about summary refs log tree commit diff
path: root/compiler/rustc_codegen_gcc/src/builder.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_codegen_gcc/src/builder.rs')
-rw-r--r--compiler/rustc_codegen_gcc/src/builder.rs2478
1 files changed, 2478 insertions, 0 deletions
diff --git a/compiler/rustc_codegen_gcc/src/builder.rs b/compiler/rustc_codegen_gcc/src/builder.rs
new file mode 100644
index 00000000000..5c70f4a7df9
--- /dev/null
+++ b/compiler/rustc_codegen_gcc/src/builder.rs
@@ -0,0 +1,2478 @@
+use std::borrow::Cow;
+use std::cell::Cell;
+use std::convert::TryFrom;
+use std::ops::Deref;
+
+use gccjit::{
+    BinaryOp, Block, ComparisonOp, Context, Function, LValue, Location, RValue, ToRValue, Type,
+    UnaryOp,
+};
+use rustc_abi as abi;
+use rustc_abi::{Align, HasDataLayout, Size, TargetDataLayout, WrappingRange};
+use rustc_apfloat::{Float, Round, Status, ieee};
+use rustc_codegen_ssa::MemFlags;
+use rustc_codegen_ssa::common::{
+    AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope, TypeKind,
+};
+use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
+use rustc_codegen_ssa::mir::place::PlaceRef;
+use rustc_codegen_ssa::traits::{
+    BackendTypes, BaseTypeCodegenMethods, BuilderMethods, ConstCodegenMethods,
+    LayoutTypeCodegenMethods, OverflowOp, StaticBuilderMethods,
+};
+use rustc_data_structures::fx::FxHashSet;
+use rustc_middle::bug;
+use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
+use rustc_middle::ty::layout::{
+    FnAbiError, FnAbiOfHelpers, FnAbiRequest, HasTyCtxt, HasTypingEnv, LayoutError, LayoutOfHelpers,
+};
+use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
+use rustc_span::Span;
+use rustc_span::def_id::DefId;
+use rustc_target::callconv::FnAbi;
+use rustc_target::spec::{HasTargetSpec, HasWasmCAbiOpt, HasX86AbiOpt, Target, WasmCAbi, X86Abi};
+
+use crate::common::{SignType, TypeReflection, type_is_pointer};
+use crate::context::CodegenCx;
+use crate::intrinsic::llvm;
+use crate::type_of::LayoutGccExt;
+
+// TODO(antoyo)
+type Funclet = ();
+
+enum ExtremumOperation {
+    Max,
+    Min,
+}
+
+pub struct Builder<'a: 'gcc, 'gcc, 'tcx> {
+    pub cx: &'a CodegenCx<'gcc, 'tcx>,
+    pub block: Block<'gcc>,
+    pub location: Option<Location<'gcc>>,
+    value_counter: Cell<u64>,
+}
+
+impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> {
+    fn with_cx(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Self {
+        Builder { cx, block, location: None, value_counter: Cell::new(0) }
+    }
+
+    fn next_value_counter(&self) -> u64 {
+        self.value_counter.set(self.value_counter.get() + 1);
+        self.value_counter.get()
+    }
+
+    fn atomic_extremum(
+        &mut self,
+        operation: ExtremumOperation,
+        dst: RValue<'gcc>,
+        src: RValue<'gcc>,
+        order: AtomicOrdering,
+    ) -> RValue<'gcc> {
+        let size = get_maybe_pointer_size(src);
+
+        let func = self.current_func();
+
+        let load_ordering = match order {
+            // TODO(antoyo): does this make sense?
+            AtomicOrdering::AcquireRelease | AtomicOrdering::Release => AtomicOrdering::Acquire,
+            _ => order,
+        };
+        let previous_value =
+            self.atomic_load(dst.get_type(), dst, load_ordering, Size::from_bytes(size));
+        let previous_var =
+            func.new_local(self.location, previous_value.get_type(), "previous_value");
+        let return_value = func.new_local(self.location, previous_value.get_type(), "return_value");
+        self.llbb().add_assignment(self.location, previous_var, previous_value);
+        self.llbb().add_assignment(self.location, return_value, previous_var.to_rvalue());
+
+        let while_block = func.new_block("while");
+        let after_block = func.new_block("after_while");
+        self.llbb().end_with_jump(self.location, while_block);
+
+        // NOTE: since jumps were added and compare_exchange doesn't expect this, the current block in the
+        // state need to be updated.
+        self.switch_to_block(while_block);
+
+        let comparison_operator = match operation {
+            ExtremumOperation::Max => ComparisonOp::LessThan,
+            ExtremumOperation::Min => ComparisonOp::GreaterThan,
+        };
+
+        let cond1 = self.context.new_comparison(
+            self.location,
+            comparison_operator,
+            previous_var.to_rvalue(),
+            self.context.new_cast(self.location, src, previous_value.get_type()),
+        );
+        let compare_exchange =
+            self.compare_exchange(dst, previous_var, src, order, load_ordering, false);
+        let cond2 = self.cx.context.new_unary_op(
+            self.location,
+            UnaryOp::LogicalNegate,
+            compare_exchange.get_type(),
+            compare_exchange,
+        );
+        let cond = self.cx.context.new_binary_op(
+            self.location,
+            BinaryOp::LogicalAnd,
+            self.cx.bool_type,
+            cond1,
+            cond2,
+        );
+
+        while_block.end_with_conditional(self.location, cond, while_block, after_block);
+
+        // NOTE: since jumps were added in a place rustc does not expect, the current block in the
+        // state need to be updated.
+        self.switch_to_block(after_block);
+
+        return_value.to_rvalue()
+    }
+
+    fn compare_exchange(
+        &self,
+        dst: RValue<'gcc>,
+        cmp: LValue<'gcc>,
+        src: RValue<'gcc>,
+        order: AtomicOrdering,
+        failure_order: AtomicOrdering,
+        weak: bool,
+    ) -> RValue<'gcc> {
+        let size = get_maybe_pointer_size(src);
+        let compare_exchange =
+            self.context.get_builtin_function(format!("__atomic_compare_exchange_{}", size));
+        let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
+        let failure_order = self.context.new_rvalue_from_int(self.i32_type, failure_order.to_gcc());
+        let weak = self.context.new_rvalue_from_int(self.bool_type, weak as i32);
+
+        let void_ptr_type = self.context.new_type::<*mut ()>();
+        let volatile_void_ptr_type = void_ptr_type.make_volatile();
+        let dst = self.context.new_cast(self.location, dst, volatile_void_ptr_type);
+        let expected =
+            self.context.new_cast(self.location, cmp.get_address(self.location), void_ptr_type);
+
+        // NOTE: not sure why, but we have the wrong type here.
+        let int_type = compare_exchange.get_param(2).to_rvalue().get_type();
+        let src = self.context.new_bitcast(self.location, src, int_type);
+        self.context.new_call(
+            self.location,
+            compare_exchange,
+            &[dst, expected, src, weak, order, failure_order],
+        )
+    }
+
+    pub fn assign(&self, lvalue: LValue<'gcc>, value: RValue<'gcc>) {
+        self.llbb().add_assignment(self.location, lvalue, value);
+    }
+
+    fn check_call<'b>(
+        &mut self,
+        _typ: &str,
+        func: Function<'gcc>,
+        args: &'b [RValue<'gcc>],
+    ) -> Cow<'b, [RValue<'gcc>]> {
+        let mut all_args_match = true;
+        let mut param_types = vec![];
+        let param_count = func.get_param_count();
+        for (index, arg) in args.iter().enumerate().take(param_count) {
+            let param = func.get_param(index as i32);
+            let param = param.to_rvalue().get_type();
+            if param != arg.get_type() {
+                all_args_match = false;
+            }
+            param_types.push(param);
+        }
+
+        if all_args_match {
+            return Cow::Borrowed(args);
+        }
+
+        let casted_args: Vec<_> = param_types
+            .into_iter()
+            .zip(args.iter())
+            .map(|(expected_ty, &actual_val)| {
+                let actual_ty = actual_val.get_type();
+                if expected_ty != actual_ty {
+                    self.bitcast(actual_val, expected_ty)
+                } else {
+                    actual_val
+                }
+            })
+            .collect();
+
+        debug_assert_eq!(casted_args.len(), args.len());
+
+        Cow::Owned(casted_args)
+    }
+
+    fn check_ptr_call<'b>(
+        &mut self,
+        _typ: &str,
+        func_ptr: RValue<'gcc>,
+        args: &'b [RValue<'gcc>],
+    ) -> Cow<'b, [RValue<'gcc>]> {
+        let mut all_args_match = true;
+        let mut param_types = vec![];
+        let gcc_func = func_ptr.get_type().dyncast_function_ptr_type().expect("function ptr");
+        for (index, arg) in args.iter().enumerate().take(gcc_func.get_param_count()) {
+            let param = gcc_func.get_param_type(index);
+            if param != arg.get_type() {
+                all_args_match = false;
+            }
+            param_types.push(param);
+        }
+
+        let mut on_stack_param_indices = FxHashSet::default();
+        if let Some(indices) = self.on_stack_params.borrow().get(&gcc_func) {
+            on_stack_param_indices.clone_from(indices);
+        }
+
+        if all_args_match {
+            return Cow::Borrowed(args);
+        }
+
+        let func_name = format!("{:?}", func_ptr);
+
+        let mut casted_args: Vec<_> = param_types
+            .into_iter()
+            .zip(args.iter())
+            .enumerate()
+            .map(|(index, (expected_ty, &actual_val))| {
+                if llvm::ignore_arg_cast(&func_name, index, args.len()) {
+                    return actual_val;
+                }
+
+                let actual_ty = actual_val.get_type();
+                if expected_ty != actual_ty {
+                    if !actual_ty.is_vector()
+                        && !expected_ty.is_vector()
+                        && (actual_ty.is_integral() && expected_ty.is_integral())
+                        || (actual_ty.get_pointee().is_some()
+                            && expected_ty.get_pointee().is_some())
+                    {
+                        self.context.new_cast(self.location, actual_val, expected_ty)
+                    } else if on_stack_param_indices.contains(&index) {
+                        let ty = actual_val.get_type();
+                        // It's possible that the value behind the pointer is actually not exactly
+                        // the expected type, so to go around that, we add a cast before
+                        // dereferencing the value.
+                        if let Some(pointee_val) = ty.get_pointee()
+                            && pointee_val != expected_ty
+                        {
+                            let new_val = self.context.new_cast(
+                                self.location,
+                                actual_val,
+                                expected_ty.make_pointer(),
+                            );
+                            new_val.dereference(self.location).to_rvalue()
+                        } else {
+                            actual_val.dereference(self.location).to_rvalue()
+                        }
+                    } else {
+                        // FIXME: this condition seems wrong: it will pass when both types are not
+                        // a vector.
+                        assert!(
+                            (!expected_ty.is_vector() || actual_ty.is_vector())
+                                && (expected_ty.is_vector() || !actual_ty.is_vector()),
+                            "{:?} (is vector: {}) -> {:?} (is vector: {}), Function: {:?}[{}]",
+                            actual_ty,
+                            actual_ty.is_vector(),
+                            expected_ty,
+                            expected_ty.is_vector(),
+                            func_ptr,
+                            index
+                        );
+                        // TODO(antoyo): perhaps use __builtin_convertvector for vector casting.
+                        // TODO: remove bitcast now that vector types can be compared?
+                        // ==> We use bitcast to avoid having to do many manual casts from e.g. __m256i to __v32qi (in
+                        // the case of _mm256_aesenc_epi128).
+                        self.bitcast(actual_val, expected_ty)
+                    }
+                } else {
+                    actual_val
+                }
+            })
+            .collect();
+
+        // NOTE: to take into account variadic functions.
+        for arg in args.iter().skip(casted_args.len()) {
+            casted_args.push(*arg);
+        }
+
+        Cow::Owned(casted_args)
+    }
+
+    fn check_store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> {
+        let stored_ty = self.cx.val_ty(val);
+        let stored_ptr_ty = self.cx.type_ptr_to(stored_ty);
+        self.bitcast(ptr, stored_ptr_ty)
+    }
+
+    pub fn current_func(&self) -> Function<'gcc> {
+        self.block.get_function()
+    }
+
+    fn function_call(
+        &mut self,
+        func: RValue<'gcc>,
+        args: &[RValue<'gcc>],
+        _funclet: Option<&Funclet>,
+    ) -> RValue<'gcc> {
+        // TODO(antoyo): remove when the API supports a different type for functions.
+        let func: Function<'gcc> = self.cx.rvalue_as_function(func);
+        let args = self.check_call("call", func, args);
+
+        // gccjit requires to use the result of functions, even when it's not used.
+        // That's why we assign the result to a local or call add_eval().
+        let return_type = func.get_return_type();
+        let void_type = self.context.new_type::<()>();
+        let current_func = self.block.get_function();
+        if return_type != void_type {
+            let result = current_func.new_local(
+                self.location,
+                return_type,
+                format!("returnValue{}", self.next_value_counter()),
+            );
+            self.block.add_assignment(
+                self.location,
+                result,
+                self.cx.context.new_call(self.location, func, &args),
+            );
+            result.to_rvalue()
+        } else {
+            self.block
+                .add_eval(self.location, self.cx.context.new_call(self.location, func, &args));
+            // Return dummy value when not having return value.
+            self.context.new_rvalue_zero(self.isize_type)
+        }
+    }
+
+    fn function_ptr_call(
+        &mut self,
+        typ: Type<'gcc>,
+        mut func_ptr: RValue<'gcc>,
+        args: &[RValue<'gcc>],
+        _funclet: Option<&Funclet>,
+    ) -> RValue<'gcc> {
+        let gcc_func = match func_ptr.get_type().dyncast_function_ptr_type() {
+            Some(func) => func,
+            None => {
+                // NOTE: due to opaque pointers now being used, we need to cast here.
+                let new_func_type = typ.dyncast_function_ptr_type().expect("function ptr");
+                func_ptr = self.context.new_cast(self.location, func_ptr, typ);
+                new_func_type
+            }
+        };
+        let func_name = format!("{:?}", func_ptr);
+        let previous_arg_count = args.len();
+        let orig_args = args;
+        let args = {
+            func_ptr = llvm::adjust_function(self.context, &func_name, func_ptr, args);
+            llvm::adjust_intrinsic_arguments(self, gcc_func, args.into(), &func_name)
+        };
+        let args_adjusted = args.len() != previous_arg_count;
+        let args = self.check_ptr_call("call", func_ptr, &args);
+
+        // gccjit requires to use the result of functions, even when it's not used.
+        // That's why we assign the result to a local or call add_eval().
+        let return_type = gcc_func.get_return_type();
+        let void_type = self.context.new_type::<()>();
+        let current_func = self.block.get_function();
+
+        if return_type != void_type {
+            let return_value = self.cx.context.new_call_through_ptr(self.location, func_ptr, &args);
+            let return_value = llvm::adjust_intrinsic_return_value(
+                self,
+                return_value,
+                &func_name,
+                &args,
+                args_adjusted,
+                orig_args,
+            );
+            let result = current_func.new_local(
+                self.location,
+                return_value.get_type(),
+                format!("ptrReturnValue{}", self.next_value_counter()),
+            );
+            self.block.add_assignment(self.location, result, return_value);
+            result.to_rvalue()
+        } else {
+            #[cfg(not(feature = "master"))]
+            if gcc_func.get_param_count() == 0 {
+                // FIXME(antoyo): As a temporary workaround for unsupported LLVM intrinsics.
+                self.block.add_eval(
+                    self.location,
+                    self.cx.context.new_call_through_ptr(self.location, func_ptr, &[]),
+                );
+            } else {
+                self.block.add_eval(
+                    self.location,
+                    self.cx.context.new_call_through_ptr(self.location, func_ptr, &args),
+                );
+            }
+            #[cfg(feature = "master")]
+            self.block.add_eval(
+                self.location,
+                self.cx.context.new_call_through_ptr(self.location, func_ptr, &args),
+            );
+            // Return dummy value when not having return value.
+            self.context.new_rvalue_zero(self.isize_type)
+        }
+    }
+
+    pub fn overflow_call(
+        &self,
+        func: Function<'gcc>,
+        args: &[RValue<'gcc>],
+        _funclet: Option<&Funclet>,
+    ) -> RValue<'gcc> {
+        // gccjit requires to use the result of functions, even when it's not used.
+        // That's why we assign the result to a local.
+        let return_type = self.context.new_type::<bool>();
+        let current_func = self.block.get_function();
+        // TODO(antoyo): return the new_call() directly? Since the overflow function has no side-effects.
+        let result = current_func.new_local(
+            self.location,
+            return_type,
+            format!("overflowReturnValue{}", self.next_value_counter()),
+        );
+        self.block.add_assignment(
+            self.location,
+            result,
+            self.cx.context.new_call(self.location, func, args),
+        );
+        result.to_rvalue()
+    }
+}
+
+impl<'tcx> HasTyCtxt<'tcx> for Builder<'_, '_, 'tcx> {
+    fn tcx(&self) -> TyCtxt<'tcx> {
+        self.cx.tcx()
+    }
+}
+
+impl HasDataLayout for Builder<'_, '_, '_> {
+    fn data_layout(&self) -> &TargetDataLayout {
+        self.cx.data_layout()
+    }
+}
+
+impl<'tcx> LayoutOfHelpers<'tcx> for Builder<'_, '_, 'tcx> {
+    #[inline]
+    fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! {
+        self.cx.handle_layout_err(err, span, ty)
+    }
+}
+
+impl<'tcx> FnAbiOfHelpers<'tcx> for Builder<'_, '_, 'tcx> {
+    #[inline]
+    fn handle_fn_abi_err(
+        &self,
+        err: FnAbiError<'tcx>,
+        span: Span,
+        fn_abi_request: FnAbiRequest<'tcx>,
+    ) -> ! {
+        self.cx.handle_fn_abi_err(err, span, fn_abi_request)
+    }
+}
+
+impl<'a, 'gcc, 'tcx> Deref for Builder<'a, 'gcc, 'tcx> {
+    type Target = CodegenCx<'gcc, 'tcx>;
+
+    fn deref<'b>(&'b self) -> &'a Self::Target {
+        self.cx
+    }
+}
+
+impl<'gcc, 'tcx> BackendTypes for Builder<'_, 'gcc, 'tcx> {
+    type Value = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Value;
+    type Metadata = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Metadata;
+    type Function = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Function;
+    type BasicBlock = <CodegenCx<'gcc, 'tcx> as BackendTypes>::BasicBlock;
+    type Type = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Type;
+    type Funclet = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Funclet;
+
+    type DIScope = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIScope;
+    type DILocation = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DILocation;
+    type DIVariable = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIVariable;
+}
+
+fn set_rvalue_location<'a, 'gcc, 'tcx>(
+    bx: &mut Builder<'a, 'gcc, 'tcx>,
+    rvalue: RValue<'gcc>,
+) -> RValue<'gcc> {
+    if bx.location.is_some() {
+        #[cfg(feature = "master")]
+        rvalue.set_location(bx.location.unwrap());
+    }
+    rvalue
+}
+
+impl<'a, 'gcc, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'gcc, 'tcx> {
+    type CodegenCx = CodegenCx<'gcc, 'tcx>;
+
+    fn build(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Builder<'a, 'gcc, 'tcx> {
+        Builder::with_cx(cx, block)
+    }
+
+    fn llbb(&self) -> Block<'gcc> {
+        self.block
+    }
+
+    fn append_block(cx: &'a CodegenCx<'gcc, 'tcx>, func: RValue<'gcc>, name: &str) -> Block<'gcc> {
+        let func = cx.rvalue_as_function(func);
+        func.new_block(name)
+    }
+
+    fn append_sibling_block(&mut self, name: &str) -> Block<'gcc> {
+        let func = self.current_func();
+        func.new_block(name)
+    }
+
+    fn switch_to_block(&mut self, block: Self::BasicBlock) {
+        self.block = block;
+    }
+
+    fn ret_void(&mut self) {
+        self.llbb().end_with_void_return(self.location)
+    }
+
+    fn ret(&mut self, mut value: RValue<'gcc>) {
+        if self.structs_as_pointer.borrow().contains(&value) {
+            // NOTE: hack to workaround a limitation of the rustc API: see comment on
+            // CodegenCx.structs_as_pointer
+            value = value.dereference(self.location).to_rvalue();
+        }
+        let expected_return_type = self.current_func().get_return_type();
+        if !expected_return_type.is_compatible_with(value.get_type()) {
+            // NOTE: due to opaque pointers now being used, we need to cast here.
+            value = self.context.new_cast(self.location, value, expected_return_type);
+        }
+        self.llbb().end_with_return(self.location, value);
+    }
+
+    fn br(&mut self, dest: Block<'gcc>) {
+        self.llbb().end_with_jump(self.location, dest)
+    }
+
+    fn cond_br(&mut self, cond: RValue<'gcc>, then_block: Block<'gcc>, else_block: Block<'gcc>) {
+        self.llbb().end_with_conditional(self.location, cond, then_block, else_block)
+    }
+
+    fn switch(
+        &mut self,
+        value: RValue<'gcc>,
+        default_block: Block<'gcc>,
+        cases: impl ExactSizeIterator<Item = (u128, Block<'gcc>)>,
+    ) {
+        let mut gcc_cases = vec![];
+        let typ = self.val_ty(value);
+        for (on_val, dest) in cases {
+            let on_val = self.const_uint_big(typ, on_val);
+            gcc_cases.push(self.context.new_case(on_val, on_val, dest));
+        }
+        self.block.end_with_switch(self.location, value, default_block, &gcc_cases);
+    }
+
+    #[cfg(feature = "master")]
+    fn invoke(
+        &mut self,
+        typ: Type<'gcc>,
+        fn_attrs: Option<&CodegenFnAttrs>,
+        _fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
+        func: RValue<'gcc>,
+        args: &[RValue<'gcc>],
+        then: Block<'gcc>,
+        catch: Block<'gcc>,
+        _funclet: Option<&Funclet>,
+        instance: Option<Instance<'tcx>>,
+    ) -> RValue<'gcc> {
+        let try_block = self.current_func().new_block("try");
+
+        let current_block = self.block;
+        self.block = try_block;
+        let call = self.call(typ, fn_attrs, None, func, args, None, instance); // TODO(antoyo): use funclet here?
+        self.block = current_block;
+
+        let return_value =
+            self.current_func().new_local(self.location, call.get_type(), "invokeResult");
+
+        try_block.add_assignment(self.location, return_value, call);
+
+        try_block.end_with_jump(self.location, then);
+
+        if self.cleanup_blocks.borrow().contains(&catch) {
+            self.block.add_try_finally(self.location, try_block, catch);
+        } else {
+            self.block.add_try_catch(self.location, try_block, catch);
+        }
+
+        self.block.end_with_jump(self.location, then);
+
+        return_value.to_rvalue()
+    }
+
+    #[cfg(not(feature = "master"))]
+    fn invoke(
+        &mut self,
+        typ: Type<'gcc>,
+        fn_attrs: Option<&CodegenFnAttrs>,
+        fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
+        func: RValue<'gcc>,
+        args: &[RValue<'gcc>],
+        then: Block<'gcc>,
+        catch: Block<'gcc>,
+        _funclet: Option<&Funclet>,
+        instance: Option<Instance<'tcx>>,
+    ) -> RValue<'gcc> {
+        let call_site = self.call(typ, fn_attrs, None, func, args, None, instance);
+        let condition = self.context.new_rvalue_from_int(self.bool_type, 1);
+        self.llbb().end_with_conditional(self.location, condition, then, catch);
+        if let Some(_fn_abi) = fn_abi {
+            // TODO(bjorn3): Apply function attributes
+        }
+        call_site
+    }
+
+    fn unreachable(&mut self) {
+        let func = self.context.get_builtin_function("__builtin_unreachable");
+        self.block.add_eval(self.location, self.context.new_call(self.location, func, &[]));
+        let return_type = self.block.get_function().get_return_type();
+        let void_type = self.context.new_type::<()>();
+        if return_type == void_type {
+            self.block.end_with_void_return(self.location)
+        } else {
+            let return_value =
+                self.current_func().new_local(self.location, return_type, "unreachableReturn");
+            self.block.end_with_return(self.location, return_value)
+        }
+    }
+
+    fn add(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.gcc_add(a, b)
+    }
+
+    fn fadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        a + b
+    }
+
+    // TODO(antoyo): should we also override the `unchecked_` versions?
+    fn sub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.gcc_sub(a, b)
+    }
+
+    fn fsub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        a - b
+    }
+
+    fn mul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.gcc_mul(a, b)
+    }
+
+    fn fmul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.cx.context.new_binary_op(self.location, BinaryOp::Mult, a.get_type(), a, b)
+    }
+
+    fn udiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.gcc_udiv(a, b)
+    }
+
+    fn exactudiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        // TODO(antoyo): poison if not exact.
+        let a_type = a.get_type().to_unsigned(self);
+        let a = self.gcc_int_cast(a, a_type);
+        let b_type = b.get_type().to_unsigned(self);
+        let b = self.gcc_int_cast(b, b_type);
+        a / b
+    }
+
+    fn sdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.gcc_sdiv(a, b)
+    }
+
+    fn exactsdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        // TODO(antoyo): poison if not exact.
+        // FIXME(antoyo): rustc_codegen_ssa::mir::intrinsic uses different types for a and b but they
+        // should be the same.
+        let typ = a.get_type().to_signed(self);
+        let b = self.context.new_cast(self.location, b, typ);
+        a / b
+    }
+
+    fn fdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        a / b
+    }
+
+    fn urem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.gcc_urem(a, b)
+    }
+
+    fn srem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.gcc_srem(a, b)
+    }
+
+    fn frem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        // TODO(antoyo): add check in libgccjit since using the binary operator % causes the following error:
+        // during RTL pass: expand
+        // libgccjit.so: error: in expmed_mode_index, at expmed.h:240
+        // 0x7f0101d58dc6 expmed_mode_index
+        //     ../../../gcc/gcc/expmed.h:240
+        // 0x7f0101d58e35 expmed_op_cost_ptr
+        //     ../../../gcc/gcc/expmed.h:262
+        // 0x7f0101d594a1 sdiv_cost_ptr
+        //     ../../../gcc/gcc/expmed.h:531
+        // 0x7f0101d594f3 sdiv_cost
+        //     ../../../gcc/gcc/expmed.h:549
+        // 0x7f0101d6af7e expand_divmod(int, tree_code, machine_mode, rtx_def*, rtx_def*, rtx_def*, int, optab_methods)
+        //     ../../../gcc/gcc/expmed.cc:4356
+        // 0x7f0101d94f9e expand_expr_divmod
+        //     ../../../gcc/gcc/expr.cc:8929
+        // 0x7f0101d97a26 expand_expr_real_2(separate_ops*, rtx_def*, machine_mode, expand_modifier)
+        //     ../../../gcc/gcc/expr.cc:9566
+        // 0x7f0101bef6ef expand_gimple_stmt_1
+        //     ../../../gcc/gcc/cfgexpand.cc:3967
+        // 0x7f0101bef910 expand_gimple_stmt
+        //     ../../../gcc/gcc/cfgexpand.cc:4028
+        // 0x7f0101bf6ee7 expand_gimple_basic_block
+        //     ../../../gcc/gcc/cfgexpand.cc:6069
+        // 0x7f0101bf9194 execute
+        //     ../../../gcc/gcc/cfgexpand.cc:6795
+        let a_type = a.get_type();
+        let a_type_unqualified = a_type.unqualified();
+        if a_type.is_compatible_with(self.cx.float_type) {
+            let fmodf = self.context.get_builtin_function("fmodf");
+            // FIXME(antoyo): this seems to produce the wrong result.
+            return self.context.new_call(self.location, fmodf, &[a, b]);
+        }
+
+        #[cfg(feature = "master")]
+        match self.cx.type_kind(a_type) {
+            TypeKind::Half | TypeKind::Float => {
+                let fmodf = self.context.get_builtin_function("fmodf");
+                return self.context.new_call(self.location, fmodf, &[a, b]);
+            }
+            TypeKind::Double => {
+                let fmod = self.context.get_builtin_function("fmod");
+                return self.context.new_call(self.location, fmod, &[a, b]);
+            }
+            TypeKind::FP128 => {
+                let fmodl = self.context.get_builtin_function("fmodl");
+                return self.context.new_call(self.location, fmodl, &[a, b]);
+            }
+            _ => (),
+        }
+
+        if let Some(vector_type) = a_type_unqualified.dyncast_vector() {
+            assert_eq!(a_type_unqualified, b.get_type().unqualified());
+
+            let num_units = vector_type.get_num_units();
+            let new_elements: Vec<_> = (0..num_units)
+                .map(|i| {
+                    let index = self.context.new_rvalue_from_long(self.cx.type_u32(), i as _);
+                    let x = self.extract_element(a, index).to_rvalue();
+                    let y = self.extract_element(b, index).to_rvalue();
+                    self.frem(x, y)
+                })
+                .collect();
+
+            return self.context.new_rvalue_from_vector(self.location, a_type, &new_elements);
+        }
+        assert_eq!(a_type_unqualified, self.cx.double_type);
+
+        let fmod = self.context.get_builtin_function("fmod");
+        self.context.new_call(self.location, fmod, &[a, b])
+    }
+
+    fn shl(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.gcc_shl(a, b)
+    }
+
+    fn lshr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.gcc_lshr(a, b)
+    }
+
+    fn ashr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        // TODO(antoyo): check whether behavior is an arithmetic shift for >> .
+        // It seems to be if the value is signed.
+        self.gcc_lshr(a, b)
+    }
+
+    fn and(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.gcc_and(a, b)
+    }
+
+    fn or(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.cx.gcc_or(a, b, self.location)
+    }
+
+    fn xor(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        set_rvalue_location(self, self.gcc_xor(a, b))
+    }
+
+    fn neg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> {
+        set_rvalue_location(self, self.gcc_neg(a))
+    }
+
+    fn fneg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> {
+        set_rvalue_location(
+            self,
+            self.cx.context.new_unary_op(self.location, UnaryOp::Minus, a.get_type(), a),
+        )
+    }
+
+    fn not(&mut self, a: RValue<'gcc>) -> RValue<'gcc> {
+        set_rvalue_location(self, self.gcc_not(a))
+    }
+
+    fn fadd_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
+        // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
+        set_rvalue_location(self, lhs + rhs)
+    }
+
+    fn fsub_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
+        // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
+        set_rvalue_location(self, lhs - rhs)
+    }
+
+    fn fmul_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
+        // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
+        set_rvalue_location(self, lhs * rhs)
+    }
+
+    fn fdiv_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
+        // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
+        set_rvalue_location(self, lhs / rhs)
+    }
+
+    fn frem_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
+        // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
+        let result = self.frem(lhs, rhs);
+        set_rvalue_location(self, result);
+        result
+    }
+
+    fn fadd_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
+        // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
+        lhs + rhs
+    }
+
+    fn fsub_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
+        // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
+        lhs - rhs
+    }
+
+    fn fmul_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
+        // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
+        lhs * rhs
+    }
+
+    fn fdiv_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
+        // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
+        lhs / rhs
+    }
+
+    fn frem_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
+        // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
+        self.frem(lhs, rhs)
+    }
+
+    fn checked_binop(
+        &mut self,
+        oop: OverflowOp,
+        typ: Ty<'_>,
+        lhs: Self::Value,
+        rhs: Self::Value,
+    ) -> (Self::Value, Self::Value) {
+        self.gcc_checked_binop(oop, typ, lhs, rhs)
+    }
+
+    fn alloca(&mut self, size: Size, align: Align) -> RValue<'gcc> {
+        let ty = self.cx.type_array(self.cx.type_i8(), size.bytes()).get_aligned(align.bytes());
+        // TODO(antoyo): It might be better to return a LValue, but fixing the rustc API is non-trivial.
+        self.current_func()
+            .new_local(self.location, ty, format!("stack_var_{}", self.next_value_counter()))
+            .get_address(self.location)
+    }
+
+    fn dynamic_alloca(&mut self, _len: RValue<'gcc>, _align: Align) -> RValue<'gcc> {
+        unimplemented!();
+    }
+
+    fn load(&mut self, pointee_ty: Type<'gcc>, ptr: RValue<'gcc>, align: Align) -> RValue<'gcc> {
+        let block = self.llbb();
+        let function = block.get_function();
+        // NOTE: instead of returning the dereference here, we have to assign it to a variable in
+        // the current basic block. Otherwise, it could be used in another basic block, causing a
+        // dereference after a drop, for instance.
+        // FIXME(antoyo): this check that we don't call get_aligned() a second time on a type.
+        // Ideally, we shouldn't need to do this check.
+        let aligned_type = if pointee_ty == self.cx.u128_type || pointee_ty == self.cx.i128_type {
+            pointee_ty
+        } else {
+            pointee_ty.get_aligned(align.bytes())
+        };
+        let ptr = self.context.new_cast(self.location, ptr, aligned_type.make_pointer());
+        let deref = ptr.dereference(self.location).to_rvalue();
+        let loaded_value = function.new_local(
+            self.location,
+            aligned_type,
+            format!("loadedValue{}", self.next_value_counter()),
+        );
+        block.add_assignment(self.location, loaded_value, deref);
+        loaded_value.to_rvalue()
+    }
+
+    fn volatile_load(&mut self, ty: Type<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> {
+        let ptr = self.context.new_cast(self.location, ptr, ty.make_volatile().make_pointer());
+        ptr.dereference(self.location).to_rvalue()
+    }
+
+    fn atomic_load(
+        &mut self,
+        _ty: Type<'gcc>,
+        ptr: RValue<'gcc>,
+        order: AtomicOrdering,
+        size: Size,
+    ) -> RValue<'gcc> {
+        // TODO(antoyo): use ty.
+        // TODO(antoyo): handle alignment.
+        let atomic_load =
+            self.context.get_builtin_function(format!("__atomic_load_{}", size.bytes()));
+        let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
+
+        let volatile_const_void_ptr_type =
+            self.context.new_type::<()>().make_const().make_volatile().make_pointer();
+        let ptr = self.context.new_cast(self.location, ptr, volatile_const_void_ptr_type);
+        self.context.new_call(self.location, atomic_load, &[ptr, ordering])
+    }
+
+    fn load_operand(
+        &mut self,
+        place: PlaceRef<'tcx, RValue<'gcc>>,
+    ) -> OperandRef<'tcx, RValue<'gcc>> {
+        assert_eq!(place.val.llextra.is_some(), place.layout.is_unsized());
+
+        if place.layout.is_zst() {
+            return OperandRef::zero_sized(place.layout);
+        }
+
+        fn scalar_load_metadata<'a, 'gcc, 'tcx>(
+            bx: &mut Builder<'a, 'gcc, 'tcx>,
+            load: RValue<'gcc>,
+            scalar: &abi::Scalar,
+        ) {
+            let vr = scalar.valid_range(bx);
+            match scalar.primitive() {
+                abi::Primitive::Int(..) => {
+                    if !scalar.is_always_valid(bx) {
+                        bx.range_metadata(load, vr);
+                    }
+                }
+                abi::Primitive::Pointer(_) if vr.start < vr.end && !vr.contains(0) => {
+                    bx.nonnull_metadata(load);
+                }
+                _ => {}
+            }
+        }
+
+        let val = if place.val.llextra.is_some() {
+            // FIXME: Merge with the `else` below?
+            OperandValue::Ref(place.val)
+        } else if place.layout.is_gcc_immediate() {
+            let load = self.load(place.layout.gcc_type(self), place.val.llval, place.val.align);
+            OperandValue::Immediate(
+                if let abi::BackendRepr::Scalar(ref scalar) = place.layout.backend_repr {
+                    scalar_load_metadata(self, load, scalar);
+                    self.to_immediate_scalar(load, *scalar)
+                } else {
+                    load
+                },
+            )
+        } else if let abi::BackendRepr::ScalarPair(ref a, ref b) = place.layout.backend_repr {
+            let b_offset = a.size(self).align_to(b.align(self).abi);
+
+            let mut load = |i, scalar: &abi::Scalar, align| {
+                let llptr = if i == 0 {
+                    place.val.llval
+                } else {
+                    self.inbounds_ptradd(place.val.llval, self.const_usize(b_offset.bytes()))
+                };
+                let llty = place.layout.scalar_pair_element_gcc_type(self, i);
+                let load = self.load(llty, llptr, align);
+                scalar_load_metadata(self, load, scalar);
+                if scalar.is_bool() { self.trunc(load, self.type_i1()) } else { load }
+            };
+
+            OperandValue::Pair(
+                load(0, a, place.val.align),
+                load(1, b, place.val.align.restrict_for_offset(b_offset)),
+            )
+        } else {
+            OperandValue::Ref(place.val)
+        };
+
+        OperandRef { val, layout: place.layout }
+    }
+
+    fn write_operand_repeatedly(
+        &mut self,
+        cg_elem: OperandRef<'tcx, RValue<'gcc>>,
+        count: u64,
+        dest: PlaceRef<'tcx, RValue<'gcc>>,
+    ) {
+        let zero = self.const_usize(0);
+        let count = self.const_usize(count);
+        let start = dest.project_index(self, zero).val.llval;
+        let end = dest.project_index(self, count).val.llval;
+
+        let header_bb = self.append_sibling_block("repeat_loop_header");
+        let body_bb = self.append_sibling_block("repeat_loop_body");
+        let next_bb = self.append_sibling_block("repeat_loop_next");
+
+        let ptr_type = start.get_type();
+        let current = self.llbb().get_function().new_local(self.location, ptr_type, "loop_var");
+        let current_val = current.to_rvalue();
+        self.assign(current, start);
+
+        self.br(header_bb);
+
+        self.switch_to_block(header_bb);
+        let keep_going = self.icmp(IntPredicate::IntNE, current_val, end);
+        self.cond_br(keep_going, body_bb, next_bb);
+
+        self.switch_to_block(body_bb);
+        let align = dest.val.align.restrict_for_offset(dest.layout.field(self.cx(), 0).size);
+        cg_elem.val.store(self, PlaceRef::new_sized_aligned(current_val, cg_elem.layout, align));
+
+        let next = self.inbounds_gep(
+            self.backend_type(cg_elem.layout),
+            current.to_rvalue(),
+            &[self.const_usize(1)],
+        );
+        self.llbb().add_assignment(self.location, current, next);
+        self.br(header_bb);
+
+        self.switch_to_block(next_bb);
+    }
+
+    fn range_metadata(&mut self, _load: RValue<'gcc>, _range: WrappingRange) {
+        // TODO(antoyo)
+    }
+
+    fn nonnull_metadata(&mut self, _load: RValue<'gcc>) {
+        // TODO(antoyo)
+    }
+
+    fn store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align) -> RValue<'gcc> {
+        self.store_with_flags(val, ptr, align, MemFlags::empty())
+    }
+
+    fn store_with_flags(
+        &mut self,
+        val: RValue<'gcc>,
+        ptr: RValue<'gcc>,
+        align: Align,
+        flags: MemFlags,
+    ) -> RValue<'gcc> {
+        let ptr = self.check_store(val, ptr);
+        let destination = ptr.dereference(self.location);
+        // NOTE: libgccjit does not support specifying the alignment on the assignment, so we cast
+        // to type so it gets the proper alignment.
+        let destination_type = destination.to_rvalue().get_type().unqualified();
+        let align = if flags.contains(MemFlags::UNALIGNED) { 1 } else { align.bytes() };
+        let mut modified_destination_type = destination_type.get_aligned(align);
+        if flags.contains(MemFlags::VOLATILE) {
+            modified_destination_type = modified_destination_type.make_volatile();
+        }
+
+        let modified_ptr =
+            self.cx.context.new_cast(self.location, ptr, modified_destination_type.make_pointer());
+        let modified_destination = modified_ptr.dereference(self.location);
+        self.llbb().add_assignment(self.location, modified_destination, val);
+        // TODO(antoyo): handle `MemFlags::NONTEMPORAL`.
+        // NOTE: dummy value here since it's never used. FIXME(antoyo): API should not return a value here?
+        // When adding support for NONTEMPORAL, make sure to not just emit MOVNT on x86; see the
+        // LLVM backend for details.
+        self.cx.context.new_rvalue_zero(self.type_i32())
+    }
+
+    fn atomic_store(
+        &mut self,
+        value: RValue<'gcc>,
+        ptr: RValue<'gcc>,
+        order: AtomicOrdering,
+        size: Size,
+    ) {
+        // TODO(antoyo): handle alignment.
+        let atomic_store =
+            self.context.get_builtin_function(format!("__atomic_store_{}", size.bytes()));
+        let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
+        let volatile_const_void_ptr_type =
+            self.context.new_type::<()>().make_volatile().make_pointer();
+        let ptr = self.context.new_cast(self.location, ptr, volatile_const_void_ptr_type);
+
+        // FIXME(antoyo): fix libgccjit to allow comparing an integer type with an aligned integer type because
+        // the following cast is required to avoid this error:
+        // gcc_jit_context_new_call: mismatching types for argument 2 of function "__atomic_store_4": assignment to param arg1 (type: int) from loadedValue3577 (type: unsigned int  __attribute__((aligned(4))))
+        let int_type = atomic_store.get_param(1).to_rvalue().get_type();
+        let value = self.context.new_bitcast(self.location, value, int_type);
+        self.llbb().add_eval(
+            self.location,
+            self.context.new_call(self.location, atomic_store, &[ptr, value, ordering]),
+        );
+    }
+
+    fn gep(
+        &mut self,
+        typ: Type<'gcc>,
+        ptr: RValue<'gcc>,
+        indices: &[RValue<'gcc>],
+    ) -> RValue<'gcc> {
+        // NOTE: due to opaque pointers now being used, we need to cast here.
+        let ptr = self.context.new_cast(self.location, ptr, typ.make_pointer());
+        let ptr_type = ptr.get_type();
+        let mut pointee_type = ptr.get_type();
+        // NOTE: we cannot use array indexing here like in inbounds_gep because array indexing is
+        // always considered in bounds in GCC (TODO(antoyo): to be verified).
+        // So, we have to cast to a number.
+        let mut result = self.context.new_bitcast(self.location, ptr, self.sizet_type);
+        // FIXME(antoyo): if there were more than 1 index, this code is probably wrong and would
+        // require dereferencing the pointer.
+        for index in indices {
+            pointee_type = pointee_type.get_pointee().expect("pointee type");
+            #[cfg(feature = "master")]
+            let pointee_size = {
+                let size = self.cx.context.new_sizeof(pointee_type);
+                self.context.new_cast(self.location, size, index.get_type())
+            };
+            #[cfg(not(feature = "master"))]
+            let pointee_size =
+                self.context.new_rvalue_from_int(index.get_type(), pointee_type.get_size() as i32);
+            result = result + self.gcc_int_cast(*index * pointee_size, self.sizet_type);
+        }
+        self.context.new_bitcast(self.location, result, ptr_type)
+    }
+
+    fn inbounds_gep(
+        &mut self,
+        typ: Type<'gcc>,
+        ptr: RValue<'gcc>,
+        indices: &[RValue<'gcc>],
+    ) -> RValue<'gcc> {
+        // NOTE: due to opaque pointers now being used, we need to cast here.
+        let ptr = self.context.new_cast(self.location, ptr, typ.make_pointer());
+        // NOTE: array indexing is always considered in bounds in GCC (TODO(antoyo): to be verified).
+        let mut indices = indices.iter();
+        let index = indices.next().expect("first index in inbounds_gep");
+        let mut result = self.context.new_array_access(self.location, ptr, *index);
+        for index in indices {
+            result = self.context.new_array_access(self.location, result, *index);
+        }
+        result.get_address(self.location)
+    }
+
+    /* Casts */
+    fn trunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        // TODO(antoyo): check that it indeed truncate the value.
+        self.gcc_int_cast(value, dest_ty)
+    }
+
+    fn sext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        // TODO(antoyo): check that it indeed sign extend the value.
+        if dest_ty.dyncast_vector().is_some() {
+            // TODO(antoyo): nothing to do as it is only for LLVM?
+            return value;
+        }
+        self.context.new_cast(self.location, value, dest_ty)
+    }
+
+    fn fptoui(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        set_rvalue_location(self, self.gcc_float_to_uint_cast(value, dest_ty))
+    }
+
+    fn fptosi(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        set_rvalue_location(self, self.gcc_float_to_int_cast(value, dest_ty))
+    }
+
+    fn uitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        set_rvalue_location(self, self.gcc_uint_to_float_cast(value, dest_ty))
+    }
+
+    fn sitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        set_rvalue_location(self, self.gcc_int_to_float_cast(value, dest_ty))
+    }
+
+    fn fptrunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        // TODO(antoyo): make sure it truncates.
+        set_rvalue_location(self, self.context.new_cast(self.location, value, dest_ty))
+    }
+
+    fn fpext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        set_rvalue_location(self, self.context.new_cast(self.location, value, dest_ty))
+    }
+
+    fn ptrtoint(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        let usize_value = self.cx.context.new_cast(None, value, self.cx.type_isize());
+        self.intcast(usize_value, dest_ty, false)
+    }
+
+    fn inttoptr(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        let usize_value = self.intcast(value, self.cx.type_isize(), false);
+        self.cx.context.new_cast(None, usize_value, dest_ty)
+    }
+
+    fn bitcast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        self.cx.const_bitcast(value, dest_ty)
+    }
+
+    fn intcast(
+        &mut self,
+        value: RValue<'gcc>,
+        dest_typ: Type<'gcc>,
+        _is_signed: bool,
+    ) -> RValue<'gcc> {
+        // NOTE: is_signed is for value, not dest_typ.
+        self.gcc_int_cast(value, dest_typ)
+    }
+
+    fn pointercast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        let val_type = value.get_type();
+        match (type_is_pointer(val_type), type_is_pointer(dest_ty)) {
+            (false, true) => {
+                // NOTE: Projecting a field of a pointer type will attempt a cast from a signed char to
+                // a pointer, which is not supported by gccjit.
+                self.cx.context.new_cast(
+                    self.location,
+                    self.inttoptr(value, val_type.make_pointer()),
+                    dest_ty,
+                )
+            }
+            (false, false) => {
+                // When they are not pointers, we want a transmute (or reinterpret_cast).
+                self.bitcast(value, dest_ty)
+            }
+            (true, true) => self.cx.context.new_cast(self.location, value, dest_ty),
+            (true, false) => unimplemented!(),
+        }
+    }
+
+    /* Comparisons */
+    fn icmp(&mut self, op: IntPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
+        self.gcc_icmp(op, lhs, rhs)
+    }
+
+    fn fcmp(&mut self, op: RealPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
+        // LLVM has a concept of "unordered compares", where eg ULT returns true if either the two
+        // arguments are unordered (i.e. either is NaN), or the lhs is less than the rhs. GCC does
+        // not natively have this concept, so in some cases we must manually handle NaNs
+        let must_handle_nan = match op {
+            RealPredicate::RealPredicateFalse => unreachable!(),
+            RealPredicate::RealOEQ => false,
+            RealPredicate::RealOGT => false,
+            RealPredicate::RealOGE => false,
+            RealPredicate::RealOLT => false,
+            RealPredicate::RealOLE => false,
+            RealPredicate::RealONE => false,
+            RealPredicate::RealORD => unreachable!(),
+            RealPredicate::RealUNO => unreachable!(),
+            RealPredicate::RealUEQ => false,
+            RealPredicate::RealUGT => true,
+            RealPredicate::RealUGE => true,
+            RealPredicate::RealULT => true,
+            RealPredicate::RealULE => true,
+            RealPredicate::RealUNE => false,
+            RealPredicate::RealPredicateTrue => unreachable!(),
+        };
+
+        let cmp = self.context.new_comparison(self.location, op.to_gcc_comparison(), lhs, rhs);
+
+        if must_handle_nan {
+            let is_nan = self.context.new_binary_op(
+                self.location,
+                BinaryOp::LogicalOr,
+                self.cx.bool_type,
+                // compare a value to itself to check whether it is NaN
+                self.context.new_comparison(self.location, ComparisonOp::NotEquals, lhs, lhs),
+                self.context.new_comparison(self.location, ComparisonOp::NotEquals, rhs, rhs),
+            );
+
+            self.context.new_binary_op(
+                self.location,
+                BinaryOp::LogicalOr,
+                self.cx.bool_type,
+                is_nan,
+                cmp,
+            )
+        } else {
+            cmp
+        }
+    }
+
+    /* Miscellaneous instructions */
+    fn memcpy(
+        &mut self,
+        dst: RValue<'gcc>,
+        _dst_align: Align,
+        src: RValue<'gcc>,
+        _src_align: Align,
+        size: RValue<'gcc>,
+        flags: MemFlags,
+    ) {
+        assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memcpy not supported");
+        let size = self.intcast(size, self.type_size_t(), false);
+        let _is_volatile = flags.contains(MemFlags::VOLATILE);
+        let dst = self.pointercast(dst, self.type_i8p());
+        let src = self.pointercast(src, self.type_ptr_to(self.type_void()));
+        let memcpy = self.context.get_builtin_function("memcpy");
+        // TODO(antoyo): handle aligns and is_volatile.
+        self.block.add_eval(
+            self.location,
+            self.context.new_call(self.location, memcpy, &[dst, src, size]),
+        );
+    }
+
+    fn memmove(
+        &mut self,
+        dst: RValue<'gcc>,
+        _dst_align: Align,
+        src: RValue<'gcc>,
+        _src_align: Align,
+        size: RValue<'gcc>,
+        flags: MemFlags,
+    ) {
+        assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memmove not supported");
+        let size = self.intcast(size, self.type_size_t(), false);
+        let _is_volatile = flags.contains(MemFlags::VOLATILE);
+        let dst = self.pointercast(dst, self.type_i8p());
+        let src = self.pointercast(src, self.type_ptr_to(self.type_void()));
+
+        let memmove = self.context.get_builtin_function("memmove");
+        // TODO(antoyo): handle is_volatile.
+        self.block.add_eval(
+            self.location,
+            self.context.new_call(self.location, memmove, &[dst, src, size]),
+        );
+    }
+
+    fn memset(
+        &mut self,
+        ptr: RValue<'gcc>,
+        fill_byte: RValue<'gcc>,
+        size: RValue<'gcc>,
+        _align: Align,
+        flags: MemFlags,
+    ) {
+        assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memset not supported");
+        let _is_volatile = flags.contains(MemFlags::VOLATILE);
+        let ptr = self.pointercast(ptr, self.type_i8p());
+        let memset = self.context.get_builtin_function("memset");
+        // TODO(antoyo): handle align and is_volatile.
+        let fill_byte = self.context.new_cast(self.location, fill_byte, self.i32_type);
+        let size = self.intcast(size, self.type_size_t(), false);
+        self.block.add_eval(
+            self.location,
+            self.context.new_call(self.location, memset, &[ptr, fill_byte, size]),
+        );
+    }
+
+    fn select(
+        &mut self,
+        cond: RValue<'gcc>,
+        then_val: RValue<'gcc>,
+        mut else_val: RValue<'gcc>,
+    ) -> RValue<'gcc> {
+        let func = self.current_func();
+        let variable = func.new_local(self.location, then_val.get_type(), "selectVar");
+        let then_block = func.new_block("then");
+        let else_block = func.new_block("else");
+        let after_block = func.new_block("after");
+        self.llbb().end_with_conditional(self.location, cond, then_block, else_block);
+
+        then_block.add_assignment(self.location, variable, then_val);
+        then_block.end_with_jump(self.location, after_block);
+
+        if !then_val.get_type().is_compatible_with(else_val.get_type()) {
+            else_val = self.context.new_cast(self.location, else_val, then_val.get_type());
+        }
+        else_block.add_assignment(self.location, variable, else_val);
+        else_block.end_with_jump(self.location, after_block);
+
+        // NOTE: since jumps were added in a place rustc does not expect, the current block in the
+        // state need to be updated.
+        self.switch_to_block(after_block);
+
+        variable.to_rvalue()
+    }
+
+    #[allow(dead_code)]
+    fn va_arg(&mut self, _list: RValue<'gcc>, _ty: Type<'gcc>) -> RValue<'gcc> {
+        unimplemented!();
+    }
+
+    #[cfg(feature = "master")]
+    fn extract_element(&mut self, vec: RValue<'gcc>, idx: RValue<'gcc>) -> RValue<'gcc> {
+        self.context.new_vector_access(self.location, vec, idx).to_rvalue()
+    }
+
+    #[cfg(not(feature = "master"))]
+    fn extract_element(&mut self, vec: RValue<'gcc>, idx: RValue<'gcc>) -> RValue<'gcc> {
+        let vector_type = vec
+            .get_type()
+            .unqualified()
+            .dyncast_vector()
+            .expect("Called extract_element on a non-vector type");
+        let element_type = vector_type.get_element_type();
+        let vec_num_units = vector_type.get_num_units();
+        let array_type =
+            self.context.new_array_type(self.location, element_type, vec_num_units as u64);
+        let array = self.context.new_bitcast(self.location, vec, array_type).to_rvalue();
+        self.context.new_array_access(self.location, array, idx).to_rvalue()
+    }
+
+    fn vector_splat(&mut self, _num_elts: usize, _elt: RValue<'gcc>) -> RValue<'gcc> {
+        unimplemented!();
+    }
+
+    fn extract_value(&mut self, aggregate_value: RValue<'gcc>, idx: u64) -> RValue<'gcc> {
+        // FIXME(antoyo): it would be better if the API only called this on struct, not on arrays.
+        assert_eq!(idx as usize as u64, idx);
+        let value_type = aggregate_value.get_type();
+
+        if value_type.dyncast_array().is_some() {
+            let index = self
+                .context
+                .new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from"));
+            let element = self.context.new_array_access(self.location, aggregate_value, index);
+            element.get_address(self.location)
+        } else if value_type.dyncast_vector().is_some() {
+            panic!();
+        } else if let Some(pointer_type) = value_type.get_pointee() {
+            if let Some(struct_type) = pointer_type.is_struct() {
+                // NOTE: hack to workaround a limitation of the rustc API: see comment on
+                // CodegenCx.structs_as_pointer
+                aggregate_value
+                    .dereference_field(self.location, struct_type.get_field(idx as i32))
+                    .to_rvalue()
+            } else {
+                panic!("Unexpected type {:?}", value_type);
+            }
+        } else if let Some(struct_type) = value_type.is_struct() {
+            aggregate_value
+                .access_field(self.location, struct_type.get_field(idx as i32))
+                .to_rvalue()
+        } else {
+            panic!("Unexpected type {:?}", value_type);
+        }
+    }
+
+    fn insert_value(
+        &mut self,
+        aggregate_value: RValue<'gcc>,
+        value: RValue<'gcc>,
+        idx: u64,
+    ) -> RValue<'gcc> {
+        // FIXME(antoyo): it would be better if the API only called this on struct, not on arrays.
+        assert_eq!(idx as usize as u64, idx);
+        let value_type = aggregate_value.get_type();
+
+        let lvalue = if value_type.dyncast_array().is_some() {
+            let index = self
+                .context
+                .new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from"));
+            self.context.new_array_access(self.location, aggregate_value, index)
+        } else if value_type.dyncast_vector().is_some() {
+            panic!();
+        } else if let Some(pointer_type) = value_type.get_pointee() {
+            if let Some(struct_type) = pointer_type.is_struct() {
+                // NOTE: hack to workaround a limitation of the rustc API: see comment on
+                // CodegenCx.structs_as_pointer
+                aggregate_value.dereference_field(self.location, struct_type.get_field(idx as i32))
+            } else {
+                panic!("Unexpected type {:?}", value_type);
+            }
+        } else {
+            panic!("Unexpected type {:?}", value_type);
+        };
+
+        let lvalue_type = lvalue.to_rvalue().get_type();
+        let value =
+            // NOTE: sometimes, rustc will create a value with the wrong type.
+            if lvalue_type != value.get_type() {
+                self.context.new_cast(self.location, value, lvalue_type)
+            }
+            else {
+                value
+            };
+
+        self.llbb().add_assignment(self.location, lvalue, value);
+
+        aggregate_value
+    }
+
+    fn set_personality_fn(&mut self, _personality: RValue<'gcc>) {
+        #[cfg(feature = "master")]
+        {
+            let personality = self.rvalue_as_function(_personality);
+            self.current_func().set_personality_function(personality);
+        }
+    }
+
+    #[cfg(feature = "master")]
+    fn cleanup_landing_pad(&mut self, pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) {
+        self.set_personality_fn(pers_fn);
+
+        // NOTE: insert the current block in a variable so that a later call to invoke knows to
+        // generate a try/finally instead of a try/catch for this block.
+        self.cleanup_blocks.borrow_mut().insert(self.block);
+
+        let eh_pointer_builtin =
+            self.cx.context.get_target_builtin_function("__builtin_eh_pointer");
+        let zero = self.cx.context.new_rvalue_zero(self.int_type);
+        let ptr = self.cx.context.new_call(self.location, eh_pointer_builtin, &[zero]);
+
+        let value1_type = self.u8_type.make_pointer();
+        let ptr = self.cx.context.new_cast(self.location, ptr, value1_type);
+        let value1 = ptr;
+        let value2 = zero; // TODO(antoyo): set the proper value here (the type of exception?).
+
+        (value1, value2)
+    }
+
+    #[cfg(not(feature = "master"))]
+    fn cleanup_landing_pad(&mut self, _pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) {
+        let value1 = self
+            .current_func()
+            .new_local(self.location, self.u8_type.make_pointer(), "landing_pad0")
+            .to_rvalue();
+        let value2 =
+            self.current_func().new_local(self.location, self.i32_type, "landing_pad1").to_rvalue();
+        (value1, value2)
+    }
+
+    fn filter_landing_pad(&mut self, pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) {
+        // TODO(antoyo): generate the correct landing pad
+        self.cleanup_landing_pad(pers_fn)
+    }
+
+    #[cfg(feature = "master")]
+    fn resume(&mut self, exn0: RValue<'gcc>, _exn1: RValue<'gcc>) {
+        let exn_type = exn0.get_type();
+        let exn = self.context.new_cast(self.location, exn0, exn_type);
+        let unwind_resume = self.context.get_target_builtin_function("__builtin_unwind_resume");
+        self.llbb()
+            .add_eval(self.location, self.context.new_call(self.location, unwind_resume, &[exn]));
+        self.unreachable();
+    }
+
+    #[cfg(not(feature = "master"))]
+    fn resume(&mut self, _exn0: RValue<'gcc>, _exn1: RValue<'gcc>) {
+        self.unreachable();
+    }
+
+    fn cleanup_pad(&mut self, _parent: Option<RValue<'gcc>>, _args: &[RValue<'gcc>]) -> Funclet {
+        unimplemented!();
+    }
+
+    fn cleanup_ret(&mut self, _funclet: &Funclet, _unwind: Option<Block<'gcc>>) {
+        unimplemented!();
+    }
+
+    fn catch_pad(&mut self, _parent: RValue<'gcc>, _args: &[RValue<'gcc>]) -> Funclet {
+        unimplemented!();
+    }
+
+    fn catch_switch(
+        &mut self,
+        _parent: Option<RValue<'gcc>>,
+        _unwind: Option<Block<'gcc>>,
+        _handlers: &[Block<'gcc>],
+    ) -> RValue<'gcc> {
+        unimplemented!();
+    }
+
+    // Atomic Operations
+    fn atomic_cmpxchg(
+        &mut self,
+        dst: RValue<'gcc>,
+        cmp: RValue<'gcc>,
+        src: RValue<'gcc>,
+        order: AtomicOrdering,
+        failure_order: AtomicOrdering,
+        weak: bool,
+    ) -> (RValue<'gcc>, RValue<'gcc>) {
+        let expected = self.current_func().new_local(None, cmp.get_type(), "expected");
+        self.llbb().add_assignment(None, expected, cmp);
+        // NOTE: gcc doesn't support a failure memory model that is stronger than the success
+        // memory model.
+        let order = if failure_order as i32 > order as i32 { failure_order } else { order };
+        let success = self.compare_exchange(dst, expected, src, order, failure_order, weak);
+
+        // NOTE: since success contains the call to the intrinsic, it must be added to the basic block before
+        // expected so that we store expected after the call.
+        let success_var = self.current_func().new_local(self.location, self.bool_type, "success");
+        self.llbb().add_assignment(self.location, success_var, success);
+
+        (expected.to_rvalue(), success_var.to_rvalue())
+    }
+
+    fn atomic_rmw(
+        &mut self,
+        op: AtomicRmwBinOp,
+        dst: RValue<'gcc>,
+        src: RValue<'gcc>,
+        order: AtomicOrdering,
+    ) -> RValue<'gcc> {
+        let size = get_maybe_pointer_size(src);
+        let name = match op {
+            AtomicRmwBinOp::AtomicXchg => format!("__atomic_exchange_{}", size),
+            AtomicRmwBinOp::AtomicAdd => format!("__atomic_fetch_add_{}", size),
+            AtomicRmwBinOp::AtomicSub => format!("__atomic_fetch_sub_{}", size),
+            AtomicRmwBinOp::AtomicAnd => format!("__atomic_fetch_and_{}", size),
+            AtomicRmwBinOp::AtomicNand => format!("__atomic_fetch_nand_{}", size),
+            AtomicRmwBinOp::AtomicOr => format!("__atomic_fetch_or_{}", size),
+            AtomicRmwBinOp::AtomicXor => format!("__atomic_fetch_xor_{}", size),
+            AtomicRmwBinOp::AtomicMax => {
+                return self.atomic_extremum(ExtremumOperation::Max, dst, src, order);
+            }
+            AtomicRmwBinOp::AtomicMin => {
+                return self.atomic_extremum(ExtremumOperation::Min, dst, src, order);
+            }
+            AtomicRmwBinOp::AtomicUMax => {
+                return self.atomic_extremum(ExtremumOperation::Max, dst, src, order);
+            }
+            AtomicRmwBinOp::AtomicUMin => {
+                return self.atomic_extremum(ExtremumOperation::Min, dst, src, order);
+            }
+        };
+
+        let atomic_function = self.context.get_builtin_function(name);
+        let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
+
+        let void_ptr_type = self.context.new_type::<*mut ()>();
+        let volatile_void_ptr_type = void_ptr_type.make_volatile();
+        let dst = self.context.new_cast(self.location, dst, volatile_void_ptr_type);
+        // FIXME(antoyo): not sure why, but we have the wrong type here.
+        let new_src_type = atomic_function.get_param(1).to_rvalue().get_type();
+        let src = self.context.new_bitcast(self.location, src, new_src_type);
+        let res = self.context.new_call(self.location, atomic_function, &[dst, src, order]);
+        self.context.new_cast(self.location, res, src.get_type())
+    }
+
+    fn atomic_fence(&mut self, order: AtomicOrdering, scope: SynchronizationScope) {
+        let name = match scope {
+            SynchronizationScope::SingleThread => "__atomic_signal_fence",
+            SynchronizationScope::CrossThread => "__atomic_thread_fence",
+        };
+        let thread_fence = self.context.get_builtin_function(name);
+        let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
+        self.llbb()
+            .add_eval(self.location, self.context.new_call(self.location, thread_fence, &[order]));
+    }
+
+    fn set_invariant_load(&mut self, load: RValue<'gcc>) {
+        // NOTE: Hack to consider vtable function pointer as non-global-variable function pointer.
+        self.normal_function_addresses.borrow_mut().insert(load);
+        // TODO(antoyo)
+    }
+
+    fn lifetime_start(&mut self, _ptr: RValue<'gcc>, _size: Size) {
+        // TODO(antoyo)
+    }
+
+    fn lifetime_end(&mut self, _ptr: RValue<'gcc>, _size: Size) {
+        // TODO(antoyo)
+    }
+
+    fn call(
+        &mut self,
+        typ: Type<'gcc>,
+        _fn_attrs: Option<&CodegenFnAttrs>,
+        fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
+        func: RValue<'gcc>,
+        args: &[RValue<'gcc>],
+        funclet: Option<&Funclet>,
+        _instance: Option<Instance<'tcx>>,
+    ) -> RValue<'gcc> {
+        // FIXME(antoyo): remove when having a proper API.
+        let gcc_func = unsafe { std::mem::transmute::<RValue<'gcc>, Function<'gcc>>(func) };
+        let call = if self.functions.borrow().values().any(|value| *value == gcc_func) {
+            self.function_call(func, args, funclet)
+        } else {
+            // If it's a not function that was defined, it's a function pointer.
+            self.function_ptr_call(typ, func, args, funclet)
+        };
+        if let Some(_fn_abi) = fn_abi {
+            // TODO(bjorn3): Apply function attributes
+        }
+        call
+    }
+
+    fn zext(&mut self, value: RValue<'gcc>, dest_typ: Type<'gcc>) -> RValue<'gcc> {
+        // FIXME(antoyo): this does not zero-extend.
+        self.gcc_int_cast(value, dest_typ)
+    }
+
+    fn cx(&self) -> &CodegenCx<'gcc, 'tcx> {
+        self.cx
+    }
+
+    fn apply_attrs_to_cleanup_callsite(&mut self, _llret: RValue<'gcc>) {
+        // FIXME(bjorn3): implement
+    }
+
+    fn set_span(&mut self, _span: Span) {}
+
+    fn from_immediate(&mut self, val: Self::Value) -> Self::Value {
+        if self.cx().val_ty(val) == self.cx().type_i1() {
+            self.zext(val, self.cx().type_i8())
+        } else {
+            val
+        }
+    }
+
+    fn to_immediate_scalar(&mut self, val: Self::Value, scalar: abi::Scalar) -> Self::Value {
+        if scalar.is_bool() {
+            return self.unchecked_utrunc(val, self.cx().type_i1());
+        }
+        val
+    }
+
+    fn fptoui_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        self.fptoint_sat(false, val, dest_ty)
+    }
+
+    fn fptosi_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
+        self.fptoint_sat(true, val, dest_ty)
+    }
+}
+
+impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> {
+    fn fptoint_sat(
+        &mut self,
+        signed: bool,
+        val: RValue<'gcc>,
+        dest_ty: Type<'gcc>,
+    ) -> RValue<'gcc> {
+        let src_ty = self.cx.val_ty(val);
+        let (float_ty, int_ty) = if self.cx.type_kind(src_ty) == TypeKind::Vector {
+            assert_eq!(self.cx.vector_length(src_ty), self.cx.vector_length(dest_ty));
+            (self.cx.element_type(src_ty), self.cx.element_type(dest_ty))
+        } else {
+            (src_ty, dest_ty)
+        };
+
+        // FIXME(jistone): the following was originally the fallback SSA implementation, before LLVM 13
+        // added native `fptosi.sat` and `fptoui.sat` conversions, but it was used by GCC as well.
+        // Now that LLVM always relies on its own, the code has been moved to GCC, but the comments are
+        // still LLVM-specific. This should be updated, and use better GCC specifics if possible.
+
+        let int_width = self.cx.int_width(int_ty);
+        let float_width = self.cx.float_width(float_ty);
+        // LLVM's fpto[su]i returns undef when the input val is infinite, NaN, or does not fit into the
+        // destination integer type after rounding towards zero. This `undef` value can cause UB in
+        // safe code (see issue #10184), so we implement a saturating conversion on top of it:
+        // Semantically, the mathematical value of the input is rounded towards zero to the next
+        // mathematical integer, and then the result is clamped into the range of the destination
+        // integer type. Positive and negative infinity are mapped to the maximum and minimum value of
+        // the destination integer type. NaN is mapped to 0.
+        //
+        // Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to
+        // a value representable in int_ty.
+        // They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits.
+        // Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two.
+        // int_ty::MIN, however, is either zero or a negative power of two and is thus exactly
+        // representable. Note that this only works if float_ty's exponent range is sufficiently large.
+        // f16 or 256 bit integers would break this property. Right now the smallest float type is f32
+        // with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127.
+        // On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because
+        // we're rounding towards zero, we just get float_ty::MAX (which is always an integer).
+        // This already happens today with u128::MAX = 2^128 - 1 > f32::MAX.
+        let int_max = |signed: bool, int_width: u64| -> u128 {
+            let shift_amount = 128 - int_width;
+            if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount }
+        };
+        let int_min = |signed: bool, int_width: u64| -> i128 {
+            if signed { i128::MIN >> (128 - int_width) } else { 0 }
+        };
+
+        let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) {
+            let rounded_min =
+                ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero);
+            assert_eq!(rounded_min.status, Status::OK);
+            let rounded_max =
+                ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero);
+            assert!(rounded_max.value.is_finite());
+            (rounded_min.value.to_bits(), rounded_max.value.to_bits())
+        };
+        let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) {
+            let rounded_min =
+                ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero);
+            assert_eq!(rounded_min.status, Status::OK);
+            let rounded_max =
+                ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero);
+            assert!(rounded_max.value.is_finite());
+            (rounded_min.value.to_bits(), rounded_max.value.to_bits())
+        };
+        // To implement saturation, we perform the following steps:
+        //
+        // 1. Cast val to an integer with fpto[su]i. This may result in undef.
+        // 2. Compare val to f_min and f_max, and use the comparison results to select:
+        //  a) int_ty::MIN if val < f_min or val is NaN
+        //  b) int_ty::MAX if val > f_max
+        //  c) the result of fpto[su]i otherwise
+        // 3. If val is NaN, return 0.0, otherwise return the result of step 2.
+        //
+        // This avoids resulting undef because values in range [f_min, f_max] by definition fit into the
+        // destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of
+        // undef does not introduce any non-determinism either.
+        // More importantly, the above procedure correctly implements saturating conversion.
+        // Proof (sketch):
+        // If val is NaN, 0 is returned by definition.
+        // Otherwise, val is finite or infinite and thus can be compared with f_min and f_max.
+        // This yields three cases to consider:
+        // (1) if val in [f_min, f_max], the result of fpto[su]i is returned, which agrees with
+        //     saturating conversion for inputs in that range.
+        // (2) if val > f_max, then val is larger than int_ty::MAX. This holds even if f_max is rounded
+        //     (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger
+        //     than int_ty::MAX. Because val is larger than int_ty::MAX, the return value of int_ty::MAX
+        //     is correct.
+        // (3) if val < f_min, then val is smaller than int_ty::MIN. As shown earlier, f_min exactly equals
+        //     int_ty::MIN and therefore the return value of int_ty::MIN is correct.
+        // QED.
+
+        let float_bits_to_llval = |bx: &mut Self, bits| {
+            let bits_llval = match float_width {
+                32 => bx.cx().const_u32(bits as u32),
+                64 => bx.cx().const_u64(bits as u64),
+                n => bug!("unsupported float width {}", n),
+            };
+            bx.bitcast(bits_llval, float_ty)
+        };
+        let (f_min, f_max) = match float_width {
+            32 => compute_clamp_bounds_single(signed, int_width),
+            64 => compute_clamp_bounds_double(signed, int_width),
+            n => bug!("unsupported float width {}", n),
+        };
+        let f_min = float_bits_to_llval(self, f_min);
+        let f_max = float_bits_to_llval(self, f_max);
+        let int_max = self.cx.const_uint_big(int_ty, int_max(signed, int_width));
+        let int_min = self.cx.const_uint_big(int_ty, int_min(signed, int_width) as u128);
+        let zero = self.cx.const_uint(int_ty, 0);
+
+        // If we're working with vectors, constants must be "splatted": the constant is duplicated
+        // into each lane of the vector.  The algorithm stays the same, we are just using the
+        // same constant across all lanes.
+        let maybe_splat = |bx: &mut Self, val| {
+            if bx.cx().type_kind(dest_ty) == TypeKind::Vector {
+                bx.vector_splat(bx.vector_length(dest_ty), val)
+            } else {
+                val
+            }
+        };
+        let f_min = maybe_splat(self, f_min);
+        let f_max = maybe_splat(self, f_max);
+        let int_max = maybe_splat(self, int_max);
+        let int_min = maybe_splat(self, int_min);
+        let zero = maybe_splat(self, zero);
+
+        // Step 1 ...
+        let fptosui_result =
+            if signed { self.fptosi(val, dest_ty) } else { self.fptoui(val, dest_ty) };
+        let less_or_nan = self.fcmp(RealPredicate::RealULT, val, f_min);
+        let greater = self.fcmp(RealPredicate::RealOGT, val, f_max);
+
+        // Step 2: We use two comparisons and two selects, with %s1 being the
+        // result:
+        //     %less_or_nan = fcmp ult %val, %f_min
+        //     %greater = fcmp olt %val, %f_max
+        //     %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result
+        //     %s1 = select %greater, int_ty::MAX, %s0
+        // Note that %less_or_nan uses an *unordered* comparison. This
+        // comparison is true if the operands are not comparable (i.e., if val is
+        // NaN). The unordered comparison ensures that s1 becomes int_ty::MIN if
+        // val is NaN.
+        //
+        // Performance note: Unordered comparison can be lowered to a "flipped"
+        // comparison and a negation, and the negation can be merged into the
+        // select. Therefore, it not necessarily any more expensive than an
+        // ordered ("normal") comparison. Whether these optimizations will be
+        // performed is ultimately up to the backend, but at least x86 does
+        // perform them.
+        let s0 = self.select(less_or_nan, int_min, fptosui_result);
+        let s1 = self.select(greater, int_max, s0);
+
+        // Step 3: NaN replacement.
+        // For unsigned types, the above step already yielded int_ty::MIN == 0 if val is NaN.
+        // Therefore we only need to execute this step for signed integer types.
+        if signed {
+            // LLVM has no isNaN predicate, so we use (val == val) instead
+            let cmp = self.fcmp(RealPredicate::RealOEQ, val, val);
+            self.select(cmp, s1, zero)
+        } else {
+            s1
+        }
+    }
+
+    #[cfg(feature = "master")]
+    pub fn shuffle_vector(
+        &mut self,
+        v1: RValue<'gcc>,
+        v2: RValue<'gcc>,
+        mask: RValue<'gcc>,
+    ) -> RValue<'gcc> {
+        // NOTE: if the `mask` is a constant value, the following code will copy it in many places,
+        // which will make GCC create a lot (+4000) local variables in some cases.
+        // So we assign it to an explicit local variable once to avoid this.
+        let func = self.current_func();
+        let mask_var = func.new_local(self.location, mask.get_type(), "mask");
+        let block = self.block;
+        block.add_assignment(self.location, mask_var, mask);
+        let mask = mask_var.to_rvalue();
+
+        // TODO(antoyo): use a recursive unqualified() here.
+        let vector_type = v1.get_type().unqualified().dyncast_vector().expect("vector type");
+        let element_type = vector_type.get_element_type();
+        let vec_num_units = vector_type.get_num_units();
+
+        let mask_element_type = if element_type.is_integral() {
+            element_type
+        } else {
+            #[cfg(feature = "master")]
+            {
+                self.cx.type_ix(element_type.get_size() as u64 * 8)
+            }
+            #[cfg(not(feature = "master"))]
+            self.int_type
+        };
+
+        // NOTE: this condition is needed because we call shuffle_vector in the implementation of
+        // simd_gather.
+        let mut mask_elements = if let Some(vector_type) = mask.get_type().dyncast_vector() {
+            let mask_num_units = vector_type.get_num_units();
+            let mut mask_elements = vec![];
+            for i in 0..mask_num_units {
+                let index = self.context.new_rvalue_from_long(self.cx.type_u32(), i as _);
+                mask_elements.push(self.context.new_cast(
+                    self.location,
+                    self.extract_element(mask, index).to_rvalue(),
+                    mask_element_type,
+                ));
+            }
+            mask_elements
+        } else {
+            let struct_type = mask.get_type().is_struct().expect("mask should be of struct type");
+            let mask_num_units = struct_type.get_field_count();
+            let mut mask_elements = vec![];
+            for i in 0..mask_num_units {
+                let field = struct_type.get_field(i as i32);
+                mask_elements.push(self.context.new_cast(
+                    self.location,
+                    mask.access_field(self.location, field).to_rvalue(),
+                    mask_element_type,
+                ));
+            }
+            mask_elements
+        };
+        let mask_num_units = mask_elements.len();
+
+        // NOTE: the mask needs to be the same length as the input vectors, so add the missing
+        // elements in the mask if needed.
+        for _ in mask_num_units..vec_num_units {
+            mask_elements.push(self.context.new_rvalue_zero(mask_element_type));
+        }
+
+        let result_type = self.context.new_vector_type(element_type, mask_num_units as u64);
+        let (v1, v2) = if vec_num_units < mask_num_units {
+            // NOTE: the mask needs to be the same length as the input vectors, so join the 2
+            // vectors and create a dummy second vector.
+            let mut elements = vec![];
+            for i in 0..vec_num_units {
+                elements.push(
+                    self.context
+                        .new_vector_access(
+                            self.location,
+                            v1,
+                            self.context.new_rvalue_from_int(self.int_type, i as i32),
+                        )
+                        .to_rvalue(),
+                );
+            }
+            for i in 0..(mask_num_units - vec_num_units) {
+                elements.push(
+                    self.context
+                        .new_vector_access(
+                            self.location,
+                            v2,
+                            self.context.new_rvalue_from_int(self.int_type, i as i32),
+                        )
+                        .to_rvalue(),
+                );
+            }
+            let v1 = self.context.new_rvalue_from_vector(self.location, result_type, &elements);
+            let zero = self.context.new_rvalue_zero(element_type);
+            let v2 = self.context.new_rvalue_from_vector(
+                self.location,
+                result_type,
+                &vec![zero; mask_num_units],
+            );
+            (v1, v2)
+        } else {
+            (v1, v2)
+        };
+
+        let new_mask_num_units = std::cmp::max(mask_num_units, vec_num_units);
+        let mask_type = self.context.new_vector_type(mask_element_type, new_mask_num_units as u64);
+        let mask = self.context.new_rvalue_from_vector(self.location, mask_type, &mask_elements);
+        let result = self.context.new_rvalue_vector_perm(self.location, v1, v2, mask);
+
+        if vec_num_units != mask_num_units {
+            // NOTE: if padding was added, only select the number of elements of the masks to
+            // remove that padding in the result.
+            let mut elements = vec![];
+            for i in 0..mask_num_units {
+                elements.push(
+                    self.context
+                        .new_vector_access(
+                            self.location,
+                            result,
+                            self.context.new_rvalue_from_int(self.int_type, i as i32),
+                        )
+                        .to_rvalue(),
+                );
+            }
+            self.context.new_rvalue_from_vector(self.location, result_type, &elements)
+        } else {
+            result
+        }
+    }
+
+    #[cfg(not(feature = "master"))]
+    pub fn shuffle_vector(
+        &mut self,
+        _v1: RValue<'gcc>,
+        _v2: RValue<'gcc>,
+        _mask: RValue<'gcc>,
+    ) -> RValue<'gcc> {
+        unimplemented!();
+    }
+
+    #[cfg(feature = "master")]
+    pub fn vector_reduce<F>(&mut self, src: RValue<'gcc>, op: F) -> RValue<'gcc>
+    where
+        F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc>,
+    {
+        let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type");
+        let element_type = vector_type.get_element_type();
+        let mask_element_type = self.type_ix(element_type.get_size() as u64 * 8);
+        let element_count = vector_type.get_num_units();
+        let mut vector_elements = vec![];
+        for i in 0..element_count {
+            vector_elements.push(i);
+        }
+        let mask_type = self.context.new_vector_type(mask_element_type, element_count as u64);
+        let mut shift = 1;
+        let mut res = src;
+        while shift < element_count {
+            let vector_elements: Vec<_> = vector_elements
+                .iter()
+                .map(|i| {
+                    self.context.new_rvalue_from_int(
+                        mask_element_type,
+                        ((i + shift) % element_count) as i32,
+                    )
+                })
+                .collect();
+            let mask =
+                self.context.new_rvalue_from_vector(self.location, mask_type, &vector_elements);
+            let shifted = self.context.new_rvalue_vector_perm(self.location, res, res, mask);
+            shift *= 2;
+            res = op(res, shifted, self.context);
+        }
+        self.context
+            .new_vector_access(self.location, res, self.context.new_rvalue_zero(self.int_type))
+            .to_rvalue()
+    }
+
+    #[cfg(not(feature = "master"))]
+    pub fn vector_reduce<F>(&mut self, _src: RValue<'gcc>, _op: F) -> RValue<'gcc>
+    where
+        F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc>,
+    {
+        unimplemented!();
+    }
+
+    pub fn vector_reduce_op(&mut self, src: RValue<'gcc>, op: BinaryOp) -> RValue<'gcc> {
+        let loc = self.location;
+        self.vector_reduce(src, |a, b, context| context.new_binary_op(loc, op, a.get_type(), a, b))
+    }
+
+    pub fn vector_reduce_fadd_reassoc(
+        &mut self,
+        _acc: RValue<'gcc>,
+        _src: RValue<'gcc>,
+    ) -> RValue<'gcc> {
+        unimplemented!();
+    }
+
+    #[cfg(feature = "master")]
+    pub fn vector_reduce_fadd(&mut self, acc: RValue<'gcc>, src: RValue<'gcc>) -> RValue<'gcc> {
+        let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type");
+        let element_count = vector_type.get_num_units();
+        (0..element_count)
+            .map(|i| {
+                self.context
+                    .new_vector_access(
+                        self.location,
+                        src,
+                        self.context.new_rvalue_from_int(self.int_type, i as _),
+                    )
+                    .to_rvalue()
+            })
+            .fold(acc, |x, i| x + i)
+    }
+
+    #[cfg(not(feature = "master"))]
+    pub fn vector_reduce_fadd(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> {
+        unimplemented!();
+    }
+
+    pub fn vector_reduce_fmul_reassoc(
+        &mut self,
+        _acc: RValue<'gcc>,
+        _src: RValue<'gcc>,
+    ) -> RValue<'gcc> {
+        unimplemented!();
+    }
+
+    #[cfg(feature = "master")]
+    pub fn vector_reduce_fmul(&mut self, acc: RValue<'gcc>, src: RValue<'gcc>) -> RValue<'gcc> {
+        let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type");
+        let element_count = vector_type.get_num_units();
+        (0..element_count)
+            .map(|i| {
+                self.context
+                    .new_vector_access(
+                        self.location,
+                        src,
+                        self.context.new_rvalue_from_int(self.int_type, i as _),
+                    )
+                    .to_rvalue()
+            })
+            .fold(acc, |x, i| x * i)
+    }
+
+    #[cfg(not(feature = "master"))]
+    pub fn vector_reduce_fmul(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> {
+        unimplemented!()
+    }
+
+    // Inspired by Hacker's Delight min implementation.
+    pub fn vector_reduce_min(&mut self, src: RValue<'gcc>) -> RValue<'gcc> {
+        let loc = self.location;
+        self.vector_reduce(src, |a, b, context| {
+            let differences_or_zeros = difference_or_zero(loc, a, b, context);
+            context.new_binary_op(loc, BinaryOp::Plus, b.get_type(), b, differences_or_zeros)
+        })
+    }
+
+    // Inspired by Hacker's Delight max implementation.
+    pub fn vector_reduce_max(&mut self, src: RValue<'gcc>) -> RValue<'gcc> {
+        let loc = self.location;
+        self.vector_reduce(src, |a, b, context| {
+            let differences_or_zeros = difference_or_zero(loc, a, b, context);
+            context.new_binary_op(loc, BinaryOp::Minus, a.get_type(), a, differences_or_zeros)
+        })
+    }
+
+    fn vector_extremum(
+        &mut self,
+        a: RValue<'gcc>,
+        b: RValue<'gcc>,
+        direction: ExtremumOperation,
+    ) -> RValue<'gcc> {
+        let vector_type = a.get_type();
+
+        // mask out the NaNs in b and replace them with the corresponding lane in a, so when a and
+        // b get compared & spliced together, we get the numeric values instead of NaNs.
+        let b_nan_mask = self.context.new_comparison(self.location, ComparisonOp::NotEquals, b, b);
+        let mask_type = b_nan_mask.get_type();
+        let b_nan_mask_inverted =
+            self.context.new_unary_op(self.location, UnaryOp::BitwiseNegate, mask_type, b_nan_mask);
+        let a_cast = self.context.new_bitcast(self.location, a, mask_type);
+        let b_cast = self.context.new_bitcast(self.location, b, mask_type);
+        let res = (b_nan_mask & a_cast) | (b_nan_mask_inverted & b_cast);
+        let b = self.context.new_bitcast(self.location, res, vector_type);
+
+        // now do the actual comparison
+        let comparison_op = match direction {
+            ExtremumOperation::Min => ComparisonOp::LessThan,
+            ExtremumOperation::Max => ComparisonOp::GreaterThan,
+        };
+        let cmp = self.context.new_comparison(self.location, comparison_op, a, b);
+        let cmp_inverted =
+            self.context.new_unary_op(self.location, UnaryOp::BitwiseNegate, cmp.get_type(), cmp);
+        let res = (cmp & a_cast) | (cmp_inverted & res);
+        self.context.new_bitcast(self.location, res, vector_type)
+    }
+
+    pub fn vector_fmin(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.vector_extremum(a, b, ExtremumOperation::Min)
+    }
+
+    #[cfg(feature = "master")]
+    pub fn vector_reduce_fmin(&mut self, src: RValue<'gcc>) -> RValue<'gcc> {
+        let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type");
+        let element_count = vector_type.get_num_units();
+        let mut acc = self
+            .context
+            .new_vector_access(self.location, src, self.context.new_rvalue_zero(self.int_type))
+            .to_rvalue();
+        for i in 1..element_count {
+            let elem = self
+                .context
+                .new_vector_access(
+                    self.location,
+                    src,
+                    self.context.new_rvalue_from_int(self.int_type, i as _),
+                )
+                .to_rvalue();
+            let cmp = self.context.new_comparison(self.location, ComparisonOp::LessThan, acc, elem);
+            acc = self.select(cmp, acc, elem);
+        }
+        acc
+    }
+
+    #[cfg(not(feature = "master"))]
+    pub fn vector_reduce_fmin(&mut self, _src: RValue<'gcc>) -> RValue<'gcc> {
+        unimplemented!();
+    }
+
+    pub fn vector_fmax(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
+        self.vector_extremum(a, b, ExtremumOperation::Max)
+    }
+
+    #[cfg(feature = "master")]
+    pub fn vector_reduce_fmax(&mut self, src: RValue<'gcc>) -> RValue<'gcc> {
+        let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type");
+        let element_count = vector_type.get_num_units();
+        let mut acc = self
+            .context
+            .new_vector_access(self.location, src, self.context.new_rvalue_zero(self.int_type))
+            .to_rvalue();
+        for i in 1..element_count {
+            let elem = self
+                .context
+                .new_vector_access(
+                    self.location,
+                    src,
+                    self.context.new_rvalue_from_int(self.int_type, i as _),
+                )
+                .to_rvalue();
+            let cmp =
+                self.context.new_comparison(self.location, ComparisonOp::GreaterThan, acc, elem);
+            acc = self.select(cmp, acc, elem);
+        }
+        acc
+    }
+
+    #[cfg(not(feature = "master"))]
+    pub fn vector_reduce_fmax(&mut self, _src: RValue<'gcc>) -> RValue<'gcc> {
+        unimplemented!();
+    }
+
+    pub fn vector_select(
+        &mut self,
+        cond: RValue<'gcc>,
+        then_val: RValue<'gcc>,
+        else_val: RValue<'gcc>,
+    ) -> RValue<'gcc> {
+        // cond is a vector of integers, not of bools.
+        let vector_type = cond.get_type().unqualified().dyncast_vector().expect("vector type");
+        let num_units = vector_type.get_num_units();
+        let element_type = vector_type.get_element_type();
+
+        #[cfg(feature = "master")]
+        let (cond, element_type) = {
+            // TODO(antoyo): dyncast_vector should not require a call to unqualified.
+            let then_val_vector_type =
+                then_val.get_type().unqualified().dyncast_vector().expect("vector type");
+            let then_val_element_type = then_val_vector_type.get_element_type();
+            let then_val_element_size = then_val_element_type.get_size();
+
+            // NOTE: the mask needs to be of the same size as the other arguments in order for the &
+            // operation to work.
+            if then_val_element_size != element_type.get_size() {
+                let new_element_type = self.type_ix(then_val_element_size as u64 * 8);
+                let new_vector_type =
+                    self.context.new_vector_type(new_element_type, num_units as u64);
+                let cond = self.context.convert_vector(self.location, cond, new_vector_type);
+                (cond, new_element_type)
+            } else {
+                (cond, element_type)
+            }
+        };
+
+        let cond_type = cond.get_type();
+
+        let zeros = vec![self.context.new_rvalue_zero(element_type); num_units];
+        let zeros = self.context.new_rvalue_from_vector(self.location, cond_type, &zeros);
+
+        let result_type = then_val.get_type();
+
+        let masks =
+            self.context.new_comparison(self.location, ComparisonOp::NotEquals, cond, zeros);
+        // NOTE: masks is a vector of integers, but the values can be vectors of floats, so use bitcast to make
+        // the & operation work.
+        let then_val = self.bitcast_if_needed(then_val, masks.get_type());
+        let then_vals = masks & then_val;
+
+        let minus_ones = vec![self.context.new_rvalue_from_int(element_type, -1); num_units];
+        let minus_ones = self.context.new_rvalue_from_vector(self.location, cond_type, &minus_ones);
+        let inverted_masks = masks ^ minus_ones;
+        // NOTE: sometimes, the type of else_val can be different than the type of then_val in
+        // libgccjit (vector of int vs vector of int32_t), but they should be the same for the AND
+        // operation to work.
+        // TODO: remove bitcast now that vector types can be compared?
+        let else_val = self.context.new_bitcast(self.location, else_val, then_val.get_type());
+        let else_vals = inverted_masks & else_val;
+
+        let res = then_vals | else_vals;
+        self.bitcast_if_needed(res, result_type)
+    }
+}
+
+fn difference_or_zero<'gcc>(
+    loc: Option<Location<'gcc>>,
+    a: RValue<'gcc>,
+    b: RValue<'gcc>,
+    context: &'gcc Context<'gcc>,
+) -> RValue<'gcc> {
+    let difference = a - b;
+    let masks = context.new_comparison(loc, ComparisonOp::GreaterThanEquals, b, a);
+    // NOTE: masks is a vector of integers, but the values can be vectors of floats, so use bitcast to make
+    // the & operation work.
+    let a_type = a.get_type();
+    let masks =
+        if masks.get_type() != a_type { context.new_bitcast(loc, masks, a_type) } else { masks };
+    difference & masks
+}
+
+impl<'a, 'gcc, 'tcx> StaticBuilderMethods for Builder<'a, 'gcc, 'tcx> {
+    fn get_static(&mut self, def_id: DefId) -> RValue<'gcc> {
+        // Forward to the `get_static` method of `CodegenCx`
+        self.cx().get_static(def_id).get_address(self.location)
+    }
+}
+
+impl<'tcx> HasTypingEnv<'tcx> for Builder<'_, '_, 'tcx> {
+    fn typing_env(&self) -> ty::TypingEnv<'tcx> {
+        self.cx.typing_env()
+    }
+}
+
+impl<'tcx> HasTargetSpec for Builder<'_, '_, 'tcx> {
+    fn target_spec(&self) -> &Target {
+        self.cx.target_spec()
+    }
+}
+
+impl<'tcx> HasWasmCAbiOpt for Builder<'_, '_, 'tcx> {
+    fn wasm_c_abi_opt(&self) -> WasmCAbi {
+        self.cx.wasm_c_abi_opt()
+    }
+}
+
+impl<'tcx> HasX86AbiOpt for Builder<'_, '_, 'tcx> {
+    fn x86_abi_opt(&self) -> X86Abi {
+        self.cx.x86_abi_opt()
+    }
+}
+
+pub trait ToGccComp {
+    fn to_gcc_comparison(&self) -> ComparisonOp;
+}
+
+impl ToGccComp for IntPredicate {
+    fn to_gcc_comparison(&self) -> ComparisonOp {
+        match *self {
+            IntPredicate::IntEQ => ComparisonOp::Equals,
+            IntPredicate::IntNE => ComparisonOp::NotEquals,
+            IntPredicate::IntUGT => ComparisonOp::GreaterThan,
+            IntPredicate::IntUGE => ComparisonOp::GreaterThanEquals,
+            IntPredicate::IntULT => ComparisonOp::LessThan,
+            IntPredicate::IntULE => ComparisonOp::LessThanEquals,
+            IntPredicate::IntSGT => ComparisonOp::GreaterThan,
+            IntPredicate::IntSGE => ComparisonOp::GreaterThanEquals,
+            IntPredicate::IntSLT => ComparisonOp::LessThan,
+            IntPredicate::IntSLE => ComparisonOp::LessThanEquals,
+        }
+    }
+}
+
+impl ToGccComp for RealPredicate {
+    fn to_gcc_comparison(&self) -> ComparisonOp {
+        // TODO(antoyo): check that ordered vs non-ordered is respected.
+        match *self {
+            RealPredicate::RealPredicateFalse => unreachable!(),
+            RealPredicate::RealOEQ => ComparisonOp::Equals,
+            RealPredicate::RealOGT => ComparisonOp::GreaterThan,
+            RealPredicate::RealOGE => ComparisonOp::GreaterThanEquals,
+            RealPredicate::RealOLT => ComparisonOp::LessThan,
+            RealPredicate::RealOLE => ComparisonOp::LessThanEquals,
+            RealPredicate::RealONE => ComparisonOp::NotEquals,
+            RealPredicate::RealORD => unreachable!(),
+            RealPredicate::RealUNO => unreachable!(),
+            RealPredicate::RealUEQ => ComparisonOp::Equals,
+            RealPredicate::RealUGT => ComparisonOp::GreaterThan,
+            RealPredicate::RealUGE => ComparisonOp::GreaterThan,
+            RealPredicate::RealULT => ComparisonOp::LessThan,
+            RealPredicate::RealULE => ComparisonOp::LessThan,
+            RealPredicate::RealUNE => ComparisonOp::NotEquals,
+            RealPredicate::RealPredicateTrue => unreachable!(),
+        }
+    }
+}
+
+#[repr(C)]
+#[allow(non_camel_case_types)]
+enum MemOrdering {
+    __ATOMIC_RELAXED,
+    __ATOMIC_CONSUME,
+    __ATOMIC_ACQUIRE,
+    __ATOMIC_RELEASE,
+    __ATOMIC_ACQ_REL,
+    __ATOMIC_SEQ_CST,
+}
+
+trait ToGccOrdering {
+    fn to_gcc(self) -> i32;
+}
+
+impl ToGccOrdering for AtomicOrdering {
+    fn to_gcc(self) -> i32 {
+        use MemOrdering::*;
+
+        let ordering = match self {
+            AtomicOrdering::Unordered => __ATOMIC_RELAXED,
+            AtomicOrdering::Relaxed => __ATOMIC_RELAXED, // TODO(antoyo): check if that's the same.
+            AtomicOrdering::Acquire => __ATOMIC_ACQUIRE,
+            AtomicOrdering::Release => __ATOMIC_RELEASE,
+            AtomicOrdering::AcquireRelease => __ATOMIC_ACQ_REL,
+            AtomicOrdering::SequentiallyConsistent => __ATOMIC_SEQ_CST,
+        };
+        ordering as i32
+    }
+}
+
+// Needed because gcc 12 `get_size()` doesn't work on pointers.
+#[cfg(feature = "master")]
+fn get_maybe_pointer_size(value: RValue<'_>) -> u32 {
+    value.get_type().get_size()
+}
+
+#[cfg(not(feature = "master"))]
+fn get_maybe_pointer_size(value: RValue<'_>) -> u32 {
+    let type_ = value.get_type();
+    if type_.get_pointee().is_some() { size_of::<*const ()>() as _ } else { type_.get_size() }
+}