diff options
Diffstat (limited to 'compiler/rustc_codegen_gcc/src/builder.rs')
| -rw-r--r-- | compiler/rustc_codegen_gcc/src/builder.rs | 1812 |
1 files changed, 1812 insertions, 0 deletions
diff --git a/compiler/rustc_codegen_gcc/src/builder.rs b/compiler/rustc_codegen_gcc/src/builder.rs new file mode 100644 index 00000000000..8bdcb08bd3d --- /dev/null +++ b/compiler/rustc_codegen_gcc/src/builder.rs @@ -0,0 +1,1812 @@ +use std::borrow::Cow; +use std::cell::Cell; +use std::convert::TryFrom; +use std::ops::{Deref, Range}; + +use gccjit::FunctionType; +use gccjit::{ + BinaryOp, + Block, + ComparisonOp, + Function, + LValue, + RValue, + ToRValue, + Type, + UnaryOp, +}; +use rustc_codegen_ssa::MemFlags; +use rustc_codegen_ssa::common::{AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope}; +use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue}; +use rustc_codegen_ssa::mir::place::PlaceRef; +use rustc_codegen_ssa::traits::{ + BackendTypes, + BaseTypeMethods, + BuilderMethods, + ConstMethods, + DerivedTypeMethods, + HasCodegen, + OverflowOp, + StaticBuilderMethods, +}; +use rustc_middle::ty::{ParamEnv, Ty, TyCtxt}; +use rustc_middle::ty::layout::{HasParamEnv, HasTyCtxt, TyAndLayout}; +use rustc_span::Span; +use rustc_span::def_id::DefId; +use rustc_target::abi::{ + self, + Align, + HasDataLayout, + LayoutOf, + Size, + TargetDataLayout, +}; +use rustc_target::spec::{HasTargetSpec, Target}; + +use crate::common::{SignType, TypeReflection, type_is_pointer}; +use crate::context::CodegenCx; +use crate::type_of::LayoutGccExt; + +// TODO +type Funclet = (); + +// TODO: remove this variable. +static mut RETURN_VALUE_COUNT: usize = 0; + +enum ExtremumOperation { + Max, + Min, +} + +trait EnumClone { + fn clone(&self) -> Self; +} + +impl EnumClone for AtomicOrdering { + fn clone(&self) -> Self { + match *self { + AtomicOrdering::NotAtomic => AtomicOrdering::NotAtomic, + AtomicOrdering::Unordered => AtomicOrdering::Unordered, + AtomicOrdering::Monotonic => AtomicOrdering::Monotonic, + AtomicOrdering::Acquire => AtomicOrdering::Acquire, + AtomicOrdering::Release => AtomicOrdering::Release, + AtomicOrdering::AcquireRelease => AtomicOrdering::AcquireRelease, + AtomicOrdering::SequentiallyConsistent => AtomicOrdering::SequentiallyConsistent, + } + } +} + +pub struct Builder<'a: 'gcc, 'gcc, 'tcx> { + pub cx: &'a CodegenCx<'gcc, 'tcx>, + pub block: Option<Block<'gcc>>, + stack_var_count: Cell<usize>, +} + +impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> { + fn with_cx(cx: &'a CodegenCx<'gcc, 'tcx>) -> Self { + Builder { + cx, + block: None, + stack_var_count: Cell::new(0), + } + } + + fn atomic_extremum(&mut self, operation: ExtremumOperation, dst: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering) -> RValue<'gcc> { + let size = self.cx.int_width(src.get_type()) / 8; + + let func = self.current_func(); + + let load_ordering = + match order { + // TODO: does this make sense? + AtomicOrdering::AcquireRelease | AtomicOrdering::Release => AtomicOrdering::Acquire, + _ => order.clone(), + }; + let previous_value = self.atomic_load(dst.get_type(), dst, load_ordering.clone(), Size::from_bytes(size)); + let previous_var = func.new_local(None, previous_value.get_type(), "previous_value"); + let return_value = func.new_local(None, previous_value.get_type(), "return_value"); + self.llbb().add_assignment(None, previous_var, previous_value); + self.llbb().add_assignment(None, return_value, previous_var.to_rvalue()); + + let while_block = func.new_block("while"); + let after_block = func.new_block("after_while"); + self.llbb().end_with_jump(None, while_block); + + // NOTE: since jumps were added and compare_exchange doesn't expect this, the current blocks in the + // state need to be updated. + self.block = Some(while_block); + *self.cx.current_block.borrow_mut() = Some(while_block); + + let comparison_operator = + match operation { + ExtremumOperation::Max => ComparisonOp::LessThan, + ExtremumOperation::Min => ComparisonOp::GreaterThan, + }; + + let cond1 = self.context.new_comparison(None, comparison_operator, previous_var.to_rvalue(), self.context.new_cast(None, src, previous_value.get_type())); + let compare_exchange = self.compare_exchange(dst, previous_var, src, order, load_ordering, false); + let cond2 = self.cx.context.new_unary_op(None, UnaryOp::LogicalNegate, compare_exchange.get_type(), compare_exchange); + let cond = self.cx.context.new_binary_op(None, BinaryOp::LogicalAnd, self.cx.bool_type, cond1, cond2); + + while_block.end_with_conditional(None, cond, while_block, after_block); + + // NOTE: since jumps were added in a place rustc does not expect, the current blocks in the + // state need to be updated. + self.block = Some(after_block); + *self.cx.current_block.borrow_mut() = Some(after_block); + + return_value.to_rvalue() + } + + fn compare_exchange(&self, dst: RValue<'gcc>, cmp: LValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering, failure_order: AtomicOrdering, weak: bool) -> RValue<'gcc> { + let size = self.cx.int_width(src.get_type()); + let compare_exchange = self.context.get_builtin_function(&format!("__atomic_compare_exchange_{}", size / 8)); + let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); + let failure_order = self.context.new_rvalue_from_int(self.i32_type, failure_order.to_gcc()); + let weak = self.context.new_rvalue_from_int(self.bool_type, weak as i32); + + let void_ptr_type = self.context.new_type::<*mut ()>(); + let volatile_void_ptr_type = void_ptr_type.make_volatile(); + let dst = self.context.new_cast(None, dst, volatile_void_ptr_type); + let expected = self.context.new_cast(None, cmp.get_address(None), void_ptr_type); + + // NOTE: not sure why, but we have the wrong type here. + let int_type = compare_exchange.get_param(2).to_rvalue().get_type(); + let src = self.context.new_cast(None, src, int_type); + self.context.new_call(None, compare_exchange, &[dst, expected, src, weak, order, failure_order]) + } + + pub fn assign(&self, lvalue: LValue<'gcc>, value: RValue<'gcc>) { + self.llbb().add_assignment(None, lvalue, value); + } + + fn check_call<'b>(&mut self, _typ: &str, func: Function<'gcc>, args: &'b [RValue<'gcc>]) -> Cow<'b, [RValue<'gcc>]> { + //let mut fn_ty = self.cx.val_ty(func); + // Strip off pointers + /*while self.cx.type_kind(fn_ty) == TypeKind::Pointer { + fn_ty = self.cx.element_type(fn_ty); + }*/ + + /*assert!( + self.cx.type_kind(fn_ty) == TypeKind::Function, + "builder::{} not passed a function, but {:?}", + typ, + fn_ty + ); + + let param_tys = self.cx.func_params_types(fn_ty); + + let all_args_match = param_tys + .iter() + .zip(args.iter().map(|&v| self.val_ty(v))) + .all(|(expected_ty, actual_ty)| *expected_ty == actual_ty);*/ + + let mut all_args_match = true; + let mut param_types = vec![]; + let param_count = func.get_param_count(); + for (index, arg) in args.iter().enumerate().take(param_count) { + let param = func.get_param(index as i32); + let param = param.to_rvalue().get_type(); + if param != arg.get_type() { + all_args_match = false; + } + param_types.push(param); + } + + if all_args_match { + return Cow::Borrowed(args); + } + + let casted_args: Vec<_> = param_types + .into_iter() + .zip(args.iter()) + .enumerate() + .map(|(_i, (expected_ty, &actual_val))| { + let actual_ty = actual_val.get_type(); + if expected_ty != actual_ty { + /*debug!( + "type mismatch in function call of {:?}. \ + Expected {:?} for param {}, got {:?}; injecting bitcast", + func, expected_ty, i, actual_ty + );*/ + /*println!( + "type mismatch in function call of {:?}. \ + Expected {:?} for param {}, got {:?}; injecting bitcast", + func, expected_ty, i, actual_ty + );*/ + self.bitcast(actual_val, expected_ty) + } + else { + actual_val + } + }) + .collect(); + + Cow::Owned(casted_args) + } + + fn check_ptr_call<'b>(&mut self, _typ: &str, func_ptr: RValue<'gcc>, args: &'b [RValue<'gcc>]) -> Cow<'b, [RValue<'gcc>]> { + //let mut fn_ty = self.cx.val_ty(func); + // Strip off pointers + /*while self.cx.type_kind(fn_ty) == TypeKind::Pointer { + fn_ty = self.cx.element_type(fn_ty); + }*/ + + /*assert!( + self.cx.type_kind(fn_ty) == TypeKind::Function, + "builder::{} not passed a function, but {:?}", + typ, + fn_ty + ); + + let param_tys = self.cx.func_params_types(fn_ty); + + let all_args_match = param_tys + .iter() + .zip(args.iter().map(|&v| self.val_ty(v))) + .all(|(expected_ty, actual_ty)| *expected_ty == actual_ty);*/ + + let mut all_args_match = true; + let mut param_types = vec![]; + let gcc_func = func_ptr.get_type().is_function_ptr_type().expect("function ptr"); + for (index, arg) in args.iter().enumerate().take(gcc_func.get_param_count()) { + let param = gcc_func.get_param_type(index); + if param != arg.get_type() { + all_args_match = false; + } + param_types.push(param); + } + + if all_args_match { + return Cow::Borrowed(args); + } + + let casted_args: Vec<_> = param_types + .into_iter() + .zip(args.iter()) + .enumerate() + .map(|(_i, (expected_ty, &actual_val))| { + let actual_ty = actual_val.get_type(); + if expected_ty != actual_ty { + /*debug!( + "type mismatch in function call of {:?}. \ + Expected {:?} for param {}, got {:?}; injecting bitcast", + func, expected_ty, i, actual_ty + );*/ + /*println!( + "type mismatch in function call of {:?}. \ + Expected {:?} for param {}, got {:?}; injecting bitcast", + func, expected_ty, i, actual_ty + );*/ + self.bitcast(actual_val, expected_ty) + } + else { + actual_val + } + }) + .collect(); + + Cow::Owned(casted_args) + } + + fn check_store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> { + let dest_ptr_ty = self.cx.val_ty(ptr).make_pointer(); // TODO: make sure make_pointer() is okay here. + let stored_ty = self.cx.val_ty(val); + let stored_ptr_ty = self.cx.type_ptr_to(stored_ty); + + //assert_eq!(self.cx.type_kind(dest_ptr_ty), TypeKind::Pointer); + + if dest_ptr_ty == stored_ptr_ty { + ptr + } + else { + /*debug!( + "type mismatch in store. \ + Expected {:?}, got {:?}; inserting bitcast", + dest_ptr_ty, stored_ptr_ty + );*/ + /*println!( + "type mismatch in store. \ + Expected {:?}, got {:?}; inserting bitcast", + dest_ptr_ty, stored_ptr_ty + );*/ + //ptr + self.bitcast(ptr, stored_ptr_ty) + } + } + + pub fn current_func(&self) -> Function<'gcc> { + self.block.expect("block").get_function() + } + + fn function_call(&mut self, func: RValue<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> { + //debug!("call {:?} with args ({:?})", func, args); + + // TODO: remove when the API supports a different type for functions. + let func: Function<'gcc> = self.cx.rvalue_as_function(func); + let args = self.check_call("call", func, args); + //let bundle = funclet.map(|funclet| funclet.bundle()); + //let bundle = bundle.as_ref().map(|b| &*b.raw); + + // gccjit requires to use the result of functions, even when it's not used. + // That's why we assign the result to a local or call add_eval(). + let return_type = func.get_return_type(); + let current_block = self.current_block.borrow().expect("block"); + let void_type = self.context.new_type::<()>(); + let current_func = current_block.get_function(); + if return_type != void_type { + unsafe { RETURN_VALUE_COUNT += 1 }; + let result = current_func.new_local(None, return_type, &format!("returnValue{}", unsafe { RETURN_VALUE_COUNT })); + current_block.add_assignment(None, result, self.cx.context.new_call(None, func, &args)); + result.to_rvalue() + } + else { + current_block.add_eval(None, self.cx.context.new_call(None, func, &args)); + // Return dummy value when not having return value. + self.context.new_rvalue_from_long(self.isize_type, 0) + } + } + + fn function_ptr_call(&mut self, func_ptr: RValue<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> { + //debug!("func ptr call {:?} with args ({:?})", func, args); + + let args = self.check_ptr_call("call", func_ptr, args); + //let bundle = funclet.map(|funclet| funclet.bundle()); + //let bundle = bundle.as_ref().map(|b| &*b.raw); + + // gccjit requires to use the result of functions, even when it's not used. + // That's why we assign the result to a local or call add_eval(). + let gcc_func = func_ptr.get_type().is_function_ptr_type().expect("function ptr"); + let mut return_type = gcc_func.get_return_type(); + let current_block = self.current_block.borrow().expect("block"); + let void_type = self.context.new_type::<()>(); + let current_func = current_block.get_function(); + + // FIXME: As a temporary workaround for unsupported LLVM intrinsics. + if gcc_func.get_param_count() == 0 && format!("{:?}", func_ptr) == "__builtin_ia32_pmovmskb128" { + return_type = self.int_type; + } + + if return_type != void_type { + unsafe { RETURN_VALUE_COUNT += 1 }; + let result = current_func.new_local(None, return_type, &format!("returnValue{}", unsafe { RETURN_VALUE_COUNT })); + current_block.add_assignment(None, result, self.cx.context.new_call_through_ptr(None, func_ptr, &args)); + result.to_rvalue() + } + else { + if gcc_func.get_param_count() == 0 { + // FIXME: As a temporary workaround for unsupported LLVM intrinsics. + current_block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &[])); + } + else { + current_block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &args)); + } + // Return dummy value when not having return value. + let result = current_func.new_local(None, self.isize_type, "dummyValueThatShouldNeverBeUsed"); + current_block.add_assignment(None, result, self.context.new_rvalue_from_long(self.isize_type, 0)); + result.to_rvalue() + } + } + + pub fn overflow_call(&mut self, func: Function<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> { + //debug!("overflow_call {:?} with args ({:?})", func, args); + + //let bundle = funclet.map(|funclet| funclet.bundle()); + //let bundle = bundle.as_ref().map(|b| &*b.raw); + + // gccjit requires to use the result of functions, even when it's not used. + // That's why we assign the result to a local. + let return_type = self.context.new_type::<bool>(); + let current_block = self.current_block.borrow().expect("block"); + let current_func = current_block.get_function(); + // TODO: return the new_call() directly? Since the overflow function has no side-effects. + unsafe { RETURN_VALUE_COUNT += 1 }; + let result = current_func.new_local(None, return_type, &format!("returnValue{}", unsafe { RETURN_VALUE_COUNT })); + current_block.add_assignment(None, result, self.cx.context.new_call(None, func, &args)); + result.to_rvalue() + } +} + +impl<'gcc, 'tcx> HasCodegen<'tcx> for Builder<'_, 'gcc, 'tcx> { + type CodegenCx = CodegenCx<'gcc, 'tcx>; +} + +impl<'tcx> HasTyCtxt<'tcx> for Builder<'_, '_, 'tcx> { + fn tcx(&self) -> TyCtxt<'tcx> { + self.cx.tcx() + } +} + +impl HasDataLayout for Builder<'_, '_, '_> { + fn data_layout(&self) -> &TargetDataLayout { + self.cx.data_layout() + } +} + +impl<'tcx> LayoutOf for Builder<'_, '_, 'tcx> { + type Ty = Ty<'tcx>; + type TyAndLayout = TyAndLayout<'tcx>; + + fn layout_of(&self, ty: Ty<'tcx>) -> Self::TyAndLayout { + self.cx.layout_of(ty) + } +} + +impl<'gcc, 'tcx> Deref for Builder<'_, 'gcc, 'tcx> { + type Target = CodegenCx<'gcc, 'tcx>; + + fn deref(&self) -> &Self::Target { + self.cx + } +} + +impl<'gcc, 'tcx> BackendTypes for Builder<'_, 'gcc, 'tcx> { + type Value = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Value; + type Function = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Function; + type BasicBlock = <CodegenCx<'gcc, 'tcx> as BackendTypes>::BasicBlock; + type Type = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Type; + type Funclet = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Funclet; + + type DIScope = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIScope; + type DILocation = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DILocation; + type DIVariable = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIVariable; +} + +impl<'a, 'gcc, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'gcc, 'tcx> { + fn build(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Self { + let mut bx = Builder::with_cx(cx); + *cx.current_block.borrow_mut() = Some(block); + bx.block = Some(block); + bx + } + + fn build_sibling_block(&mut self, name: &str) -> Self { + let block = self.append_sibling_block(name); + Self::build(self.cx, block) + } + + fn llbb(&self) -> Block<'gcc> { + self.block.expect("block") + } + + fn append_block(cx: &'a CodegenCx<'gcc, 'tcx>, func: RValue<'gcc>, name: &str) -> Block<'gcc> { + let func = cx.rvalue_as_function(func); + func.new_block(name) + } + + fn append_sibling_block(&mut self, name: &str) -> Block<'gcc> { + let func = self.current_func(); + func.new_block(name) + } + + fn ret_void(&mut self) { + self.llbb().end_with_void_return(None) + } + + fn ret(&mut self, value: RValue<'gcc>) { + let value = + if self.structs_as_pointer.borrow().contains(&value) { + // NOTE: hack to workaround a limitation of the rustc API: see comment on + // CodegenCx.structs_as_pointer + value.dereference(None).to_rvalue() + } + else { + value + }; + self.llbb().end_with_return(None, value); + } + + fn br(&mut self, dest: Block<'gcc>) { + self.llbb().end_with_jump(None, dest) + } + + fn cond_br(&mut self, cond: RValue<'gcc>, then_block: Block<'gcc>, else_block: Block<'gcc>) { + self.llbb().end_with_conditional(None, cond, then_block, else_block) + } + + fn switch(&mut self, value: RValue<'gcc>, default_block: Block<'gcc>, cases: impl ExactSizeIterator<Item = (u128, Block<'gcc>)>) { + let mut gcc_cases = vec![]; + let typ = self.val_ty(value); + for (on_val, dest) in cases { + let on_val = self.const_uint_big(typ, on_val); + gcc_cases.push(self.context.new_case(on_val, on_val, dest)); + } + self.block.expect("block").end_with_switch(None, value, default_block, &gcc_cases); + } + + fn invoke(&mut self, _func: RValue<'gcc>, _args: &[RValue<'gcc>], _then: Block<'gcc>, _catch: Block<'gcc>, _funclet: Option<&Funclet>) -> RValue<'gcc> { + unimplemented!(); + /*debug!("invoke {:?} with args ({:?})", func, args); + + let args = self.check_call("invoke", func, args); + let bundle = funclet.map(|funclet| funclet.bundle()); + let bundle = bundle.as_ref().map(|b| &*b.raw); + + unsafe { + llvm::LLVMRustBuildInvoke( + self.llbuilder, + func, + args.as_ptr(), + args.len() as c_uint, + then, + catch, + bundle, + UNNAMED, + ) + }*/ + } + + fn unreachable(&mut self) { + let func = self.context.get_builtin_function("__builtin_unreachable"); + let block = self.block.expect("block"); + block.add_eval(None, self.context.new_call(None, func, &[])); + let return_type = block.get_function().get_return_type(); + let void_type = self.context.new_type::<()>(); + if return_type == void_type { + block.end_with_void_return(None) + } + else { + let return_value = self.current_func() + .new_local(None, return_type, "unreachableReturn"); + block.end_with_return(None, return_value) + } + } + + fn add(&mut self, a: RValue<'gcc>, mut b: RValue<'gcc>) -> RValue<'gcc> { + // FIXME: this should not be required. + if format!("{:?}", a.get_type()) != format!("{:?}", b.get_type()) { + b = self.context.new_cast(None, b, a.get_type()); + } + a + b + } + + fn fadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a + b + } + + fn sub(&mut self, a: RValue<'gcc>, mut b: RValue<'gcc>) -> RValue<'gcc> { + if a.get_type() != b.get_type() { + b = self.context.new_cast(None, b, a.get_type()); + } + a - b + } + + fn fsub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a - b + } + + fn mul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a * b + } + + fn fmul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a * b + } + + fn udiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + // TODO: convert the arguments to unsigned? + a / b + } + + fn exactudiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + // TODO: convert the arguments to unsigned? + // TODO: poison if not exact. + a / b + } + + fn sdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + // TODO: convert the arguments to signed? + a / b + } + + fn exactsdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + // TODO: posion if not exact. + // FIXME: rustc_codegen_ssa::mir::intrinsic uses different types for a and b but they + // should be the same. + let typ = a.get_type().to_signed(self); + let a = self.context.new_cast(None, a, typ); + let b = self.context.new_cast(None, b, typ); + a / b + } + + fn fdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a / b + } + + fn urem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a % b + } + + fn srem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a % b + } + + fn frem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + if a.get_type() == self.cx.float_type { + let fmodf = self.context.get_builtin_function("fmodf"); + // FIXME: this seems to produce the wrong result. + return self.context.new_call(None, fmodf, &[a, b]); + } + assert_eq!(a.get_type(), self.cx.double_type); + + let fmod = self.context.get_builtin_function("fmod"); + return self.context.new_call(None, fmod, &[a, b]); + } + + fn shl(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + // FIXME: remove the casts when libgccjit can shift an unsigned number by an unsigned number. + let a_type = a.get_type(); + let b_type = b.get_type(); + if a_type.is_unsigned(self) && b_type.is_signed(self) { + //println!("shl: {:?} -> {:?}", a, b_type); + let a = self.context.new_cast(None, a, b_type); + let result = a << b; + //println!("shl: {:?} -> {:?}", result, a_type); + self.context.new_cast(None, result, a_type) + } + else if a_type.is_signed(self) && b_type.is_unsigned(self) { + //println!("shl: {:?} -> {:?}", b, a_type); + let b = self.context.new_cast(None, b, a_type); + a << b + } + else { + a << b + } + } + + fn lshr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + // FIXME: remove the casts when libgccjit can shift an unsigned number by an unsigned number. + // TODO: cast to unsigned to do a logical shift if that does not work. + let a_type = a.get_type(); + let b_type = b.get_type(); + if a_type.is_unsigned(self) && b_type.is_signed(self) { + //println!("lshl: {:?} -> {:?}", a, b_type); + let a = self.context.new_cast(None, a, b_type); + let result = a >> b; + //println!("lshl: {:?} -> {:?}", result, a_type); + self.context.new_cast(None, result, a_type) + } + else if a_type.is_signed(self) && b_type.is_unsigned(self) { + //println!("lshl: {:?} -> {:?}", b, a_type); + let b = self.context.new_cast(None, b, a_type); + a >> b + } + else { + a >> b + } + } + + fn ashr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + // TODO: check whether behavior is an arithmetic shift for >> . + // FIXME: remove the casts when libgccjit can shift an unsigned number by an unsigned number. + let a_type = a.get_type(); + let b_type = b.get_type(); + if a_type.is_unsigned(self) && b_type.is_signed(self) { + //println!("ashl: {:?} -> {:?}", a, b_type); + let a = self.context.new_cast(None, a, b_type); + let result = a >> b; + //println!("ashl: {:?} -> {:?}", result, a_type); + self.context.new_cast(None, result, a_type) + } + else if a_type.is_signed(self) && b_type.is_unsigned(self) { + //println!("ashl: {:?} -> {:?}", b, a_type); + let b = self.context.new_cast(None, b, a_type); + a >> b + } + else { + a >> b + } + } + + fn and(&mut self, a: RValue<'gcc>, mut b: RValue<'gcc>) -> RValue<'gcc> { + // FIXME: hack by putting the result in a variable to workaround this bug: + // https://gcc.gnu.org/bugzilla//show_bug.cgi?id=95498 + if a.get_type() != b.get_type() { + b = self.context.new_cast(None, b, a.get_type()); + } + let res = self.current_func().new_local(None, b.get_type(), "andResult"); + self.llbb().add_assignment(None, res, a & b); + res.to_rvalue() + } + + fn or(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + // FIXME: hack by putting the result in a variable to workaround this bug: + // https://gcc.gnu.org/bugzilla//show_bug.cgi?id=95498 + let res = self.current_func().new_local(None, b.get_type(), "orResult"); + self.llbb().add_assignment(None, res, a | b); + res.to_rvalue() + } + + fn xor(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a ^ b + } + + fn neg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { + // TODO: use new_unary_op()? + self.cx.context.new_rvalue_from_long(a.get_type(), 0) - a + } + + fn fneg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { + self.cx.context.new_unary_op(None, UnaryOp::Minus, a.get_type(), a) + } + + fn not(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { + let operation = + if a.get_type().is_bool() { + UnaryOp::LogicalNegate + } + else { + UnaryOp::BitwiseNegate + }; + self.cx.context.new_unary_op(None, operation, a.get_type(), a) + } + + fn unchecked_sadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a + b + } + + fn unchecked_uadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a + b + } + + fn unchecked_ssub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a - b + } + + fn unchecked_usub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + // TODO: should generate poison value? + a - b + } + + fn unchecked_smul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a * b + } + + fn unchecked_umul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { + a * b + } + + fn fadd_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { + unimplemented!(); + /*unsafe { + let instr = llvm::LLVMBuildFAdd(self.llbuilder, lhs, rhs, UNNAMED); + llvm::LLVMRustSetHasUnsafeAlgebra(instr); + instr + }*/ + } + + fn fsub_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { + unimplemented!(); + /*unsafe { + let instr = llvm::LLVMBuildFSub(self.llbuilder, lhs, rhs, UNNAMED); + llvm::LLVMRustSetHasUnsafeAlgebra(instr); + instr + }*/ + } + + fn fmul_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { + unimplemented!(); + /*unsafe { + let instr = llvm::LLVMBuildFMul(self.llbuilder, lhs, rhs, UNNAMED); + llvm::LLVMRustSetHasUnsafeAlgebra(instr); + instr + }*/ + } + + fn fdiv_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { + unimplemented!(); + /*unsafe { + let instr = llvm::LLVMBuildFDiv(self.llbuilder, lhs, rhs, UNNAMED); + llvm::LLVMRustSetHasUnsafeAlgebra(instr); + instr + }*/ + } + + fn frem_fast(&mut self, _lhs: RValue<'gcc>, _rhs: RValue<'gcc>) -> RValue<'gcc> { + unimplemented!(); + /*unsafe { + let instr = llvm::LLVMBuildFRem(self.llbuilder, lhs, rhs, UNNAMED); + llvm::LLVMRustSetHasUnsafeAlgebra(instr); + instr + }*/ + } + + fn checked_binop(&mut self, oop: OverflowOp, typ: Ty<'_>, lhs: Self::Value, rhs: Self::Value) -> (Self::Value, Self::Value) { + use rustc_middle::ty::{Int, IntTy::*, Uint, UintTy::*}; + + let new_kind = + match typ.kind() { + Int(t @ Isize) => Int(t.normalize(self.tcx.sess.target.pointer_width)), + Uint(t @ Usize) => Uint(t.normalize(self.tcx.sess.target.pointer_width)), + t @ (Uint(_) | Int(_)) => t.clone(), + _ => panic!("tried to get overflow intrinsic for op applied to non-int type"), + }; + + // TODO: remove duplication with intrinsic? + let name = + match oop { + OverflowOp::Add => + match new_kind { + Int(I8) => "__builtin_add_overflow", + Int(I16) => "__builtin_add_overflow", + Int(I32) => "__builtin_sadd_overflow", + Int(I64) => "__builtin_saddll_overflow", + Int(I128) => "__builtin_add_overflow", + + Uint(U8) => "__builtin_add_overflow", + Uint(U16) => "__builtin_add_overflow", + Uint(U32) => "__builtin_uadd_overflow", + Uint(U64) => "__builtin_uaddll_overflow", + Uint(U128) => "__builtin_add_overflow", + + _ => unreachable!(), + }, + OverflowOp::Sub => + match new_kind { + Int(I8) => "__builtin_sub_overflow", + Int(I16) => "__builtin_sub_overflow", + Int(I32) => "__builtin_ssub_overflow", + Int(I64) => "__builtin_ssubll_overflow", + Int(I128) => "__builtin_sub_overflow", + + Uint(U8) => "__builtin_sub_overflow", + Uint(U16) => "__builtin_sub_overflow", + Uint(U32) => "__builtin_usub_overflow", + Uint(U64) => "__builtin_usubll_overflow", + Uint(U128) => "__builtin_sub_overflow", + + _ => unreachable!(), + }, + OverflowOp::Mul => + match new_kind { + Int(I8) => "__builtin_mul_overflow", + Int(I16) => "__builtin_mul_overflow", + Int(I32) => "__builtin_smul_overflow", + Int(I64) => "__builtin_smulll_overflow", + Int(I128) => "__builtin_mul_overflow", + + Uint(U8) => "__builtin_mul_overflow", + Uint(U16) => "__builtin_mul_overflow", + Uint(U32) => "__builtin_umul_overflow", + Uint(U64) => "__builtin_umulll_overflow", + Uint(U128) => "__builtin_mul_overflow", + + _ => unreachable!(), + }, + }; + + let intrinsic = self.context.get_builtin_function(&name); + let res = self.current_func() + // TODO: is it correct to use rhs type instead of the parameter typ? + .new_local(None, rhs.get_type(), "binopResult") + .get_address(None); + let overflow = self.overflow_call(intrinsic, &[lhs, rhs, res], None); + (res.dereference(None).to_rvalue(), overflow) + } + + fn alloca(&mut self, ty: Type<'gcc>, align: Align) -> RValue<'gcc> { + // FIXME: this check that we don't call get_aligned() a second time on a time. + // Ideally, we shouldn't need to do this check. + let aligned_type = + if ty == self.cx.u128_type || ty == self.cx.i128_type { + ty + } + else { + ty.get_aligned(align.bytes()) + }; + // TODO: It might be better to return a LValue, but fixing the rustc API is non-trivial. + self.stack_var_count.set(self.stack_var_count.get() + 1); + self.current_func().new_local(None, aligned_type, &format!("stack_var_{}", self.stack_var_count.get())).get_address(None) + } + + fn dynamic_alloca(&mut self, _ty: Type<'gcc>, _align: Align) -> RValue<'gcc> { + unimplemented!(); + /*unsafe { + let alloca = llvm::LLVMBuildAlloca(self.llbuilder, ty, UNNAMED); + llvm::LLVMSetAlignment(alloca, align.bytes() as c_uint); + alloca + }*/ + } + + fn array_alloca(&mut self, _ty: Type<'gcc>, _len: RValue<'gcc>, _align: Align) -> RValue<'gcc> { + unimplemented!(); + /*unsafe { + let alloca = llvm::LLVMBuildArrayAlloca(self.llbuilder, ty, len, UNNAMED); + llvm::LLVMSetAlignment(alloca, align.bytes() as c_uint); + alloca + }*/ + } + + fn load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>, _align: Align) -> RValue<'gcc> { + // TODO: use ty. + let block = self.llbb(); + let function = block.get_function(); + // NOTE: instead of returning the dereference here, we have to assign it to a variable in + // the current basic block. Otherwise, it could be used in another basic block, causing a + // dereference after a drop, for instance. + // TODO: handle align. + let deref = ptr.dereference(None).to_rvalue(); + let value_type = deref.get_type(); + unsafe { RETURN_VALUE_COUNT += 1 }; + let loaded_value = function.new_local(None, value_type, &format!("loadedValue{}", unsafe { RETURN_VALUE_COUNT })); + block.add_assignment(None, loaded_value, deref); + loaded_value.to_rvalue() + } + + fn volatile_load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> { + // TODO: use ty. + //println!("5: volatile load: {:?} to {:?}", ptr, ptr.get_type().make_volatile()); + let ptr = self.context.new_cast(None, ptr, ptr.get_type().make_volatile()); + //println!("6"); + ptr.dereference(None).to_rvalue() + } + + fn atomic_load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>, order: AtomicOrdering, size: Size) -> RValue<'gcc> { + // TODO: use ty. + // TODO: handle alignment. + let atomic_load = self.context.get_builtin_function(&format!("__atomic_load_{}", size.bytes())); + let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); + + let volatile_const_void_ptr_type = self.context.new_type::<*mut ()>().make_const().make_volatile(); + let ptr = self.context.new_cast(None, ptr, volatile_const_void_ptr_type); + self.context.new_call(None, atomic_load, &[ptr, ordering]) + } + + fn load_operand(&mut self, place: PlaceRef<'tcx, RValue<'gcc>>) -> OperandRef<'tcx, RValue<'gcc>> { + //debug!("PlaceRef::load: {:?}", place); + + assert_eq!(place.llextra.is_some(), place.layout.is_unsized()); + + if place.layout.is_zst() { + return OperandRef::new_zst(self, place.layout); + } + + fn scalar_load_metadata<'a, 'gcc, 'tcx>(bx: &mut Builder<'a, 'gcc, 'tcx>, load: RValue<'gcc>, scalar: &abi::Scalar) { + let vr = scalar.valid_range.clone(); + match scalar.value { + abi::Int(..) => { + let range = scalar.valid_range_exclusive(bx); + if range.start != range.end { + bx.range_metadata(load, range); + } + } + abi::Pointer if vr.start() < vr.end() && !vr.contains(&0) => { + bx.nonnull_metadata(load); + } + _ => {} + } + } + + let val = + if let Some(llextra) = place.llextra { + OperandValue::Ref(place.llval, Some(llextra), place.align) + } + else if place.layout.is_gcc_immediate() { + let const_llval = None; + /*unsafe { + if let Some(global) = llvm::LLVMIsAGlobalVariable(place.llval) { + if llvm::LLVMIsGlobalConstant(global) == llvm::True { + const_llval = llvm::LLVMGetInitializer(global); + } + } + }*/ + let llval = const_llval.unwrap_or_else(|| { + let load = self.load(place.llval.get_type(), place.llval, place.align); + if let abi::Abi::Scalar(ref scalar) = place.layout.abi { + scalar_load_metadata(self, load, scalar); + } + load + }); + OperandValue::Immediate(self.to_immediate(llval, place.layout)) + } + else if let abi::Abi::ScalarPair(ref a, ref b) = place.layout.abi { + let b_offset = a.value.size(self).align_to(b.value.align(self).abi); + + let mut load = |i, scalar: &abi::Scalar, align| { + let llptr = self.struct_gep(place.llval, i as u64); + let load = self.load(llptr.get_type(), llptr, align); + scalar_load_metadata(self, load, scalar); + if scalar.is_bool() { self.trunc(load, self.type_i1()) } else { load } + }; + + OperandValue::Pair( + load(0, a, place.align), + load(1, b, place.align.restrict_for_offset(b_offset)), + ) + } + else { + OperandValue::Ref(place.llval, None, place.align) + }; + + OperandRef { val, layout: place.layout } + } + + fn write_operand_repeatedly(mut self, cg_elem: OperandRef<'tcx, RValue<'gcc>>, count: u64, dest: PlaceRef<'tcx, RValue<'gcc>>) -> Self { + let zero = self.const_usize(0); + let count = self.const_usize(count); + let start = dest.project_index(&mut self, zero).llval; + let end = dest.project_index(&mut self, count).llval; + + let mut header_bx = self.build_sibling_block("repeat_loop_header"); + let mut body_bx = self.build_sibling_block("repeat_loop_body"); + let next_bx = self.build_sibling_block("repeat_loop_next"); + + let ptr_type = start.get_type(); + let current = self.llbb().get_function().new_local(None, ptr_type, "loop_var"); + let current_val = current.to_rvalue(); + self.assign(current, start); + + self.br(header_bx.llbb()); + + let keep_going = header_bx.icmp(IntPredicate::IntNE, current_val, end); + header_bx.cond_br(keep_going, body_bx.llbb(), next_bx.llbb()); + + let align = dest.align.restrict_for_offset(dest.layout.field(self.cx(), 0).size); + cg_elem.val.store(&mut body_bx, PlaceRef::new_sized_aligned(current_val, cg_elem.layout, align)); + + let next = body_bx.inbounds_gep(current.to_rvalue(), &[self.const_usize(1)]); + body_bx.llbb().add_assignment(None, current, next); + body_bx.br(header_bx.llbb()); + + next_bx + } + + fn range_metadata(&mut self, _load: RValue<'gcc>, _range: Range<u128>) { + // TODO + /*if self.sess().target.target.arch == "amdgpu" { + // amdgpu/LLVM does something weird and thinks a i64 value is + // split into a v2i32, halving the bitwidth LLVM expects, + // tripping an assertion. So, for now, just disable this + // optimization. + return; + } + + unsafe { + let llty = self.cx.val_ty(load); + let v = [ + self.cx.const_uint_big(llty, range.start), + self.cx.const_uint_big(llty, range.end), + ]; + + llvm::LLVMSetMetadata( + load, + llvm::MD_range as c_uint, + llvm::LLVMMDNodeInContext(self.cx.llcx, v.as_ptr(), v.len() as c_uint), + ); + }*/ + } + + fn nonnull_metadata(&mut self, _load: RValue<'gcc>) { + // TODO + /*unsafe { + llvm::LLVMSetMetadata( + load, + llvm::MD_nonnull as c_uint, + llvm::LLVMMDNodeInContext(self.cx.llcx, ptr::null(), 0), + ); + }*/ + } + + fn store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align) -> RValue<'gcc> { + self.store_with_flags(val, ptr, align, MemFlags::empty()) + } + + fn store_with_flags(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, _align: Align, _flags: MemFlags) -> RValue<'gcc> { + //debug!("Store {:?} -> {:?} ({:?})", val, ptr, flags); + let ptr = self.check_store(val, ptr); + self.llbb().add_assignment(None, ptr.dereference(None), val); + /*let align = + if flags.contains(MemFlags::UNALIGNED) { 1 } else { align.bytes() as c_uint }; + llvm::LLVMSetAlignment(store, align); + if flags.contains(MemFlags::VOLATILE) { + llvm::LLVMSetVolatile(store, llvm::True); + } + if flags.contains(MemFlags::NONTEMPORAL) { + // According to LLVM [1] building a nontemporal store must + // *always* point to a metadata value of the integer 1. + // + // [1]: http://llvm.org/docs/LangRef.html#store-instruction + let one = self.cx.const_i32(1); + let node = llvm::LLVMMDNodeInContext(self.cx.llcx, &one, 1); + llvm::LLVMSetMetadata(store, llvm::MD_nontemporal as c_uint, node); + }*/ + // NOTE: dummy value here since it's never used. FIXME: API should not return a value here? + self.cx.context.new_rvalue_zero(self.type_i32()) + } + + fn atomic_store(&mut self, value: RValue<'gcc>, ptr: RValue<'gcc>, order: AtomicOrdering, size: Size) { + // TODO: handle alignment. + let atomic_store = self.context.get_builtin_function(&format!("__atomic_store_{}", size.bytes())); + let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); + let volatile_const_void_ptr_type = self.context.new_type::<*mut ()>().make_const().make_volatile(); + let ptr = self.context.new_cast(None, ptr, volatile_const_void_ptr_type); + + // FIXME: fix libgccjit to allow comparing an integer type with an aligned integer type because + // the following cast is required to avoid this error: + // gcc_jit_context_new_call: mismatching types for argument 2 of function "__atomic_store_4": assignment to param arg1 (type: int) from loadedValue3577 (type: unsigned int __attribute__((aligned(4)))) + let int_type = atomic_store.get_param(1).to_rvalue().get_type(); + let value = self.context.new_cast(None, value, int_type); + self.llbb() + .add_eval(None, self.context.new_call(None, atomic_store, &[ptr, value, ordering])); + } + + fn gep(&mut self, ptr: RValue<'gcc>, indices: &[RValue<'gcc>]) -> RValue<'gcc> { + let mut result = ptr; + for index in indices { + result = self.context.new_array_access(None, result, *index).get_address(None).to_rvalue(); + } + result + } + + fn inbounds_gep(&mut self, ptr: RValue<'gcc>, indices: &[RValue<'gcc>]) -> RValue<'gcc> { + // FIXME: would be safer if doing the same thing (loop) as gep. + // TODO: specify inbounds somehow. + match indices.len() { + 1 => { + self.context.new_array_access(None, ptr, indices[0]).get_address(None) + }, + 2 => { + let array = ptr.dereference(None); // TODO: assert that first index is 0? + self.context.new_array_access(None, array, indices[1]).get_address(None) + }, + _ => unimplemented!(), + } + } + + fn struct_gep(&mut self, ptr: RValue<'gcc>, idx: u64) -> RValue<'gcc> { + // FIXME: it would be better if the API only called this on struct, not on arrays. + assert_eq!(idx as usize as u64, idx); + let value = ptr.dereference(None).to_rvalue(); + let value_type = value.get_type(); + + if value_type.is_array().is_some() { + let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); + let element = self.context.new_array_access(None, value, index); + element.get_address(None) + } + else if let Some(vector_type) = value_type.is_vector() { + let array_type = vector_type.get_element_type().make_pointer(); + let array = self.bitcast(ptr, array_type); + let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); + let element = self.context.new_array_access(None, array, index); + element.get_address(None) + } + else if let Some(struct_type) = value_type.is_struct() { + ptr.dereference_field(None, struct_type.get_field(idx as i32)).get_address(None) + } + else { + panic!("Unexpected type {:?}", value_type); + } + } + + /* Casts */ + fn trunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + // TODO: check that it indeed truncate the value. + //println!("trunc: {:?} -> {:?}", value, dest_ty); + self.context.new_cast(None, value, dest_ty) + } + + fn sext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + // TODO: check that it indeed sign extend the value. + //println!("Sext {:?} to {:?}", value, dest_ty); + //if let Some(vector_type) = value.get_type().is_vector() { + if dest_ty.is_vector().is_some() { + // TODO: nothing to do as it is only for LLVM? + return value; + /*let dest_type = self.context.new_vector_type(dest_ty, vector_type.get_num_units() as u64); + println!("Casting {:?} to {:?}", value, dest_type); + return self.context.new_cast(None, value, dest_type);*/ + } + self.context.new_cast(None, value, dest_ty) + } + + fn fptoui(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + //println!("7: fptoui: {:?} to {:?}", value, dest_ty); + let ret = self.context.new_cast(None, value, dest_ty); + //println!("8"); + ret + //unsafe { llvm::LLVMBuildFPToUI(self.llbuilder, val, dest_ty, UNNAMED) } + } + + fn fptosi(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + self.context.new_cast(None, value, dest_ty) + } + + fn uitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + //println!("1: uitofp: {:?} -> {:?}", value, dest_ty); + let ret = self.context.new_cast(None, value, dest_ty); + //println!("2"); + ret + } + + fn sitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + //println!("3: sitofp: {:?} -> {:?}", value, dest_ty); + let ret = self.context.new_cast(None, value, dest_ty); + //println!("4"); + ret + } + + fn fptrunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + // TODO: make sure it trancates. + self.context.new_cast(None, value, dest_ty) + } + + fn fpext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + self.context.new_cast(None, value, dest_ty) + } + + fn ptrtoint(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + self.cx.ptrtoint(self.block.expect("block"), value, dest_ty) + } + + fn inttoptr(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + self.cx.inttoptr(self.block.expect("block"), value, dest_ty) + } + + fn bitcast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + self.cx.const_bitcast(value, dest_ty) + } + + fn intcast(&mut self, value: RValue<'gcc>, dest_typ: Type<'gcc>, _is_signed: bool) -> RValue<'gcc> { + // NOTE: is_signed is for value, not dest_typ. + //println!("intcast: {:?} ({:?}) -> {:?}", value, value.get_type(), dest_typ); + self.cx.context.new_cast(None, value, dest_typ) + } + + fn pointercast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { + //println!("pointercast: {:?} ({:?}) -> {:?}", value, value.get_type(), dest_ty); + let val_type = value.get_type(); + match (type_is_pointer(val_type), type_is_pointer(dest_ty)) { + (false, true) => { + // NOTE: Projecting a field of a pointer type will attemp a cast from a signed char to + // a pointer, which is not supported by gccjit. + return self.cx.context.new_cast(None, self.inttoptr(value, val_type.make_pointer()), dest_ty); + }, + (false, false) => { + // When they are not pointers, we want a transmute (or reinterpret_cast). + //self.cx.context.new_cast(None, value, dest_ty) + self.bitcast(value, dest_ty) + }, + (true, true) => self.cx.context.new_cast(None, value, dest_ty), + (true, false) => unimplemented!(), + } + } + + /* Comparisons */ + fn icmp(&mut self, op: IntPredicate, lhs: RValue<'gcc>, mut rhs: RValue<'gcc>) -> RValue<'gcc> { + if lhs.get_type() != rhs.get_type() { + // NOTE: hack because we try to cast a vector type to the same vector type. + if format!("{:?}", lhs.get_type()) != format!("{:?}", rhs.get_type()) { + rhs = self.context.new_cast(None, rhs, lhs.get_type()); + } + } + self.context.new_comparison(None, op.to_gcc_comparison(), lhs, rhs) + } + + fn fcmp(&mut self, op: RealPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { + self.context.new_comparison(None, op.to_gcc_comparison(), lhs, rhs) + } + + /* Miscellaneous instructions */ + fn memcpy(&mut self, dst: RValue<'gcc>, dst_align: Align, src: RValue<'gcc>, src_align: Align, size: RValue<'gcc>, flags: MemFlags) { + if flags.contains(MemFlags::NONTEMPORAL) { + // HACK(nox): This is inefficient but there is no nontemporal memcpy. + let val = self.load(src.get_type(), src, src_align); + let ptr = self.pointercast(dst, self.type_ptr_to(self.val_ty(val))); + self.store_with_flags(val, ptr, dst_align, flags); + return; + } + let size = self.intcast(size, self.type_size_t(), false); + let _is_volatile = flags.contains(MemFlags::VOLATILE); + let dst = self.pointercast(dst, self.type_i8p()); + let src = self.pointercast(src, self.type_ptr_to(self.type_void())); + let memcpy = self.context.get_builtin_function("memcpy"); + let block = self.block.expect("block"); + // TODO: handle aligns and is_volatile. + block.add_eval(None, self.context.new_call(None, memcpy, &[dst, src, size])); + } + + fn memmove(&mut self, dst: RValue<'gcc>, dst_align: Align, src: RValue<'gcc>, src_align: Align, size: RValue<'gcc>, flags: MemFlags) { + if flags.contains(MemFlags::NONTEMPORAL) { + // HACK(nox): This is inefficient but there is no nontemporal memmove. + let val = self.load(src.get_type(), src, src_align); + let ptr = self.pointercast(dst, self.type_ptr_to(self.val_ty(val))); + self.store_with_flags(val, ptr, dst_align, flags); + return; + } + let size = self.intcast(size, self.type_size_t(), false); + let _is_volatile = flags.contains(MemFlags::VOLATILE); + let dst = self.pointercast(dst, self.type_i8p()); + let src = self.pointercast(src, self.type_ptr_to(self.type_void())); + + let memmove = self.context.get_builtin_function("memmove"); + let block = self.block.expect("block"); + // TODO: handle is_volatile. + block.add_eval(None, self.context.new_call(None, memmove, &[dst, src, size])); + } + + fn memset(&mut self, ptr: RValue<'gcc>, fill_byte: RValue<'gcc>, size: RValue<'gcc>, _align: Align, flags: MemFlags) { + let _is_volatile = flags.contains(MemFlags::VOLATILE); + let ptr = self.pointercast(ptr, self.type_i8p()); + let memset = self.context.get_builtin_function("memset"); + let block = self.block.expect("block"); + // TODO: handle aligns and is_volatile. + //println!("memset: {:?} -> {:?}", fill_byte, self.i32_type); + let fill_byte = self.context.new_cast(None, fill_byte, self.i32_type); + let size = self.intcast(size, self.type_size_t(), false); + block.add_eval(None, self.context.new_call(None, memset, &[ptr, fill_byte, size])); + } + + fn select(&mut self, cond: RValue<'gcc>, then_val: RValue<'gcc>, mut else_val: RValue<'gcc>) -> RValue<'gcc> { + let func = self.current_func(); + let variable = func.new_local(None, then_val.get_type(), "selectVar"); + let then_block = func.new_block("then"); + let else_block = func.new_block("else"); + let after_block = func.new_block("after"); + self.llbb().end_with_conditional(None, cond, then_block, else_block); + + then_block.add_assignment(None, variable, then_val); + then_block.end_with_jump(None, after_block); + + if then_val.get_type() != else_val.get_type() { + else_val = self.context.new_cast(None, else_val, then_val.get_type()); + } + else_block.add_assignment(None, variable, else_val); + else_block.end_with_jump(None, after_block); + + // NOTE: since jumps were added in a place rustc does not expect, the current blocks in the + // state need to be updated. + self.block = Some(after_block); + *self.cx.current_block.borrow_mut() = Some(after_block); + + variable.to_rvalue() + } + + #[allow(dead_code)] + fn va_arg(&mut self, _list: RValue<'gcc>, _ty: Type<'gcc>) -> RValue<'gcc> { + unimplemented!(); + //unsafe { llvm::LLVMBuildVAArg(self.llbuilder, list, ty, UNNAMED) } + } + + fn extract_element(&mut self, _vec: RValue<'gcc>, _idx: RValue<'gcc>) -> RValue<'gcc> { + unimplemented!(); + //unsafe { llvm::LLVMBuildExtractElement(self.llbuilder, vec, idx, UNNAMED) } + } + + fn vector_splat(&mut self, _num_elts: usize, _elt: RValue<'gcc>) -> RValue<'gcc> { + unimplemented!(); + /*unsafe { + let elt_ty = self.cx.val_ty(elt); + let undef = llvm::LLVMGetUndef(self.type_vector(elt_ty, num_elts as u64)); + let vec = self.insert_element(undef, elt, self.cx.const_i32(0)); + let vec_i32_ty = self.type_vector(self.type_i32(), num_elts as u64); + self.shuffle_vector(vec, undef, self.const_null(vec_i32_ty)) + }*/ + } + + fn extract_value(&mut self, aggregate_value: RValue<'gcc>, idx: u64) -> RValue<'gcc> { + // FIXME: it would be better if the API only called this on struct, not on arrays. + assert_eq!(idx as usize as u64, idx); + let value_type = aggregate_value.get_type(); + + if value_type.is_array().is_some() { + let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); + let element = self.context.new_array_access(None, aggregate_value, index); + element.get_address(None) + } + else if value_type.is_vector().is_some() { + panic!(); + } + else if let Some(pointer_type) = value_type.get_pointee() { + if let Some(struct_type) = pointer_type.is_struct() { + // NOTE: hack to workaround a limitation of the rustc API: see comment on + // CodegenCx.structs_as_pointer + aggregate_value.dereference_field(None, struct_type.get_field(idx as i32)).to_rvalue() + } + else { + panic!("Unexpected type {:?}", value_type); + } + } + else if let Some(struct_type) = value_type.is_struct() { + aggregate_value.access_field(None, struct_type.get_field(idx as i32)).to_rvalue() + } + else { + panic!("Unexpected type {:?}", value_type); + } + /*assert_eq!(idx as c_uint as u64, idx); + unsafe { llvm::LLVMBuildExtractValue(self.llbuilder, agg_val, idx as c_uint, UNNAMED) }*/ + } + + fn insert_value(&mut self, aggregate_value: RValue<'gcc>, value: RValue<'gcc>, idx: u64) -> RValue<'gcc> { + // FIXME: it would be better if the API only called this on struct, not on arrays. + assert_eq!(idx as usize as u64, idx); + let value_type = aggregate_value.get_type(); + + let lvalue = + if value_type.is_array().is_some() { + let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); + self.context.new_array_access(None, aggregate_value, index) + } + else if value_type.is_vector().is_some() { + panic!(); + } + else if let Some(pointer_type) = value_type.get_pointee() { + if let Some(struct_type) = pointer_type.is_struct() { + // NOTE: hack to workaround a limitation of the rustc API: see comment on + // CodegenCx.structs_as_pointer + aggregate_value.dereference_field(None, struct_type.get_field(idx as i32)) + } + else { + panic!("Unexpected type {:?}", value_type); + } + } + else { + panic!("Unexpected type {:?}", value_type); + }; + self.llbb().add_assignment(None, lvalue, value); + + aggregate_value + } + + fn landing_pad(&mut self, _ty: Type<'gcc>, _pers_fn: RValue<'gcc>, _num_clauses: usize) -> RValue<'gcc> { + unimplemented!(); + /*unsafe { + llvm::LLVMBuildLandingPad(self.llbuilder, ty, pers_fn, num_clauses as c_uint, UNNAMED) + }*/ + } + + fn set_cleanup(&mut self, _landing_pad: RValue<'gcc>) { + unimplemented!(); + /*unsafe { + llvm::LLVMSetCleanup(landing_pad, llvm::True); + }*/ + } + + fn resume(&mut self, _exn: RValue<'gcc>) -> RValue<'gcc> { + unimplemented!(); + //unsafe { llvm::LLVMBuildResume(self.llbuilder, exn) } + } + + fn cleanup_pad(&mut self, _parent: Option<RValue<'gcc>>, _args: &[RValue<'gcc>]) -> Funclet { + unimplemented!(); + /*let name = const_cstr!("cleanuppad"); + let ret = unsafe { + llvm::LLVMRustBuildCleanupPad( + self.llbuilder, + parent, + args.len() as c_uint, + args.as_ptr(), + name.as_ptr(), + ) + }; + Funclet::new(ret.expect("LLVM does not have support for cleanuppad"))*/ + } + + fn cleanup_ret(&mut self, _funclet: &Funclet, _unwind: Option<Block<'gcc>>) -> RValue<'gcc> { + unimplemented!(); + /*let ret = + unsafe { llvm::LLVMRustBuildCleanupRet(self.llbuilder, funclet.cleanuppad(), unwind) }; + ret.expect("LLVM does not have support for cleanupret")*/ + } + + fn catch_pad(&mut self, _parent: RValue<'gcc>, _args: &[RValue<'gcc>]) -> Funclet { + unimplemented!(); + /*let name = const_cstr!("catchpad"); + let ret = unsafe { + llvm::LLVMRustBuildCatchPad( + self.llbuilder, + parent, + args.len() as c_uint, + args.as_ptr(), + name.as_ptr(), + ) + }; + Funclet::new(ret.expect("LLVM does not have support for catchpad"))*/ + } + + fn catch_switch(&mut self, _parent: Option<RValue<'gcc>>, _unwind: Option<Block<'gcc>>, _num_handlers: usize) -> RValue<'gcc> { + unimplemented!(); + /*let name = const_cstr!("catchswitch"); + let ret = unsafe { + llvm::LLVMRustBuildCatchSwitch( + self.llbuilder, + parent, + unwind, + num_handlers as c_uint, + name.as_ptr(), + ) + }; + ret.expect("LLVM does not have support for catchswitch")*/ + } + + fn add_handler(&mut self, _catch_switch: RValue<'gcc>, _handler: Block<'gcc>) { + unimplemented!(); + /*unsafe { + llvm::LLVMRustAddHandler(catch_switch, handler); + }*/ + } + + fn set_personality_fn(&mut self, _personality: RValue<'gcc>) { + unimplemented!(); + /*unsafe { + llvm::LLVMSetPersonalityFn(self.llfn(), personality); + }*/ + } + + // Atomic Operations + fn atomic_cmpxchg(&mut self, dst: RValue<'gcc>, cmp: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering, failure_order: AtomicOrdering, weak: bool) -> RValue<'gcc> { + let expected = self.current_func().new_local(None, cmp.get_type(), "expected"); + self.llbb().add_assignment(None, expected, cmp); + let success = self.compare_exchange(dst, expected, src, order, failure_order, weak); + + let pair_type = self.cx.type_struct(&[src.get_type(), self.bool_type], false); + let result = self.current_func().new_local(None, pair_type, "atomic_cmpxchg_result"); + let align = Align::from_bits(64).expect("align"); // TODO: use good align. + + let value_type = result.to_rvalue().get_type(); + if let Some(struct_type) = value_type.is_struct() { + self.store(success, result.access_field(None, struct_type.get_field(1)).get_address(None), align); + // NOTE: since success contains the call to the intrinsic, it must be stored before + // expected so that we store expected after the call. + self.store(expected.to_rvalue(), result.access_field(None, struct_type.get_field(0)).get_address(None), align); + } + // TODO: handle when value is not a struct. + + result.to_rvalue() + } + + fn atomic_rmw(&mut self, op: AtomicRmwBinOp, dst: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering) -> RValue<'gcc> { + let size = self.cx.int_width(src.get_type()) / 8; + let name = + match op { + AtomicRmwBinOp::AtomicXchg => format!("__atomic_exchange_{}", size), + AtomicRmwBinOp::AtomicAdd => format!("__atomic_fetch_add_{}", size), + AtomicRmwBinOp::AtomicSub => format!("__atomic_fetch_sub_{}", size), + AtomicRmwBinOp::AtomicAnd => format!("__atomic_fetch_and_{}", size), + AtomicRmwBinOp::AtomicNand => format!("__atomic_fetch_nand_{}", size), + AtomicRmwBinOp::AtomicOr => format!("__atomic_fetch_or_{}", size), + AtomicRmwBinOp::AtomicXor => format!("__atomic_fetch_xor_{}", size), + AtomicRmwBinOp::AtomicMax => return self.atomic_extremum(ExtremumOperation::Max, dst, src, order), + AtomicRmwBinOp::AtomicMin => return self.atomic_extremum(ExtremumOperation::Min, dst, src, order), + AtomicRmwBinOp::AtomicUMax => return self.atomic_extremum(ExtremumOperation::Max, dst, src, order), + AtomicRmwBinOp::AtomicUMin => return self.atomic_extremum(ExtremumOperation::Min, dst, src, order), + }; + + + let atomic_function = self.context.get_builtin_function(name); + let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); + + let void_ptr_type = self.context.new_type::<*mut ()>(); + let volatile_void_ptr_type = void_ptr_type.make_volatile(); + let dst = self.context.new_cast(None, dst, volatile_void_ptr_type); + // NOTE: not sure why, but we have the wrong type here. + let new_src_type = atomic_function.get_param(1).to_rvalue().get_type(); + let src = self.context.new_cast(None, src, new_src_type); + let res = self.context.new_call(None, atomic_function, &[dst, src, order]); + self.context.new_cast(None, res, src.get_type()) + } + + fn atomic_fence(&mut self, order: AtomicOrdering, scope: SynchronizationScope) { + let name = + match scope { + SynchronizationScope::SingleThread => "__atomic_signal_fence", + SynchronizationScope::CrossThread => "__atomic_thread_fence", + }; + let thread_fence = self.context.get_builtin_function(name); + let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); + self.llbb().add_eval(None, self.context.new_call(None, thread_fence, &[order])); + } + + fn set_invariant_load(&mut self, load: RValue<'gcc>) { + // NOTE: Hack to consider vtable function pointer as non-global-variable function pointer. + self.normal_function_addresses.borrow_mut().insert(load); + // TODO + /*unsafe { + llvm::LLVMSetMetadata( + load, + llvm::MD_invariant_load as c_uint, + llvm::LLVMMDNodeInContext(self.cx.llcx, ptr::null(), 0), + ); + }*/ + } + + fn lifetime_start(&mut self, _ptr: RValue<'gcc>, _size: Size) { + // TODO + //self.call_lifetime_intrinsic("llvm.lifetime.start.p0i8", ptr, size); + } + + fn lifetime_end(&mut self, _ptr: RValue<'gcc>, _size: Size) { + // TODO + //self.call_lifetime_intrinsic("llvm.lifetime.end.p0i8", ptr, size); + } + + fn call(&mut self, func: RValue<'gcc>, args: &[RValue<'gcc>], funclet: Option<&Funclet>) -> RValue<'gcc> { + // FIXME: remove when having a proper API. + let gcc_func = unsafe { std::mem::transmute(func) }; + if self.functions.borrow().values().find(|value| **value == gcc_func).is_some() { + self.function_call(func, args, funclet) + } + else { + // If it's a not function that was defined, it's a function pointer. + self.function_ptr_call(func, args, funclet) + } + } + + fn zext(&mut self, value: RValue<'gcc>, dest_typ: Type<'gcc>) -> RValue<'gcc> { + // FIXME: this does not zero-extend. + if value.get_type().is_bool() && dest_typ.is_i8(&self.cx) { + // FIXME: hack because base::from_immediate converts i1 to i8. + // Fix the code in codegen_ssa::base::from_immediate. + return value; + } + //println!("zext: {:?} -> {:?}", value, dest_typ); + self.context.new_cast(None, value, dest_typ) + } + + fn cx(&self) -> &CodegenCx<'gcc, 'tcx> { + self.cx + } + + fn do_not_inline(&mut self, _llret: RValue<'gcc>) { + unimplemented!(); + //llvm::Attribute::NoInline.apply_callsite(llvm::AttributePlace::Function, llret); + } + + fn set_span(&mut self, _span: Span) {} + + fn from_immediate(&mut self, val: Self::Value) -> Self::Value { + if self.cx().val_ty(val) == self.cx().type_i1() { + self.zext(val, self.cx().type_i8()) + } + else { + val + } + } + + fn to_immediate_scalar(&mut self, val: Self::Value, scalar: &abi::Scalar) -> Self::Value { + if scalar.is_bool() { + return self.trunc(val, self.cx().type_i1()); + } + val + } + + fn fptoui_sat(&mut self, _val: RValue<'gcc>, _dest_ty: Type<'gcc>) -> Option<RValue<'gcc>> { + None + } + + fn fptosi_sat(&mut self, _val: RValue<'gcc>, _dest_ty: Type<'gcc>) -> Option<RValue<'gcc>> { + None + } + + fn instrprof_increment(&mut self, _fn_name: RValue<'gcc>, _hash: RValue<'gcc>, _num_counters: RValue<'gcc>, _index: RValue<'gcc>) { + unimplemented!(); + /*debug!( + "instrprof_increment() with args ({:?}, {:?}, {:?}, {:?})", + fn_name, hash, num_counters, index + ); + + let llfn = unsafe { llvm::LLVMRustGetInstrProfIncrementIntrinsic(self.cx().llmod) }; + let args = &[fn_name, hash, num_counters, index]; + let args = self.check_call("call", llfn, args); + + unsafe { + let _ = llvm::LLVMRustBuildCall( + self.llbuilder, + llfn, + args.as_ptr() as *const &llvm::Value, + args.len() as c_uint, + None, + ); + }*/ + } +} + +impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> { + pub fn shuffle_vector(&mut self, v1: RValue<'gcc>, v2: RValue<'gcc>, mask: RValue<'gcc>) -> RValue<'gcc> { + let return_type = v1.get_type(); + let params = [ + self.context.new_parameter(None, return_type, "v1"), + self.context.new_parameter(None, return_type, "v2"), + self.context.new_parameter(None, mask.get_type(), "mask"), + ]; + let shuffle = self.context.new_function(None, FunctionType::Extern, return_type, ¶ms, "_mm_shuffle_epi8", false); + self.context.new_call(None, shuffle, &[v1, v2, mask]) + } +} + +impl<'a, 'gcc, 'tcx> StaticBuilderMethods for Builder<'a, 'gcc, 'tcx> { + fn get_static(&mut self, def_id: DefId) -> RValue<'gcc> { + // Forward to the `get_static` method of `CodegenCx` + self.cx().get_static(def_id) + } +} + +impl<'tcx> HasParamEnv<'tcx> for Builder<'_, '_, 'tcx> { + fn param_env(&self) -> ParamEnv<'tcx> { + self.cx.param_env() + } +} + +impl<'tcx> HasTargetSpec for Builder<'_, '_, 'tcx> { + fn target_spec(&self) -> &Target { + &self.cx.target_spec() + } +} + +trait ToGccComp { + fn to_gcc_comparison(&self) -> ComparisonOp; +} + +impl ToGccComp for IntPredicate { + fn to_gcc_comparison(&self) -> ComparisonOp { + match *self { + IntPredicate::IntEQ => ComparisonOp::Equals, + IntPredicate::IntNE => ComparisonOp::NotEquals, + IntPredicate::IntUGT => ComparisonOp::GreaterThan, + IntPredicate::IntUGE => ComparisonOp::GreaterThanEquals, + IntPredicate::IntULT => ComparisonOp::LessThan, + IntPredicate::IntULE => ComparisonOp::LessThanEquals, + IntPredicate::IntSGT => ComparisonOp::GreaterThan, + IntPredicate::IntSGE => ComparisonOp::GreaterThanEquals, + IntPredicate::IntSLT => ComparisonOp::LessThan, + IntPredicate::IntSLE => ComparisonOp::LessThanEquals, + } + } +} + +impl ToGccComp for RealPredicate { + fn to_gcc_comparison(&self) -> ComparisonOp { + // TODO: check that ordered vs non-ordered is respected. + match *self { + RealPredicate::RealPredicateFalse => unreachable!(), + RealPredicate::RealOEQ => ComparisonOp::Equals, + RealPredicate::RealOGT => ComparisonOp::GreaterThan, + RealPredicate::RealOGE => ComparisonOp::GreaterThanEquals, + RealPredicate::RealOLT => ComparisonOp::LessThan, + RealPredicate::RealOLE => ComparisonOp::LessThanEquals, + RealPredicate::RealONE => ComparisonOp::NotEquals, + RealPredicate::RealORD => unreachable!(), + RealPredicate::RealUNO => unreachable!(), + RealPredicate::RealUEQ => ComparisonOp::Equals, + RealPredicate::RealUGT => ComparisonOp::GreaterThan, + RealPredicate::RealUGE => ComparisonOp::GreaterThan, + RealPredicate::RealULT => ComparisonOp::LessThan, + RealPredicate::RealULE => ComparisonOp::LessThan, + RealPredicate::RealUNE => ComparisonOp::NotEquals, + RealPredicate::RealPredicateTrue => unreachable!(), + } + } +} + +#[repr(C)] +#[allow(non_camel_case_types)] +enum MemOrdering { + __ATOMIC_RELAXED, + __ATOMIC_CONSUME, + __ATOMIC_ACQUIRE, + __ATOMIC_RELEASE, + __ATOMIC_ACQ_REL, + __ATOMIC_SEQ_CST, +} + +trait ToGccOrdering { + fn to_gcc(self) -> i32; +} + +impl ToGccOrdering for AtomicOrdering { + fn to_gcc(self) -> i32 { + use MemOrdering::*; + + let ordering = + match self { + AtomicOrdering::NotAtomic => __ATOMIC_RELAXED, // TODO: check if that's the same. + AtomicOrdering::Unordered => __ATOMIC_RELAXED, + AtomicOrdering::Monotonic => __ATOMIC_RELAXED, // TODO: check if that's the same. + AtomicOrdering::Acquire => __ATOMIC_ACQUIRE, + AtomicOrdering::Release => __ATOMIC_RELEASE, + AtomicOrdering::AcquireRelease => __ATOMIC_ACQ_REL, + AtomicOrdering::SequentiallyConsistent => __ATOMIC_SEQ_CST, + }; + ordering as i32 + } +} |
