about summary refs log tree commit diff
path: root/compiler/rustc_apfloat/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_apfloat/src/lib.rs')
-rw-r--r--compiler/rustc_apfloat/src/lib.rs695
1 files changed, 0 insertions, 695 deletions
diff --git a/compiler/rustc_apfloat/src/lib.rs b/compiler/rustc_apfloat/src/lib.rs
deleted file mode 100644
index dde368e7b92..00000000000
--- a/compiler/rustc_apfloat/src/lib.rs
+++ /dev/null
@@ -1,695 +0,0 @@
-//! Port of LLVM's APFloat software floating-point implementation from the
-//! following C++ sources (please update commit hash when backporting):
-//! <https://github.com/llvm-mirror/llvm/tree/23efab2bbd424ed13495a420ad8641cb2c6c28f9>
-//!
-//! * `include/llvm/ADT/APFloat.h` -> `Float` and `FloatConvert` traits
-//! * `lib/Support/APFloat.cpp` -> `ieee` and `ppc` modules
-//! * `unittests/ADT/APFloatTest.cpp` -> `tests` directory
-//!
-//! The port contains no unsafe code, global state, or side-effects in general,
-//! and the only allocations are in the conversion to/from decimal strings.
-//!
-//! Most of the API and the testcases are intact in some form or another,
-//! with some ergonomic changes, such as idiomatic short names, returning
-//! new values instead of mutating the receiver, and having separate method
-//! variants that take a non-default rounding mode (with the suffix `_r`).
-//! Comments have been preserved where possible, only slightly adapted.
-//!
-//! Instead of keeping a pointer to a configuration struct and inspecting it
-//! dynamically on every operation, types (e.g., `ieee::Double`), traits
-//! (e.g., `ieee::Semantics`) and associated constants are employed for
-//! increased type safety and performance.
-//!
-//! On-heap bigints are replaced everywhere (except in decimal conversion),
-//! with short arrays of `type Limb = u128` elements (instead of `u64`),
-//! This allows fitting the largest supported significands in one integer
-//! (`ieee::Quad` and `ppc::Fallback` use slightly less than 128 bits).
-//! All of the functions in the `ieee::sig` module operate on slices.
-//!
-//! # Note
-//!
-//! This API is completely unstable and subject to change.
-
-#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
-#![no_std]
-#![forbid(unsafe_code)]
-#![deny(rustc::untranslatable_diagnostic)]
-#![deny(rustc::diagnostic_outside_of_impl)]
-
-#[macro_use]
-extern crate alloc;
-
-use core::cmp::Ordering;
-use core::fmt;
-use core::ops::{Add, Div, Mul, Neg, Rem, Sub};
-use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
-use core::str::FromStr;
-
-bitflags::bitflags! {
-    /// IEEE-754R 7: Default exception handling.
-    ///
-    /// UNDERFLOW or OVERFLOW are always returned or-ed with INEXACT.
-    #[must_use]
-    pub struct Status: u8 {
-        const OK = 0x00;
-        const INVALID_OP = 0x01;
-        const DIV_BY_ZERO = 0x02;
-        const OVERFLOW = 0x04;
-        const UNDERFLOW = 0x08;
-        const INEXACT = 0x10;
-    }
-}
-
-#[must_use]
-#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
-pub struct StatusAnd<T> {
-    pub status: Status,
-    pub value: T,
-}
-
-impl Status {
-    pub fn and<T>(self, value: T) -> StatusAnd<T> {
-        StatusAnd { status: self, value }
-    }
-}
-
-impl<T> StatusAnd<T> {
-    pub fn map<F: FnOnce(T) -> U, U>(self, f: F) -> StatusAnd<U> {
-        StatusAnd { status: self.status, value: f(self.value) }
-    }
-}
-
-#[macro_export]
-macro_rules! unpack {
-    ($status:ident|=, $e:expr) => {
-        match $e {
-            $crate::StatusAnd { status, value } => {
-                $status |= status;
-                value
-            }
-        }
-    };
-    ($status:ident=, $e:expr) => {
-        match $e {
-            $crate::StatusAnd { status, value } => {
-                $status = status;
-                value
-            }
-        }
-    };
-}
-
-/// Category of internally-represented number.
-#[derive(Copy, Clone, PartialEq, Eq, Debug)]
-pub enum Category {
-    Infinity,
-    NaN,
-    Normal,
-    Zero,
-}
-
-/// IEEE-754R 4.3: Rounding-direction attributes.
-#[derive(Copy, Clone, PartialEq, Eq, Debug)]
-pub enum Round {
-    NearestTiesToEven,
-    TowardPositive,
-    TowardNegative,
-    TowardZero,
-    NearestTiesToAway,
-}
-
-impl Neg for Round {
-    type Output = Round;
-    fn neg(self) -> Round {
-        match self {
-            Round::TowardPositive => Round::TowardNegative,
-            Round::TowardNegative => Round::TowardPositive,
-            Round::NearestTiesToEven | Round::TowardZero | Round::NearestTiesToAway => self,
-        }
-    }
-}
-
-/// A signed type to represent a floating point number's unbiased exponent.
-pub type ExpInt = i16;
-
-// \c ilogb error results.
-pub const IEK_INF: ExpInt = ExpInt::MAX;
-pub const IEK_NAN: ExpInt = ExpInt::MIN;
-pub const IEK_ZERO: ExpInt = ExpInt::MIN + 1;
-
-#[derive(Copy, Clone, PartialEq, Eq, Debug)]
-pub struct ParseError(pub &'static str);
-
-/// A self-contained host- and target-independent arbitrary-precision
-/// floating-point software implementation.
-///
-/// `apfloat` uses significand bignum integer arithmetic as provided by functions
-/// in the `ieee::sig`.
-///
-/// Written for clarity rather than speed, in particular with a view to use in
-/// the front-end of a cross compiler so that target arithmetic can be correctly
-/// performed on the host. Performance should nonetheless be reasonable,
-/// particularly for its intended use. It may be useful as a base
-/// implementation for a run-time library during development of a faster
-/// target-specific one.
-///
-/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
-/// implemented operations. Currently implemented operations are add, subtract,
-/// multiply, divide, fused-multiply-add, conversion-to-float,
-/// conversion-to-integer and conversion-from-integer. New rounding modes
-/// (e.g., away from zero) can be added with three or four lines of code.
-///
-/// Four formats are built-in: IEEE single precision, double precision,
-/// quadruple precision, and x87 80-bit extended double (when operating with
-/// full extended precision). Adding a new format that obeys IEEE semantics
-/// only requires adding two lines of code: a declaration and definition of the
-/// format.
-///
-/// All operations return the status of that operation as an exception bit-mask,
-/// so multiple operations can be done consecutively with their results or-ed
-/// together. The returned status can be useful for compiler diagnostics; e.g.,
-/// inexact, underflow and overflow can be easily diagnosed on constant folding,
-/// and compiler optimizers can determine what exceptions would be raised by
-/// folding operations and optimize, or perhaps not optimize, accordingly.
-///
-/// At present, underflow tininess is detected after rounding; it should be
-/// straight forward to add support for the before-rounding case too.
-///
-/// The library reads hexadecimal floating point numbers as per C99, and
-/// correctly rounds if necessary according to the specified rounding mode.
-/// Syntax is required to have been validated by the caller.
-///
-/// It also reads decimal floating point numbers and correctly rounds according
-/// to the specified rounding mode.
-///
-/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
-/// signed exponent, and the significand as an array of integer limbs. After
-/// normalization of a number of precision P the exponent is within the range of
-/// the format, and if the number is not denormal the P-th bit of the
-/// significand is set as an explicit integer bit. For denormals the most
-/// significant bit is shifted right so that the exponent is maintained at the
-/// format's minimum, so that the smallest denormal has just the least
-/// significant bit of the significand set. The sign of zeros and infinities
-/// is significant; the exponent and significand of such numbers is not stored,
-/// but has a known implicit (deterministic) value: 0 for the significands, 0
-/// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
-/// significand are deterministic, although not really meaningful, and preserved
-/// in non-conversion operations. The exponent is implicitly all 1 bits.
-///
-/// `apfloat` does not provide any exception handling beyond default exception
-/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
-/// by encoding Signaling NaNs with the first bit of its trailing significand
-/// as 0.
-///
-/// Future work
-/// ===========
-///
-/// Some features that may or may not be worth adding:
-///
-/// Optional ability to detect underflow tininess before rounding.
-///
-/// New formats: x87 in single and double precision mode (IEEE apart from
-/// extended exponent range) (hard).
-///
-/// New operations: sqrt, nexttoward.
-///
-pub trait Float:
-    Copy
-    + Default
-    + FromStr<Err = ParseError>
-    + PartialOrd
-    + fmt::Display
-    + Neg<Output = Self>
-    + AddAssign
-    + SubAssign
-    + MulAssign
-    + DivAssign
-    + RemAssign
-    + Add<Output = StatusAnd<Self>>
-    + Sub<Output = StatusAnd<Self>>
-    + Mul<Output = StatusAnd<Self>>
-    + Div<Output = StatusAnd<Self>>
-    + Rem<Output = StatusAnd<Self>>
-{
-    /// Total number of bits in the in-memory format.
-    const BITS: usize;
-
-    /// Number of bits in the significand. This includes the integer bit.
-    const PRECISION: usize;
-
-    /// The largest E such that 2<sup>E</sup> is representable; this matches the
-    /// definition of IEEE 754.
-    const MAX_EXP: ExpInt;
-
-    /// The smallest E such that 2<sup>E</sup> is a normalized number; this
-    /// matches the definition of IEEE 754.
-    const MIN_EXP: ExpInt;
-
-    /// Positive Zero.
-    const ZERO: Self;
-
-    /// Positive Infinity.
-    const INFINITY: Self;
-
-    /// NaN (Not a Number).
-    // FIXME(eddyb) provide a default when qnan becomes const fn.
-    const NAN: Self;
-
-    /// Factory for QNaN values.
-    // FIXME(eddyb) should be const fn.
-    fn qnan(payload: Option<u128>) -> Self;
-
-    /// Factory for SNaN values.
-    // FIXME(eddyb) should be const fn.
-    fn snan(payload: Option<u128>) -> Self;
-
-    /// Largest finite number.
-    // FIXME(eddyb) should be const (but FloatPair::largest is nontrivial).
-    fn largest() -> Self;
-
-    /// Smallest (by magnitude) finite number.
-    /// Might be denormalized, which implies a relative loss of precision.
-    const SMALLEST: Self;
-
-    /// Smallest (by magnitude) normalized finite number.
-    // FIXME(eddyb) should be const (but FloatPair::smallest_normalized is nontrivial).
-    fn smallest_normalized() -> Self;
-
-    // Arithmetic
-
-    fn add_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
-    fn sub_r(self, rhs: Self, round: Round) -> StatusAnd<Self> {
-        self.add_r(-rhs, round)
-    }
-    fn mul_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
-    fn mul_add_r(self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self>;
-    fn mul_add(self, multiplicand: Self, addend: Self) -> StatusAnd<Self> {
-        self.mul_add_r(multiplicand, addend, Round::NearestTiesToEven)
-    }
-    fn div_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
-    /// IEEE remainder.
-    // This is not currently correct in all cases.
-    fn ieee_rem(self, rhs: Self) -> StatusAnd<Self> {
-        let mut v = self;
-
-        let status;
-        v = unpack!(status=, v / rhs);
-        if status == Status::DIV_BY_ZERO {
-            return status.and(self);
-        }
-
-        assert!(Self::PRECISION < 128);
-
-        let status;
-        let x = unpack!(status=, v.to_i128_r(128, Round::NearestTiesToEven, &mut false));
-        if status == Status::INVALID_OP {
-            return status.and(self);
-        }
-
-        let status;
-        let mut v = unpack!(status=, Self::from_i128(x));
-        assert_eq!(status, Status::OK); // should always work
-
-        let status;
-        v = unpack!(status=, v * rhs);
-        assert_eq!(status - Status::INEXACT, Status::OK); // should not overflow or underflow
-
-        let status;
-        v = unpack!(status=, self - v);
-        assert_eq!(status - Status::INEXACT, Status::OK); // likewise
-
-        if v.is_zero() {
-            status.and(v.copy_sign(self)) // IEEE754 requires this
-        } else {
-            status.and(v)
-        }
-    }
-    /// C fmod, or llvm frem.
-    fn c_fmod(self, rhs: Self) -> StatusAnd<Self>;
-    fn round_to_integral(self, round: Round) -> StatusAnd<Self>;
-
-    /// IEEE-754R 2008 5.3.1: nextUp.
-    fn next_up(self) -> StatusAnd<Self>;
-
-    /// IEEE-754R 2008 5.3.1: nextDown.
-    ///
-    /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
-    /// appropriate sign switching before/after the computation.
-    fn next_down(self) -> StatusAnd<Self> {
-        (-self).next_up().map(|r| -r)
-    }
-
-    fn abs(self) -> Self {
-        if self.is_negative() { -self } else { self }
-    }
-    fn copy_sign(self, rhs: Self) -> Self {
-        if self.is_negative() != rhs.is_negative() { -self } else { self }
-    }
-
-    // Conversions
-    fn from_bits(input: u128) -> Self;
-    fn from_i128_r(input: i128, round: Round) -> StatusAnd<Self> {
-        if input < 0 {
-            Self::from_u128_r(input.wrapping_neg() as u128, -round).map(|r| -r)
-        } else {
-            Self::from_u128_r(input as u128, round)
-        }
-    }
-    fn from_i128(input: i128) -> StatusAnd<Self> {
-        Self::from_i128_r(input, Round::NearestTiesToEven)
-    }
-    fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self>;
-    fn from_u128(input: u128) -> StatusAnd<Self> {
-        Self::from_u128_r(input, Round::NearestTiesToEven)
-    }
-    fn from_str_r(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError>;
-    fn to_bits(self) -> u128;
-
-    /// Converts a floating point number to an integer according to the
-    /// rounding mode. In case of an invalid operation exception,
-    /// deterministic values are returned, namely zero for NaNs and the
-    /// minimal or maximal value respectively for underflow or overflow.
-    /// If the rounded value is in range but the floating point number is
-    /// not the exact integer, the C standard doesn't require an inexact
-    /// exception to be raised. IEEE-854 does require it so we do that.
-    ///
-    /// Note that for conversions to integer type the C standard requires
-    /// round-to-zero to always be used.
-    ///
-    /// The *is_exact output tells whether the result is exact, in the sense
-    /// that converting it back to the original floating point type produces
-    /// the original value. This is almost equivalent to `result == Status::OK`,
-    /// except for negative zeroes.
-    fn to_i128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<i128> {
-        let status;
-        if self.is_negative() {
-            if self.is_zero() {
-                // Negative zero can't be represented as an int.
-                *is_exact = false;
-            }
-            let r = unpack!(status=, (-self).to_u128_r(width, -round, is_exact));
-
-            // Check for values that don't fit in the signed integer.
-            if r > (1 << (width - 1)) {
-                // Return the most negative integer for the given width.
-                *is_exact = false;
-                Status::INVALID_OP.and(-1 << (width - 1))
-            } else {
-                status.and(r.wrapping_neg() as i128)
-            }
-        } else {
-            // Positive case is simpler, can pretend it's a smaller unsigned
-            // integer, and `to_u128` will take care of all the edge cases.
-            self.to_u128_r(width - 1, round, is_exact).map(|r| r as i128)
-        }
-    }
-    fn to_i128(self, width: usize) -> StatusAnd<i128> {
-        self.to_i128_r(width, Round::TowardZero, &mut true)
-    }
-    fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128>;
-    fn to_u128(self, width: usize) -> StatusAnd<u128> {
-        self.to_u128_r(width, Round::TowardZero, &mut true)
-    }
-
-    fn cmp_abs_normal(self, rhs: Self) -> Ordering;
-
-    /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
-    fn bitwise_eq(self, rhs: Self) -> bool;
-
-    // IEEE-754R 5.7.2 General operations.
-
-    /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
-    /// both are not NaN. If either argument is a NaN, returns the other argument.
-    fn min(self, other: Self) -> Self {
-        if self.is_nan() {
-            other
-        } else if other.is_nan() {
-            self
-        } else if other.partial_cmp(&self) == Some(Ordering::Less) {
-            other
-        } else {
-            self
-        }
-    }
-
-    /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
-    /// both are not NaN. If either argument is a NaN, returns the other argument.
-    fn max(self, other: Self) -> Self {
-        if self.is_nan() {
-            other
-        } else if other.is_nan() {
-            self
-        } else if self.partial_cmp(&other) == Some(Ordering::Less) {
-            other
-        } else {
-            self
-        }
-    }
-
-    /// IEEE-754R isSignMinus: Returns whether the current value is
-    /// negative.
-    ///
-    /// This applies to zeros and NaNs as well.
-    fn is_negative(self) -> bool;
-
-    /// IEEE-754R isNormal: Returns whether the current value is normal.
-    ///
-    /// This implies that the current value of the float is not zero, subnormal,
-    /// infinite, or NaN following the definition of normality from IEEE-754R.
-    fn is_normal(self) -> bool {
-        !self.is_denormal() && self.is_finite_non_zero()
-    }
-
-    /// Returns `true` if the current value is zero, subnormal, or
-    /// normal.
-    ///
-    /// This means that the value is not infinite or NaN.
-    fn is_finite(self) -> bool {
-        !self.is_nan() && !self.is_infinite()
-    }
-
-    /// Returns `true` if the float is plus or minus zero.
-    fn is_zero(self) -> bool {
-        self.category() == Category::Zero
-    }
-
-    /// IEEE-754R isSubnormal(): Returns whether the float is a
-    /// denormal.
-    fn is_denormal(self) -> bool;
-
-    /// IEEE-754R isInfinite(): Returns whether the float is infinity.
-    fn is_infinite(self) -> bool {
-        self.category() == Category::Infinity
-    }
-
-    /// Returns `true` if the float is a quiet or signaling NaN.
-    fn is_nan(self) -> bool {
-        self.category() == Category::NaN
-    }
-
-    /// Returns `true` if the float is a signaling NaN.
-    fn is_signaling(self) -> bool;
-
-    // Simple Queries
-
-    fn category(self) -> Category;
-    fn is_non_zero(self) -> bool {
-        !self.is_zero()
-    }
-    fn is_finite_non_zero(self) -> bool {
-        self.is_finite() && !self.is_zero()
-    }
-    fn is_pos_zero(self) -> bool {
-        self.is_zero() && !self.is_negative()
-    }
-    fn is_neg_zero(self) -> bool {
-        self.is_zero() && self.is_negative()
-    }
-
-    /// Returns `true` if the number has the smallest possible non-zero
-    /// magnitude in the current semantics.
-    fn is_smallest(self) -> bool {
-        Self::SMALLEST.copy_sign(self).bitwise_eq(self)
-    }
-
-    /// Returns `true` if the number has the largest possible finite
-    /// magnitude in the current semantics.
-    fn is_largest(self) -> bool {
-        Self::largest().copy_sign(self).bitwise_eq(self)
-    }
-
-    /// Returns `true` if the number is an exact integer.
-    fn is_integer(self) -> bool {
-        // This could be made more efficient; I'm going for obviously correct.
-        if !self.is_finite() {
-            return false;
-        }
-        self.round_to_integral(Round::TowardZero).value.bitwise_eq(self)
-    }
-
-    /// If this value has an exact multiplicative inverse, return it.
-    fn get_exact_inverse(self) -> Option<Self>;
-
-    /// Returns the exponent of the internal representation of the Float.
-    ///
-    /// Because the radix of Float is 2, this is equivalent to floor(log2(x)).
-    /// For special Float values, this returns special error codes:
-    ///
-    ///   NaN -> \c IEK_NAN
-    ///   0   -> \c IEK_ZERO
-    ///   Inf -> \c IEK_INF
-    ///
-    fn ilogb(self) -> ExpInt;
-
-    /// Returns: self * 2<sup>exp</sup> for integral exponents.
-    /// Equivalent to C standard library function `ldexp`.
-    fn scalbn_r(self, exp: ExpInt, round: Round) -> Self;
-    fn scalbn(self, exp: ExpInt) -> Self {
-        self.scalbn_r(exp, Round::NearestTiesToEven)
-    }
-
-    /// Equivalent to C standard library function with the same name.
-    ///
-    /// While the C standard says exp is an unspecified value for infinity and nan,
-    /// this returns INT_MAX for infinities, and INT_MIN for NaNs (see `ilogb`).
-    fn frexp_r(self, exp: &mut ExpInt, round: Round) -> Self;
-    fn frexp(self, exp: &mut ExpInt) -> Self {
-        self.frexp_r(exp, Round::NearestTiesToEven)
-    }
-}
-
-pub trait FloatConvert<T: Float>: Float {
-    /// Converts a value of one floating point type to another.
-    /// The return value corresponds to the IEEE754 exceptions. *loses_info
-    /// records whether the transformation lost information, i.e., whether
-    /// converting the result back to the original type will produce the
-    /// original value (this is almost the same as return `value == Status::OK`,
-    /// but there are edge cases where this is not so).
-    fn convert_r(self, round: Round, loses_info: &mut bool) -> StatusAnd<T>;
-    fn convert(self, loses_info: &mut bool) -> StatusAnd<T> {
-        self.convert_r(Round::NearestTiesToEven, loses_info)
-    }
-}
-
-macro_rules! float_common_impls {
-    ($ty:ident<$t:tt>) => {
-        impl<$t> Default for $ty<$t>
-        where
-            Self: Float,
-        {
-            fn default() -> Self {
-                Self::ZERO
-            }
-        }
-
-        impl<$t> ::core::str::FromStr for $ty<$t>
-        where
-            Self: Float,
-        {
-            type Err = ParseError;
-            fn from_str(s: &str) -> Result<Self, ParseError> {
-                Self::from_str_r(s, Round::NearestTiesToEven).map(|x| x.value)
-            }
-        }
-
-        // Rounding ties to the nearest even, by default.
-
-        impl<$t> ::core::ops::Add for $ty<$t>
-        where
-            Self: Float,
-        {
-            type Output = StatusAnd<Self>;
-            fn add(self, rhs: Self) -> StatusAnd<Self> {
-                self.add_r(rhs, Round::NearestTiesToEven)
-            }
-        }
-
-        impl<$t> ::core::ops::Sub for $ty<$t>
-        where
-            Self: Float,
-        {
-            type Output = StatusAnd<Self>;
-            fn sub(self, rhs: Self) -> StatusAnd<Self> {
-                self.sub_r(rhs, Round::NearestTiesToEven)
-            }
-        }
-
-        impl<$t> ::core::ops::Mul for $ty<$t>
-        where
-            Self: Float,
-        {
-            type Output = StatusAnd<Self>;
-            fn mul(self, rhs: Self) -> StatusAnd<Self> {
-                self.mul_r(rhs, Round::NearestTiesToEven)
-            }
-        }
-
-        impl<$t> ::core::ops::Div for $ty<$t>
-        where
-            Self: Float,
-        {
-            type Output = StatusAnd<Self>;
-            fn div(self, rhs: Self) -> StatusAnd<Self> {
-                self.div_r(rhs, Round::NearestTiesToEven)
-            }
-        }
-
-        impl<$t> ::core::ops::Rem for $ty<$t>
-        where
-            Self: Float,
-        {
-            type Output = StatusAnd<Self>;
-            fn rem(self, rhs: Self) -> StatusAnd<Self> {
-                self.c_fmod(rhs)
-            }
-        }
-
-        impl<$t> ::core::ops::AddAssign for $ty<$t>
-        where
-            Self: Float,
-        {
-            fn add_assign(&mut self, rhs: Self) {
-                *self = (*self + rhs).value;
-            }
-        }
-
-        impl<$t> ::core::ops::SubAssign for $ty<$t>
-        where
-            Self: Float,
-        {
-            fn sub_assign(&mut self, rhs: Self) {
-                *self = (*self - rhs).value;
-            }
-        }
-
-        impl<$t> ::core::ops::MulAssign for $ty<$t>
-        where
-            Self: Float,
-        {
-            fn mul_assign(&mut self, rhs: Self) {
-                *self = (*self * rhs).value;
-            }
-        }
-
-        impl<$t> ::core::ops::DivAssign for $ty<$t>
-        where
-            Self: Float,
-        {
-            fn div_assign(&mut self, rhs: Self) {
-                *self = (*self / rhs).value;
-            }
-        }
-
-        impl<$t> ::core::ops::RemAssign for $ty<$t>
-        where
-            Self: Float,
-        {
-            fn rem_assign(&mut self, rhs: Self) {
-                *self = (*self % rhs).value;
-            }
-        }
-    };
-}
-
-pub mod ieee;
-pub mod ppc;