diff options
Diffstat (limited to 'compiler/rustc_apfloat/src/ieee.rs')
| -rw-r--r-- | compiler/rustc_apfloat/src/ieee.rs | 2757 |
1 files changed, 0 insertions, 2757 deletions
diff --git a/compiler/rustc_apfloat/src/ieee.rs b/compiler/rustc_apfloat/src/ieee.rs deleted file mode 100644 index 2286712f025..00000000000 --- a/compiler/rustc_apfloat/src/ieee.rs +++ /dev/null @@ -1,2757 +0,0 @@ -use crate::{Category, ExpInt, IEK_INF, IEK_NAN, IEK_ZERO}; -use crate::{Float, FloatConvert, ParseError, Round, Status, StatusAnd}; - -use core::cmp::{self, Ordering}; -use core::fmt::{self, Write}; -use core::marker::PhantomData; -use core::mem; -use core::ops::Neg; -use smallvec::{smallvec, SmallVec}; - -#[must_use] -pub struct IeeeFloat<S> { - /// Absolute significand value (including the integer bit). - sig: [Limb; 1], - - /// The signed unbiased exponent of the value. - exp: ExpInt, - - /// What kind of floating point number this is. - category: Category, - - /// Sign bit of the number. - sign: bool, - - marker: PhantomData<S>, -} - -/// Fundamental unit of big integer arithmetic, but also -/// large to store the largest significands by itself. -type Limb = u128; -const LIMB_BITS: usize = 128; -fn limbs_for_bits(bits: usize) -> usize { - (bits + LIMB_BITS - 1) / LIMB_BITS -} - -/// Enum that represents what fraction of the LSB truncated bits of an fp number -/// represent. -/// -/// This essentially combines the roles of guard and sticky bits. -#[must_use] -#[derive(Copy, Clone, PartialEq, Eq, Debug)] -enum Loss { - // Example of truncated bits: - ExactlyZero, // 000000 - LessThanHalf, // 0xxxxx x's not all zero - ExactlyHalf, // 100000 - MoreThanHalf, // 1xxxxx x's not all zero -} - -/// Represents floating point arithmetic semantics. -pub trait Semantics: Sized { - /// Total number of bits in the in-memory format. - const BITS: usize; - - /// Number of bits in the significand. This includes the integer bit. - const PRECISION: usize; - - /// The largest E such that 2<sup>E</sup> is representable; this matches the - /// definition of IEEE 754. - const MAX_EXP: ExpInt; - - /// The smallest E such that 2<sup>E</sup> is a normalized number; this - /// matches the definition of IEEE 754. - const MIN_EXP: ExpInt = -Self::MAX_EXP + 1; - - /// The significand bit that marks NaN as quiet. - const QNAN_BIT: usize = Self::PRECISION - 2; - - /// The significand bitpattern to mark a NaN as quiet. - /// NOTE: for X87DoubleExtended we need to set two bits instead of 2. - const QNAN_SIGNIFICAND: Limb = 1 << Self::QNAN_BIT; - - fn from_bits(bits: u128) -> IeeeFloat<Self> { - assert!(Self::BITS > Self::PRECISION); - - let sign = bits & (1 << (Self::BITS - 1)); - let exponent = (bits & !sign) >> (Self::PRECISION - 1); - let mut r = IeeeFloat { - sig: [bits & ((1 << (Self::PRECISION - 1)) - 1)], - // Convert the exponent from its bias representation to a signed integer. - exp: (exponent as ExpInt) - Self::MAX_EXP, - category: Category::Zero, - sign: sign != 0, - marker: PhantomData, - }; - - if r.exp == Self::MIN_EXP - 1 && r.sig == [0] { - // Exponent, significand meaningless. - r.category = Category::Zero; - } else if r.exp == Self::MAX_EXP + 1 && r.sig == [0] { - // Exponent, significand meaningless. - r.category = Category::Infinity; - } else if r.exp == Self::MAX_EXP + 1 && r.sig != [0] { - // Sign, exponent, significand meaningless. - r.category = Category::NaN; - } else { - r.category = Category::Normal; - if r.exp == Self::MIN_EXP - 1 { - // Denormal. - r.exp = Self::MIN_EXP; - } else { - // Set integer bit. - sig::set_bit(&mut r.sig, Self::PRECISION - 1); - } - } - - r - } - - fn to_bits(x: IeeeFloat<Self>) -> u128 { - assert!(Self::BITS > Self::PRECISION); - - // Split integer bit from significand. - let integer_bit = sig::get_bit(&x.sig, Self::PRECISION - 1); - let mut significand = x.sig[0] & ((1 << (Self::PRECISION - 1)) - 1); - let exponent = match x.category { - Category::Normal => { - if x.exp == Self::MIN_EXP && !integer_bit { - // Denormal. - Self::MIN_EXP - 1 - } else { - x.exp - } - } - Category::Zero => { - // FIXME(eddyb) Maybe we should guarantee an invariant instead? - significand = 0; - Self::MIN_EXP - 1 - } - Category::Infinity => { - // FIXME(eddyb) Maybe we should guarantee an invariant instead? - significand = 0; - Self::MAX_EXP + 1 - } - Category::NaN => Self::MAX_EXP + 1, - }; - - // Convert the exponent from a signed integer to its bias representation. - let exponent = (exponent + Self::MAX_EXP) as u128; - - ((x.sign as u128) << (Self::BITS - 1)) | (exponent << (Self::PRECISION - 1)) | significand - } -} - -impl<S> Copy for IeeeFloat<S> {} -impl<S> Clone for IeeeFloat<S> { - fn clone(&self) -> Self { - *self - } -} - -macro_rules! ieee_semantics { - ($($name:ident = $sem:ident($bits:tt : $exp_bits:tt)),*) => { - $(pub struct $sem;)* - $(pub type $name = IeeeFloat<$sem>;)* - $(impl Semantics for $sem { - const BITS: usize = $bits; - const PRECISION: usize = ($bits - 1 - $exp_bits) + 1; - const MAX_EXP: ExpInt = (1 << ($exp_bits - 1)) - 1; - })* - } -} - -ieee_semantics! { - Half = HalfS(16:5), - Single = SingleS(32:8), - Double = DoubleS(64:11), - Quad = QuadS(128:15) -} - -pub struct X87DoubleExtendedS; -pub type X87DoubleExtended = IeeeFloat<X87DoubleExtendedS>; -impl Semantics for X87DoubleExtendedS { - const BITS: usize = 80; - const PRECISION: usize = 64; - const MAX_EXP: ExpInt = (1 << (15 - 1)) - 1; - - /// For x87 extended precision, we want to make a NaN, not a - /// pseudo-NaN. Maybe we should expose the ability to make - /// pseudo-NaNs? - const QNAN_SIGNIFICAND: Limb = 0b11 << Self::QNAN_BIT; - - /// Integer bit is explicit in this format. Intel hardware (387 and later) - /// does not support these bit patterns: - /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity") - /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN") - /// exponent = 0, integer bit 1 ("pseudodenormal") - /// exponent != 0 nor all 1's, integer bit 0 ("unnormal") - /// At the moment, the first two are treated as NaNs, the second two as Normal. - fn from_bits(bits: u128) -> IeeeFloat<Self> { - let sign = bits & (1 << (Self::BITS - 1)); - let exponent = (bits & !sign) >> Self::PRECISION; - let mut r = IeeeFloat { - sig: [bits & ((1 << (Self::PRECISION - 1)) - 1)], - // Convert the exponent from its bias representation to a signed integer. - exp: (exponent as ExpInt) - Self::MAX_EXP, - category: Category::Zero, - sign: sign != 0, - marker: PhantomData, - }; - - if r.exp == Self::MIN_EXP - 1 && r.sig == [0] { - // Exponent, significand meaningless. - r.category = Category::Zero; - } else if r.exp == Self::MAX_EXP + 1 && r.sig == [1 << (Self::PRECISION - 1)] { - // Exponent, significand meaningless. - r.category = Category::Infinity; - } else if r.exp == Self::MAX_EXP + 1 && r.sig != [1 << (Self::PRECISION - 1)] { - // Sign, exponent, significand meaningless. - r.category = Category::NaN; - } else { - r.category = Category::Normal; - if r.exp == Self::MIN_EXP - 1 { - // Denormal. - r.exp = Self::MIN_EXP; - } - } - - r - } - - fn to_bits(x: IeeeFloat<Self>) -> u128 { - // Get integer bit from significand. - let integer_bit = sig::get_bit(&x.sig, Self::PRECISION - 1); - let mut significand = x.sig[0] & ((1 << Self::PRECISION) - 1); - let exponent = match x.category { - Category::Normal => { - if x.exp == Self::MIN_EXP && !integer_bit { - // Denormal. - Self::MIN_EXP - 1 - } else { - x.exp - } - } - Category::Zero => { - // FIXME(eddyb) Maybe we should guarantee an invariant instead? - significand = 0; - Self::MIN_EXP - 1 - } - Category::Infinity => { - // FIXME(eddyb) Maybe we should guarantee an invariant instead? - significand = 1 << (Self::PRECISION - 1); - Self::MAX_EXP + 1 - } - Category::NaN => Self::MAX_EXP + 1, - }; - - // Convert the exponent from a signed integer to its bias representation. - let exponent = (exponent + Self::MAX_EXP) as u128; - - ((x.sign as u128) << (Self::BITS - 1)) | (exponent << Self::PRECISION) | significand - } -} - -float_common_impls!(IeeeFloat<S>); - -impl<S: Semantics> PartialEq for IeeeFloat<S> { - fn eq(&self, rhs: &Self) -> bool { - self.partial_cmp(rhs) == Some(Ordering::Equal) - } -} - -impl<S: Semantics> PartialOrd for IeeeFloat<S> { - fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> { - match (self.category, rhs.category) { - (Category::NaN, _) | (_, Category::NaN) => None, - - (Category::Infinity, Category::Infinity) => Some((!self.sign).cmp(&(!rhs.sign))), - - (Category::Zero, Category::Zero) => Some(Ordering::Equal), - - (Category::Infinity, _) | (Category::Normal, Category::Zero) => { - Some((!self.sign).cmp(&self.sign)) - } - - (_, Category::Infinity) | (Category::Zero, Category::Normal) => { - Some(rhs.sign.cmp(&(!rhs.sign))) - } - - (Category::Normal, Category::Normal) => { - // Two normal numbers. Do they have the same sign? - Some((!self.sign).cmp(&(!rhs.sign)).then_with(|| { - // Compare absolute values; invert result if negative. - let result = self.cmp_abs_normal(*rhs); - - if self.sign { result.reverse() } else { result } - })) - } - } - } -} - -impl<S> Neg for IeeeFloat<S> { - type Output = Self; - fn neg(mut self) -> Self { - self.sign = !self.sign; - self - } -} - -/// Prints this value as a decimal string. -/// -/// \param precision The maximum number of digits of -/// precision to output. If there are fewer digits available, -/// zero padding will not be used unless the value is -/// integral and small enough to be expressed in -/// precision digits. 0 means to use the natural -/// precision of the number. -/// \param width The maximum number of zeros to -/// consider inserting before falling back to scientific -/// notation. 0 means to always use scientific notation. -/// -/// \param alternate Indicate whether to remove the trailing zero in -/// fraction part or not. Also setting this parameter to true forces -/// producing of output more similar to default printf behavior. -/// Specifically the lower e is used as exponent delimiter and exponent -/// always contains no less than two digits. -/// -/// Number precision width Result -/// ------ --------- ----- ------ -/// 1.01E+4 5 2 10100 -/// 1.01E+4 4 2 1.01E+4 -/// 1.01E+4 5 1 1.01E+4 -/// 1.01E-2 5 2 0.0101 -/// 1.01E-2 4 2 0.0101 -/// 1.01E-2 4 1 1.01E-2 -impl<S: Semantics> fmt::Display for IeeeFloat<S> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - let width = f.width().unwrap_or(3); - let alternate = f.alternate(); - - match self.category { - Category::Infinity => { - if self.sign { - return f.write_str("-Inf"); - } else { - return f.write_str("+Inf"); - } - } - - Category::NaN => return f.write_str("NaN"), - - Category::Zero => { - if self.sign { - f.write_char('-')?; - } - - if width == 0 { - if alternate { - f.write_str("0.0")?; - if let Some(n) = f.precision() { - for _ in 1..n { - f.write_char('0')?; - } - } - f.write_str("e+00")?; - } else { - f.write_str("0.0E+0")?; - } - } else { - f.write_char('0')?; - } - return Ok(()); - } - - Category::Normal => {} - } - - if self.sign { - f.write_char('-')?; - } - - // We use enough digits so the number can be round-tripped back to an - // APFloat. The formula comes from "How to Print Floating-Point Numbers - // Accurately" by Steele and White. - // FIXME: Using a formula based purely on the precision is conservative; - // we can print fewer digits depending on the actual value being printed. - - // precision = 2 + floor(S::PRECISION / lg_2(10)) - let precision = f.precision().unwrap_or(2 + S::PRECISION * 59 / 196); - - // Decompose the number into an APInt and an exponent. - let mut exp = self.exp - (S::PRECISION as ExpInt - 1); - let mut sig = vec![self.sig[0]]; - - // Ignore trailing binary zeros. - let trailing_zeros = sig[0].trailing_zeros(); - let _: Loss = sig::shift_right(&mut sig, &mut exp, trailing_zeros as usize); - - // Change the exponent from 2^e to 10^e. - if exp == 0 { - // Nothing to do. - } else if exp > 0 { - // Just shift left. - let shift = exp as usize; - sig.resize(limbs_for_bits(S::PRECISION + shift), 0); - sig::shift_left(&mut sig, &mut exp, shift); - } else { - // exp < 0 - let mut texp = -exp as usize; - - // We transform this using the identity: - // (N)(2^-e) == (N)(5^e)(10^-e) - - // Multiply significand by 5^e. - // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) - let mut sig_scratch = vec![]; - let mut p5 = vec![]; - let mut p5_scratch = vec![]; - while texp != 0 { - if p5.is_empty() { - p5.push(5); - } else { - p5_scratch.resize(p5.len() * 2, 0); - let _: Loss = - sig::mul(&mut p5_scratch, &mut 0, &p5, &p5, p5.len() * 2 * LIMB_BITS); - while p5_scratch.last() == Some(&0) { - p5_scratch.pop(); - } - mem::swap(&mut p5, &mut p5_scratch); - } - if texp & 1 != 0 { - sig_scratch.resize(sig.len() + p5.len(), 0); - let _: Loss = sig::mul( - &mut sig_scratch, - &mut 0, - &sig, - &p5, - (sig.len() + p5.len()) * LIMB_BITS, - ); - while sig_scratch.last() == Some(&0) { - sig_scratch.pop(); - } - mem::swap(&mut sig, &mut sig_scratch); - } - texp >>= 1; - } - } - - // Fill the buffer. - let mut buffer = vec![]; - - // Ignore digits from the significand until it is no more - // precise than is required for the desired precision. - // 196/59 is a very slight overestimate of lg_2(10). - let required = (precision * 196 + 58) / 59; - let mut discard_digits = sig::omsb(&sig).saturating_sub(required) * 59 / 196; - let mut in_trail = true; - while !sig.is_empty() { - // Perform short division by 10 to extract the rightmost digit. - // rem <- sig % 10 - // sig <- sig / 10 - let mut rem = 0; - - // Use 64-bit division and remainder, with 32-bit chunks from sig. - sig::each_chunk(&mut sig, 32, |chunk| { - let chunk = chunk as u32; - let combined = ((rem as u64) << 32) | (chunk as u64); - rem = (combined % 10) as u8; - (combined / 10) as u32 as Limb - }); - - // Reduce the significand to avoid wasting time dividing 0's. - while sig.last() == Some(&0) { - sig.pop(); - } - - let digit = rem; - - // Ignore digits we don't need. - if discard_digits > 0 { - discard_digits -= 1; - exp += 1; - continue; - } - - // Drop trailing zeros. - if in_trail && digit == 0 { - exp += 1; - } else { - in_trail = false; - buffer.push(b'0' + digit); - } - } - - assert!(!buffer.is_empty(), "no characters in buffer!"); - - // Drop down to precision. - // FIXME: don't do more precise calculations above than are required. - if buffer.len() > precision { - // The most significant figures are the last ones in the buffer. - let mut first_sig = buffer.len() - precision; - - // Round. - // FIXME: this probably shouldn't use 'round half up'. - - // Rounding down is just a truncation, except we also want to drop - // trailing zeros from the new result. - if buffer[first_sig - 1] < b'5' { - while first_sig < buffer.len() && buffer[first_sig] == b'0' { - first_sig += 1; - } - } else { - // Rounding up requires a decimal add-with-carry. If we continue - // the carry, the newly-introduced zeros will just be truncated. - for x in &mut buffer[first_sig..] { - if *x == b'9' { - first_sig += 1; - } else { - *x += 1; - break; - } - } - } - - exp += first_sig as ExpInt; - buffer.drain(..first_sig); - - // If we carried through, we have exactly one digit of precision. - if buffer.is_empty() { - buffer.push(b'1'); - } - } - - let digits = buffer.len(); - - // Check whether we should use scientific notation. - let scientific = if width == 0 { - true - } else if exp >= 0 { - // 765e3 --> 765000 - // ^^^ - // But we shouldn't make the number look more precise than it is. - exp as usize > width || digits + exp as usize > precision - } else { - // Power of the most significant digit. - let msd = exp + (digits - 1) as ExpInt; - if msd >= 0 { - // 765e-2 == 7.65 - false - } else { - // 765e-5 == 0.00765 - // ^ ^^ - -msd as usize > width - } - }; - - // Scientific formatting is pretty straightforward. - if scientific { - exp += digits as ExpInt - 1; - - f.write_char(buffer[digits - 1] as char)?; - f.write_char('.')?; - let truncate_zero = !alternate; - if digits == 1 && truncate_zero { - f.write_char('0')?; - } else { - for &d in buffer[..digits - 1].iter().rev() { - f.write_char(d as char)?; - } - } - // Fill with zeros up to precision. - if !truncate_zero && precision > digits - 1 { - for _ in 0..=precision - digits { - f.write_char('0')?; - } - } - // For alternate we use lower 'e'. - f.write_char(if alternate { 'e' } else { 'E' })?; - - // Exponent always at least two digits if we do not truncate zeros. - if truncate_zero { - write!(f, "{:+}", exp)?; - } else { - write!(f, "{:+03}", exp)?; - } - - return Ok(()); - } - - // Non-scientific, positive exponents. - if exp >= 0 { - for &d in buffer.iter().rev() { - f.write_char(d as char)?; - } - for _ in 0..exp { - f.write_char('0')?; - } - return Ok(()); - } - - // Non-scientific, negative exponents. - let unit_place = -exp as usize; - if unit_place < digits { - for &d in buffer[unit_place..].iter().rev() { - f.write_char(d as char)?; - } - f.write_char('.')?; - for &d in buffer[..unit_place].iter().rev() { - f.write_char(d as char)?; - } - } else { - f.write_str("0.")?; - for _ in digits..unit_place { - f.write_char('0')?; - } - for &d in buffer.iter().rev() { - f.write_char(d as char)?; - } - } - - Ok(()) - } -} - -impl<S: Semantics> fmt::Debug for IeeeFloat<S> { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - write!( - f, - "{}({:?} | {}{:?} * 2^{})", - self, - self.category, - if self.sign { "-" } else { "+" }, - self.sig, - self.exp - ) - } -} - -impl<S: Semantics> Float for IeeeFloat<S> { - const BITS: usize = S::BITS; - const PRECISION: usize = S::PRECISION; - const MAX_EXP: ExpInt = S::MAX_EXP; - const MIN_EXP: ExpInt = S::MIN_EXP; - - const ZERO: Self = IeeeFloat { - sig: [0], - exp: S::MIN_EXP - 1, - category: Category::Zero, - sign: false, - marker: PhantomData, - }; - - const INFINITY: Self = IeeeFloat { - sig: [0], - exp: S::MAX_EXP + 1, - category: Category::Infinity, - sign: false, - marker: PhantomData, - }; - - // FIXME(eddyb) remove when qnan becomes const fn. - const NAN: Self = IeeeFloat { - sig: [S::QNAN_SIGNIFICAND], - exp: S::MAX_EXP + 1, - category: Category::NaN, - sign: false, - marker: PhantomData, - }; - - fn qnan(payload: Option<u128>) -> Self { - IeeeFloat { - sig: [S::QNAN_SIGNIFICAND - | payload.map_or(0, |payload| { - // Zero out the excess bits of the significand. - payload & ((1 << S::QNAN_BIT) - 1) - })], - exp: S::MAX_EXP + 1, - category: Category::NaN, - sign: false, - marker: PhantomData, - } - } - - fn snan(payload: Option<u128>) -> Self { - let mut snan = Self::qnan(payload); - - // We always have to clear the QNaN bit to make it an SNaN. - sig::clear_bit(&mut snan.sig, S::QNAN_BIT); - - // If there are no bits set in the payload, we have to set - // *something* to make it a NaN instead of an infinity; - // conventionally, this is the next bit down from the QNaN bit. - if snan.sig[0] & !S::QNAN_SIGNIFICAND == 0 { - sig::set_bit(&mut snan.sig, S::QNAN_BIT - 1); - } - - snan - } - - fn largest() -> Self { - // We want (in interchange format): - // exponent = 1..10 - // significand = 1..1 - IeeeFloat { - sig: [(1 << S::PRECISION) - 1], - exp: S::MAX_EXP, - category: Category::Normal, - sign: false, - marker: PhantomData, - } - } - - // We want (in interchange format): - // exponent = 0..0 - // significand = 0..01 - const SMALLEST: Self = IeeeFloat { - sig: [1], - exp: S::MIN_EXP, - category: Category::Normal, - sign: false, - marker: PhantomData, - }; - - fn smallest_normalized() -> Self { - // We want (in interchange format): - // exponent = 0..0 - // significand = 10..0 - IeeeFloat { - sig: [1 << (S::PRECISION - 1)], - exp: S::MIN_EXP, - category: Category::Normal, - sign: false, - marker: PhantomData, - } - } - - fn add_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> { - let status = match (self.category, rhs.category) { - (Category::Infinity, Category::Infinity) => { - // Differently signed infinities can only be validly - // subtracted. - if self.sign != rhs.sign { - self = Self::NAN; - Status::INVALID_OP - } else { - Status::OK - } - } - - // Sign may depend on rounding mode; handled below. - (_, Category::Zero) | (Category::NaN, _) | (Category::Infinity, Category::Normal) => { - Status::OK - } - - (Category::Zero, _) | (_, Category::NaN | Category::Infinity) => { - self = rhs; - Status::OK - } - - // This return code means it was not a simple case. - (Category::Normal, Category::Normal) => { - let loss = sig::add_or_sub( - &mut self.sig, - &mut self.exp, - &mut self.sign, - &mut [rhs.sig[0]], - rhs.exp, - rhs.sign, - ); - let status; - self = unpack!(status=, self.normalize(round, loss)); - - // Can only be zero if we lost no fraction. - assert!(self.category != Category::Zero || loss == Loss::ExactlyZero); - - status - } - }; - - // If two numbers add (exactly) to zero, IEEE 754 decrees it is a - // positive zero unless rounding to minus infinity, except that - // adding two like-signed zeroes gives that zero. - if self.category == Category::Zero - && (rhs.category != Category::Zero || self.sign != rhs.sign) - { - self.sign = round == Round::TowardNegative; - } - - status.and(self) - } - - fn mul_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> { - self.sign ^= rhs.sign; - - match (self.category, rhs.category) { - (Category::NaN, _) => { - self.sign = false; - Status::OK.and(self) - } - - (_, Category::NaN) => { - self.sign = false; - self.category = Category::NaN; - self.sig = rhs.sig; - Status::OK.and(self) - } - - (Category::Zero, Category::Infinity) | (Category::Infinity, Category::Zero) => { - Status::INVALID_OP.and(Self::NAN) - } - - (_, Category::Infinity) | (Category::Infinity, _) => { - self.category = Category::Infinity; - Status::OK.and(self) - } - - (Category::Zero, _) | (_, Category::Zero) => { - self.category = Category::Zero; - Status::OK.and(self) - } - - (Category::Normal, Category::Normal) => { - self.exp += rhs.exp; - let mut wide_sig = [0; 2]; - let loss = - sig::mul(&mut wide_sig, &mut self.exp, &self.sig, &rhs.sig, S::PRECISION); - self.sig = [wide_sig[0]]; - let mut status; - self = unpack!(status=, self.normalize(round, loss)); - if loss != Loss::ExactlyZero { - status |= Status::INEXACT; - } - status.and(self) - } - } - } - - fn mul_add_r(mut self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self> { - // If and only if all arguments are normal do we need to do an - // extended-precision calculation. - if !self.is_finite_non_zero() || !multiplicand.is_finite_non_zero() || !addend.is_finite() { - let mut status; - self = unpack!(status=, self.mul_r(multiplicand, round)); - - // FS can only be Status::OK or Status::INVALID_OP. There is no more work - // to do in the latter case. The IEEE-754R standard says it is - // implementation-defined in this case whether, if ADDEND is a - // quiet NaN, we raise invalid op; this implementation does so. - // - // If we need to do the addition we can do so with normal - // precision. - if status == Status::OK { - self = unpack!(status=, self.add_r(addend, round)); - } - return status.and(self); - } - - // Post-multiplication sign, before addition. - self.sign ^= multiplicand.sign; - - // Allocate space for twice as many bits as the original significand, plus one - // extra bit for the addition to overflow into. - assert!(limbs_for_bits(S::PRECISION * 2 + 1) <= 2); - let mut wide_sig = sig::widening_mul(self.sig[0], multiplicand.sig[0]); - - let mut loss = Loss::ExactlyZero; - let mut omsb = sig::omsb(&wide_sig); - self.exp += multiplicand.exp; - - // Assume the operands involved in the multiplication are single-precision - // FP, and the two multiplicants are: - // lhs = a23 . a22 ... a0 * 2^e1 - // rhs = b23 . b22 ... b0 * 2^e2 - // the result of multiplication is: - // lhs = c48 c47 c46 . c45 ... c0 * 2^(e1+e2) - // Note that there are three significant bits at the left-hand side of the - // radix point: two for the multiplication, and an overflow bit for the - // addition (that will always be zero at this point). Move the radix point - // toward left by two bits, and adjust exponent accordingly. - self.exp += 2; - - if addend.is_non_zero() { - // Normalize our MSB to one below the top bit to allow for overflow. - let ext_precision = 2 * S::PRECISION + 1; - if omsb != ext_precision - 1 { - assert!(ext_precision > omsb); - sig::shift_left(&mut wide_sig, &mut self.exp, (ext_precision - 1) - omsb); - } - - // The intermediate result of the multiplication has "2 * S::PRECISION" - // significant bit; adjust the addend to be consistent with mul result. - let mut ext_addend_sig = [addend.sig[0], 0]; - - // Extend the addend significand to ext_precision - 1. This guarantees - // that the high bit of the significand is zero (same as wide_sig), - // so the addition will overflow (if it does overflow at all) into the top bit. - sig::shift_left(&mut ext_addend_sig, &mut 0, ext_precision - 1 - S::PRECISION); - loss = sig::add_or_sub( - &mut wide_sig, - &mut self.exp, - &mut self.sign, - &mut ext_addend_sig, - addend.exp + 1, - addend.sign, - ); - - omsb = sig::omsb(&wide_sig); - } - - // Convert the result having "2 * S::PRECISION" significant-bits back to the one - // having "S::PRECISION" significant-bits. First, move the radix point from - // position "2*S::PRECISION - 1" to "S::PRECISION - 1". The exponent need to be - // adjusted by "2*S::PRECISION - 1" - "S::PRECISION - 1" = "S::PRECISION". - self.exp -= S::PRECISION as ExpInt + 1; - - // In case MSB resides at the left-hand side of radix point, shift the - // mantissa right by some amount to make sure the MSB reside right before - // the radix point (i.e., "MSB . rest-significant-bits"). - if omsb > S::PRECISION { - let bits = omsb - S::PRECISION; - loss = sig::shift_right(&mut wide_sig, &mut self.exp, bits).combine(loss); - } - - self.sig[0] = wide_sig[0]; - - let mut status; - self = unpack!(status=, self.normalize(round, loss)); - if loss != Loss::ExactlyZero { - status |= Status::INEXACT; - } - - // If two numbers add (exactly) to zero, IEEE 754 decrees it is a - // positive zero unless rounding to minus infinity, except that - // adding two like-signed zeroes gives that zero. - if self.category == Category::Zero - && !status.intersects(Status::UNDERFLOW) - && self.sign != addend.sign - { - self.sign = round == Round::TowardNegative; - } - - status.and(self) - } - - fn div_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> { - self.sign ^= rhs.sign; - - match (self.category, rhs.category) { - (Category::NaN, _) => { - self.sign = false; - Status::OK.and(self) - } - - (_, Category::NaN) => { - self.category = Category::NaN; - self.sig = rhs.sig; - self.sign = false; - Status::OK.and(self) - } - - (Category::Infinity, Category::Infinity) | (Category::Zero, Category::Zero) => { - Status::INVALID_OP.and(Self::NAN) - } - - (Category::Infinity | Category::Zero, _) => Status::OK.and(self), - - (Category::Normal, Category::Infinity) => { - self.category = Category::Zero; - Status::OK.and(self) - } - - (Category::Normal, Category::Zero) => { - self.category = Category::Infinity; - Status::DIV_BY_ZERO.and(self) - } - - (Category::Normal, Category::Normal) => { - self.exp -= rhs.exp; - let dividend = self.sig[0]; - let loss = sig::div( - &mut self.sig, - &mut self.exp, - &mut [dividend], - &mut [rhs.sig[0]], - S::PRECISION, - ); - let mut status; - self = unpack!(status=, self.normalize(round, loss)); - if loss != Loss::ExactlyZero { - status |= Status::INEXACT; - } - status.and(self) - } - } - } - - fn c_fmod(mut self, rhs: Self) -> StatusAnd<Self> { - match (self.category, rhs.category) { - (Category::NaN, _) - | (Category::Zero, Category::Infinity | Category::Normal) - | (Category::Normal, Category::Infinity) => Status::OK.and(self), - - (_, Category::NaN) => { - self.sign = false; - self.category = Category::NaN; - self.sig = rhs.sig; - Status::OK.and(self) - } - - (Category::Infinity, _) | (_, Category::Zero) => Status::INVALID_OP.and(Self::NAN), - - (Category::Normal, Category::Normal) => { - while self.is_finite_non_zero() - && rhs.is_finite_non_zero() - && self.cmp_abs_normal(rhs) != Ordering::Less - { - let mut v = rhs.scalbn(self.ilogb() - rhs.ilogb()); - if self.cmp_abs_normal(v) == Ordering::Less { - v = v.scalbn(-1); - } - v.sign = self.sign; - - let status; - self = unpack!(status=, self - v); - assert_eq!(status, Status::OK); - } - Status::OK.and(self) - } - } - } - - fn round_to_integral(self, round: Round) -> StatusAnd<Self> { - // If the exponent is large enough, we know that this value is already - // integral, and the arithmetic below would potentially cause it to saturate - // to +/-Inf. Bail out early instead. - if self.is_finite_non_zero() && self.exp + 1 >= S::PRECISION as ExpInt { - return Status::OK.and(self); - } - - // The algorithm here is quite simple: we add 2^(p-1), where p is the - // precision of our format, and then subtract it back off again. The choice - // of rounding modes for the addition/subtraction determines the rounding mode - // for our integral rounding as well. - // NOTE: When the input value is negative, we do subtraction followed by - // addition instead. - assert!(S::PRECISION <= 128); - let mut status; - let magic_const = unpack!(status=, Self::from_u128(1 << (S::PRECISION - 1))); - let magic_const = magic_const.copy_sign(self); - - if status != Status::OK { - return status.and(self); - } - - let mut r = self; - r = unpack!(status=, r.add_r(magic_const, round)); - if status != Status::OK && status != Status::INEXACT { - return status.and(self); - } - - // Restore the input sign to handle 0.0/-0.0 cases correctly. - r.sub_r(magic_const, round).map(|r| r.copy_sign(self)) - } - - fn next_up(mut self) -> StatusAnd<Self> { - // Compute nextUp(x), handling each float category separately. - match self.category { - Category::Infinity => { - if self.sign { - // nextUp(-inf) = -largest - Status::OK.and(-Self::largest()) - } else { - // nextUp(+inf) = +inf - Status::OK.and(self) - } - } - Category::NaN => { - // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag. - // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not - // change the payload. - if self.is_signaling() { - // For consistency, propagate the sign of the sNaN to the qNaN. - Status::INVALID_OP.and(Self::NAN.copy_sign(self)) - } else { - Status::OK.and(self) - } - } - Category::Zero => { - // nextUp(pm 0) = +smallest - Status::OK.and(Self::SMALLEST) - } - Category::Normal => { - // nextUp(-smallest) = -0 - if self.is_smallest() && self.sign { - return Status::OK.and(-Self::ZERO); - } - - // nextUp(largest) == INFINITY - if self.is_largest() && !self.sign { - return Status::OK.and(Self::INFINITY); - } - - // Excluding the integral bit. This allows us to test for binade boundaries. - let sig_mask = (1 << (S::PRECISION - 1)) - 1; - - // nextUp(normal) == normal + inc. - if self.sign { - // If we are negative, we need to decrement the significand. - - // We only cross a binade boundary that requires adjusting the exponent - // if: - // 1. exponent != S::MIN_EXP. This implies we are not in the - // smallest binade or are dealing with denormals. - // 2. Our significand excluding the integral bit is all zeros. - let crossing_binade_boundary = - self.exp != S::MIN_EXP && self.sig[0] & sig_mask == 0; - - // Decrement the significand. - // - // We always do this since: - // 1. If we are dealing with a non-binade decrement, by definition we - // just decrement the significand. - // 2. If we are dealing with a normal -> normal binade decrement, since - // we have an explicit integral bit the fact that all bits but the - // integral bit are zero implies that subtracting one will yield a - // significand with 0 integral bit and 1 in all other spots. Thus we - // must just adjust the exponent and set the integral bit to 1. - // 3. If we are dealing with a normal -> denormal binade decrement, - // since we set the integral bit to 0 when we represent denormals, we - // just decrement the significand. - sig::decrement(&mut self.sig); - - if crossing_binade_boundary { - // Our result is a normal number. Do the following: - // 1. Set the integral bit to 1. - // 2. Decrement the exponent. - sig::set_bit(&mut self.sig, S::PRECISION - 1); - self.exp -= 1; - } - } else { - // If we are positive, we need to increment the significand. - - // We only cross a binade boundary that requires adjusting the exponent if - // the input is not a denormal and all of said input's significand bits - // are set. If all of said conditions are true: clear the significand, set - // the integral bit to 1, and increment the exponent. If we have a - // denormal always increment since moving denormals and the numbers in the - // smallest normal binade have the same exponent in our representation. - let crossing_binade_boundary = - !self.is_denormal() && self.sig[0] & sig_mask == sig_mask; - - if crossing_binade_boundary { - self.sig = [0]; - sig::set_bit(&mut self.sig, S::PRECISION - 1); - assert_ne!( - self.exp, - S::MAX_EXP, - "We can not increment an exponent beyond the MAX_EXP \ - allowed by the given floating point semantics." - ); - self.exp += 1; - } else { - sig::increment(&mut self.sig); - } - } - Status::OK.and(self) - } - } - } - - fn from_bits(input: u128) -> Self { - // Dispatch to semantics. - S::from_bits(input) - } - - fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self> { - IeeeFloat { - sig: [input], - exp: S::PRECISION as ExpInt - 1, - category: Category::Normal, - sign: false, - marker: PhantomData, - } - .normalize(round, Loss::ExactlyZero) - } - - fn from_str_r(mut s: &str, mut round: Round) -> Result<StatusAnd<Self>, ParseError> { - if s.is_empty() { - return Err(ParseError("Invalid string length")); - } - - // Handle special cases. - match s { - "inf" | "INFINITY" => return Ok(Status::OK.and(Self::INFINITY)), - "-inf" | "-INFINITY" => return Ok(Status::OK.and(-Self::INFINITY)), - "nan" | "NaN" => return Ok(Status::OK.and(Self::NAN)), - "-nan" | "-NaN" => return Ok(Status::OK.and(-Self::NAN)), - _ => {} - } - - // Handle a leading minus sign. - let minus = s.starts_with('-'); - if minus || s.starts_with('+') { - s = &s[1..]; - if s.is_empty() { - return Err(ParseError("String has no digits")); - } - } - - // Adjust the rounding mode for the absolute value below. - if minus { - round = -round; - } - - let r = if s.starts_with("0x") || s.starts_with("0X") { - s = &s[2..]; - if s.is_empty() { - return Err(ParseError("Invalid string")); - } - Self::from_hexadecimal_string(s, round)? - } else { - Self::from_decimal_string(s, round)? - }; - - Ok(r.map(|r| if minus { -r } else { r })) - } - - fn to_bits(self) -> u128 { - // Dispatch to semantics. - S::to_bits(self) - } - - fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128> { - // The result of trying to convert a number too large. - let overflow = if self.sign { - // Negative numbers cannot be represented as unsigned. - 0 - } else { - // Largest unsigned integer of the given width. - !0 >> (128 - width) - }; - - *is_exact = false; - - match self.category { - Category::NaN => Status::INVALID_OP.and(0), - - Category::Infinity => Status::INVALID_OP.and(overflow), - - Category::Zero => { - // Negative zero can't be represented as an int. - *is_exact = !self.sign; - Status::OK.and(0) - } - - Category::Normal => { - let mut r = 0; - - // Step 1: place our absolute value, with any fraction truncated, in - // the destination. - let truncated_bits = if self.exp < 0 { - // Our absolute value is less than one; truncate everything. - // For exponent -1 the integer bit represents .5, look at that. - // For smaller exponents leftmost truncated bit is 0. - S::PRECISION - 1 + (-self.exp) as usize - } else { - // We want the most significant (exponent + 1) bits; the rest are - // truncated. - let bits = self.exp as usize + 1; - - // Hopelessly large in magnitude? - if bits > width { - return Status::INVALID_OP.and(overflow); - } - - if bits < S::PRECISION { - // We truncate (S::PRECISION - bits) bits. - r = self.sig[0] >> (S::PRECISION - bits); - S::PRECISION - bits - } else { - // We want at least as many bits as are available. - r = self.sig[0] << (bits - S::PRECISION); - 0 - } - }; - - // Step 2: work out any lost fraction, and increment the absolute - // value if we would round away from zero. - let mut loss = Loss::ExactlyZero; - if truncated_bits > 0 { - loss = Loss::through_truncation(&self.sig, truncated_bits); - if loss != Loss::ExactlyZero - && self.round_away_from_zero(round, loss, truncated_bits) - { - r = r.wrapping_add(1); - if r == 0 { - return Status::INVALID_OP.and(overflow); // Overflow. - } - } - } - - // Step 3: check if we fit in the destination. - if r > overflow { - return Status::INVALID_OP.and(overflow); - } - - if loss == Loss::ExactlyZero { - *is_exact = true; - Status::OK.and(r) - } else { - Status::INEXACT.and(r) - } - } - } - } - - fn cmp_abs_normal(self, rhs: Self) -> Ordering { - assert!(self.is_finite_non_zero()); - assert!(rhs.is_finite_non_zero()); - - // If exponents are equal, do an unsigned comparison of the significands. - self.exp.cmp(&rhs.exp).then_with(|| sig::cmp(&self.sig, &rhs.sig)) - } - - fn bitwise_eq(self, rhs: Self) -> bool { - if self.category != rhs.category || self.sign != rhs.sign { - return false; - } - - if self.category == Category::Zero || self.category == Category::Infinity { - return true; - } - - if self.is_finite_non_zero() && self.exp != rhs.exp { - return false; - } - - self.sig == rhs.sig - } - - fn is_negative(self) -> bool { - self.sign - } - - fn is_denormal(self) -> bool { - self.is_finite_non_zero() - && self.exp == S::MIN_EXP - && !sig::get_bit(&self.sig, S::PRECISION - 1) - } - - fn is_signaling(self) -> bool { - // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the - // first bit of the trailing significand being 0. - self.is_nan() && !sig::get_bit(&self.sig, S::QNAN_BIT) - } - - fn category(self) -> Category { - self.category - } - - fn get_exact_inverse(self) -> Option<Self> { - // Special floats and denormals have no exact inverse. - if !self.is_finite_non_zero() { - return None; - } - - // Check that the number is a power of two by making sure that only the - // integer bit is set in the significand. - if self.sig != [1 << (S::PRECISION - 1)] { - return None; - } - - // Get the inverse. - let mut reciprocal = Self::from_u128(1).value; - let status; - reciprocal = unpack!(status=, reciprocal / self); - if status != Status::OK { - return None; - } - - // Avoid multiplication with a denormal, it is not safe on all platforms and - // may be slower than a normal division. - if reciprocal.is_denormal() { - return None; - } - - assert!(reciprocal.is_finite_non_zero()); - assert_eq!(reciprocal.sig, [1 << (S::PRECISION - 1)]); - - Some(reciprocal) - } - - fn ilogb(mut self) -> ExpInt { - if self.is_nan() { - return IEK_NAN; - } - if self.is_zero() { - return IEK_ZERO; - } - if self.is_infinite() { - return IEK_INF; - } - if !self.is_denormal() { - return self.exp; - } - - let sig_bits = (S::PRECISION - 1) as ExpInt; - self.exp += sig_bits; - self = self.normalize(Round::NearestTiesToEven, Loss::ExactlyZero).value; - self.exp - sig_bits - } - - fn scalbn_r(mut self, exp: ExpInt, round: Round) -> Self { - // If exp is wildly out-of-scale, simply adding it to self.exp will - // overflow; clamp it to a safe range before adding, but ensure that the range - // is large enough that the clamp does not change the result. The range we - // need to support is the difference between the largest possible exponent and - // the normalized exponent of half the smallest denormal. - - let sig_bits = (S::PRECISION - 1) as i32; - let max_change = S::MAX_EXP as i32 - (S::MIN_EXP as i32 - sig_bits) + 1; - - // Clamp to one past the range ends to let normalize handle overflow. - let exp_change = cmp::min(cmp::max(exp as i32, -max_change - 1), max_change); - self.exp = self.exp.saturating_add(exp_change as ExpInt); - self = self.normalize(round, Loss::ExactlyZero).value; - if self.is_nan() { - sig::set_bit(&mut self.sig, S::QNAN_BIT); - } - self - } - - fn frexp_r(mut self, exp: &mut ExpInt, round: Round) -> Self { - *exp = self.ilogb(); - - // Quiet signalling nans. - if *exp == IEK_NAN { - sig::set_bit(&mut self.sig, S::QNAN_BIT); - return self; - } - - if *exp == IEK_INF { - return self; - } - - // 1 is added because frexp is defined to return a normalized fraction in - // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0). - if *exp == IEK_ZERO { - *exp = 0; - } else { - *exp += 1; - } - self.scalbn_r(-*exp, round) - } -} - -impl<S: Semantics, T: Semantics> FloatConvert<IeeeFloat<T>> for IeeeFloat<S> { - fn convert_r(self, round: Round, loses_info: &mut bool) -> StatusAnd<IeeeFloat<T>> { - let mut r = IeeeFloat { - sig: self.sig, - exp: self.exp, - category: self.category, - sign: self.sign, - marker: PhantomData, - }; - - // x86 has some unusual NaNs which cannot be represented in any other - // format; note them here. - fn is_x87_double_extended<S: Semantics>() -> bool { - S::QNAN_SIGNIFICAND == X87DoubleExtendedS::QNAN_SIGNIFICAND - } - let x87_special_nan = is_x87_double_extended::<S>() - && !is_x87_double_extended::<T>() - && r.category == Category::NaN - && (r.sig[0] & S::QNAN_SIGNIFICAND) != S::QNAN_SIGNIFICAND; - - // If this is a truncation of a denormal number, and the target semantics - // has larger exponent range than the source semantics (this can happen - // when truncating from PowerPC double-double to double format), the - // right shift could lose result mantissa bits. Adjust exponent instead - // of performing excessive shift. - let mut shift = T::PRECISION as ExpInt - S::PRECISION as ExpInt; - if shift < 0 && r.is_finite_non_zero() { - let mut exp_change = sig::omsb(&r.sig) as ExpInt - S::PRECISION as ExpInt; - if r.exp + exp_change < T::MIN_EXP { - exp_change = T::MIN_EXP - r.exp; - } - if exp_change < shift { - exp_change = shift; - } - if exp_change < 0 { - shift -= exp_change; - r.exp += exp_change; - } - } - - // If this is a truncation, perform the shift. - let loss = if shift < 0 && (r.is_finite_non_zero() || r.category == Category::NaN) { - sig::shift_right(&mut r.sig, &mut 0, -shift as usize) - } else { - Loss::ExactlyZero - }; - - // If this is an extension, perform the shift. - if shift > 0 && (r.is_finite_non_zero() || r.category == Category::NaN) { - sig::shift_left(&mut r.sig, &mut 0, shift as usize); - } - - let status; - if r.is_finite_non_zero() { - r = unpack!(status=, r.normalize(round, loss)); - *loses_info = status != Status::OK; - } else if r.category == Category::NaN { - *loses_info = loss != Loss::ExactlyZero || x87_special_nan; - - // For x87 extended precision, we want to make a NaN, not a special NaN if - // the input wasn't special either. - if !x87_special_nan && is_x87_double_extended::<T>() { - sig::set_bit(&mut r.sig, T::PRECISION - 1); - } - - // Convert of sNaN creates qNaN and raises an exception (invalid op). - // This also guarantees that a sNaN does not become Inf on a truncation - // that loses all payload bits. - if self.is_signaling() { - // Quiet signaling NaN. - sig::set_bit(&mut r.sig, T::QNAN_BIT); - status = Status::INVALID_OP; - } else { - status = Status::OK; - } - } else { - *loses_info = false; - status = Status::OK; - } - - status.and(r) - } -} - -impl<S: Semantics> IeeeFloat<S> { - /// Handle positive overflow. We either return infinity or - /// the largest finite number. For negative overflow, - /// negate the `round` argument before calling. - fn overflow_result(round: Round) -> StatusAnd<Self> { - match round { - // Infinity? - Round::NearestTiesToEven | Round::NearestTiesToAway | Round::TowardPositive => { - (Status::OVERFLOW | Status::INEXACT).and(Self::INFINITY) - } - // Otherwise we become the largest finite number. - Round::TowardNegative | Round::TowardZero => Status::INEXACT.and(Self::largest()), - } - } - - /// Returns `true` if, when truncating the current number, with `bit` the - /// new LSB, with the given lost fraction and rounding mode, the result - /// would need to be rounded away from zero (i.e., by increasing the - /// signficand). This routine must work for `Category::Zero` of both signs, and - /// `Category::Normal` numbers. - fn round_away_from_zero(&self, round: Round, loss: Loss, bit: usize) -> bool { - // NaNs and infinities should not have lost fractions. - assert!(self.is_finite_non_zero() || self.is_zero()); - - // Current callers never pass this so we don't handle it. - assert_ne!(loss, Loss::ExactlyZero); - - match round { - Round::NearestTiesToAway => loss == Loss::ExactlyHalf || loss == Loss::MoreThanHalf, - Round::NearestTiesToEven => { - if loss == Loss::MoreThanHalf { - return true; - } - - // Our zeros don't have a significand to test. - if loss == Loss::ExactlyHalf && self.category != Category::Zero { - return sig::get_bit(&self.sig, bit); - } - - false - } - Round::TowardZero => false, - Round::TowardPositive => !self.sign, - Round::TowardNegative => self.sign, - } - } - - fn normalize(mut self, round: Round, mut loss: Loss) -> StatusAnd<Self> { - if !self.is_finite_non_zero() { - return Status::OK.and(self); - } - - // Before rounding normalize the exponent of Category::Normal numbers. - let mut omsb = sig::omsb(&self.sig); - - if omsb > 0 { - // OMSB is numbered from 1. We want to place it in the integer - // bit numbered PRECISION if possible, with a compensating change in - // the exponent. - let mut final_exp = self.exp.saturating_add(omsb as ExpInt - S::PRECISION as ExpInt); - - // If the resulting exponent is too high, overflow according to - // the rounding mode. - if final_exp > S::MAX_EXP { - let round = if self.sign { -round } else { round }; - return Self::overflow_result(round).map(|r| r.copy_sign(self)); - } - - // Subnormal numbers have exponent MIN_EXP, and their MSB - // is forced based on that. - if final_exp < S::MIN_EXP { - final_exp = S::MIN_EXP; - } - - // Shifting left is easy as we don't lose precision. - if final_exp < self.exp { - assert_eq!(loss, Loss::ExactlyZero); - - let exp_change = (self.exp - final_exp) as usize; - sig::shift_left(&mut self.sig, &mut self.exp, exp_change); - - return Status::OK.and(self); - } - - // Shift right and capture any new lost fraction. - if final_exp > self.exp { - let exp_change = (final_exp - self.exp) as usize; - loss = sig::shift_right(&mut self.sig, &mut self.exp, exp_change).combine(loss); - - // Keep OMSB up-to-date. - omsb = omsb.saturating_sub(exp_change); - } - } - - // Now round the number according to round given the lost - // fraction. - - // As specified in IEEE 754, since we do not trap we do not report - // underflow for exact results. - if loss == Loss::ExactlyZero { - // Canonicalize zeros. - if omsb == 0 { - self.category = Category::Zero; - } - - return Status::OK.and(self); - } - - // Increment the significand if we're rounding away from zero. - if self.round_away_from_zero(round, loss, 0) { - if omsb == 0 { - self.exp = S::MIN_EXP; - } - - // We should never overflow. - assert_eq!(sig::increment(&mut self.sig), 0); - omsb = sig::omsb(&self.sig); - - // Did the significand increment overflow? - if omsb == S::PRECISION + 1 { - // Renormalize by incrementing the exponent and shifting our - // significand right one. However if we already have the - // maximum exponent we overflow to infinity. - if self.exp == S::MAX_EXP { - self.category = Category::Infinity; - - return (Status::OVERFLOW | Status::INEXACT).and(self); - } - - let _: Loss = sig::shift_right(&mut self.sig, &mut self.exp, 1); - - return Status::INEXACT.and(self); - } - } - - // The normal case - we were and are not denormal, and any - // significand increment above didn't overflow. - if omsb == S::PRECISION { - return Status::INEXACT.and(self); - } - - // We have a non-zero denormal. - assert!(omsb < S::PRECISION); - - // Canonicalize zeros. - if omsb == 0 { - self.category = Category::Zero; - } - - // The Category::Zero case is a denormal that underflowed to zero. - (Status::UNDERFLOW | Status::INEXACT).and(self) - } - - fn from_hexadecimal_string(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> { - let mut r = IeeeFloat { - sig: [0], - exp: 0, - category: Category::Normal, - sign: false, - marker: PhantomData, - }; - - let mut any_digits = false; - let mut has_exp = false; - let mut bit_pos = LIMB_BITS as isize; - let mut loss = None; - - // Without leading or trailing zeros, irrespective of the dot. - let mut first_sig_digit = None; - let mut dot = s.len(); - - for (p, c) in s.char_indices() { - // Skip leading zeros and any (hexa)decimal point. - if c == '.' { - if dot != s.len() { - return Err(ParseError("String contains multiple dots")); - } - dot = p; - } else if let Some(hex_value) = c.to_digit(16) { - any_digits = true; - - if first_sig_digit.is_none() { - if hex_value == 0 { - continue; - } - first_sig_digit = Some(p); - } - - // Store the number while we have space. - bit_pos -= 4; - if bit_pos >= 0 { - r.sig[0] |= (hex_value as Limb) << bit_pos; - // If zero or one-half (the hexadecimal digit 8) are followed - // by non-zero, they're a little more than zero or one-half. - } else if let Some(ref mut loss) = loss { - if hex_value != 0 { - if *loss == Loss::ExactlyZero { - *loss = Loss::LessThanHalf; - } - if *loss == Loss::ExactlyHalf { - *loss = Loss::MoreThanHalf; - } - } - } else { - loss = Some(match hex_value { - 0 => Loss::ExactlyZero, - 1..=7 => Loss::LessThanHalf, - 8 => Loss::ExactlyHalf, - 9..=15 => Loss::MoreThanHalf, - _ => unreachable!(), - }); - } - } else if c == 'p' || c == 'P' { - if !any_digits { - return Err(ParseError("Significand has no digits")); - } - - if dot == s.len() { - dot = p; - } - - let mut chars = s[p + 1..].chars().peekable(); - - // Adjust for the given exponent. - let exp_minus = chars.peek() == Some(&'-'); - if exp_minus || chars.peek() == Some(&'+') { - chars.next(); - } - - for c in chars { - if let Some(value) = c.to_digit(10) { - has_exp = true; - r.exp = r.exp.saturating_mul(10).saturating_add(value as ExpInt); - } else { - return Err(ParseError("Invalid character in exponent")); - } - } - if !has_exp { - return Err(ParseError("Exponent has no digits")); - } - - if exp_minus { - r.exp = -r.exp; - } - - break; - } else { - return Err(ParseError("Invalid character in significand")); - } - } - if !any_digits { - return Err(ParseError("Significand has no digits")); - } - - // Hex floats require an exponent but not a hexadecimal point. - if !has_exp { - return Err(ParseError("Hex strings require an exponent")); - } - - // Ignore the exponent if we are zero. - let first_sig_digit = match first_sig_digit { - Some(p) => p, - None => return Ok(Status::OK.and(Self::ZERO)), - }; - - // Calculate the exponent adjustment implicit in the number of - // significant digits and adjust for writing the significand starting - // at the most significant nibble. - let exp_adjustment = if dot > first_sig_digit { - ExpInt::try_from(dot - first_sig_digit).unwrap() - } else { - -ExpInt::try_from(first_sig_digit - dot - 1).unwrap() - }; - let exp_adjustment = exp_adjustment - .saturating_mul(4) - .saturating_sub(1) - .saturating_add(S::PRECISION as ExpInt) - .saturating_sub(LIMB_BITS as ExpInt); - r.exp = r.exp.saturating_add(exp_adjustment); - - Ok(r.normalize(round, loss.unwrap_or(Loss::ExactlyZero))) - } - - fn from_decimal_string(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> { - // Given a normal decimal floating point number of the form - // - // dddd.dddd[eE][+-]ddd - // - // where the decimal point and exponent are optional, fill out the - // variables below. Exponent is appropriate if the significand is - // treated as an integer, and normalized_exp if the significand - // is taken to have the decimal point after a single leading - // non-zero digit. - // - // If the value is zero, first_sig_digit is None. - - let mut any_digits = false; - let mut dec_exp = 0i32; - - // Without leading or trailing zeros, irrespective of the dot. - let mut first_sig_digit = None; - let mut last_sig_digit = 0; - let mut dot = s.len(); - - for (p, c) in s.char_indices() { - if c == '.' { - if dot != s.len() { - return Err(ParseError("String contains multiple dots")); - } - dot = p; - } else if let Some(dec_value) = c.to_digit(10) { - any_digits = true; - - if dec_value != 0 { - if first_sig_digit.is_none() { - first_sig_digit = Some(p); - } - last_sig_digit = p; - } - } else if c == 'e' || c == 'E' { - if !any_digits { - return Err(ParseError("Significand has no digits")); - } - - if dot == s.len() { - dot = p; - } - - let mut chars = s[p + 1..].chars().peekable(); - - // Adjust for the given exponent. - let exp_minus = chars.peek() == Some(&'-'); - if exp_minus || chars.peek() == Some(&'+') { - chars.next(); - } - - any_digits = false; - for c in chars { - if let Some(value) = c.to_digit(10) { - any_digits = true; - dec_exp = dec_exp.saturating_mul(10).saturating_add(value as i32); - } else { - return Err(ParseError("Invalid character in exponent")); - } - } - if !any_digits { - return Err(ParseError("Exponent has no digits")); - } - - if exp_minus { - dec_exp = -dec_exp; - } - - break; - } else { - return Err(ParseError("Invalid character in significand")); - } - } - if !any_digits { - return Err(ParseError("Significand has no digits")); - } - - // Test if we have a zero number allowing for non-zero exponents. - let first_sig_digit = match first_sig_digit { - Some(p) => p, - None => return Ok(Status::OK.and(Self::ZERO)), - }; - - // Adjust the exponents for any decimal point. - if dot > last_sig_digit { - dec_exp = dec_exp.saturating_add((dot - last_sig_digit - 1) as i32); - } else { - dec_exp = dec_exp.saturating_sub((last_sig_digit - dot) as i32); - } - let significand_digits = last_sig_digit - first_sig_digit + 1 - - (dot > first_sig_digit && dot < last_sig_digit) as usize; - let normalized_exp = dec_exp.saturating_add(significand_digits as i32 - 1); - - // Handle the cases where exponents are obviously too large or too - // small. Writing L for log 10 / log 2, a number d.ddddd*10^dec_exp - // definitely overflows if - // - // (dec_exp - 1) * L >= MAX_EXP - // - // and definitely underflows to zero where - // - // (dec_exp + 1) * L <= MIN_EXP - PRECISION - // - // With integer arithmetic the tightest bounds for L are - // - // 93/28 < L < 196/59 [ numerator <= 256 ] - // 42039/12655 < L < 28738/8651 [ numerator <= 65536 ] - - // Check for MAX_EXP. - if normalized_exp.saturating_sub(1).saturating_mul(42039) >= 12655 * S::MAX_EXP as i32 { - // Overflow and round. - return Ok(Self::overflow_result(round)); - } - - // Check for MIN_EXP. - if normalized_exp.saturating_add(1).saturating_mul(28738) - <= 8651 * (S::MIN_EXP as i32 - S::PRECISION as i32) - { - // Underflow to zero and round. - let r = - if round == Round::TowardPositive { IeeeFloat::SMALLEST } else { IeeeFloat::ZERO }; - return Ok((Status::UNDERFLOW | Status::INEXACT).and(r)); - } - - // A tight upper bound on number of bits required to hold an - // N-digit decimal integer is N * 196 / 59. Allocate enough space - // to hold the full significand, and an extra limb required by - // tcMultiplyPart. - let max_limbs = limbs_for_bits(1 + 196 * significand_digits / 59); - let mut dec_sig: SmallVec<[Limb; 1]> = SmallVec::with_capacity(max_limbs); - - // Convert to binary efficiently - we do almost all multiplication - // in a Limb. When this would overflow do we do a single - // bignum multiplication, and then revert again to multiplication - // in a Limb. - let mut chars = s[first_sig_digit..=last_sig_digit].chars(); - loop { - let mut val = 0; - let mut multiplier = 1; - - loop { - let dec_value = match chars.next() { - Some('.') => continue, - Some(c) => c.to_digit(10).unwrap(), - None => break, - }; - - multiplier *= 10; - val = val * 10 + dec_value as Limb; - - // The maximum number that can be multiplied by ten with any - // digit added without overflowing a Limb. - if multiplier > (!0 - 9) / 10 { - break; - } - } - - // If we've consumed no digits, we're done. - if multiplier == 1 { - break; - } - - // Multiply out the current limb. - let mut carry = val; - for x in &mut dec_sig { - let [low, mut high] = sig::widening_mul(*x, multiplier); - - // Now add carry. - let (low, overflow) = low.overflowing_add(carry); - high += overflow as Limb; - - *x = low; - carry = high; - } - - // If we had carry, we need another limb (likely but not guaranteed). - if carry > 0 { - dec_sig.push(carry); - } - } - - // Calculate pow(5, abs(dec_exp)) into `pow5_full`. - // The *_calc Vec's are reused scratch space, as an optimization. - let (pow5_full, mut pow5_calc, mut sig_calc, mut sig_scratch_calc) = { - let mut power = dec_exp.abs() as usize; - - const FIRST_EIGHT_POWERS: [Limb; 8] = [1, 5, 25, 125, 625, 3125, 15625, 78125]; - - let mut p5_scratch = smallvec![]; - let mut p5: SmallVec<[Limb; 1]> = smallvec![FIRST_EIGHT_POWERS[4]]; - - let mut r_scratch = smallvec![]; - let mut r: SmallVec<[Limb; 1]> = smallvec![FIRST_EIGHT_POWERS[power & 7]]; - power >>= 3; - - while power > 0 { - // Calculate pow(5,pow(2,n+3)). - p5_scratch.resize(p5.len() * 2, 0); - let _: Loss = sig::mul(&mut p5_scratch, &mut 0, &p5, &p5, p5.len() * 2 * LIMB_BITS); - while p5_scratch.last() == Some(&0) { - p5_scratch.pop(); - } - mem::swap(&mut p5, &mut p5_scratch); - - if power & 1 != 0 { - r_scratch.resize(r.len() + p5.len(), 0); - let _: Loss = - sig::mul(&mut r_scratch, &mut 0, &r, &p5, (r.len() + p5.len()) * LIMB_BITS); - while r_scratch.last() == Some(&0) { - r_scratch.pop(); - } - mem::swap(&mut r, &mut r_scratch); - } - - power >>= 1; - } - - (r, r_scratch, p5, p5_scratch) - }; - - // Attempt dec_sig * 10^dec_exp with increasing precision. - let mut attempt = 0; - loop { - let calc_precision = (LIMB_BITS << attempt) - 1; - attempt += 1; - - let calc_normal_from_limbs = |sig: &mut SmallVec<[Limb; 1]>, - limbs: &[Limb]| - -> StatusAnd<ExpInt> { - sig.resize(limbs_for_bits(calc_precision), 0); - let (mut loss, mut exp) = sig::from_limbs(sig, limbs, calc_precision); - - // Before rounding normalize the exponent of Category::Normal numbers. - let mut omsb = sig::omsb(sig); - - assert_ne!(omsb, 0); - - // OMSB is numbered from 1. We want to place it in the integer - // bit numbered PRECISION if possible, with a compensating change in - // the exponent. - let final_exp = exp.saturating_add(omsb as ExpInt - calc_precision as ExpInt); - - // Shifting left is easy as we don't lose precision. - if final_exp < exp { - assert_eq!(loss, Loss::ExactlyZero); - - let exp_change = (exp - final_exp) as usize; - sig::shift_left(sig, &mut exp, exp_change); - - return Status::OK.and(exp); - } - - // Shift right and capture any new lost fraction. - if final_exp > exp { - let exp_change = (final_exp - exp) as usize; - loss = sig::shift_right(sig, &mut exp, exp_change).combine(loss); - - // Keep OMSB up-to-date. - omsb = omsb.saturating_sub(exp_change); - } - - assert_eq!(omsb, calc_precision); - - // Now round the number according to round given the lost - // fraction. - - // As specified in IEEE 754, since we do not trap we do not report - // underflow for exact results. - if loss == Loss::ExactlyZero { - return Status::OK.and(exp); - } - - // Increment the significand if we're rounding away from zero. - if loss == Loss::MoreThanHalf || loss == Loss::ExactlyHalf && sig::get_bit(sig, 0) { - // We should never overflow. - assert_eq!(sig::increment(sig), 0); - omsb = sig::omsb(sig); - - // Did the significand increment overflow? - if omsb == calc_precision + 1 { - let _: Loss = sig::shift_right(sig, &mut exp, 1); - - return Status::INEXACT.and(exp); - } - } - - // The normal case - we were and are not denormal, and any - // significand increment above didn't overflow. - Status::INEXACT.and(exp) - }; - - let status; - let mut exp = unpack!(status=, - calc_normal_from_limbs(&mut sig_calc, &dec_sig)); - let pow5_status; - let pow5_exp = unpack!(pow5_status=, - calc_normal_from_limbs(&mut pow5_calc, &pow5_full)); - - // Add dec_exp, as 10^n = 5^n * 2^n. - exp += dec_exp as ExpInt; - - let mut used_bits = S::PRECISION; - let mut truncated_bits = calc_precision - used_bits; - - let half_ulp_err1 = (status != Status::OK) as Limb; - let (calc_loss, half_ulp_err2); - if dec_exp >= 0 { - exp += pow5_exp; - - sig_scratch_calc.resize(sig_calc.len() + pow5_calc.len(), 0); - calc_loss = sig::mul( - &mut sig_scratch_calc, - &mut exp, - &sig_calc, - &pow5_calc, - calc_precision, - ); - mem::swap(&mut sig_calc, &mut sig_scratch_calc); - - half_ulp_err2 = (pow5_status != Status::OK) as Limb; - } else { - exp -= pow5_exp; - - sig_scratch_calc.resize(sig_calc.len(), 0); - calc_loss = sig::div( - &mut sig_scratch_calc, - &mut exp, - &mut sig_calc, - &mut pow5_calc, - calc_precision, - ); - mem::swap(&mut sig_calc, &mut sig_scratch_calc); - - // Denormal numbers have less precision. - if exp < S::MIN_EXP { - truncated_bits += (S::MIN_EXP - exp) as usize; - used_bits = calc_precision.saturating_sub(truncated_bits); - } - // Extra half-ulp lost in reciprocal of exponent. - half_ulp_err2 = - 2 * (pow5_status != Status::OK || calc_loss != Loss::ExactlyZero) as Limb; - } - - // Both sig::mul and sig::div return the - // result with the integer bit set. - assert!(sig::get_bit(&sig_calc, calc_precision - 1)); - - // The error from the true value, in half-ulps, on multiplying two - // floating point numbers, which differ from the value they - // approximate by at most half_ulp_err1 and half_ulp_err2 half-ulps, is strictly less - // than the returned value. - // - // See "How to Read Floating Point Numbers Accurately" by William D Clinger. - assert!(half_ulp_err1 < 2 || half_ulp_err2 < 2 || (half_ulp_err1 + half_ulp_err2 < 8)); - - let inexact = (calc_loss != Loss::ExactlyZero) as Limb; - let half_ulp_err = if half_ulp_err1 + half_ulp_err2 == 0 { - inexact * 2 // <= inexact half-ulps. - } else { - inexact + 2 * (half_ulp_err1 + half_ulp_err2) - }; - - let ulps_from_boundary = { - let bits = calc_precision - used_bits - 1; - - let i = bits / LIMB_BITS; - let limb = sig_calc[i] & (!0 >> (LIMB_BITS - 1 - bits % LIMB_BITS)); - let boundary = match round { - Round::NearestTiesToEven | Round::NearestTiesToAway => 1 << (bits % LIMB_BITS), - _ => 0, - }; - if i == 0 { - let delta = limb.wrapping_sub(boundary); - cmp::min(delta, delta.wrapping_neg()) - } else if limb == boundary { - if !sig::is_all_zeros(&sig_calc[1..i]) { - !0 // A lot. - } else { - sig_calc[0] - } - } else if limb == boundary.wrapping_sub(1) { - if sig_calc[1..i].iter().any(|&x| x.wrapping_neg() != 1) { - !0 // A lot. - } else { - sig_calc[0].wrapping_neg() - } - } else { - !0 // A lot. - } - }; - - // Are we guaranteed to round correctly if we truncate? - if ulps_from_boundary.saturating_mul(2) >= half_ulp_err { - let mut r = IeeeFloat { - sig: [0], - exp, - category: Category::Normal, - sign: false, - marker: PhantomData, - }; - sig::extract(&mut r.sig, &sig_calc, used_bits, calc_precision - used_bits); - // If we extracted less bits above we must adjust our exponent - // to compensate for the implicit right shift. - r.exp += (S::PRECISION - used_bits) as ExpInt; - let loss = Loss::through_truncation(&sig_calc, truncated_bits); - return Ok(r.normalize(round, loss)); - } - } - } -} - -impl Loss { - /// Combine the effect of two lost fractions. - fn combine(self, less_significant: Loss) -> Loss { - let mut more_significant = self; - if less_significant != Loss::ExactlyZero { - if more_significant == Loss::ExactlyZero { - more_significant = Loss::LessThanHalf; - } else if more_significant == Loss::ExactlyHalf { - more_significant = Loss::MoreThanHalf; - } - } - - more_significant - } - - /// Returns the fraction lost were a bignum truncated losing the least - /// significant `bits` bits. - fn through_truncation(limbs: &[Limb], bits: usize) -> Loss { - if bits == 0 { - return Loss::ExactlyZero; - } - - let half_bit = bits - 1; - let half_limb = half_bit / LIMB_BITS; - let (half_limb, rest) = if half_limb < limbs.len() { - (limbs[half_limb], &limbs[..half_limb]) - } else { - (0, limbs) - }; - let half = 1 << (half_bit % LIMB_BITS); - let has_half = half_limb & half != 0; - let has_rest = half_limb & (half - 1) != 0 || !sig::is_all_zeros(rest); - - match (has_half, has_rest) { - (false, false) => Loss::ExactlyZero, - (false, true) => Loss::LessThanHalf, - (true, false) => Loss::ExactlyHalf, - (true, true) => Loss::MoreThanHalf, - } - } -} - -/// Implementation details of IeeeFloat significands, such as big integer arithmetic. -/// As a rule of thumb, no functions in this module should dynamically allocate. -mod sig { - use super::{limbs_for_bits, ExpInt, Limb, Loss, LIMB_BITS}; - use core::cmp::Ordering; - use core::iter; - use core::mem; - - pub(super) fn is_all_zeros(limbs: &[Limb]) -> bool { - limbs.iter().all(|&l| l == 0) - } - - /// One, not zero, based LSB. That is, returns 0 for a zeroed significand. - pub(super) fn olsb(limbs: &[Limb]) -> usize { - limbs - .iter() - .enumerate() - .find(|(_, &limb)| limb != 0) - .map_or(0, |(i, limb)| i * LIMB_BITS + limb.trailing_zeros() as usize + 1) - } - - /// One, not zero, based MSB. That is, returns 0 for a zeroed significand. - pub(super) fn omsb(limbs: &[Limb]) -> usize { - limbs - .iter() - .enumerate() - .rfind(|(_, &limb)| limb != 0) - .map_or(0, |(i, limb)| (i + 1) * LIMB_BITS - limb.leading_zeros() as usize) - } - - /// Comparison (unsigned) of two significands. - pub(super) fn cmp(a: &[Limb], b: &[Limb]) -> Ordering { - assert_eq!(a.len(), b.len()); - for (a, b) in a.iter().zip(b).rev() { - match a.cmp(b) { - Ordering::Equal => {} - o => return o, - } - } - - Ordering::Equal - } - - /// Extracts the given bit. - pub(super) fn get_bit(limbs: &[Limb], bit: usize) -> bool { - limbs[bit / LIMB_BITS] & (1 << (bit % LIMB_BITS)) != 0 - } - - /// Sets the given bit. - pub(super) fn set_bit(limbs: &mut [Limb], bit: usize) { - limbs[bit / LIMB_BITS] |= 1 << (bit % LIMB_BITS); - } - - /// Clear the given bit. - pub(super) fn clear_bit(limbs: &mut [Limb], bit: usize) { - limbs[bit / LIMB_BITS] &= !(1 << (bit % LIMB_BITS)); - } - - /// Shifts `dst` left `bits` bits, subtract `bits` from its exponent. - pub(super) fn shift_left(dst: &mut [Limb], exp: &mut ExpInt, bits: usize) { - if bits > 0 { - // Our exponent should not underflow. - *exp = exp.checked_sub(bits as ExpInt).unwrap(); - - // Jump is the inter-limb jump; shift is the intra-limb shift. - let jump = bits / LIMB_BITS; - let shift = bits % LIMB_BITS; - - for i in (0..dst.len()).rev() { - let mut limb; - - if i < jump { - limb = 0; - } else { - // dst[i] comes from the two limbs src[i - jump] and, if we have - // an intra-limb shift, src[i - jump - 1]. - limb = dst[i - jump]; - if shift > 0 { - limb <<= shift; - if i > jump { - limb |= dst[i - jump - 1] >> (LIMB_BITS - shift); - } - } - } - - dst[i] = limb; - } - } - } - - /// Shifts `dst` right `bits` bits noting lost fraction. - pub(super) fn shift_right(dst: &mut [Limb], exp: &mut ExpInt, bits: usize) -> Loss { - let loss = Loss::through_truncation(dst, bits); - - if bits > 0 { - // Our exponent should not overflow. - *exp = exp.checked_add(bits as ExpInt).unwrap(); - - // Jump is the inter-limb jump; shift is the intra-limb shift. - let jump = bits / LIMB_BITS; - let shift = bits % LIMB_BITS; - - // Perform the shift. This leaves the most significant `bits` bits - // of the result at zero. - for i in 0..dst.len() { - let mut limb; - - if i + jump >= dst.len() { - limb = 0; - } else { - limb = dst[i + jump]; - if shift > 0 { - limb >>= shift; - if i + jump + 1 < dst.len() { - limb |= dst[i + jump + 1] << (LIMB_BITS - shift); - } - } - } - - dst[i] = limb; - } - } - - loss - } - - /// Copies the bit vector of width `src_bits` from `src`, starting at bit SRC_LSB, - /// to `dst`, such that the bit SRC_LSB becomes the least significant bit of `dst`. - /// All high bits above `src_bits` in `dst` are zero-filled. - pub(super) fn extract(dst: &mut [Limb], src: &[Limb], src_bits: usize, src_lsb: usize) { - if src_bits == 0 { - return; - } - - let dst_limbs = limbs_for_bits(src_bits); - assert!(dst_limbs <= dst.len()); - - let src = &src[src_lsb / LIMB_BITS..]; - dst[..dst_limbs].copy_from_slice(&src[..dst_limbs]); - - let shift = src_lsb % LIMB_BITS; - let _: Loss = shift_right(&mut dst[..dst_limbs], &mut 0, shift); - - // We now have (dst_limbs * LIMB_BITS - shift) bits from `src` - // in `dst`. If this is less that src_bits, append the rest, else - // clear the high bits. - let n = dst_limbs * LIMB_BITS - shift; - if n < src_bits { - let mask = (1 << (src_bits - n)) - 1; - dst[dst_limbs - 1] |= (src[dst_limbs] & mask) << (n % LIMB_BITS); - } else if n > src_bits && src_bits % LIMB_BITS > 0 { - dst[dst_limbs - 1] &= (1 << (src_bits % LIMB_BITS)) - 1; - } - - // Clear high limbs. - for x in &mut dst[dst_limbs..] { - *x = 0; - } - } - - /// We want the most significant PRECISION bits of `src`. There may not - /// be that many; extract what we can. - pub(super) fn from_limbs(dst: &mut [Limb], src: &[Limb], precision: usize) -> (Loss, ExpInt) { - let omsb = omsb(src); - - if precision <= omsb { - extract(dst, src, precision, omsb - precision); - (Loss::through_truncation(src, omsb - precision), omsb as ExpInt - 1) - } else { - extract(dst, src, omsb, 0); - (Loss::ExactlyZero, precision as ExpInt - 1) - } - } - - /// For every consecutive chunk of `bits` bits from `limbs`, - /// going from most significant to the least significant bits, - /// call `f` to transform those bits and store the result back. - pub(super) fn each_chunk<F: FnMut(Limb) -> Limb>(limbs: &mut [Limb], bits: usize, mut f: F) { - assert_eq!(LIMB_BITS % bits, 0); - for limb in limbs.iter_mut().rev() { - let mut r = 0; - for i in (0..LIMB_BITS / bits).rev() { - r |= f((*limb >> (i * bits)) & ((1 << bits) - 1)) << (i * bits); - } - *limb = r; - } - } - - /// Increment in-place, return the carry flag. - pub(super) fn increment(dst: &mut [Limb]) -> Limb { - for x in dst { - *x = x.wrapping_add(1); - if *x != 0 { - return 0; - } - } - - 1 - } - - /// Decrement in-place, return the borrow flag. - pub(super) fn decrement(dst: &mut [Limb]) -> Limb { - for x in dst { - *x = x.wrapping_sub(1); - if *x != !0 { - return 0; - } - } - - 1 - } - - /// `a += b + c` where `c` is zero or one. Returns the carry flag. - pub(super) fn add(a: &mut [Limb], b: &[Limb], mut c: Limb) -> Limb { - assert!(c <= 1); - - for (a, &b) in iter::zip(a, b) { - let (r, overflow) = a.overflowing_add(b); - let (r, overflow2) = r.overflowing_add(c); - *a = r; - c = (overflow | overflow2) as Limb; - } - - c - } - - /// `a -= b + c` where `c` is zero or one. Returns the borrow flag. - pub(super) fn sub(a: &mut [Limb], b: &[Limb], mut c: Limb) -> Limb { - assert!(c <= 1); - - for (a, &b) in iter::zip(a, b) { - let (r, overflow) = a.overflowing_sub(b); - let (r, overflow2) = r.overflowing_sub(c); - *a = r; - c = (overflow | overflow2) as Limb; - } - - c - } - - /// `a += b` or `a -= b`. Does not preserve `b`. - pub(super) fn add_or_sub( - a_sig: &mut [Limb], - a_exp: &mut ExpInt, - a_sign: &mut bool, - b_sig: &mut [Limb], - b_exp: ExpInt, - b_sign: bool, - ) -> Loss { - // Are we bigger exponent-wise than the RHS? - let bits = *a_exp - b_exp; - - // Determine if the operation on the absolute values is effectively - // an addition or subtraction. - // Subtraction is more subtle than one might naively expect. - if *a_sign ^ b_sign { - let (reverse, loss); - - if bits == 0 { - reverse = cmp(a_sig, b_sig) == Ordering::Less; - loss = Loss::ExactlyZero; - } else if bits > 0 { - loss = shift_right(b_sig, &mut 0, (bits - 1) as usize); - shift_left(a_sig, a_exp, 1); - reverse = false; - } else { - loss = shift_right(a_sig, a_exp, (-bits - 1) as usize); - shift_left(b_sig, &mut 0, 1); - reverse = true; - } - - let borrow = (loss != Loss::ExactlyZero) as Limb; - if reverse { - // The code above is intended to ensure that no borrow is necessary. - assert_eq!(sub(b_sig, a_sig, borrow), 0); - a_sig.copy_from_slice(b_sig); - *a_sign = !*a_sign; - } else { - // The code above is intended to ensure that no borrow is necessary. - assert_eq!(sub(a_sig, b_sig, borrow), 0); - } - - // Invert the lost fraction - it was on the RHS and subtracted. - match loss { - Loss::LessThanHalf => Loss::MoreThanHalf, - Loss::MoreThanHalf => Loss::LessThanHalf, - _ => loss, - } - } else { - let loss = if bits > 0 { - shift_right(b_sig, &mut 0, bits as usize) - } else { - shift_right(a_sig, a_exp, -bits as usize) - }; - // We have a guard bit; generating a carry cannot happen. - assert_eq!(add(a_sig, b_sig, 0), 0); - loss - } - } - - /// `[low, high] = a * b`. - /// - /// This cannot overflow, because - /// - /// `(n - 1) * (n - 1) + 2 * (n - 1) == (n - 1) * (n + 1)` - /// - /// which is less than n<sup>2</sup>. - pub(super) fn widening_mul(a: Limb, b: Limb) -> [Limb; 2] { - let mut wide = [0, 0]; - - if a == 0 || b == 0 { - return wide; - } - - const HALF_BITS: usize = LIMB_BITS / 2; - - let select = |limb, i| (limb >> (i * HALF_BITS)) & ((1 << HALF_BITS) - 1); - for i in 0..2 { - for j in 0..2 { - let mut x = [select(a, i) * select(b, j), 0]; - shift_left(&mut x, &mut 0, (i + j) * HALF_BITS); - assert_eq!(add(&mut wide, &x, 0), 0); - } - } - - wide - } - - /// `dst = a * b` (for normal `a` and `b`). Returns the lost fraction. - pub(super) fn mul<'a>( - dst: &mut [Limb], - exp: &mut ExpInt, - mut a: &'a [Limb], - mut b: &'a [Limb], - precision: usize, - ) -> Loss { - // Put the narrower number on the `a` for less loops below. - if a.len() > b.len() { - mem::swap(&mut a, &mut b); - } - - for x in &mut dst[..b.len()] { - *x = 0; - } - - for i in 0..a.len() { - let mut carry = 0; - for j in 0..b.len() { - let [low, mut high] = widening_mul(a[i], b[j]); - - // Now add carry. - let (low, overflow) = low.overflowing_add(carry); - high += overflow as Limb; - - // And now `dst[i + j]`, and store the new low part there. - let (low, overflow) = low.overflowing_add(dst[i + j]); - high += overflow as Limb; - - dst[i + j] = low; - carry = high; - } - dst[i + b.len()] = carry; - } - - // Assume the operands involved in the multiplication are single-precision - // FP, and the two multiplicants are: - // a = a23 . a22 ... a0 * 2^e1 - // b = b23 . b22 ... b0 * 2^e2 - // the result of multiplication is: - // dst = c48 c47 c46 . c45 ... c0 * 2^(e1+e2) - // Note that there are three significant bits at the left-hand side of the - // radix point: two for the multiplication, and an overflow bit for the - // addition (that will always be zero at this point). Move the radix point - // toward left by two bits, and adjust exponent accordingly. - *exp += 2; - - // Convert the result having "2 * precision" significant-bits back to the one - // having "precision" significant-bits. First, move the radix point from - // poision "2*precision - 1" to "precision - 1". The exponent need to be - // adjusted by "2*precision - 1" - "precision - 1" = "precision". - *exp -= precision as ExpInt + 1; - - // In case MSB resides at the left-hand side of radix point, shift the - // mantissa right by some amount to make sure the MSB reside right before - // the radix point (i.e., "MSB . rest-significant-bits"). - // - // Note that the result is not normalized when "omsb < precision". So, the - // caller needs to call IeeeFloat::normalize() if normalized value is - // expected. - let omsb = omsb(dst); - if omsb <= precision { Loss::ExactlyZero } else { shift_right(dst, exp, omsb - precision) } - } - - /// `quotient = dividend / divisor`. Returns the lost fraction. - /// Does not preserve `dividend` or `divisor`. - pub(super) fn div( - quotient: &mut [Limb], - exp: &mut ExpInt, - dividend: &mut [Limb], - divisor: &mut [Limb], - precision: usize, - ) -> Loss { - // Normalize the divisor. - let bits = precision - omsb(divisor); - shift_left(divisor, &mut 0, bits); - *exp += bits as ExpInt; - - // Normalize the dividend. - let bits = precision - omsb(dividend); - shift_left(dividend, exp, bits); - - // Division by 1. - let olsb_divisor = olsb(divisor); - if olsb_divisor == precision { - quotient.copy_from_slice(dividend); - return Loss::ExactlyZero; - } - - // Ensure the dividend >= divisor initially for the loop below. - // Incidentally, this means that the division loop below is - // guaranteed to set the integer bit to one. - if cmp(dividend, divisor) == Ordering::Less { - shift_left(dividend, exp, 1); - assert_ne!(cmp(dividend, divisor), Ordering::Less) - } - - // Helper for figuring out the lost fraction. - let lost_fraction = |dividend: &[Limb], divisor: &[Limb]| match cmp(dividend, divisor) { - Ordering::Greater => Loss::MoreThanHalf, - Ordering::Equal => Loss::ExactlyHalf, - Ordering::Less => { - if is_all_zeros(dividend) { - Loss::ExactlyZero - } else { - Loss::LessThanHalf - } - } - }; - - // Try to perform a (much faster) short division for small divisors. - let divisor_bits = precision - (olsb_divisor - 1); - macro_rules! try_short_div { - ($W:ty, $H:ty, $half:expr) => { - if divisor_bits * 2 <= $half { - // Extract the small divisor. - let _: Loss = shift_right(divisor, &mut 0, olsb_divisor - 1); - let divisor = divisor[0] as $H as $W; - - // Shift the dividend to produce a quotient with the unit bit set. - let top_limb = *dividend.last().unwrap(); - let mut rem = (top_limb >> (LIMB_BITS - (divisor_bits - 1))) as $H; - shift_left(dividend, &mut 0, divisor_bits - 1); - - // Apply short division in place on $H (of $half bits) chunks. - each_chunk(dividend, $half, |chunk| { - let chunk = chunk as $H; - let combined = ((rem as $W) << $half) | (chunk as $W); - rem = (combined % divisor) as $H; - (combined / divisor) as $H as Limb - }); - quotient.copy_from_slice(dividend); - - return lost_fraction(&[(rem as Limb) << 1], &[divisor as Limb]); - } - }; - } - - try_short_div!(u32, u16, 16); - try_short_div!(u64, u32, 32); - try_short_div!(u128, u64, 64); - - // Zero the quotient before setting bits in it. - for x in &mut quotient[..limbs_for_bits(precision)] { - *x = 0; - } - - // Long division. - for bit in (0..precision).rev() { - if cmp(dividend, divisor) != Ordering::Less { - sub(dividend, divisor, 0); - set_bit(quotient, bit); - } - shift_left(dividend, &mut 0, 1); - } - - lost_fraction(dividend, divisor) - } -} |
