);
-        for limb in limbs.iter_mut().rev() {
-            let mut r = 0;
-            for i in (0..LIMB_BITS / bits).rev() {
-                r |= f((*limb >> (i * bits)) & ((1 << bits) - 1)) << (i * bits);
-            }
-            *limb = r;
-        }
-    }
-
-    /// Increment in-place, return the carry flag.
-    pub(super) fn increment(dst: &mut [Limb]) -> Limb {
-        for x in dst {
-            *x = x.wrapping_add(1);
-            if *x != 0 {
-                return 0;
-            }
-        }
-
-        1
-    }
-
-    /// Decrement in-place, return the borrow flag.
-    pub(super) fn decrement(dst: &mut [Limb]) -> Limb {
-        for x in dst {
-            *x = x.wrapping_sub(1);
-            if *x != !0 {
-                return 0;
-            }
-        }
-
-        1
-    }
-
-    /// `a += b + c` where `c` is zero or one. Returns the carry flag.
-    pub(super) fn add(a: &mut [Limb], b: &[Limb], mut c: Limb) -> Limb {
-        assert!(c <= 1);
-
-        for (a, &b) in iter::zip(a, b) {
-            let (r, overflow) = a.overflowing_add(b);
-            let (r, overflow2) = r.overflowing_add(c);
-            *a = r;
-            c = (overflow | overflow2) as Limb;
-        }
-
-        c
-    }
-
-    /// `a -= b + c` where `c` is zero or one. Returns the borrow flag.
-    pub(super) fn sub(a: &mut [Limb], b: &[Limb], mut c: Limb) -> Limb {
-        assert!(c <= 1);
-
-        for (a, &b) in iter::zip(a, b) {
-            let (r, overflow) = a.overflowing_sub(b);
-            let (r, overflow2) = r.overflowing_sub(c);
-            *a = r;
-            c = (overflow | overflow2) as Limb;
-        }
-
-        c
-    }
-
-    /// `a += b` or `a -= b`. Does not preserve `b`.
-    pub(super) fn add_or_sub(
-        a_sig: &mut [Limb],
-        a_exp: &mut ExpInt,
-        a_sign: &mut bool,
-        b_sig: &mut [Limb],
-        b_exp: ExpInt,
-        b_sign: bool,
-    ) -> Loss {
-        // Are we bigger exponent-wise than the RHS?
-        let bits = *a_exp - b_exp;
-
-        // Determine if the operation on the absolute values is effectively
-        // an addition or subtraction.
-        // Subtraction is more subtle than one might naively expect.
-        if *a_sign ^ b_sign {
-            let (reverse, loss);
-
-            if bits == 0 {
-                reverse = cmp(a_sig, b_sig) == Ordering::Less;
-                loss = Loss::ExactlyZero;
-            } else if bits > 0 {
-                loss = shift_right(b_sig, &mut 0, (bits - 1) as usize);
-                shift_left(a_sig, a_exp, 1);
-                reverse = false;
-            } else {
-                loss = shift_right(a_sig, a_exp, (-bits - 1) as usize);
-                shift_left(b_sig, &mut 0, 1);
-                reverse = true;
-            }
-
-            let borrow = (loss != Loss::ExactlyZero) as Limb;
-            if reverse {
-                // The code above is intended to ensure that no borrow is necessary.
-                assert_eq!(sub(b_sig, a_sig, borrow), 0);
-                a_sig.copy_from_slice(b_sig);
-                *a_sign = !*a_sign;
-            } else {
-                // The code above is intended to ensure that no borrow is necessary.
-                assert_eq!(sub(a_sig, b_sig, borrow), 0);
-            }
-
-            // Invert the lost fraction - it was on the RHS and subtracted.
-            match loss {
-                Loss::LessThanHalf => Loss::MoreThanHalf,
-                Loss::MoreThanHalf => Loss::LessThanHalf,
-                _ => loss,
-            }
-        } else {
-            let loss = if bits > 0 {
-                shift_right(b_sig, &mut 0, bits as usize)
-            } else {
-                shift_right(a_sig, a_exp, -bits as usize)
-            };
-            // We have a guard bit; generating a carry cannot happen.
-            assert_eq!(add(a_sig, b_sig, 0), 0);
-            loss
-        }
-    }
-
-    /// `[low, high] = a * b`.
-    ///
-    /// This cannot overflow, because
-    ///
-    /// `(n - 1) * (n - 1) + 2 * (n - 1) == (n - 1) * (n + 1)`
-    ///
-    /// which is less than n<sup>2</sup>.
-    pub(super) fn widening_mul(a: Limb, b: Limb) -> [Limb; 2] {
-        let mut wide = [0, 0];
-
-        if a == 0 || b == 0 {
-            return wide;
-        }
-
-        const HALF_BITS: usize = LIMB_BITS / 2;
-
-        let select = |limb, i| (limb >> (i * HALF_BITS)) & ((1 << HALF_BITS) - 1);
-        for i in 0..2 {
-            for j in 0..2 {
-                let mut x = [select(a, i) * select(b, j), 0];
-                shift_left(&mut x, &mut 0, (i + j) * HALF_BITS);
-                assert_eq!(add(&mut wide, &x, 0), 0);
-            }
-        }
-
-        wide
-    }
-
-    /// `dst = a * b` (for normal `a` and `b`). Returns the lost fraction.
-    pub(super) fn mul<'a>(
-        dst: &mut [Limb],
-        exp: &mut ExpInt,
-        mut a: &'a [Limb],
-        mut b: &'a [Limb],
-        precision: usize,
-    ) -> Loss {
-        // Put the narrower number on the `a` for less loops below.
-        if a.len() > b.len() {
-            mem::swap(&mut a, &mut b);
-        }
-
-        for x in &mut dst[..b.len()] {
-            *x = 0;
-        }
-
-        for i in 0..a.len() {
-            let mut carry = 0;
-            for j in 0..b.len() {
-                let [low, mut high] = widening_mul(a[i], b[j]);
-
-                // Now add carry.
-                let (low, overflow) = low.overflowing_add(carry);
-                high += overflow as Limb;
-
-                // And now `dst[i + j]`, and store the new low part there.
-                let (low, overflow) = low.overflowing_add(dst[i + j]);
-                high += overflow as Limb;
-
-                dst[i + j] = low;
-                carry = high;
-            }
-            dst[i + b.len()] = carry;
-        }
-
-        // Assume the operands involved in the multiplication are single-precision
-        // FP, and the two multiplicants are:
-        //     a = a23 . a22 ... a0 * 2^e1
-        //     b = b23 . b22 ... b0 * 2^e2
-        // the result of multiplication is:
-        //     dst = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
-        // Note that there are three significant bits at the left-hand side of the
-        // radix point: two for the multiplication, and an overflow bit for the
-        // addition (that will always be zero at this point). Move the radix point
-        // toward left by two bits, and adjust exponent accordingly.
-        *exp += 2;
-
-        // Convert the result having "2 * precision" significant-bits back to the one
-        // having "precision" significant-bits. First, move the radix point from
-        // poision "2*precision - 1" to "precision - 1". The exponent need to be
-        // adjusted by "2*precision - 1" - "precision - 1" = "precision".
-        *exp -= precision as ExpInt + 1;
-
-        // In case MSB resides at the left-hand side of radix point, shift the
-        // mantissa right by some amount to make sure the MSB reside right before
-        // the radix point (i.e., "MSB . rest-significant-bits").
-        //
-        // Note that the result is not normalized when "omsb < precision". So, the
-        // caller needs to call IeeeFloat::normalize() if normalized value is
-        // expected.
-        let omsb = omsb(dst);
-        if omsb <= precision { Loss::ExactlyZero } else { shift_right(dst, exp, omsb - precision) }
-    }
-
-    /// `quotient = dividend / divisor`. Returns the lost fraction.
-    /// Does not preserve `dividend` or `divisor`.
-    pub(super) fn div(
-        quotient: &mut [Limb],
-        exp: &mut ExpInt,
-        dividend: &mut [Limb],
-        divisor: &mut [Limb],
-        precision: usize,
-    ) -> Loss {
-        // Normalize the divisor.
-        let bits = precision - omsb(divisor);
-        shift_left(divisor, &mut 0, bits);
-        *exp += bits as ExpInt;
-
-        // Normalize the dividend.
-        let bits = precision - omsb(dividend);
-        shift_left(dividend, exp, bits);
-
-        // Division by 1.
-        let olsb_divisor = olsb(divisor);
-        if olsb_divisor == precision {
-            quotient.copy_from_slice(dividend);
-            return Loss::ExactlyZero;
-        }
-
-        // Ensure the dividend >= divisor initially for the loop below.
-        // Incidentally, this means that the division loop below is
-        // guaranteed to set the integer bit to one.
-        if cmp(dividend, divisor) == Ordering::Less {
-            shift_left(dividend, exp, 1);
-            assert_ne!(cmp(dividend, divisor), Ordering::Less)
-        }
-
-        // Helper for figuring out the lost fraction.
-        let lost_fraction = |dividend: &[Limb], divisor: &[Limb]| match cmp(dividend, divisor) {
-            Ordering::Greater => Loss::MoreThanHalf,
-            Ordering::Equal => Loss::ExactlyHalf,
-            Ordering::Less => {
-                if is_all_zeros(dividend) {
-                    Loss::ExactlyZero
-                } else {
-                    Loss::LessThanHalf
-                }
-            }
-        };
-
-        // Try to perform a (much faster) short division for small divisors.
-        let divisor_bits = precision - (olsb_divisor - 1);
-        macro_rules! try_short_div {
-            ($W:ty, $H:ty, $half:expr) => {
-                if divisor_bits * 2 <= $half {
-                    // Extract the small divisor.
-                    let _: Loss = shift_right(divisor, &mut 0, olsb_divisor - 1);
-                    let divisor = divisor[0] as $H as $W;
-
-                    // Shift the dividend to produce a quotient with the unit bit set.
-                    let top_limb = *dividend.last().unwrap();
-                    let mut rem = (top_limb >> (LIMB_BITS - (divisor_bits - 1))) as $H;
-                    shift_left(dividend, &mut 0, divisor_bits - 1);
-
-                    // Apply short division in place on $H (of $half bits) chunks.
-                    each_chunk(dividend, $half, |chunk| {
-                        let chunk = chunk as $H;
-                        let combined = ((rem as $W) << $half) | (chunk as $W);
-                        rem = (combined % divisor) as $H;
-                        (combined / divisor) as $H as Limb
-                    });
-                    quotient.copy_from_slice(dividend);
-
-                    return lost_fraction(&[(rem as Limb) << 1], &[divisor as Limb]);
-                }
-            };
-        }
-
-        try_short_div!(u32, u16, 16);
-        try_short_div!(u64, u32, 32);
-        try_short_div!(u128, u64, 64);
-
-        // Zero the quotient before setting bits in it.
-        for x in &mut quotient[..limbs_for_bits(precision)] {
-            *x = 0;
-        }
-
-        // Long division.
-        for bit in (0..precision).rev() {
-            if cmp(dividend, divisor) != Ordering::Less {
-                sub(dividend, divisor, 0);
-                set_bit(quotient, bit);
-            }
-            shift_left(dividend, &mut 0, 1);
-        }
-
-        lost_fraction(dividend, divisor)
-    }
-}