diff options
Diffstat (limited to 'compiler/rustc_codegen_gcc/src/builder.rs')
| -rw-r--r-- | compiler/rustc_codegen_gcc/src/builder.rs | 2478 | 
1 files changed, 2478 insertions, 0 deletions
| diff --git a/compiler/rustc_codegen_gcc/src/builder.rs b/compiler/rustc_codegen_gcc/src/builder.rs new file mode 100644 index 00000000000..5c70f4a7df9 --- /dev/null +++ b/compiler/rustc_codegen_gcc/src/builder.rs @@ -0,0 +1,2478 @@ +use std::borrow::Cow; +use std::cell::Cell; +use std::convert::TryFrom; +use std::ops::Deref; + +use gccjit::{ + BinaryOp, Block, ComparisonOp, Context, Function, LValue, Location, RValue, ToRValue, Type, + UnaryOp, +}; +use rustc_abi as abi; +use rustc_abi::{Align, HasDataLayout, Size, TargetDataLayout, WrappingRange}; +use rustc_apfloat::{Float, Round, Status, ieee}; +use rustc_codegen_ssa::MemFlags; +use rustc_codegen_ssa::common::{ + AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope, TypeKind, +}; +use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue}; +use rustc_codegen_ssa::mir::place::PlaceRef; +use rustc_codegen_ssa::traits::{ + BackendTypes, BaseTypeCodegenMethods, BuilderMethods, ConstCodegenMethods, + LayoutTypeCodegenMethods, OverflowOp, StaticBuilderMethods, +}; +use rustc_data_structures::fx::FxHashSet; +use rustc_middle::bug; +use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs; +use rustc_middle::ty::layout::{ + FnAbiError, FnAbiOfHelpers, FnAbiRequest, HasTyCtxt, HasTypingEnv, LayoutError, LayoutOfHelpers, +}; +use rustc_middle::ty::{self, Instance, Ty, TyCtxt}; +use rustc_span::Span; +use rustc_span::def_id::DefId; +use rustc_target::callconv::FnAbi; +use rustc_target::spec::{HasTargetSpec, HasWasmCAbiOpt, HasX86AbiOpt, Target, WasmCAbi, X86Abi}; + +use crate::common::{SignType, TypeReflection, type_is_pointer}; +use crate::context::CodegenCx; +use crate::intrinsic::llvm; +use crate::type_of::LayoutGccExt; + +// TODO(antoyo) +type Funclet = (); + +enum ExtremumOperation { + Max, + Min, +} + +pub struct Builder<'a: 'gcc, 'gcc, 'tcx> { + pub cx: &'a CodegenCx<'gcc, 'tcx>, + pub block: Block<'gcc>, + pub location: Option<Location<'gcc>>, + value_counter: Cell<u64>, +} + +impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> { + fn with_cx(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Self { + Builder { cx, block, location: None, value_counter: Cell::new(0) } + } + + fn next_value_counter(&self) -> u64 { + self.value_counter.set(self.value_counter.get() + 1); + self.value_counter.get() + } + + fn atomic_extremum( + &mut self, + operation: ExtremumOperation, + dst: RValue<'gcc>, + src: RValue<'gcc>, + order: AtomicOrdering, + ) -> RValue<'gcc> { + let size = get_maybe_pointer_size(src); + + let func = self.current_func(); + + let load_ordering = match order { + // TODO(antoyo): does this make sense? + AtomicOrdering::AcquireRelease | AtomicOrdering::Release => AtomicOrdering::Acquire, + _ => order, + }; + let previous_value = + self.atomic_load(dst.get_type(), dst, load_ordering, Size::from_bytes(size)); + let previous_var = + func.new_local(self.location, previous_value.get_type(), "previous_value"); + let return_value = func.new_local(self.location, previous_value.get_type(), "return_value"); + self.llbb().add_assignment(self.location, previous_var, previous_value); + self.llbb().add_assignment(self.location, return_value, previous_var.to_rvalue()); + + let while_block = func.new_block("while"); + let after_block = func.new_block("after_while"); + self.llbb().end_with_jump(self.location, while_block); + + // NOTE: since jumps were added and compare_exchange doesn't expect this, the current block in the + // state need to be updated. + self.switch_to_block(while_block); + + let comparison_operator = match operation { + ExtremumOperation::Max => ComparisonOp::LessThan, + ExtremumOperation::Min => ComparisonOp::GreaterThan, + }; + + let cond1 = self.context.new_comparison( + self.location, + comparison_operator, + previous_var.to_rvalue(), + self.context.new_cast(self.location, src, previous_value.get_type()), + ); + let compare_exchange = + self.compare_exchange(dst, previous_var, src, order, load_ordering, false); + let cond2 = self.cx.context.new_unary_op( + self.location, + UnaryOp::LogicalNegate, + compare_exchange.get_type(), + compare_exchange, + ); + let cond = self.cx.context.new_binary_op( + self.location, + BinaryOp::LogicalAnd, + self.cx.bool_type, + cond1, + cond2, + ); + + while_block.end_with_conditional(self.location, cond, while_block, after_block); + + // NOTE: since jumps were added in a place rustc does not expect, the current block in the + // state need to be updated. + self.switch_to_block(after_block); + + return_value.to_rvalue() + } + + fn compare_exchange( + &self, + dst: RValue<'gcc>, + cmp: LValue<'gcc>, + src: RValue<'gcc>, + order: AtomicOrdering, + failure_order: AtomicOrdering, + weak: bool, + ) -> RValue<'gcc> { + let size = get_maybe_pointer_size(src); + let compare_exchange = + self.context.get_builtin_function(format!("__atomic_compare_exchange_{}", size)); + let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); + let failure_order = self.context.new_rvalue_from_int(self.i32_type, failure_order.to_gcc()); + let weak = self.context.new_rvalue_from_int(self.bool_type, weak as i32); + + let void_ptr_type = self.context.new_type::<*mut ()>(); + let volatile_void_ptr_type = void_ptr_type.make_volatile(); + let dst = self.context.new_cast(self.location, dst, volatile_void_ptr_type); + let expected = + self.context.new_cast(self.location, cmp.get_address(self.location), void_ptr_type); + + // NOTE: not sure why, but we have the wrong type here. + let int_type = compare_exchange.get_param(2).to_rvalue().get_type(); + let src = self.context.new_bitcast(self.location, src, int_type); + self.context.new_call( + self.location, + compare_exchange, + &[dst, expected, src, weak, order, failure_order], + ) + } + + pub fn assign(&self, lvalue: LValue<'gcc>, value: RValue<'gcc>) { + self.llbb().add_assignment(self.location, lvalue, value); + } + + fn check_call<'b>( + &mut self, + _typ: &str, + func: Function<'gcc>, + args: &'b [RValue<'gcc>], + ) -> Cow<'b, [RValue<'gcc>]> { + let mut all_args_match = true; + let mut param_types = vec![]; + let param_count = func.get_param_count(); + for (index, arg) in args.iter().enumerate().take(param_count) { + let param = func.get_param(index as i32); + let param = param.to_rvalue().get_type(); + if param != arg.get_type() { + all_args_match = false; + } + param_types.push(param); + } + + if all_args_match { + return Cow::Borrowed(args); + } + + let casted_args: Vec<_> = param_types + .into_iter() + .zip(args.iter()) + .map(|(expected_ty, &actual_val)| { + let actual_ty = actual_val.get_type(); + if expected_ty != actual_ty { + self.bitcast(actual_val, expected_ty) + } else { + actual_val + } + }) + .collect(); + + debug_assert_eq!(casted_args.len(), args.len()); + + Cow::Owned(casted_args) + } + + fn check_ptr_call<'b>( + &mut self, + _typ: &str, + func_ptr: RValue<'gcc>, + args: &'b [RValue<'gcc>], + ) -> Cow<'b, [RValue<'gcc>]> { + let mut all_args_match = true; + let mut param_types = vec![]; + let gcc_func = func_ptr.get_type().dyncast_function_ptr_type().expect("function ptr"); + for (index, arg) in args.iter().enumerate().take(gcc_func.get_param_count()) { + let param = gcc_func.get_param_type(index); + if param != arg.get_type() { + all_args_match = false; + } + param_types.push(param); + } + + let mut on_stack_param_indices = FxHashSet::default(); + if let Some(indices) = self.on_stack_params.borrow().get(&gcc_func) { + on_stack_param_indices.clone_from(indices); + } + + if all_args_match { + return Cow::Borrowed(args); + } + + let func_name = format!("{:?}", func_ptr); + + let mut casted_args: Vec<_> = param_types + .into_iter() + .zip(args.iter()) + .enumerate() + .map(|(index, (expected_ty, &actual_val))| { + if llvm::ignore_arg_cast(&func_name, index, args.len()) { + return actual_val; + } + + let actual_ty = actual_val.get_type(); + if expected_ty != actual_ty { + if !actual_ty.is_vector() + && !expected_ty.is_vector() + && (actual_ty.is_integral() && expected_ty.is_integral()) + || (actual_ty.get_pointee().is_some() + && expected_ty.get_pointee().is_some()) + { + self.context.new_cast(self.location, actual_val, expected_ty) + } else if on_stack_param_indices.contains(&index) { + let ty = actual_val.get_type(); + // It's possible that the value behind the pointer is actually not exactly + // the expected type, so to go around that, we add a cast before + // dereferencing the value. + if let Some(pointee_val) = ty.get_pointee() + && pointee_val != expected_ty + { + let new_val = self.context.new_cast( + self.location, + actual_val, + expected_ty.make_pointer(), + ); + new_val.dereference(self.location).to_rvalue() + } else { + actual_val.dereference(self.location).to_rvalue() + } + } else { + // FIXME: this condition seems wrong: it will pass when both types are not + // a vector. + assert!( + (!expected_ty.is_vector() || actual_ty.is_vector()) + && (expected_ty.is_vector() || !actual_ty.is_vector()), + "{:?} (is vector: {}) -> {:?} (is vector: {}), Function: {:?}[{}]", + actual_ty, + actual_ty.is_vector(), + expected_ty, + expected_ty.is_vector(), + func_ptr, + index + ); + // TODO(antoyo): perhaps use __builtin_convertvector for vector casting. + // TODO: remove bitcast now that vector types can be compared? + // ==> We use bitcast to avoid having to do many manual casts from e.g. __m256i to __v32qi (in + // the case of _mm256_aesenc_epi128). + self.bitcast(actual_val, expected_ty) + } + } else { + actual_val + } + }) + .collect(); + + // NOTE: to take into account variadic functions. + for arg in args.iter().skip(casted_args.len()) { + casted_args.push(*arg); + } + + Cow::Owned(casted_args) + } + + fn check_store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> { + let stored_ty = self.cx.val_ty(val); + let stored_ptr_ty = self.cx.type_ptr_to(stored_ty); + self.bitcast(ptr, stored_ptr_ty) + } + + pub fn current_func(&self) -> Function<'gcc> { + self.block.get_function() + } + + fn function_call( + &mut self, + func: RValue<'gcc>, + args: &[RValue<'gcc>], + _funclet: Option<&Funclet>, + ) -> RValue<'gcc> { + // TODO(antoyo): remove when the API supports a different type for functions. + let func: Function<'gcc> = self.cx.rvalue_as_function(func); + let args = self.check_call("call", func, args); + + // gccjit requires to use the result of functions, even when it's not used. + // That's why we assign the result to a local or call add_eval(). + let return_type = func.get_return_type(); + let void_type = self.context.new_type::<()>(); + let current_func = self.block.get_function(); + if return_type != void_type { + let result = current_func.new_local( + self.location, + return_type, + format!("returnValue{}", self.next_value_counter()), + ); + self.block.add_assignment( + self.location, + result, + self.cx.context.new_call(self.location, func, &args), + ); + result.to_rvalue() + } else { + self.block + .add_eval(self.location, self.cx.context.new_call(self.location, func, &args)); + // Return dummy value when not having return value. + self.context.new_rvalue_zero(self.isize_type) + } + } + + fn function_ptr_call( + &mut self, + typ: Type<'gcc>, + mut func_ptr: RValue<'gcc>, + args: &[RValue<'gcc>], + _funclet: Option<&Funclet>, + ) -> RValue<'gcc> { + let gcc_func = match func_ptr.get_type().dyncast_function_ptr_type() { + Some(func) => func, + None => { + // NOTE: due to opaque pointers now being used, we need to cast here. + let new_func_type = typ.dyncast_function_ptr_type().expect("function ptr"); + func_ptr = self.context.new_cast(self.location, func_ptr, typ); + new_func_type + } + }; + let func_name = format!("{:?}", func_ptr); + let previous_arg_count = args.len(); + let orig_args = args; + let args = { + func_ptr = llvm::adjust_function(self.context, &func_name, func_ptr, args); + llvm::adjust_intrinsic_arguments(self, gcc_func, args.into(), &func_name) + }; + let args_adjusted = args.len() != previous_arg_count; + let args = self.check_ptr_call("call", func_ptr, &args); + + // gccjit requires to use the result of functions, even when it's not used. + // That's why we assign the result to a local or call add_eval(). + let return_type = gcc_func.get_return_type(); + let void_type = self.context.new_type::<()>(); + let current_func = self.block.get_function(); + + if return_type != void_type { + let return_value = self.cx.context.new_call_through_ptr(self.location, func_ptr, &args); + let return_value = llvm::adjust_intrinsic_return_value( + self, + return_value, + &func_name, + &args, + args_adjusted, + orig_args, + ); + let result = current_func.new_local( + self.location, + return_value.get_type(), + format!("ptrReturnValue{}", self.next_value_counter()), + ); + self.block.add_assignment(self.location, result, return_value); + result.to_rvalue() + } else { + #[cfg(not(feature = "master"))] + if gcc_func.get_param_count() == 0 { + // FIXME(antoyo): As a temporary workaround for unsupported LLVM intrinsics. + self.block.add_eval( + self.location, + self.cx.context.new_call_through_ptr(self.location, func_ptr, &[]), + ); + } else { + self.block.add_eval( + self.location, + self.cx.context.new_call_through_ptr(self.location, func_ptr, &args), + ); + } + #[cfg(feature = "master")] + self.block.add_eval( + self.location, + self.cx.context.new_call_through_ptr(self.location, func_ptr, &args), + ); + // Return dummy value when not having return value. + self.context.new_rvalue_zero(self.isize_type) + } + } + + pub fn overflow_call( + &self, + func: Function<'gcc>, + args: &[RValue<'gcc>], + _funclet: Option<&Funclet>, + ) -> RValue<'gcc> { + // gccjit requires to use the result of functions, even when it's not used. + // That's why we assign the result to a local. + let return_type = self.context.new_type::<bool>(); + let current_func = self.block.get_function(); + // TODO(antoyo): return the new_call() directly? Since the overflow function has no side-effects. + let result = current_func.new_local( + self.location, + return_type, + format!("overflowReturnValue{}", self.next_value_counter()), + ); + self.block.add_assignment( + self.location, + result, + self.cx.context.new_call(self.location, func, args), + ); + result.to_rvalue() + } +} + +impl<'tcx> HasTyCtxt<'tcx> for Builder<'_, '_, 'tcx> { + fn tcx(&self) -> TyCtxt<'tcx> { + self.cx.tcx() + } +} + +impl HasDataLayout for Builder<'_, '_, '_> { + fn data_layout(&self) -> &TargetDataLayout { + self.cx.data_layout() + } +} + +impl<'tcx> LayoutOfHelpers<'tcx> for Builder<'_, '_, 'tcx> { + #[inline] + fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! { + self.cx.handle_layout_err(err, span, ty) + } +} + +impl<'tcx> FnAbiOfHelpers<'tcx> for Builder<'_, '_, 'tcx> { + #[inline] + fn handle_fn_abi_err( + &self, + err: FnAbiError<'tcx>, + span: Span, + fn_abi_request: FnAbiRequest<'tcx>, + ) -> ! { + self.cx.handle_fn_abi_err(err, span, fn_abi_request) + } +} + +impl<'a, 'gcc, 'tcx> Deref for Builder<'a, 'gcc, 'tcx> { + type Target = CodegenCx<'gcc, 'tcx>; + + fn deref<'b>(&'b self) -> &'a Self::Target { + self.cx + } +} + +impl<'gcc, 'tcx> BackendTypes for Builder<'_, 'gcc, 'tcx> { + type Value = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Value; + type Metadata = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Metadata; + type Function = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Function; + type BasicBlock = <CodegenCx<'gcc, 'tcx> as BackendTypes>::BasicBlock; + type Type = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Type; + type Funclet = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Funclet; + + type DIScope = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIScope; + type DILocation = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DILocation; + type DIVariable = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIVariable; +} + +fn set_rvalue_location<'a, 'gcc, 'tcx>( + bx: &mut Builder<'a, 'gcc, 'tcx>, + rvalue: RValue<'gcc>, +) -> RValue<'gcc> { + if bx.location.is_some() { + #[cfg(feature = "master")] + rvalue.set_location(bx.location.unwrap()); + } + rvalue +} + +impl<'a, 'gcc, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'gcc, 'tcx> { + type CodegenCx = CodegenCx<'gcc, 'tcx>; + + fn build(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Builder<'a, 'gcc, 'tcx> { + Builder::with_cx(cx, block) + } + + fn llbb(&self) -> Block<'gcc> { + self.block + } + + fn append_block(cx: &'a CodegenCx<'gcc, 'tcx>, func: RValue<'gcc>, name: &str) -> Block<'gcc> { + let func = cx.rvalue_as_function(func); + func.new_block(name) + } + + fn append_sibling_block(&mut self, name: &str) -> Block<'gcc> { + let func = self.current_func(); + func.new_block(name) + } + + fn switch_to_block(&mut self, block: Self::BasicBlock) { + self.block = block; + } + + fn ret_void(&mut self) { + self.llbb().end_with_void_return(self.location) + } + + fn ret(&mut self, mut value: RValue<'gcc>) { + if self.structs_as_pointer.borrow().contains(&value) { + // NOTE: hack to workaround a limitation of the rustc API: see comment on + // CodegenCx.structs_as_pointer + value = value.dereference(self.location).to_rvalue(); + } + let expected_return_type = self.current_func().get_return_type(); + if !expected_return_type.is_compatible_with(value.get_type()) { + // NOTE: due to opaque pointers now being used, we need to cast here. + value = self.context.new_cast(self.location, value, expected_return_type); + } + self.llbb().end_with_return(self.location, value); + } + + fn br(&mut self, dest: Block<'gcc>) { + self.llbb().end_with_jump(self.location, dest) + } + + fn cond_br(&mut self, cond: RValue<'gcc>, then_block: Block<'gcc>, else_block: Block<'gcc>) { + self.llbb().end_with_conditional(self.location, cond, then_block, else_block) + } + + fn switch( + &mut self, + value: RValue<'gcc>, + default_block: Block<'gcc>, + cases: impl ExactSizeIterator<Item = (u128, Block<'gcc>)>, + ) { + let mut gcc_cases = vec![]; + let typ = self.val_ty(value); + for (on_val, dest) in cases { + let on_val = self.const_uint_big(typ, on_val); + gcc_cases.push(self.context.new_case(on_val, on_val, dest)); + } + self.block.end_with_switch(self.location, value, default_block, &gcc_cases); + } + + #[cfg(feature = "master")] + fn invoke( + &mut self, + typ: Type<'gcc>, + fn_attrs: Option<&CodegenFnAttrs>, + _fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, + func: RValue<'gcc>, + args: &[RValue<'gcc>], + then: Block<'gcc>, + catch: Block<'gcc>, + _funclet: Option<&Funclet>, + instance: Option<Instance<'tcx>>, + ) -> RValue<'gcc> { + let try_block = self.current_func().new_block("try"); + + let current_block = self.block; + self.block = try_block; + let call = self.call(typ, fn_attrs, None, func, args, None, instance); // TODO(antoyo): use funclet here? + self.block = current_block; + + let return_value = + self.current_func().new_local(self.location, call.get_type(), "invokeResult"); + + try_block.add_assignment(self.location, return_value, call); + + try_block.end_with_jump(self.location, then); + + if self.cleanup_blocks.borrow().contains(&catch) { + self.block.add_try_finally(self.location, try_block, catch); + } else { + self.block.add_try_catch(self.location, try_block, catch); + } + + self.block.end_with_jump(self.location, then); + + return_value.to_rvalue() + } + + #[cfg(not(feature = "master"))] + fn invoke( + &mut self, + typ: Type<'gcc>, + fn_attrs: Option<&CodegenFnAttrs>, + fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, + func: RValue<'gcc>, + args: &[RValue<'gcc>], + then: Block<'gcc>, + catch: Block<'gcc>, + _funclet: Option<&Funclet>, + instance: Option<Instance<'tcx>>, + ) -> RValue<'gcc> { + let call_site = self.call(typ, fn_attrs, None, func, args, None, instance); + let condition = self.context.new_rvalue_from_int(self.bool_type, 1); + self.llbb().end_with_conditional(self.location, condition, then, catch); + if let Some(_fn_abi) = fn_abi { + // TODO(bjorn3): Apply function attributes + } + call_site + } + + fn unreachable(&mut self) { + let func = self.context.get_builtin_function("__builtin_unreachable"); + self.block.add_eval(self.location, self.context.new_call(self.location, func, &[])); + let return_type = self.block.get_function().get_return_type(); + let void_type = self.context.new_type::<()>(); + if return_type == void_type { + self.block.end_with_void_return(self.location) + } else { + let return_value = + self.current_func().new_local(self.location, return_type, "unreachableReturn"); + self.block.end_with_return(self.location, return_value) + } + } + + fn add(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.gcc_add(a, b) + } + + fn fadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a + b + } + + // TODO(antoyo): should we also override the `unchecked_` versions? + fn sub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.gcc_sub(a, b) + } + + fn fsub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a - b + } + + fn mul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.gcc_mul(a, b) + } + + fn fmul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.cx.context.new_binary_op(self.location, BinaryOp::Mult, a.get_type(), a, b) + } + + fn udiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.gcc_udiv(a, b) + } + + fn exactudiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + // TODO(antoyo): poison if not exact. + let a_type = a.get_type().to_unsigned(self); + let a = self.gcc_int_cast(a, a_type); + let b_type = b.get_type().to_unsigned(self); + let b = self.gcc_int_cast(b, b_type); + a / b + } + + fn sdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.gcc_sdiv(a, b) + } + + fn exactsdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + // TODO(antoyo): poison if not exact. + // FIXME(antoyo): rustc_codegen_ssa::mir::intrinsic uses different types for a and b but they + // should be the same. + let typ = a.get_type().to_signed(self); + let b = self.context.new_cast(self.location, b, typ); + a / b + } + + fn fdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a / b + } + + fn urem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.gcc_urem(a, b) + } + + fn srem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.gcc_srem(a, b) + } + + fn frem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + // TODO(antoyo): add check in libgccjit since using the binary operator % causes the following error: + // during RTL pass: expand + // libgccjit.so: error: in expmed_mode_index, at expmed.h:240 + // 0x7f0101d58dc6 expmed_mode_index + // ../../../gcc/gcc/expmed.h:240 + // 0x7f0101d58e35 expmed_op_cost_ptr + // ../../../gcc/gcc/expmed.h:262 + // 0x7f0101d594a1 sdiv_cost_ptr + // ../../../gcc/gcc/expmed.h:531 + // 0x7f0101d594f3 sdiv_cost + // ../../../gcc/gcc/expmed.h:549 + // 0x7f0101d6af7e expand_divmod(int, tree_code, machine_mode, rtx_def*, rtx_def*, rtx_def*, int, optab_methods) + // ../../../gcc/gcc/expmed.cc:4356 + // 0x7f0101d94f9e expand_expr_divmod + // ../../../gcc/gcc/expr.cc:8929 + // 0x7f0101d97a26 expand_expr_real_2(separate_ops*, rtx_def*, machine_mode, expand_modifier) + // ../../../gcc/gcc/expr.cc:9566 + // 0x7f0101bef6ef expand_gimple_stmt_1 + // ../../../gcc/gcc/cfgexpand.cc:3967 + // 0x7f0101bef910 expand_gimple_stmt + // ../../../gcc/gcc/cfgexpand.cc:4028 + // 0x7f0101bf6ee7 expand_gimple_basic_block + // ../../../gcc/gcc/cfgexpand.cc:6069 + // 0x7f0101bf9194 execute + // ../../../gcc/gcc/cfgexpand.cc:6795 + let a_type = a.get_type(); + let a_type_unqualified = a_type.unqualified(); + if a_type.is_compatible_with(self.cx.float_type) { + let fmodf = self.context.get_builtin_function("fmodf"); + // FIXME(antoyo): this seems to produce the wrong result. + return self.context.new_call(self.location, fmodf, &[a, b]); + } + + #[cfg(feature = "master")] + match self.cx.type_kind(a_type) { + TypeKind::Half | TypeKind::Float => { + let fmodf = self.context.get_builtin_function("fmodf"); + return self.context.new_call(self.location, fmodf, &[a, b]); + } + TypeKind::Double => { + let fmod = self.context.get_builtin_function("fmod"); + return self.context.new_call(self.location, fmod, &[a, b]); + } + TypeKind::FP128 => { + let fmodl = self.context.get_builtin_function("fmodl"); + return self.context.new_call(self.location, fmodl, &[a, b]); + } + _ => (), + } + + if let Some(vector_type) = a_type_unqualified.dyncast_vector() { + assert_eq!(a_type_unqualified, b.get_type().unqualified()); + + let num_units = vector_type.get_num_units(); + let new_elements: Vec<_> = (0..num_units) + .map(|i| { + let index = self.context.new_rvalue_from_long(self.cx.type_u32(), i as _); + let x = self.extract_element(a, index).to_rvalue(); + let y = self.extract_element(b, index).to_rvalue(); + self.frem(x, y) + }) + .collect(); + + return self.context.new_rvalue_from_vector(self.location, a_type, &new_elements); + } + assert_eq!(a_type_unqualified, self.cx.double_type); + + let fmod = self.context.get_builtin_function("fmod"); + self.context.new_call(self.location, fmod, &[a, b]) + } + + fn shl(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.gcc_shl(a, b) + } + + fn lshr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.gcc_lshr(a, b) + } + + fn ashr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + // TODO(antoyo): check whether behavior is an arithmetic shift for >> . + // It seems to be if the value is signed. + self.gcc_lshr(a, b) + } + + fn and(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.gcc_and(a, b) + } + + fn or(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.cx.gcc_or(a, b, self.location) + } + + fn xor(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + set_rvalue_location(self, self.gcc_xor(a, b)) + } + + fn neg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { + set_rvalue_location(self, self.gcc_neg(a)) + } + + fn fneg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { + set_rvalue_location( + self, + self.cx.context.new_unary_op(self.location, UnaryOp::Minus, a.get_type(), a), + ) + } + + fn not(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { + set_rvalue_location(self, self.gcc_not(a)) + } + + fn fadd_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { + // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. + set_rvalue_location(self, lhs + rhs) + } + + fn fsub_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { + // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. + set_rvalue_location(self, lhs - rhs) + } + + fn fmul_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { + // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. + set_rvalue_location(self, lhs * rhs) + } + + fn fdiv_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { + // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. + set_rvalue_location(self, lhs / rhs) + } + + fn frem_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { + // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. + let result = self.frem(lhs, rhs); + set_rvalue_location(self, result); + result + } + + fn fadd_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { + // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. + lhs + rhs + } + + fn fsub_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { + // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. + lhs - rhs + } + + fn fmul_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { + // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. + lhs * rhs + } + + fn fdiv_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { + // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. + lhs / rhs + } + + fn frem_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { + // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. + self.frem(lhs, rhs) + } + + fn checked_binop( + &mut self, + oop: OverflowOp, + typ: Ty<'_>, + lhs: Self::Value, + rhs: Self::Value, + ) -> (Self::Value, Self::Value) { + self.gcc_checked_binop(oop, typ, lhs, rhs) + } + + fn alloca(&mut self, size: Size, align: Align) -> RValue<'gcc> { + let ty = self.cx.type_array(self.cx.type_i8(), size.bytes()).get_aligned(align.bytes()); + // TODO(antoyo): It might be better to return a LValue, but fixing the rustc API is non-trivial. + self.current_func() + .new_local(self.location, ty, format!("stack_var_{}", self.next_value_counter())) + .get_address(self.location) + } + + fn dynamic_alloca(&mut self, _len: RValue<'gcc>, _align: Align) -> RValue<'gcc> { + unimplemented!(); + } + + fn load(&mut self, pointee_ty: Type<'gcc>, ptr: RValue<'gcc>, align: Align) -> RValue<'gcc> { + let block = self.llbb(); + let function = block.get_function(); + // NOTE: instead of returning the dereference here, we have to assign it to a variable in + // the current basic block. Otherwise, it could be used in another basic block, causing a + // dereference after a drop, for instance. + // FIXME(antoyo): this check that we don't call get_aligned() a second time on a type. + // Ideally, we shouldn't need to do this check. + let aligned_type = if pointee_ty == self.cx.u128_type || pointee_ty == self.cx.i128_type { + pointee_ty + } else { + pointee_ty.get_aligned(align.bytes()) + }; + let ptr = self.context.new_cast(self.location, ptr, aligned_type.make_pointer()); + let deref = ptr.dereference(self.location).to_rvalue(); + let loaded_value = function.new_local( + self.location, + aligned_type, + format!("loadedValue{}", self.next_value_counter()), + ); + block.add_assignment(self.location, loaded_value, deref); + loaded_value.to_rvalue() + } + + fn volatile_load(&mut self, ty: Type<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> { + let ptr = self.context.new_cast(self.location, ptr, ty.make_volatile().make_pointer()); + ptr.dereference(self.location).to_rvalue() + } + + fn atomic_load( + &mut self, + _ty: Type<'gcc>, + ptr: RValue<'gcc>, + order: AtomicOrdering, + size: Size, + ) -> RValue<'gcc> { + // TODO(antoyo): use ty. + // TODO(antoyo): handle alignment. + let atomic_load = + self.context.get_builtin_function(format!("__atomic_load_{}", size.bytes())); + let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); + + let volatile_const_void_ptr_type = + self.context.new_type::<()>().make_const().make_volatile().make_pointer(); + let ptr = self.context.new_cast(self.location, ptr, volatile_const_void_ptr_type); + self.context.new_call(self.location, atomic_load, &[ptr, ordering]) + } + + fn load_operand( + &mut self, + place: PlaceRef<'tcx, RValue<'gcc>>, + ) -> OperandRef<'tcx, RValue<'gcc>> { + assert_eq!(place.val.llextra.is_some(), place.layout.is_unsized()); + + if place.layout.is_zst() { + return OperandRef::zero_sized(place.layout); + } + + fn scalar_load_metadata<'a, 'gcc, 'tcx>( + bx: &mut Builder<'a, 'gcc, 'tcx>, + load: RValue<'gcc>, + scalar: &abi::Scalar, + ) { + let vr = scalar.valid_range(bx); + match scalar.primitive() { + abi::Primitive::Int(..) => { + if !scalar.is_always_valid(bx) { + bx.range_metadata(load, vr); + } + } + abi::Primitive::Pointer(_) if vr.start < vr.end && !vr.contains(0) => { + bx.nonnull_metadata(load); + } + _ => {} + } + } + + let val = if place.val.llextra.is_some() { + // FIXME: Merge with the `else` below? + OperandValue::Ref(place.val) + } else if place.layout.is_gcc_immediate() { + let load = self.load(place.layout.gcc_type(self), place.val.llval, place.val.align); + OperandValue::Immediate( + if let abi::BackendRepr::Scalar(ref scalar) = place.layout.backend_repr { + scalar_load_metadata(self, load, scalar); + self.to_immediate_scalar(load, *scalar) + } else { + load + }, + ) + } else if let abi::BackendRepr::ScalarPair(ref a, ref b) = place.layout.backend_repr { + let b_offset = a.size(self).align_to(b.align(self).abi); + + let mut load = |i, scalar: &abi::Scalar, align| { + let llptr = if i == 0 { + place.val.llval + } else { + self.inbounds_ptradd(place.val.llval, self.const_usize(b_offset.bytes())) + }; + let llty = place.layout.scalar_pair_element_gcc_type(self, i); + let load = self.load(llty, llptr, align); + scalar_load_metadata(self, load, scalar); + if scalar.is_bool() { self.trunc(load, self.type_i1()) } else { load } + }; + + OperandValue::Pair( + load(0, a, place.val.align), + load(1, b, place.val.align.restrict_for_offset(b_offset)), + ) + } else { + OperandValue::Ref(place.val) + }; + + OperandRef { val, layout: place.layout } + } + + fn write_operand_repeatedly( + &mut self, + cg_elem: OperandRef<'tcx, RValue<'gcc>>, + count: u64, + dest: PlaceRef<'tcx, RValue<'gcc>>, + ) { + let zero = self.const_usize(0); + let count = self.const_usize(count); + let start = dest.project_index(self, zero).val.llval; + let end = dest.project_index(self, count).val.llval; + + let header_bb = self.append_sibling_block("repeat_loop_header"); + let body_bb = self.append_sibling_block("repeat_loop_body"); + let next_bb = self.append_sibling_block("repeat_loop_next"); + + let ptr_type = start.get_type(); + let current = self.llbb().get_function().new_local(self.location, ptr_type, "loop_var"); + let current_val = current.to_rvalue(); + self.assign(current, start); + + self.br(header_bb); + + self.switch_to_block(header_bb); + let keep_going = self.icmp(IntPredicate::IntNE, current_val, end); + self.cond_br(keep_going, body_bb, next_bb); + + self.switch_to_block(body_bb); + let align = dest.val.align.restrict_for_offset(dest.layout.field(self.cx(), 0).size); + cg_elem.val.store(self, PlaceRef::new_sized_aligned(current_val, cg_elem.layout, align)); + + let next = self.inbounds_gep( + self.backend_type(cg_elem.layout), + current.to_rvalue(), + &[self.const_usize(1)], + ); + self.llbb().add_assignment(self.location, current, next); + self.br(header_bb); + + self.switch_to_block(next_bb); + } + + fn range_metadata(&mut self, _load: RValue<'gcc>, _range: WrappingRange) { + // TODO(antoyo) + } + + fn nonnull_metadata(&mut self, _load: RValue<'gcc>) { + // TODO(antoyo) + } + + fn store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align) -> RValue<'gcc> { + self.store_with_flags(val, ptr, align, MemFlags::empty()) + } + + fn store_with_flags( + &mut self, + val: RValue<'gcc>, + ptr: RValue<'gcc>, + align: Align, + flags: MemFlags, + ) -> RValue<'gcc> { + let ptr = self.check_store(val, ptr); + let destination = ptr.dereference(self.location); + // NOTE: libgccjit does not support specifying the alignment on the assignment, so we cast + // to type so it gets the proper alignment. + let destination_type = destination.to_rvalue().get_type().unqualified(); + let align = if flags.contains(MemFlags::UNALIGNED) { 1 } else { align.bytes() }; + let mut modified_destination_type = destination_type.get_aligned(align); + if flags.contains(MemFlags::VOLATILE) { + modified_destination_type = modified_destination_type.make_volatile(); + } + + let modified_ptr = + self.cx.context.new_cast(self.location, ptr, modified_destination_type.make_pointer()); + let modified_destination = modified_ptr.dereference(self.location); + self.llbb().add_assignment(self.location, modified_destination, val); + // TODO(antoyo): handle `MemFlags::NONTEMPORAL`. + // NOTE: dummy value here since it's never used. FIXME(antoyo): API should not return a value here? + // When adding support for NONTEMPORAL, make sure to not just emit MOVNT on x86; see the + // LLVM backend for details. + self.cx.context.new_rvalue_zero(self.type_i32()) + } + + fn atomic_store( + &mut self, + value: RValue<'gcc>, + ptr: RValue<'gcc>, + order: AtomicOrdering, + size: Size, + ) { + // TODO(antoyo): handle alignment. + let atomic_store = + self.context.get_builtin_function(format!("__atomic_store_{}", size.bytes())); + let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); + let volatile_const_void_ptr_type = + self.context.new_type::<()>().make_volatile().make_pointer(); + let ptr = self.context.new_cast(self.location, ptr, volatile_const_void_ptr_type); + + // FIXME(antoyo): fix libgccjit to allow comparing an integer type with an aligned integer type because + // the following cast is required to avoid this error: + // gcc_jit_context_new_call: mismatching types for argument 2 of function "__atomic_store_4": assignment to param arg1 (type: int) from loadedValue3577 (type: unsigned int __attribute__((aligned(4)))) + let int_type = atomic_store.get_param(1).to_rvalue().get_type(); + let value = self.context.new_bitcast(self.location, value, int_type); + self.llbb().add_eval( + self.location, + self.context.new_call(self.location, atomic_store, &[ptr, value, ordering]), + ); + } + + fn gep( + &mut self, + typ: Type<'gcc>, + ptr: RValue<'gcc>, + indices: &[RValue<'gcc>], + ) -> RValue<'gcc> { + // NOTE: due to opaque pointers now being used, we need to cast here. + let ptr = self.context.new_cast(self.location, ptr, typ.make_pointer()); + let ptr_type = ptr.get_type(); + let mut pointee_type = ptr.get_type(); + // NOTE: we cannot use array indexing here like in inbounds_gep because array indexing is + // always considered in bounds in GCC (TODO(antoyo): to be verified). + // So, we have to cast to a number. + let mut result = self.context.new_bitcast(self.location, ptr, self.sizet_type); + // FIXME(antoyo): if there were more than 1 index, this code is probably wrong and would + // require dereferencing the pointer. + for index in indices { + pointee_type = pointee_type.get_pointee().expect("pointee type"); + #[cfg(feature = "master")] + let pointee_size = { + let size = self.cx.context.new_sizeof(pointee_type); + self.context.new_cast(self.location, size, index.get_type()) + }; + #[cfg(not(feature = "master"))] + let pointee_size = + self.context.new_rvalue_from_int(index.get_type(), pointee_type.get_size() as i32); + result = result + self.gcc_int_cast(*index * pointee_size, self.sizet_type); + } + self.context.new_bitcast(self.location, result, ptr_type) + } + + fn inbounds_gep( + &mut self, + typ: Type<'gcc>, + ptr: RValue<'gcc>, + indices: &[RValue<'gcc>], + ) -> RValue<'gcc> { + // NOTE: due to opaque pointers now being used, we need to cast here. + let ptr = self.context.new_cast(self.location, ptr, typ.make_pointer()); + // NOTE: array indexing is always considered in bounds in GCC (TODO(antoyo): to be verified). + let mut indices = indices.iter(); + let index = indices.next().expect("first index in inbounds_gep"); + let mut result = self.context.new_array_access(self.location, ptr, *index); + for index in indices { + result = self.context.new_array_access(self.location, result, *index); + } + result.get_address(self.location) + } + + /* Casts */ + fn trunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + // TODO(antoyo): check that it indeed truncate the value. + self.gcc_int_cast(value, dest_ty) + } + + fn sext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + // TODO(antoyo): check that it indeed sign extend the value. + if dest_ty.dyncast_vector().is_some() { + // TODO(antoyo): nothing to do as it is only for LLVM? + return value; + } + self.context.new_cast(self.location, value, dest_ty) + } + + fn fptoui(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + set_rvalue_location(self, self.gcc_float_to_uint_cast(value, dest_ty)) + } + + fn fptosi(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + set_rvalue_location(self, self.gcc_float_to_int_cast(value, dest_ty)) + } + + fn uitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + set_rvalue_location(self, self.gcc_uint_to_float_cast(value, dest_ty)) + } + + fn sitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + set_rvalue_location(self, self.gcc_int_to_float_cast(value, dest_ty)) + } + + fn fptrunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + // TODO(antoyo): make sure it truncates. + set_rvalue_location(self, self.context.new_cast(self.location, value, dest_ty)) + } + + fn fpext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + set_rvalue_location(self, self.context.new_cast(self.location, value, dest_ty)) + } + + fn ptrtoint(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + let usize_value = self.cx.context.new_cast(None, value, self.cx.type_isize()); + self.intcast(usize_value, dest_ty, false) + } + + fn inttoptr(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + let usize_value = self.intcast(value, self.cx.type_isize(), false); + self.cx.context.new_cast(None, usize_value, dest_ty) + } + + fn bitcast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + self.cx.const_bitcast(value, dest_ty) + } + + fn intcast( + &mut self, + value: RValue<'gcc>, + dest_typ: Type<'gcc>, + _is_signed: bool, + ) -> RValue<'gcc> { + // NOTE: is_signed is for value, not dest_typ. + self.gcc_int_cast(value, dest_typ) + } + + fn pointercast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + let val_type = value.get_type(); + match (type_is_pointer(val_type), type_is_pointer(dest_ty)) { + (false, true) => { + // NOTE: Projecting a field of a pointer type will attempt a cast from a signed char to + // a pointer, which is not supported by gccjit. + self.cx.context.new_cast( + self.location, + self.inttoptr(value, val_type.make_pointer()), + dest_ty, + ) + } + (false, false) => { + // When they are not pointers, we want a transmute (or reinterpret_cast). + self.bitcast(value, dest_ty) + } + (true, true) => self.cx.context.new_cast(self.location, value, dest_ty), + (true, false) => unimplemented!(), + } + } + + /* Comparisons */ + fn icmp(&mut self, op: IntPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { + self.gcc_icmp(op, lhs, rhs) + } + + fn fcmp(&mut self, op: RealPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { + // LLVM has a concept of "unordered compares", where eg ULT returns true if either the two + // arguments are unordered (i.e. either is NaN), or the lhs is less than the rhs. GCC does + // not natively have this concept, so in some cases we must manually handle NaNs + let must_handle_nan = match op { + RealPredicate::RealPredicateFalse => unreachable!(), + RealPredicate::RealOEQ => false, + RealPredicate::RealOGT => false, + RealPredicate::RealOGE => false, + RealPredicate::RealOLT => false, + RealPredicate::RealOLE => false, + RealPredicate::RealONE => false, + RealPredicate::RealORD => unreachable!(), + RealPredicate::RealUNO => unreachable!(), + RealPredicate::RealUEQ => false, + RealPredicate::RealUGT => true, + RealPredicate::RealUGE => true, + RealPredicate::RealULT => true, + RealPredicate::RealULE => true, + RealPredicate::RealUNE => false, + RealPredicate::RealPredicateTrue => unreachable!(), + }; + + let cmp = self.context.new_comparison(self.location, op.to_gcc_comparison(), lhs, rhs); + + if must_handle_nan { + let is_nan = self.context.new_binary_op( + self.location, + BinaryOp::LogicalOr, + self.cx.bool_type, + // compare a value to itself to check whether it is NaN + self.context.new_comparison(self.location, ComparisonOp::NotEquals, lhs, lhs), + self.context.new_comparison(self.location, ComparisonOp::NotEquals, rhs, rhs), + ); + + self.context.new_binary_op( + self.location, + BinaryOp::LogicalOr, + self.cx.bool_type, + is_nan, + cmp, + ) + } else { + cmp + } + } + + /* Miscellaneous instructions */ + fn memcpy( + &mut self, + dst: RValue<'gcc>, + _dst_align: Align, + src: RValue<'gcc>, + _src_align: Align, + size: RValue<'gcc>, + flags: MemFlags, + ) { + assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memcpy not supported"); + let size = self.intcast(size, self.type_size_t(), false); + let _is_volatile = flags.contains(MemFlags::VOLATILE); + let dst = self.pointercast(dst, self.type_i8p()); + let src = self.pointercast(src, self.type_ptr_to(self.type_void())); + let memcpy = self.context.get_builtin_function("memcpy"); + // TODO(antoyo): handle aligns and is_volatile. + self.block.add_eval( + self.location, + self.context.new_call(self.location, memcpy, &[dst, src, size]), + ); + } + + fn memmove( + &mut self, + dst: RValue<'gcc>, + _dst_align: Align, + src: RValue<'gcc>, + _src_align: Align, + size: RValue<'gcc>, + flags: MemFlags, + ) { + assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memmove not supported"); + let size = self.intcast(size, self.type_size_t(), false); + let _is_volatile = flags.contains(MemFlags::VOLATILE); + let dst = self.pointercast(dst, self.type_i8p()); + let src = self.pointercast(src, self.type_ptr_to(self.type_void())); + + let memmove = self.context.get_builtin_function("memmove"); + // TODO(antoyo): handle is_volatile. + self.block.add_eval( + self.location, + self.context.new_call(self.location, memmove, &[dst, src, size]), + ); + } + + fn memset( + &mut self, + ptr: RValue<'gcc>, + fill_byte: RValue<'gcc>, + size: RValue<'gcc>, + _align: Align, + flags: MemFlags, + ) { + assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memset not supported"); + let _is_volatile = flags.contains(MemFlags::VOLATILE); + let ptr = self.pointercast(ptr, self.type_i8p()); + let memset = self.context.get_builtin_function("memset"); + // TODO(antoyo): handle align and is_volatile. + let fill_byte = self.context.new_cast(self.location, fill_byte, self.i32_type); + let size = self.intcast(size, self.type_size_t(), false); + self.block.add_eval( + self.location, + self.context.new_call(self.location, memset, &[ptr, fill_byte, size]), + ); + } + + fn select( + &mut self, + cond: RValue<'gcc>, + then_val: RValue<'gcc>, + mut else_val: RValue<'gcc>, + ) -> RValue<'gcc> { + let func = self.current_func(); + let variable = func.new_local(self.location, then_val.get_type(), "selectVar"); + let then_block = func.new_block("then"); + let else_block = func.new_block("else"); + let after_block = func.new_block("after"); + self.llbb().end_with_conditional(self.location, cond, then_block, else_block); + + then_block.add_assignment(self.location, variable, then_val); + then_block.end_with_jump(self.location, after_block); + + if !then_val.get_type().is_compatible_with(else_val.get_type()) { + else_val = self.context.new_cast(self.location, else_val, then_val.get_type()); + } + else_block.add_assignment(self.location, variable, else_val); + else_block.end_with_jump(self.location, after_block); + + // NOTE: since jumps were added in a place rustc does not expect, the current block in the + // state need to be updated. + self.switch_to_block(after_block); + + variable.to_rvalue() + } + + #[allow(dead_code)] + fn va_arg(&mut self, _list: RValue<'gcc>, _ty: Type<'gcc>) -> RValue<'gcc> { + unimplemented!(); + } + + #[cfg(feature = "master")] + fn extract_element(&mut self, vec: RValue<'gcc>, idx: RValue<'gcc>) -> RValue<'gcc> { + self.context.new_vector_access(self.location, vec, idx).to_rvalue() + } + + #[cfg(not(feature = "master"))] + fn extract_element(&mut self, vec: RValue<'gcc>, idx: RValue<'gcc>) -> RValue<'gcc> { + let vector_type = vec + .get_type() + .unqualified() + .dyncast_vector() + .expect("Called extract_element on a non-vector type"); + let element_type = vector_type.get_element_type(); + let vec_num_units = vector_type.get_num_units(); + let array_type = + self.context.new_array_type(self.location, element_type, vec_num_units as u64); + let array = self.context.new_bitcast(self.location, vec, array_type).to_rvalue(); + self.context.new_array_access(self.location, array, idx).to_rvalue() + } + + fn vector_splat(&mut self, _num_elts: usize, _elt: RValue<'gcc>) -> RValue<'gcc> { + unimplemented!(); + } + + fn extract_value(&mut self, aggregate_value: RValue<'gcc>, idx: u64) -> RValue<'gcc> { + // FIXME(antoyo): it would be better if the API only called this on struct, not on arrays. + assert_eq!(idx as usize as u64, idx); + let value_type = aggregate_value.get_type(); + + if value_type.dyncast_array().is_some() { + let index = self + .context + .new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); + let element = self.context.new_array_access(self.location, aggregate_value, index); + element.get_address(self.location) + } else if value_type.dyncast_vector().is_some() { + panic!(); + } else if let Some(pointer_type) = value_type.get_pointee() { + if let Some(struct_type) = pointer_type.is_struct() { + // NOTE: hack to workaround a limitation of the rustc API: see comment on + // CodegenCx.structs_as_pointer + aggregate_value + .dereference_field(self.location, struct_type.get_field(idx as i32)) + .to_rvalue() + } else { + panic!("Unexpected type {:?}", value_type); + } + } else if let Some(struct_type) = value_type.is_struct() { + aggregate_value + .access_field(self.location, struct_type.get_field(idx as i32)) + .to_rvalue() + } else { + panic!("Unexpected type {:?}", value_type); + } + } + + fn insert_value( + &mut self, + aggregate_value: RValue<'gcc>, + value: RValue<'gcc>, + idx: u64, + ) -> RValue<'gcc> { + // FIXME(antoyo): it would be better if the API only called this on struct, not on arrays. + assert_eq!(idx as usize as u64, idx); + let value_type = aggregate_value.get_type(); + + let lvalue = if value_type.dyncast_array().is_some() { + let index = self + .context + .new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); + self.context.new_array_access(self.location, aggregate_value, index) + } else if value_type.dyncast_vector().is_some() { + panic!(); + } else if let Some(pointer_type) = value_type.get_pointee() { + if let Some(struct_type) = pointer_type.is_struct() { + // NOTE: hack to workaround a limitation of the rustc API: see comment on + // CodegenCx.structs_as_pointer + aggregate_value.dereference_field(self.location, struct_type.get_field(idx as i32)) + } else { + panic!("Unexpected type {:?}", value_type); + } + } else { + panic!("Unexpected type {:?}", value_type); + }; + + let lvalue_type = lvalue.to_rvalue().get_type(); + let value = + // NOTE: sometimes, rustc will create a value with the wrong type. + if lvalue_type != value.get_type() { + self.context.new_cast(self.location, value, lvalue_type) + } + else { + value + }; + + self.llbb().add_assignment(self.location, lvalue, value); + + aggregate_value + } + + fn set_personality_fn(&mut self, _personality: RValue<'gcc>) { + #[cfg(feature = "master")] + { + let personality = self.rvalue_as_function(_personality); + self.current_func().set_personality_function(personality); + } + } + + #[cfg(feature = "master")] + fn cleanup_landing_pad(&mut self, pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) { + self.set_personality_fn(pers_fn); + + // NOTE: insert the current block in a variable so that a later call to invoke knows to + // generate a try/finally instead of a try/catch for this block. + self.cleanup_blocks.borrow_mut().insert(self.block); + + let eh_pointer_builtin = + self.cx.context.get_target_builtin_function("__builtin_eh_pointer"); + let zero = self.cx.context.new_rvalue_zero(self.int_type); + let ptr = self.cx.context.new_call(self.location, eh_pointer_builtin, &[zero]); + + let value1_type = self.u8_type.make_pointer(); + let ptr = self.cx.context.new_cast(self.location, ptr, value1_type); + let value1 = ptr; + let value2 = zero; // TODO(antoyo): set the proper value here (the type of exception?). + + (value1, value2) + } + + #[cfg(not(feature = "master"))] + fn cleanup_landing_pad(&mut self, _pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) { + let value1 = self + .current_func() + .new_local(self.location, self.u8_type.make_pointer(), "landing_pad0") + .to_rvalue(); + let value2 = + self.current_func().new_local(self.location, self.i32_type, "landing_pad1").to_rvalue(); + (value1, value2) + } + + fn filter_landing_pad(&mut self, pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) { + // TODO(antoyo): generate the correct landing pad + self.cleanup_landing_pad(pers_fn) + } + + #[cfg(feature = "master")] + fn resume(&mut self, exn0: RValue<'gcc>, _exn1: RValue<'gcc>) { + let exn_type = exn0.get_type(); + let exn = self.context.new_cast(self.location, exn0, exn_type); + let unwind_resume = self.context.get_target_builtin_function("__builtin_unwind_resume"); + self.llbb() + .add_eval(self.location, self.context.new_call(self.location, unwind_resume, &[exn])); + self.unreachable(); + } + + #[cfg(not(feature = "master"))] + fn resume(&mut self, _exn0: RValue<'gcc>, _exn1: RValue<'gcc>) { + self.unreachable(); + } + + fn cleanup_pad(&mut self, _parent: Option<RValue<'gcc>>, _args: &[RValue<'gcc>]) -> Funclet { + unimplemented!(); + } + + fn cleanup_ret(&mut self, _funclet: &Funclet, _unwind: Option<Block<'gcc>>) { + unimplemented!(); + } + + fn catch_pad(&mut self, _parent: RValue<'gcc>, _args: &[RValue<'gcc>]) -> Funclet { + unimplemented!(); + } + + fn catch_switch( + &mut self, + _parent: Option<RValue<'gcc>>, + _unwind: Option<Block<'gcc>>, + _handlers: &[Block<'gcc>], + ) -> RValue<'gcc> { + unimplemented!(); + } + + // Atomic Operations + fn atomic_cmpxchg( + &mut self, + dst: RValue<'gcc>, + cmp: RValue<'gcc>, + src: RValue<'gcc>, + order: AtomicOrdering, + failure_order: AtomicOrdering, + weak: bool, + ) -> (RValue<'gcc>, RValue<'gcc>) { + let expected = self.current_func().new_local(None, cmp.get_type(), "expected"); + self.llbb().add_assignment(None, expected, cmp); + // NOTE: gcc doesn't support a failure memory model that is stronger than the success + // memory model. + let order = if failure_order as i32 > order as i32 { failure_order } else { order }; + let success = self.compare_exchange(dst, expected, src, order, failure_order, weak); + + // NOTE: since success contains the call to the intrinsic, it must be added to the basic block before + // expected so that we store expected after the call. + let success_var = self.current_func().new_local(self.location, self.bool_type, "success"); + self.llbb().add_assignment(self.location, success_var, success); + + (expected.to_rvalue(), success_var.to_rvalue()) + } + + fn atomic_rmw( + &mut self, + op: AtomicRmwBinOp, + dst: RValue<'gcc>, + src: RValue<'gcc>, + order: AtomicOrdering, + ) -> RValue<'gcc> { + let size = get_maybe_pointer_size(src); + let name = match op { + AtomicRmwBinOp::AtomicXchg => format!("__atomic_exchange_{}", size), + AtomicRmwBinOp::AtomicAdd => format!("__atomic_fetch_add_{}", size), + AtomicRmwBinOp::AtomicSub => format!("__atomic_fetch_sub_{}", size), + AtomicRmwBinOp::AtomicAnd => format!("__atomic_fetch_and_{}", size), + AtomicRmwBinOp::AtomicNand => format!("__atomic_fetch_nand_{}", size), + AtomicRmwBinOp::AtomicOr => format!("__atomic_fetch_or_{}", size), + AtomicRmwBinOp::AtomicXor => format!("__atomic_fetch_xor_{}", size), + AtomicRmwBinOp::AtomicMax => { + return self.atomic_extremum(ExtremumOperation::Max, dst, src, order); + } + AtomicRmwBinOp::AtomicMin => { + return self.atomic_extremum(ExtremumOperation::Min, dst, src, order); + } + AtomicRmwBinOp::AtomicUMax => { + return self.atomic_extremum(ExtremumOperation::Max, dst, src, order); + } + AtomicRmwBinOp::AtomicUMin => { + return self.atomic_extremum(ExtremumOperation::Min, dst, src, order); + } + }; + + let atomic_function = self.context.get_builtin_function(name); + let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); + + let void_ptr_type = self.context.new_type::<*mut ()>(); + let volatile_void_ptr_type = void_ptr_type.make_volatile(); + let dst = self.context.new_cast(self.location, dst, volatile_void_ptr_type); + // FIXME(antoyo): not sure why, but we have the wrong type here. + let new_src_type = atomic_function.get_param(1).to_rvalue().get_type(); + let src = self.context.new_bitcast(self.location, src, new_src_type); + let res = self.context.new_call(self.location, atomic_function, &[dst, src, order]); + self.context.new_cast(self.location, res, src.get_type()) + } + + fn atomic_fence(&mut self, order: AtomicOrdering, scope: SynchronizationScope) { + let name = match scope { + SynchronizationScope::SingleThread => "__atomic_signal_fence", + SynchronizationScope::CrossThread => "__atomic_thread_fence", + }; + let thread_fence = self.context.get_builtin_function(name); + let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); + self.llbb() + .add_eval(self.location, self.context.new_call(self.location, thread_fence, &[order])); + } + + fn set_invariant_load(&mut self, load: RValue<'gcc>) { + // NOTE: Hack to consider vtable function pointer as non-global-variable function pointer. + self.normal_function_addresses.borrow_mut().insert(load); + // TODO(antoyo) + } + + fn lifetime_start(&mut self, _ptr: RValue<'gcc>, _size: Size) { + // TODO(antoyo) + } + + fn lifetime_end(&mut self, _ptr: RValue<'gcc>, _size: Size) { + // TODO(antoyo) + } + + fn call( + &mut self, + typ: Type<'gcc>, + _fn_attrs: Option<&CodegenFnAttrs>, + fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, + func: RValue<'gcc>, + args: &[RValue<'gcc>], + funclet: Option<&Funclet>, + _instance: Option<Instance<'tcx>>, + ) -> RValue<'gcc> { + // FIXME(antoyo): remove when having a proper API. + let gcc_func = unsafe { std::mem::transmute::<RValue<'gcc>, Function<'gcc>>(func) }; + let call = if self.functions.borrow().values().any(|value| *value == gcc_func) { + self.function_call(func, args, funclet) + } else { + // If it's a not function that was defined, it's a function pointer. + self.function_ptr_call(typ, func, args, funclet) + }; + if let Some(_fn_abi) = fn_abi { + // TODO(bjorn3): Apply function attributes + } + call + } + + fn zext(&mut self, value: RValue<'gcc>, dest_typ: Type<'gcc>) -> RValue<'gcc> { + // FIXME(antoyo): this does not zero-extend. + self.gcc_int_cast(value, dest_typ) + } + + fn cx(&self) -> &CodegenCx<'gcc, 'tcx> { + self.cx + } + + fn apply_attrs_to_cleanup_callsite(&mut self, _llret: RValue<'gcc>) { + // FIXME(bjorn3): implement + } + + fn set_span(&mut self, _span: Span) {} + + fn from_immediate(&mut self, val: Self::Value) -> Self::Value { + if self.cx().val_ty(val) == self.cx().type_i1() { + self.zext(val, self.cx().type_i8()) + } else { + val + } + } + + fn to_immediate_scalar(&mut self, val: Self::Value, scalar: abi::Scalar) -> Self::Value { + if scalar.is_bool() { + return self.unchecked_utrunc(val, self.cx().type_i1()); + } + val + } + + fn fptoui_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + self.fptoint_sat(false, val, dest_ty) + } + + fn fptosi_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + self.fptoint_sat(true, val, dest_ty) + } +} + +impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> { + fn fptoint_sat( + &mut self, + signed: bool, + val: RValue<'gcc>, + dest_ty: Type<'gcc>, + ) -> RValue<'gcc> { + let src_ty = self.cx.val_ty(val); + let (float_ty, int_ty) = if self.cx.type_kind(src_ty) == TypeKind::Vector { + assert_eq!(self.cx.vector_length(src_ty), self.cx.vector_length(dest_ty)); + (self.cx.element_type(src_ty), self.cx.element_type(dest_ty)) + } else { + (src_ty, dest_ty) + }; + + // FIXME(jistone): the following was originally the fallback SSA implementation, before LLVM 13 + // added native `fptosi.sat` and `fptoui.sat` conversions, but it was used by GCC as well. + // Now that LLVM always relies on its own, the code has been moved to GCC, but the comments are + // still LLVM-specific. This should be updated, and use better GCC specifics if possible. + + let int_width = self.cx.int_width(int_ty); + let float_width = self.cx.float_width(float_ty); + // LLVM's fpto[su]i returns undef when the input val is infinite, NaN, or does not fit into the + // destination integer type after rounding towards zero. This `undef` value can cause UB in + // safe code (see issue #10184), so we implement a saturating conversion on top of it: + // Semantically, the mathematical value of the input is rounded towards zero to the next + // mathematical integer, and then the result is clamped into the range of the destination + // integer type. Positive and negative infinity are mapped to the maximum and minimum value of + // the destination integer type. NaN is mapped to 0. + // + // Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to + // a value representable in int_ty. + // They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits. + // Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two. + // int_ty::MIN, however, is either zero or a negative power of two and is thus exactly + // representable. Note that this only works if float_ty's exponent range is sufficiently large. + // f16 or 256 bit integers would break this property. Right now the smallest float type is f32 + // with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127. + // On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because + // we're rounding towards zero, we just get float_ty::MAX (which is always an integer). + // This already happens today with u128::MAX = 2^128 - 1 > f32::MAX. + let int_max = |signed: bool, int_width: u64| -> u128 { + let shift_amount = 128 - int_width; + if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount } + }; + let int_min = |signed: bool, int_width: u64| -> i128 { + if signed { i128::MIN >> (128 - int_width) } else { 0 } + }; + + let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) { + let rounded_min = + ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero); + assert_eq!(rounded_min.status, Status::OK); + let rounded_max = + ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero); + assert!(rounded_max.value.is_finite()); + (rounded_min.value.to_bits(), rounded_max.value.to_bits()) + }; + let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) { + let rounded_min = + ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero); + assert_eq!(rounded_min.status, Status::OK); + let rounded_max = + ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero); + assert!(rounded_max.value.is_finite()); + (rounded_min.value.to_bits(), rounded_max.value.to_bits()) + }; + // To implement saturation, we perform the following steps: + // + // 1. Cast val to an integer with fpto[su]i. This may result in undef. + // 2. Compare val to f_min and f_max, and use the comparison results to select: + // a) int_ty::MIN if val < f_min or val is NaN + // b) int_ty::MAX if val > f_max + // c) the result of fpto[su]i otherwise + // 3. If val is NaN, return 0.0, otherwise return the result of step 2. + // + // This avoids resulting undef because values in range [f_min, f_max] by definition fit into the + // destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of + // undef does not introduce any non-determinism either. + // More importantly, the above procedure correctly implements saturating conversion. + // Proof (sketch): + // If val is NaN, 0 is returned by definition. + // Otherwise, val is finite or infinite and thus can be compared with f_min and f_max. + // This yields three cases to consider: + // (1) if val in [f_min, f_max], the result of fpto[su]i is returned, which agrees with + // saturating conversion for inputs in that range. + // (2) if val > f_max, then val is larger than int_ty::MAX. This holds even if f_max is rounded + // (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger + // than int_ty::MAX. Because val is larger than int_ty::MAX, the return value of int_ty::MAX + // is correct. + // (3) if val < f_min, then val is smaller than int_ty::MIN. As shown earlier, f_min exactly equals + // int_ty::MIN and therefore the return value of int_ty::MIN is correct. + // QED. + + let float_bits_to_llval = |bx: &mut Self, bits| { + let bits_llval = match float_width { + 32 => bx.cx().const_u32(bits as u32), + 64 => bx.cx().const_u64(bits as u64), + n => bug!("unsupported float width {}", n), + }; + bx.bitcast(bits_llval, float_ty) + }; + let (f_min, f_max) = match float_width { + 32 => compute_clamp_bounds_single(signed, int_width), + 64 => compute_clamp_bounds_double(signed, int_width), + n => bug!("unsupported float width {}", n), + }; + let f_min = float_bits_to_llval(self, f_min); + let f_max = float_bits_to_llval(self, f_max); + let int_max = self.cx.const_uint_big(int_ty, int_max(signed, int_width)); + let int_min = self.cx.const_uint_big(int_ty, int_min(signed, int_width) as u128); + let zero = self.cx.const_uint(int_ty, 0); + + // If we're working with vectors, constants must be "splatted": the constant is duplicated + // into each lane of the vector. The algorithm stays the same, we are just using the + // same constant across all lanes. + let maybe_splat = |bx: &mut Self, val| { + if bx.cx().type_kind(dest_ty) == TypeKind::Vector { + bx.vector_splat(bx.vector_length(dest_ty), val) + } else { + val + } + }; + let f_min = maybe_splat(self, f_min); + let f_max = maybe_splat(self, f_max); + let int_max = maybe_splat(self, int_max); + let int_min = maybe_splat(self, int_min); + let zero = maybe_splat(self, zero); + + // Step 1 ... + let fptosui_result = + if signed { self.fptosi(val, dest_ty) } else { self.fptoui(val, dest_ty) }; + let less_or_nan = self.fcmp(RealPredicate::RealULT, val, f_min); + let greater = self.fcmp(RealPredicate::RealOGT, val, f_max); + + // Step 2: We use two comparisons and two selects, with %s1 being the + // result: + // %less_or_nan = fcmp ult %val, %f_min + // %greater = fcmp olt %val, %f_max + // %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result + // %s1 = select %greater, int_ty::MAX, %s0 + // Note that %less_or_nan uses an *unordered* comparison. This + // comparison is true if the operands are not comparable (i.e., if val is + // NaN). The unordered comparison ensures that s1 becomes int_ty::MIN if + // val is NaN. + // + // Performance note: Unordered comparison can be lowered to a "flipped" + // comparison and a negation, and the negation can be merged into the + // select. Therefore, it not necessarily any more expensive than an + // ordered ("normal") comparison. Whether these optimizations will be + // performed is ultimately up to the backend, but at least x86 does + // perform them. + let s0 = self.select(less_or_nan, int_min, fptosui_result); + let s1 = self.select(greater, int_max, s0); + + // Step 3: NaN replacement. + // For unsigned types, the above step already yielded int_ty::MIN == 0 if val is NaN. + // Therefore we only need to execute this step for signed integer types. + if signed { + // LLVM has no isNaN predicate, so we use (val == val) instead + let cmp = self.fcmp(RealPredicate::RealOEQ, val, val); + self.select(cmp, s1, zero) + } else { + s1 + } + } + + #[cfg(feature = "master")] + pub fn shuffle_vector( + &mut self, + v1: RValue<'gcc>, + v2: RValue<'gcc>, + mask: RValue<'gcc>, + ) -> RValue<'gcc> { + // NOTE: if the `mask` is a constant value, the following code will copy it in many places, + // which will make GCC create a lot (+4000) local variables in some cases. + // So we assign it to an explicit local variable once to avoid this. + let func = self.current_func(); + let mask_var = func.new_local(self.location, mask.get_type(), "mask"); + let block = self.block; + block.add_assignment(self.location, mask_var, mask); + let mask = mask_var.to_rvalue(); + + // TODO(antoyo): use a recursive unqualified() here. + let vector_type = v1.get_type().unqualified().dyncast_vector().expect("vector type"); + let element_type = vector_type.get_element_type(); + let vec_num_units = vector_type.get_num_units(); + + let mask_element_type = if element_type.is_integral() { + element_type + } else { + #[cfg(feature = "master")] + { + self.cx.type_ix(element_type.get_size() as u64 * 8) + } + #[cfg(not(feature = "master"))] + self.int_type + }; + + // NOTE: this condition is needed because we call shuffle_vector in the implementation of + // simd_gather. + let mut mask_elements = if let Some(vector_type) = mask.get_type().dyncast_vector() { + let mask_num_units = vector_type.get_num_units(); + let mut mask_elements = vec![]; + for i in 0..mask_num_units { + let index = self.context.new_rvalue_from_long(self.cx.type_u32(), i as _); + mask_elements.push(self.context.new_cast( + self.location, + self.extract_element(mask, index).to_rvalue(), + mask_element_type, + )); + } + mask_elements + } else { + let struct_type = mask.get_type().is_struct().expect("mask should be of struct type"); + let mask_num_units = struct_type.get_field_count(); + let mut mask_elements = vec![]; + for i in 0..mask_num_units { + let field = struct_type.get_field(i as i32); + mask_elements.push(self.context.new_cast( + self.location, + mask.access_field(self.location, field).to_rvalue(), + mask_element_type, + )); + } + mask_elements + }; + let mask_num_units = mask_elements.len(); + + // NOTE: the mask needs to be the same length as the input vectors, so add the missing + // elements in the mask if needed. + for _ in mask_num_units..vec_num_units { + mask_elements.push(self.context.new_rvalue_zero(mask_element_type)); + } + + let result_type = self.context.new_vector_type(element_type, mask_num_units as u64); + let (v1, v2) = if vec_num_units < mask_num_units { + // NOTE: the mask needs to be the same length as the input vectors, so join the 2 + // vectors and create a dummy second vector. + let mut elements = vec![]; + for i in 0..vec_num_units { + elements.push( + self.context + .new_vector_access( + self.location, + v1, + self.context.new_rvalue_from_int(self.int_type, i as i32), + ) + .to_rvalue(), + ); + } + for i in 0..(mask_num_units - vec_num_units) { + elements.push( + self.context + .new_vector_access( + self.location, + v2, + self.context.new_rvalue_from_int(self.int_type, i as i32), + ) + .to_rvalue(), + ); + } + let v1 = self.context.new_rvalue_from_vector(self.location, result_type, &elements); + let zero = self.context.new_rvalue_zero(element_type); + let v2 = self.context.new_rvalue_from_vector( + self.location, + result_type, + &vec![zero; mask_num_units], + ); + (v1, v2) + } else { + (v1, v2) + }; + + let new_mask_num_units = std::cmp::max(mask_num_units, vec_num_units); + let mask_type = self.context.new_vector_type(mask_element_type, new_mask_num_units as u64); + let mask = self.context.new_rvalue_from_vector(self.location, mask_type, &mask_elements); + let result = self.context.new_rvalue_vector_perm(self.location, v1, v2, mask); + + if vec_num_units != mask_num_units { + // NOTE: if padding was added, only select the number of elements of the masks to + // remove that padding in the result. + let mut elements = vec![]; + for i in 0..mask_num_units { + elements.push( + self.context + .new_vector_access( + self.location, + result, + self.context.new_rvalue_from_int(self.int_type, i as i32), + ) + .to_rvalue(), + ); + } + self.context.new_rvalue_from_vector(self.location, result_type, &elements) + } else { + result + } + } + + #[cfg(not(feature = "master"))] + pub fn shuffle_vector( + &mut self, + _v1: RValue<'gcc>, + _v2: RValue<'gcc>, + _mask: RValue<'gcc>, + ) -> RValue<'gcc> { + unimplemented!(); + } + + #[cfg(feature = "master")] + pub fn vector_reduce<F>(&mut self, src: RValue<'gcc>, op: F) -> RValue<'gcc> + where + F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc>, + { + let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type"); + let element_type = vector_type.get_element_type(); + let mask_element_type = self.type_ix(element_type.get_size() as u64 * 8); + let element_count = vector_type.get_num_units(); + let mut vector_elements = vec![]; + for i in 0..element_count { + vector_elements.push(i); + } + let mask_type = self.context.new_vector_type(mask_element_type, element_count as u64); + let mut shift = 1; + let mut res = src; + while shift < element_count { + let vector_elements: Vec<_> = vector_elements + .iter() + .map(|i| { + self.context.new_rvalue_from_int( + mask_element_type, + ((i + shift) % element_count) as i32, + ) + }) + .collect(); + let mask = + self.context.new_rvalue_from_vector(self.location, mask_type, &vector_elements); + let shifted = self.context.new_rvalue_vector_perm(self.location, res, res, mask); + shift *= 2; + res = op(res, shifted, self.context); + } + self.context + .new_vector_access(self.location, res, self.context.new_rvalue_zero(self.int_type)) + .to_rvalue() + } + + #[cfg(not(feature = "master"))] + pub fn vector_reduce<F>(&mut self, _src: RValue<'gcc>, _op: F) -> RValue<'gcc> + where + F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc>, + { + unimplemented!(); + } + + pub fn vector_reduce_op(&mut self, src: RValue<'gcc>, op: BinaryOp) -> RValue<'gcc> { + let loc = self.location; + self.vector_reduce(src, |a, b, context| context.new_binary_op(loc, op, a.get_type(), a, b)) + } + + pub fn vector_reduce_fadd_reassoc( + &mut self, + _acc: RValue<'gcc>, + _src: RValue<'gcc>, + ) -> RValue<'gcc> { + unimplemented!(); + } + + #[cfg(feature = "master")] + pub fn vector_reduce_fadd(&mut self, acc: RValue<'gcc>, src: RValue<'gcc>) -> RValue<'gcc> { + let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type"); + let element_count = vector_type.get_num_units(); + (0..element_count) + .map(|i| { + self.context + .new_vector_access( + self.location, + src, + self.context.new_rvalue_from_int(self.int_type, i as _), + ) + .to_rvalue() + }) + .fold(acc, |x, i| x + i) + } + + #[cfg(not(feature = "master"))] + pub fn vector_reduce_fadd(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> { + unimplemented!(); + } + + pub fn vector_reduce_fmul_reassoc( + &mut self, + _acc: RValue<'gcc>, + _src: RValue<'gcc>, + ) -> RValue<'gcc> { + unimplemented!(); + } + + #[cfg(feature = "master")] + pub fn vector_reduce_fmul(&mut self, acc: RValue<'gcc>, src: RValue<'gcc>) -> RValue<'gcc> { + let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type"); + let element_count = vector_type.get_num_units(); + (0..element_count) + .map(|i| { + self.context + .new_vector_access( + self.location, + src, + self.context.new_rvalue_from_int(self.int_type, i as _), + ) + .to_rvalue() + }) + .fold(acc, |x, i| x * i) + } + + #[cfg(not(feature = "master"))] + pub fn vector_reduce_fmul(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> { + unimplemented!() + } + + // Inspired by Hacker's Delight min implementation. + pub fn vector_reduce_min(&mut self, src: RValue<'gcc>) -> RValue<'gcc> { + let loc = self.location; + self.vector_reduce(src, |a, b, context| { + let differences_or_zeros = difference_or_zero(loc, a, b, context); + context.new_binary_op(loc, BinaryOp::Plus, b.get_type(), b, differences_or_zeros) + }) + } + + // Inspired by Hacker's Delight max implementation. + pub fn vector_reduce_max(&mut self, src: RValue<'gcc>) -> RValue<'gcc> { + let loc = self.location; + self.vector_reduce(src, |a, b, context| { + let differences_or_zeros = difference_or_zero(loc, a, b, context); + context.new_binary_op(loc, BinaryOp::Minus, a.get_type(), a, differences_or_zeros) + }) + } + + fn vector_extremum( + &mut self, + a: RValue<'gcc>, + b: RValue<'gcc>, + direction: ExtremumOperation, + ) -> RValue<'gcc> { + let vector_type = a.get_type(); + + // mask out the NaNs in b and replace them with the corresponding lane in a, so when a and + // b get compared & spliced together, we get the numeric values instead of NaNs. + let b_nan_mask = self.context.new_comparison(self.location, ComparisonOp::NotEquals, b, b); + let mask_type = b_nan_mask.get_type(); + let b_nan_mask_inverted = + self.context.new_unary_op(self.location, UnaryOp::BitwiseNegate, mask_type, b_nan_mask); + let a_cast = self.context.new_bitcast(self.location, a, mask_type); + let b_cast = self.context.new_bitcast(self.location, b, mask_type); + let res = (b_nan_mask & a_cast) | (b_nan_mask_inverted & b_cast); + let b = self.context.new_bitcast(self.location, res, vector_type); + + // now do the actual comparison + let comparison_op = match direction { + ExtremumOperation::Min => ComparisonOp::LessThan, + ExtremumOperation::Max => ComparisonOp::GreaterThan, + }; + let cmp = self.context.new_comparison(self.location, comparison_op, a, b); + let cmp_inverted = + self.context.new_unary_op(self.location, UnaryOp::BitwiseNegate, cmp.get_type(), cmp); + let res = (cmp & a_cast) | (cmp_inverted & res); + self.context.new_bitcast(self.location, res, vector_type) + } + + pub fn vector_fmin(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.vector_extremum(a, b, ExtremumOperation::Min) + } + + #[cfg(feature = "master")] + pub fn vector_reduce_fmin(&mut self, src: RValue<'gcc>) -> RValue<'gcc> { + let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type"); + let element_count = vector_type.get_num_units(); + let mut acc = self + .context + .new_vector_access(self.location, src, self.context.new_rvalue_zero(self.int_type)) + .to_rvalue(); + for i in 1..element_count { + let elem = self + .context + .new_vector_access( + self.location, + src, + self.context.new_rvalue_from_int(self.int_type, i as _), + ) + .to_rvalue(); + let cmp = self.context.new_comparison(self.location, ComparisonOp::LessThan, acc, elem); + acc = self.select(cmp, acc, elem); + } + acc + } + + #[cfg(not(feature = "master"))] + pub fn vector_reduce_fmin(&mut self, _src: RValue<'gcc>) -> RValue<'gcc> { + unimplemented!(); + } + + pub fn vector_fmax(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + self.vector_extremum(a, b, ExtremumOperation::Max) + } + + #[cfg(feature = "master")] + pub fn vector_reduce_fmax(&mut self, src: RValue<'gcc>) -> RValue<'gcc> { + let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type"); + let element_count = vector_type.get_num_units(); + let mut acc = self + .context + .new_vector_access(self.location, src, self.context.new_rvalue_zero(self.int_type)) + .to_rvalue(); + for i in 1..element_count { + let elem = self + .context + .new_vector_access( + self.location, + src, + self.context.new_rvalue_from_int(self.int_type, i as _), + ) + .to_rvalue(); + let cmp = + self.context.new_comparison(self.location, ComparisonOp::GreaterThan, acc, elem); + acc = self.select(cmp, acc, elem); + } + acc + } + + #[cfg(not(feature = "master"))] + pub fn vector_reduce_fmax(&mut self, _src: RValue<'gcc>) -> RValue<'gcc> { + unimplemented!(); + } + + pub fn vector_select( + &mut self, + cond: RValue<'gcc>, + then_val: RValue<'gcc>, + else_val: RValue<'gcc>, + ) -> RValue<'gcc> { + // cond is a vector of integers, not of bools. + let vector_type = cond.get_type().unqualified().dyncast_vector().expect("vector type"); + let num_units = vector_type.get_num_units(); + let element_type = vector_type.get_element_type(); + + #[cfg(feature = "master")] + let (cond, element_type) = { + // TODO(antoyo): dyncast_vector should not require a call to unqualified. + let then_val_vector_type = + then_val.get_type().unqualified().dyncast_vector().expect("vector type"); + let then_val_element_type = then_val_vector_type.get_element_type(); + let then_val_element_size = then_val_element_type.get_size(); + + // NOTE: the mask needs to be of the same size as the other arguments in order for the & + // operation to work. + if then_val_element_size != element_type.get_size() { + let new_element_type = self.type_ix(then_val_element_size as u64 * 8); + let new_vector_type = + self.context.new_vector_type(new_element_type, num_units as u64); + let cond = self.context.convert_vector(self.location, cond, new_vector_type); + (cond, new_element_type) + } else { + (cond, element_type) + } + }; + + let cond_type = cond.get_type(); + + let zeros = vec![self.context.new_rvalue_zero(element_type); num_units]; + let zeros = self.context.new_rvalue_from_vector(self.location, cond_type, &zeros); + + let result_type = then_val.get_type(); + + let masks = + self.context.new_comparison(self.location, ComparisonOp::NotEquals, cond, zeros); + // NOTE: masks is a vector of integers, but the values can be vectors of floats, so use bitcast to make + // the & operation work. + let then_val = self.bitcast_if_needed(then_val, masks.get_type()); + let then_vals = masks & then_val; + + let minus_ones = vec![self.context.new_rvalue_from_int(element_type, -1); num_units]; + let minus_ones = self.context.new_rvalue_from_vector(self.location, cond_type, &minus_ones); + let inverted_masks = masks ^ minus_ones; + // NOTE: sometimes, the type of else_val can be different than the type of then_val in + // libgccjit (vector of int vs vector of int32_t), but they should be the same for the AND + // operation to work. + // TODO: remove bitcast now that vector types can be compared? + let else_val = self.context.new_bitcast(self.location, else_val, then_val.get_type()); + let else_vals = inverted_masks & else_val; + + let res = then_vals | else_vals; + self.bitcast_if_needed(res, result_type) + } +} + +fn difference_or_zero<'gcc>( + loc: Option<Location<'gcc>>, + a: RValue<'gcc>, + b: RValue<'gcc>, + context: &'gcc Context<'gcc>, +) -> RValue<'gcc> { + let difference = a - b; + let masks = context.new_comparison(loc, ComparisonOp::GreaterThanEquals, b, a); + // NOTE: masks is a vector of integers, but the values can be vectors of floats, so use bitcast to make + // the & operation work. + let a_type = a.get_type(); + let masks = + if masks.get_type() != a_type { context.new_bitcast(loc, masks, a_type) } else { masks }; + difference & masks +} + +impl<'a, 'gcc, 'tcx> StaticBuilderMethods for Builder<'a, 'gcc, 'tcx> { + fn get_static(&mut self, def_id: DefId) -> RValue<'gcc> { + // Forward to the `get_static` method of `CodegenCx` + self.cx().get_static(def_id).get_address(self.location) + } +} + +impl<'tcx> HasTypingEnv<'tcx> for Builder<'_, '_, 'tcx> { + fn typing_env(&self) -> ty::TypingEnv<'tcx> { + self.cx.typing_env() + } +} + +impl<'tcx> HasTargetSpec for Builder<'_, '_, 'tcx> { + fn target_spec(&self) -> &Target { + self.cx.target_spec() + } +} + +impl<'tcx> HasWasmCAbiOpt for Builder<'_, '_, 'tcx> { + fn wasm_c_abi_opt(&self) -> WasmCAbi { + self.cx.wasm_c_abi_opt() + } +} + +impl<'tcx> HasX86AbiOpt for Builder<'_, '_, 'tcx> { + fn x86_abi_opt(&self) -> X86Abi { + self.cx.x86_abi_opt() + } +} + +pub trait ToGccComp { + fn to_gcc_comparison(&self) -> ComparisonOp; +} + +impl ToGccComp for IntPredicate { + fn to_gcc_comparison(&self) -> ComparisonOp { + match *self { + IntPredicate::IntEQ => ComparisonOp::Equals, + IntPredicate::IntNE => ComparisonOp::NotEquals, + IntPredicate::IntUGT => ComparisonOp::GreaterThan, + IntPredicate::IntUGE => ComparisonOp::GreaterThanEquals, + IntPredicate::IntULT => ComparisonOp::LessThan, + IntPredicate::IntULE => ComparisonOp::LessThanEquals, + IntPredicate::IntSGT => ComparisonOp::GreaterThan, + IntPredicate::IntSGE => ComparisonOp::GreaterThanEquals, + IntPredicate::IntSLT => ComparisonOp::LessThan, + IntPredicate::IntSLE => ComparisonOp::LessThanEquals, + } + } +} + +impl ToGccComp for RealPredicate { + fn to_gcc_comparison(&self) -> ComparisonOp { + // TODO(antoyo): check that ordered vs non-ordered is respected. + match *self { + RealPredicate::RealPredicateFalse => unreachable!(), + RealPredicate::RealOEQ => ComparisonOp::Equals, + RealPredicate::RealOGT => ComparisonOp::GreaterThan, + RealPredicate::RealOGE => ComparisonOp::GreaterThanEquals, + RealPredicate::RealOLT => ComparisonOp::LessThan, + RealPredicate::RealOLE => ComparisonOp::LessThanEquals, + RealPredicate::RealONE => ComparisonOp::NotEquals, + RealPredicate::RealORD => unreachable!(), + RealPredicate::RealUNO => unreachable!(), + RealPredicate::RealUEQ => ComparisonOp::Equals, + RealPredicate::RealUGT => ComparisonOp::GreaterThan, + RealPredicate::RealUGE => ComparisonOp::GreaterThan, + RealPredicate::RealULT => ComparisonOp::LessThan, + RealPredicate::RealULE => ComparisonOp::LessThan, + RealPredicate::RealUNE => ComparisonOp::NotEquals, + RealPredicate::RealPredicateTrue => unreachable!(), + } + } +} + +#[repr(C)] +#[allow(non_camel_case_types)] +enum MemOrdering { + __ATOMIC_RELAXED, + __ATOMIC_CONSUME, + __ATOMIC_ACQUIRE, + __ATOMIC_RELEASE, + __ATOMIC_ACQ_REL, + __ATOMIC_SEQ_CST, +} + +trait ToGccOrdering { + fn to_gcc(self) -> i32; +} + +impl ToGccOrdering for AtomicOrdering { + fn to_gcc(self) -> i32 { + use MemOrdering::*; + + let ordering = match self { + AtomicOrdering::Unordered => __ATOMIC_RELAXED, + AtomicOrdering::Relaxed => __ATOMIC_RELAXED, // TODO(antoyo): check if that's the same. + AtomicOrdering::Acquire => __ATOMIC_ACQUIRE, + AtomicOrdering::Release => __ATOMIC_RELEASE, + AtomicOrdering::AcquireRelease => __ATOMIC_ACQ_REL, + AtomicOrdering::SequentiallyConsistent => __ATOMIC_SEQ_CST, + }; + ordering as i32 + } +} + +// Needed because gcc 12 `get_size()` doesn't work on pointers. +#[cfg(feature = "master")] +fn get_maybe_pointer_size(value: RValue<'_>) -> u32 { + value.get_type().get_size() +} + +#[cfg(not(feature = "master"))] +fn get_maybe_pointer_size(value: RValue<'_>) -> u32 { + let type_ = value.get_type(); + if type_.get_pointee().is_some() { size_of::<*const ()>() as _ } else { type_.get_size() } +} | 
