about summary refs log tree commit diff
path: root/compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp')
-rw-r--r--compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp1655
1 files changed, 1655 insertions, 0 deletions
diff --git a/compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp b/compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp
new file mode 100644
index 00000000000..7b1c3f9ba2c
--- /dev/null
+++ b/compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp
@@ -0,0 +1,1655 @@
+#include <stdio.h>
+
+#include <vector>
+#include <set>
+
+#include "LLVMWrapper.h"
+
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/IR/AutoUpgrade.h"
+#include "llvm/IR/AssemblyAnnotationWriter.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Object/IRObjectFile.h"
+#include "llvm/Passes/PassBuilder.h"
+#if LLVM_VERSION_GE(9, 0)
+#include "llvm/Passes/StandardInstrumentations.h"
+#endif
+#include "llvm/Support/CBindingWrapping.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Transforms/IPO/PassManagerBuilder.h"
+#include "llvm/Transforms/IPO/AlwaysInliner.h"
+#include "llvm/Transforms/IPO/FunctionImport.h"
+#include "llvm/Transforms/Utils/FunctionImportUtils.h"
+#include "llvm/LTO/LTO.h"
+#include "llvm-c/Transforms/PassManagerBuilder.h"
+
+#include "llvm/Transforms/Instrumentation.h"
+#if LLVM_VERSION_GE(9, 0)
+#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
+#include "llvm/Support/TimeProfiler.h"
+#endif
+#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
+#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
+#if LLVM_VERSION_GE(9, 0)
+#include "llvm/Transforms/Utils/CanonicalizeAliases.h"
+#endif
+#include "llvm/Transforms/Utils/NameAnonGlobals.h"
+
+using namespace llvm;
+
+typedef struct LLVMOpaquePass *LLVMPassRef;
+typedef struct LLVMOpaqueTargetMachine *LLVMTargetMachineRef;
+
+DEFINE_STDCXX_CONVERSION_FUNCTIONS(Pass, LLVMPassRef)
+DEFINE_STDCXX_CONVERSION_FUNCTIONS(TargetMachine, LLVMTargetMachineRef)
+#if LLVM_VERSION_LT(11, 0)
+DEFINE_STDCXX_CONVERSION_FUNCTIONS(PassManagerBuilder,
+                                   LLVMPassManagerBuilderRef)
+#endif
+
+extern "C" void LLVMInitializePasses() {
+  PassRegistry &Registry = *PassRegistry::getPassRegistry();
+  initializeCore(Registry);
+  initializeCodeGen(Registry);
+  initializeScalarOpts(Registry);
+  initializeVectorization(Registry);
+  initializeIPO(Registry);
+  initializeAnalysis(Registry);
+  initializeTransformUtils(Registry);
+  initializeInstCombine(Registry);
+  initializeInstrumentation(Registry);
+  initializeTarget(Registry);
+}
+
+extern "C" void LLVMTimeTraceProfilerInitialize() {
+#if LLVM_VERSION_GE(10, 0)
+  timeTraceProfilerInitialize(
+      /* TimeTraceGranularity */ 0,
+      /* ProcName */ "rustc");
+#elif LLVM_VERSION_GE(9, 0)
+  timeTraceProfilerInitialize();
+#endif
+}
+
+extern "C" void LLVMTimeTraceProfilerFinish(const char* FileName) {
+#if LLVM_VERSION_GE(9, 0)
+  StringRef FN(FileName);
+  std::error_code EC;
+  raw_fd_ostream OS(FN, EC, sys::fs::CD_CreateAlways);
+
+  timeTraceProfilerWrite(OS);
+  timeTraceProfilerCleanup();
+#endif
+}
+
+enum class LLVMRustPassKind {
+  Other,
+  Function,
+  Module,
+};
+
+static LLVMRustPassKind toRust(PassKind Kind) {
+  switch (Kind) {
+  case PT_Function:
+    return LLVMRustPassKind::Function;
+  case PT_Module:
+    return LLVMRustPassKind::Module;
+  default:
+    return LLVMRustPassKind::Other;
+  }
+}
+
+extern "C" LLVMPassRef LLVMRustFindAndCreatePass(const char *PassName) {
+  StringRef SR(PassName);
+  PassRegistry *PR = PassRegistry::getPassRegistry();
+
+  const PassInfo *PI = PR->getPassInfo(SR);
+  if (PI) {
+    return wrap(PI->createPass());
+  }
+  return nullptr;
+}
+
+extern "C" LLVMPassRef LLVMRustCreateAddressSanitizerFunctionPass(bool Recover) {
+  const bool CompileKernel = false;
+  const bool UseAfterScope = true;
+
+  return wrap(createAddressSanitizerFunctionPass(CompileKernel, Recover, UseAfterScope));
+}
+
+extern "C" LLVMPassRef LLVMRustCreateModuleAddressSanitizerPass(bool Recover) {
+  const bool CompileKernel = false;
+
+#if LLVM_VERSION_GE(9, 0)
+  return wrap(createModuleAddressSanitizerLegacyPassPass(CompileKernel, Recover));
+#else
+  return wrap(createAddressSanitizerModulePass(CompileKernel, Recover));
+#endif
+}
+
+extern "C" LLVMPassRef LLVMRustCreateMemorySanitizerPass(int TrackOrigins, bool Recover) {
+#if LLVM_VERSION_GE(9, 0)
+  const bool CompileKernel = false;
+
+  return wrap(createMemorySanitizerLegacyPassPass(
+      MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel}));
+#else
+  return wrap(createMemorySanitizerLegacyPassPass(TrackOrigins, Recover));
+#endif
+}
+
+extern "C" LLVMPassRef LLVMRustCreateThreadSanitizerPass() {
+  return wrap(createThreadSanitizerLegacyPassPass());
+}
+
+extern "C" LLVMRustPassKind LLVMRustPassKind(LLVMPassRef RustPass) {
+  assert(RustPass);
+  Pass *Pass = unwrap(RustPass);
+  return toRust(Pass->getPassKind());
+}
+
+extern "C" void LLVMRustAddPass(LLVMPassManagerRef PMR, LLVMPassRef RustPass) {
+  assert(RustPass);
+  Pass *Pass = unwrap(RustPass);
+  PassManagerBase *PMB = unwrap(PMR);
+  PMB->add(Pass);
+}
+
+extern "C"
+void LLVMRustPassManagerBuilderPopulateThinLTOPassManager(
+  LLVMPassManagerBuilderRef PMBR,
+  LLVMPassManagerRef PMR
+) {
+  unwrap(PMBR)->populateThinLTOPassManager(*unwrap(PMR));
+}
+
+extern "C"
+void LLVMRustAddLastExtensionPasses(
+    LLVMPassManagerBuilderRef PMBR, LLVMPassRef *Passes, size_t NumPasses) {
+  auto AddExtensionPasses = [Passes, NumPasses](
+      const PassManagerBuilder &Builder, PassManagerBase &PM) {
+    for (size_t I = 0; I < NumPasses; I++) {
+      PM.add(unwrap(Passes[I]));
+    }
+  };
+  // Add the passes to both of the pre-finalization extension points,
+  // so they are run for optimized and non-optimized builds.
+  unwrap(PMBR)->addExtension(PassManagerBuilder::EP_OptimizerLast,
+                             AddExtensionPasses);
+  unwrap(PMBR)->addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
+                             AddExtensionPasses);
+}
+
+#ifdef LLVM_COMPONENT_X86
+#define SUBTARGET_X86 SUBTARGET(X86)
+#else
+#define SUBTARGET_X86
+#endif
+
+#ifdef LLVM_COMPONENT_ARM
+#define SUBTARGET_ARM SUBTARGET(ARM)
+#else
+#define SUBTARGET_ARM
+#endif
+
+#ifdef LLVM_COMPONENT_AARCH64
+#define SUBTARGET_AARCH64 SUBTARGET(AArch64)
+#else
+#define SUBTARGET_AARCH64
+#endif
+
+#ifdef LLVM_COMPONENT_AVR
+#define SUBTARGET_AVR SUBTARGET(AVR)
+#else
+#define SUBTARGET_AVR
+#endif
+
+#ifdef LLVM_COMPONENT_MIPS
+#define SUBTARGET_MIPS SUBTARGET(Mips)
+#else
+#define SUBTARGET_MIPS
+#endif
+
+#ifdef LLVM_COMPONENT_POWERPC
+#define SUBTARGET_PPC SUBTARGET(PPC)
+#else
+#define SUBTARGET_PPC
+#endif
+
+#ifdef LLVM_COMPONENT_SYSTEMZ
+#define SUBTARGET_SYSTEMZ SUBTARGET(SystemZ)
+#else
+#define SUBTARGET_SYSTEMZ
+#endif
+
+#ifdef LLVM_COMPONENT_MSP430
+#define SUBTARGET_MSP430 SUBTARGET(MSP430)
+#else
+#define SUBTARGET_MSP430
+#endif
+
+#ifdef LLVM_COMPONENT_RISCV
+#define SUBTARGET_RISCV SUBTARGET(RISCV)
+#else
+#define SUBTARGET_RISCV
+#endif
+
+#ifdef LLVM_COMPONENT_SPARC
+#define SUBTARGET_SPARC SUBTARGET(Sparc)
+#else
+#define SUBTARGET_SPARC
+#endif
+
+#ifdef LLVM_COMPONENT_HEXAGON
+#define SUBTARGET_HEXAGON SUBTARGET(Hexagon)
+#else
+#define SUBTARGET_HEXAGON
+#endif
+
+#define GEN_SUBTARGETS                                                         \
+  SUBTARGET_X86                                                                \
+  SUBTARGET_ARM                                                                \
+  SUBTARGET_AARCH64                                                            \
+  SUBTARGET_AVR                                                                \
+  SUBTARGET_MIPS                                                               \
+  SUBTARGET_PPC                                                                \
+  SUBTARGET_SYSTEMZ                                                            \
+  SUBTARGET_MSP430                                                             \
+  SUBTARGET_SPARC                                                              \
+  SUBTARGET_HEXAGON                                                            \
+  SUBTARGET_RISCV                                                              \
+
+#define SUBTARGET(x)                                                           \
+  namespace llvm {                                                             \
+  extern const SubtargetFeatureKV x##FeatureKV[];                              \
+  extern const SubtargetFeatureKV x##SubTypeKV[];                              \
+  }
+
+GEN_SUBTARGETS
+#undef SUBTARGET
+
+extern "C" bool LLVMRustHasFeature(LLVMTargetMachineRef TM,
+                                   const char *Feature) {
+  TargetMachine *Target = unwrap(TM);
+  const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
+  return MCInfo->checkFeatures(std::string("+") + Feature);
+}
+
+enum class LLVMRustCodeModel {
+  Tiny,
+  Small,
+  Kernel,
+  Medium,
+  Large,
+  None,
+};
+
+static Optional<CodeModel::Model> fromRust(LLVMRustCodeModel Model) {
+  switch (Model) {
+  case LLVMRustCodeModel::Tiny:
+    return CodeModel::Tiny;
+  case LLVMRustCodeModel::Small:
+    return CodeModel::Small;
+  case LLVMRustCodeModel::Kernel:
+    return CodeModel::Kernel;
+  case LLVMRustCodeModel::Medium:
+    return CodeModel::Medium;
+  case LLVMRustCodeModel::Large:
+    return CodeModel::Large;
+  case LLVMRustCodeModel::None:
+    return None;
+  default:
+    report_fatal_error("Bad CodeModel.");
+  }
+}
+
+enum class LLVMRustCodeGenOptLevel {
+  None,
+  Less,
+  Default,
+  Aggressive,
+};
+
+static CodeGenOpt::Level fromRust(LLVMRustCodeGenOptLevel Level) {
+  switch (Level) {
+  case LLVMRustCodeGenOptLevel::None:
+    return CodeGenOpt::None;
+  case LLVMRustCodeGenOptLevel::Less:
+    return CodeGenOpt::Less;
+  case LLVMRustCodeGenOptLevel::Default:
+    return CodeGenOpt::Default;
+  case LLVMRustCodeGenOptLevel::Aggressive:
+    return CodeGenOpt::Aggressive;
+  default:
+    report_fatal_error("Bad CodeGenOptLevel.");
+  }
+}
+
+enum class LLVMRustPassBuilderOptLevel {
+  O0,
+  O1,
+  O2,
+  O3,
+  Os,
+  Oz,
+};
+
+static PassBuilder::OptimizationLevel fromRust(LLVMRustPassBuilderOptLevel Level) {
+  switch (Level) {
+  case LLVMRustPassBuilderOptLevel::O0:
+    return PassBuilder::OptimizationLevel::O0;
+  case LLVMRustPassBuilderOptLevel::O1:
+    return PassBuilder::OptimizationLevel::O1;
+  case LLVMRustPassBuilderOptLevel::O2:
+    return PassBuilder::OptimizationLevel::O2;
+  case LLVMRustPassBuilderOptLevel::O3:
+    return PassBuilder::OptimizationLevel::O3;
+  case LLVMRustPassBuilderOptLevel::Os:
+    return PassBuilder::OptimizationLevel::Os;
+  case LLVMRustPassBuilderOptLevel::Oz:
+    return PassBuilder::OptimizationLevel::Oz;
+  default:
+    report_fatal_error("Bad PassBuilderOptLevel.");
+  }
+}
+
+enum class LLVMRustRelocModel {
+  Static,
+  PIC,
+  DynamicNoPic,
+  ROPI,
+  RWPI,
+  ROPIRWPI,
+};
+
+static Reloc::Model fromRust(LLVMRustRelocModel RustReloc) {
+  switch (RustReloc) {
+  case LLVMRustRelocModel::Static:
+    return Reloc::Static;
+  case LLVMRustRelocModel::PIC:
+    return Reloc::PIC_;
+  case LLVMRustRelocModel::DynamicNoPic:
+    return Reloc::DynamicNoPIC;
+  case LLVMRustRelocModel::ROPI:
+    return Reloc::ROPI;
+  case LLVMRustRelocModel::RWPI:
+    return Reloc::RWPI;
+  case LLVMRustRelocModel::ROPIRWPI:
+    return Reloc::ROPI_RWPI;
+  }
+  report_fatal_error("Bad RelocModel.");
+}
+
+#ifdef LLVM_RUSTLLVM
+/// getLongestEntryLength - Return the length of the longest entry in the table.
+template<typename KV>
+static size_t getLongestEntryLength(ArrayRef<KV> Table) {
+  size_t MaxLen = 0;
+  for (auto &I : Table)
+    MaxLen = std::max(MaxLen, std::strlen(I.Key));
+  return MaxLen;
+}
+
+extern "C" void LLVMRustPrintTargetCPUs(LLVMTargetMachineRef TM) {
+  const TargetMachine *Target = unwrap(TM);
+  const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
+  const Triple::ArchType HostArch = Triple(sys::getProcessTriple()).getArch();
+  const Triple::ArchType TargetArch = Target->getTargetTriple().getArch();
+  const ArrayRef<SubtargetSubTypeKV> CPUTable = MCInfo->getCPUTable();
+  unsigned MaxCPULen = getLongestEntryLength(CPUTable);
+
+  printf("Available CPUs for this target:\n");
+  if (HostArch == TargetArch) {
+    const StringRef HostCPU = sys::getHostCPUName();
+    printf("    %-*s - Select the CPU of the current host (currently %.*s).\n",
+      MaxCPULen, "native", (int)HostCPU.size(), HostCPU.data());
+  }
+  for (auto &CPU : CPUTable)
+    printf("    %-*s\n", MaxCPULen, CPU.Key);
+  printf("\n");
+}
+
+extern "C" void LLVMRustPrintTargetFeatures(LLVMTargetMachineRef TM) {
+  const TargetMachine *Target = unwrap(TM);
+  const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
+  const ArrayRef<SubtargetFeatureKV> FeatTable = MCInfo->getFeatureTable();
+  unsigned MaxFeatLen = getLongestEntryLength(FeatTable);
+
+  printf("Available features for this target:\n");
+  for (auto &Feature : FeatTable)
+    printf("    %-*s - %s.\n", MaxFeatLen, Feature.Key, Feature.Desc);
+  printf("\nRust-specific features:\n");
+  printf("    %-*s - %s.\n",
+    MaxFeatLen,
+    "crt-static",
+    "Enables libraries with C Run-time Libraries(CRT) to be statically linked"
+  );
+  printf("\n");
+
+  printf("Use +feature to enable a feature, or -feature to disable it.\n"
+         "For example, rustc -C -target-cpu=mycpu -C "
+         "target-feature=+feature1,-feature2\n\n");
+}
+
+#else
+
+extern "C" void LLVMRustPrintTargetCPUs(LLVMTargetMachineRef) {
+  printf("Target CPU help is not supported by this LLVM version.\n\n");
+}
+
+extern "C" void LLVMRustPrintTargetFeatures(LLVMTargetMachineRef) {
+  printf("Target features help is not supported by this LLVM version.\n\n");
+}
+#endif
+
+extern "C" const char* LLVMRustGetHostCPUName(size_t *len) {
+  StringRef Name = sys::getHostCPUName();
+  *len = Name.size();
+  return Name.data();
+}
+
+extern "C" LLVMTargetMachineRef LLVMRustCreateTargetMachine(
+    const char *TripleStr, const char *CPU, const char *Feature,
+    const char *ABIStr, LLVMRustCodeModel RustCM, LLVMRustRelocModel RustReloc,
+    LLVMRustCodeGenOptLevel RustOptLevel, bool UseSoftFloat,
+    bool FunctionSections,
+    bool DataSections,
+    bool TrapUnreachable,
+    bool Singlethread,
+    bool AsmComments,
+    bool EmitStackSizeSection,
+    bool RelaxELFRelocations,
+    bool UseInitArray) {
+
+  auto OptLevel = fromRust(RustOptLevel);
+  auto RM = fromRust(RustReloc);
+  auto CM = fromRust(RustCM);
+
+  std::string Error;
+  Triple Trip(Triple::normalize(TripleStr));
+  const llvm::Target *TheTarget =
+      TargetRegistry::lookupTarget(Trip.getTriple(), Error);
+  if (TheTarget == nullptr) {
+    LLVMRustSetLastError(Error.c_str());
+    return nullptr;
+  }
+
+  TargetOptions Options;
+
+  Options.FloatABIType = FloatABI::Default;
+  if (UseSoftFloat) {
+    Options.FloatABIType = FloatABI::Soft;
+  }
+  Options.DataSections = DataSections;
+  Options.FunctionSections = FunctionSections;
+  Options.MCOptions.AsmVerbose = AsmComments;
+  Options.MCOptions.PreserveAsmComments = AsmComments;
+  Options.MCOptions.ABIName = ABIStr;
+  Options.RelaxELFRelocations = RelaxELFRelocations;
+  Options.UseInitArray = UseInitArray;
+
+  if (TrapUnreachable) {
+    // Tell LLVM to codegen `unreachable` into an explicit trap instruction.
+    // This limits the extent of possible undefined behavior in some cases, as
+    // it prevents control flow from "falling through" into whatever code
+    // happens to be laid out next in memory.
+    Options.TrapUnreachable = true;
+  }
+
+  if (Singlethread) {
+    Options.ThreadModel = ThreadModel::Single;
+  }
+
+  Options.EmitStackSizeSection = EmitStackSizeSection;
+
+  TargetMachine *TM = TheTarget->createTargetMachine(
+      Trip.getTriple(), CPU, Feature, Options, RM, CM, OptLevel);
+  return wrap(TM);
+}
+
+extern "C" void LLVMRustDisposeTargetMachine(LLVMTargetMachineRef TM) {
+  delete unwrap(TM);
+}
+
+extern "C" void LLVMRustConfigurePassManagerBuilder(
+    LLVMPassManagerBuilderRef PMBR, LLVMRustCodeGenOptLevel OptLevel,
+    bool MergeFunctions, bool SLPVectorize, bool LoopVectorize, bool PrepareForThinLTO,
+    const char* PGOGenPath, const char* PGOUsePath) {
+  unwrap(PMBR)->MergeFunctions = MergeFunctions;
+  unwrap(PMBR)->SLPVectorize = SLPVectorize;
+  unwrap(PMBR)->OptLevel = fromRust(OptLevel);
+  unwrap(PMBR)->LoopVectorize = LoopVectorize;
+  unwrap(PMBR)->PrepareForThinLTO = PrepareForThinLTO;
+
+  if (PGOGenPath) {
+    assert(!PGOUsePath);
+    unwrap(PMBR)->EnablePGOInstrGen = true;
+    unwrap(PMBR)->PGOInstrGen = PGOGenPath;
+  }
+  if (PGOUsePath) {
+    assert(!PGOGenPath);
+    unwrap(PMBR)->PGOInstrUse = PGOUsePath;
+  }
+}
+
+// Unfortunately, the LLVM C API doesn't provide a way to set the `LibraryInfo`
+// field of a PassManagerBuilder, we expose our own method of doing so.
+extern "C" void LLVMRustAddBuilderLibraryInfo(LLVMPassManagerBuilderRef PMBR,
+                                              LLVMModuleRef M,
+                                              bool DisableSimplifyLibCalls) {
+  Triple TargetTriple(unwrap(M)->getTargetTriple());
+  TargetLibraryInfoImpl *TLI = new TargetLibraryInfoImpl(TargetTriple);
+  if (DisableSimplifyLibCalls)
+    TLI->disableAllFunctions();
+  unwrap(PMBR)->LibraryInfo = TLI;
+}
+
+// Unfortunately, the LLVM C API doesn't provide a way to create the
+// TargetLibraryInfo pass, so we use this method to do so.
+extern "C" void LLVMRustAddLibraryInfo(LLVMPassManagerRef PMR, LLVMModuleRef M,
+                                       bool DisableSimplifyLibCalls) {
+  Triple TargetTriple(unwrap(M)->getTargetTriple());
+  TargetLibraryInfoImpl TLII(TargetTriple);
+  if (DisableSimplifyLibCalls)
+    TLII.disableAllFunctions();
+  unwrap(PMR)->add(new TargetLibraryInfoWrapperPass(TLII));
+}
+
+// Unfortunately, the LLVM C API doesn't provide an easy way of iterating over
+// all the functions in a module, so we do that manually here. You'll find
+// similar code in clang's BackendUtil.cpp file.
+extern "C" void LLVMRustRunFunctionPassManager(LLVMPassManagerRef PMR,
+                                               LLVMModuleRef M) {
+  llvm::legacy::FunctionPassManager *P =
+      unwrap<llvm::legacy::FunctionPassManager>(PMR);
+  P->doInitialization();
+
+  // Upgrade all calls to old intrinsics first.
+  for (Module::iterator I = unwrap(M)->begin(), E = unwrap(M)->end(); I != E;)
+    UpgradeCallsToIntrinsic(&*I++); // must be post-increment, as we remove
+
+  for (Module::iterator I = unwrap(M)->begin(), E = unwrap(M)->end(); I != E;
+       ++I)
+    if (!I->isDeclaration())
+      P->run(*I);
+
+  P->doFinalization();
+}
+
+extern "C" void LLVMRustSetLLVMOptions(int Argc, char **Argv) {
+  // Initializing the command-line options more than once is not allowed. So,
+  // check if they've already been initialized.  (This could happen if we're
+  // being called from rustpkg, for example). If the arguments change, then
+  // that's just kinda unfortunate.
+  static bool Initialized = false;
+  if (Initialized)
+    return;
+  Initialized = true;
+  cl::ParseCommandLineOptions(Argc, Argv);
+}
+
+enum class LLVMRustFileType {
+  AssemblyFile,
+  ObjectFile,
+};
+
+#if LLVM_VERSION_GE(10, 0)
+static CodeGenFileType fromRust(LLVMRustFileType Type) {
+  switch (Type) {
+  case LLVMRustFileType::AssemblyFile:
+    return CGFT_AssemblyFile;
+  case LLVMRustFileType::ObjectFile:
+    return CGFT_ObjectFile;
+  default:
+    report_fatal_error("Bad FileType.");
+  }
+}
+#else
+static TargetMachine::CodeGenFileType fromRust(LLVMRustFileType Type) {
+  switch (Type) {
+  case LLVMRustFileType::AssemblyFile:
+    return TargetMachine::CGFT_AssemblyFile;
+  case LLVMRustFileType::ObjectFile:
+    return TargetMachine::CGFT_ObjectFile;
+  default:
+    report_fatal_error("Bad FileType.");
+  }
+}
+#endif
+
+extern "C" LLVMRustResult
+LLVMRustWriteOutputFile(LLVMTargetMachineRef Target, LLVMPassManagerRef PMR,
+                        LLVMModuleRef M, const char *Path,
+                        LLVMRustFileType RustFileType) {
+  llvm::legacy::PassManager *PM = unwrap<llvm::legacy::PassManager>(PMR);
+  auto FileType = fromRust(RustFileType);
+
+  std::string ErrorInfo;
+  std::error_code EC;
+  raw_fd_ostream OS(Path, EC, sys::fs::F_None);
+  if (EC)
+    ErrorInfo = EC.message();
+  if (ErrorInfo != "") {
+    LLVMRustSetLastError(ErrorInfo.c_str());
+    return LLVMRustResult::Failure;
+  }
+
+  buffer_ostream BOS(OS);
+  unwrap(Target)->addPassesToEmitFile(*PM, BOS, nullptr, FileType, false);
+  PM->run(*unwrap(M));
+
+  // Apparently `addPassesToEmitFile` adds a pointer to our on-the-stack output
+  // stream (OS), so the only real safe place to delete this is here? Don't we
+  // wish this was written in Rust?
+  LLVMDisposePassManager(PMR);
+  return LLVMRustResult::Success;
+}
+
+extern "C" typedef void (*LLVMRustSelfProfileBeforePassCallback)(void*, // LlvmSelfProfiler
+                                                      const char*,      // pass name
+                                                      const char*);     // IR name
+extern "C" typedef void (*LLVMRustSelfProfileAfterPassCallback)(void*); // LlvmSelfProfiler
+
+#if LLVM_VERSION_GE(9, 0)
+
+std::string LLVMRustwrappedIrGetName(const llvm::Any &WrappedIr) {
+  if (any_isa<const Module *>(WrappedIr))
+    return any_cast<const Module *>(WrappedIr)->getName().str();
+  if (any_isa<const Function *>(WrappedIr))
+    return any_cast<const Function *>(WrappedIr)->getName().str();
+  if (any_isa<const Loop *>(WrappedIr))
+    return any_cast<const Loop *>(WrappedIr)->getName().str();
+  if (any_isa<const LazyCallGraph::SCC *>(WrappedIr))
+    return any_cast<const LazyCallGraph::SCC *>(WrappedIr)->getName();
+  return "<UNKNOWN>";
+}
+
+
+void LLVMSelfProfileInitializeCallbacks(
+    PassInstrumentationCallbacks& PIC, void* LlvmSelfProfiler,
+    LLVMRustSelfProfileBeforePassCallback BeforePassCallback,
+    LLVMRustSelfProfileAfterPassCallback AfterPassCallback) {
+  PIC.registerBeforePassCallback([LlvmSelfProfiler, BeforePassCallback](
+                                     StringRef Pass, llvm::Any Ir) {
+    std::string PassName = Pass.str();
+    std::string IrName = LLVMRustwrappedIrGetName(Ir);
+    BeforePassCallback(LlvmSelfProfiler, PassName.c_str(), IrName.c_str());
+    return true;
+  });
+
+  PIC.registerAfterPassCallback(
+      [LlvmSelfProfiler, AfterPassCallback](StringRef Pass, llvm::Any Ir) {
+        AfterPassCallback(LlvmSelfProfiler);
+      });
+
+  PIC.registerAfterPassInvalidatedCallback(
+      [LlvmSelfProfiler, AfterPassCallback](StringRef Pass) {
+        AfterPassCallback(LlvmSelfProfiler);
+      });
+
+  PIC.registerBeforeAnalysisCallback([LlvmSelfProfiler, BeforePassCallback](
+                                         StringRef Pass, llvm::Any Ir) {
+    std::string PassName = Pass.str();
+    std::string IrName = LLVMRustwrappedIrGetName(Ir);
+    BeforePassCallback(LlvmSelfProfiler, PassName.c_str(), IrName.c_str());
+  });
+
+  PIC.registerAfterAnalysisCallback(
+      [LlvmSelfProfiler, AfterPassCallback](StringRef Pass, llvm::Any Ir) {
+        AfterPassCallback(LlvmSelfProfiler);
+      });
+}
+#endif
+
+enum class LLVMRustOptStage {
+  PreLinkNoLTO,
+  PreLinkThinLTO,
+  PreLinkFatLTO,
+  ThinLTO,
+  FatLTO,
+};
+
+struct LLVMRustSanitizerOptions {
+  bool SanitizeAddress;
+  bool SanitizeAddressRecover;
+  bool SanitizeMemory;
+  bool SanitizeMemoryRecover;
+  int  SanitizeMemoryTrackOrigins;
+  bool SanitizeThread;
+};
+
+extern "C" void
+LLVMRustOptimizeWithNewPassManager(
+    LLVMModuleRef ModuleRef,
+    LLVMTargetMachineRef TMRef,
+    LLVMRustPassBuilderOptLevel OptLevelRust,
+    LLVMRustOptStage OptStage,
+    bool NoPrepopulatePasses, bool VerifyIR, bool UseThinLTOBuffers,
+    bool MergeFunctions, bool UnrollLoops, bool SLPVectorize, bool LoopVectorize,
+    bool DisableSimplifyLibCalls, bool EmitLifetimeMarkers,
+    LLVMRustSanitizerOptions *SanitizerOptions,
+    const char *PGOGenPath, const char *PGOUsePath,
+    void* LlvmSelfProfiler,
+    LLVMRustSelfProfileBeforePassCallback BeforePassCallback,
+    LLVMRustSelfProfileAfterPassCallback AfterPassCallback) {
+#if LLVM_VERSION_GE(9, 0)
+  Module *TheModule = unwrap(ModuleRef);
+  TargetMachine *TM = unwrap(TMRef);
+  PassBuilder::OptimizationLevel OptLevel = fromRust(OptLevelRust);
+
+  // FIXME: MergeFunctions is not supported by NewPM yet.
+  (void) MergeFunctions;
+
+  PipelineTuningOptions PTO;
+  PTO.LoopUnrolling = UnrollLoops;
+  PTO.LoopInterleaving = UnrollLoops;
+  PTO.LoopVectorization = LoopVectorize;
+  PTO.SLPVectorization = SLPVectorize;
+
+  PassInstrumentationCallbacks PIC;
+  StandardInstrumentations SI;
+  SI.registerCallbacks(PIC);
+
+  if (LlvmSelfProfiler){
+    LLVMSelfProfileInitializeCallbacks(PIC,LlvmSelfProfiler,BeforePassCallback,AfterPassCallback);
+  }
+
+  Optional<PGOOptions> PGOOpt;
+  if (PGOGenPath) {
+    assert(!PGOUsePath);
+    PGOOpt = PGOOptions(PGOGenPath, "", "", PGOOptions::IRInstr);
+  } else if (PGOUsePath) {
+    assert(!PGOGenPath);
+    PGOOpt = PGOOptions(PGOUsePath, "", "", PGOOptions::IRUse);
+  }
+
+  PassBuilder PB(TM, PTO, PGOOpt, &PIC);
+
+  // FIXME: We may want to expose this as an option.
+  bool DebugPassManager = false;
+  LoopAnalysisManager LAM(DebugPassManager);
+  FunctionAnalysisManager FAM(DebugPassManager);
+  CGSCCAnalysisManager CGAM(DebugPassManager);
+  ModuleAnalysisManager MAM(DebugPassManager);
+
+  FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
+
+  Triple TargetTriple(TheModule->getTargetTriple());
+  std::unique_ptr<TargetLibraryInfoImpl> TLII(new TargetLibraryInfoImpl(TargetTriple));
+  if (DisableSimplifyLibCalls)
+    TLII->disableAllFunctions();
+  FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
+
+  PB.registerModuleAnalyses(MAM);
+  PB.registerCGSCCAnalyses(CGAM);
+  PB.registerFunctionAnalyses(FAM);
+  PB.registerLoopAnalyses(LAM);
+  PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
+
+  // We manually collect pipeline callbacks so we can apply them at O0, where the
+  // PassBuilder does not create a pipeline.
+  std::vector<std::function<void(ModulePassManager &)>> PipelineStartEPCallbacks;
+#if LLVM_VERSION_GE(11, 0)
+  std::vector<std::function<void(ModulePassManager &, PassBuilder::OptimizationLevel)>>
+      OptimizerLastEPCallbacks;
+#else
+  std::vector<std::function<void(FunctionPassManager &, PassBuilder::OptimizationLevel)>>
+      OptimizerLastEPCallbacks;
+#endif
+
+  if (VerifyIR) {
+    PipelineStartEPCallbacks.push_back([VerifyIR](ModulePassManager &MPM) {
+        MPM.addPass(VerifierPass());
+    });
+  }
+
+  if (SanitizerOptions) {
+    if (SanitizerOptions->SanitizeMemory) {
+      MemorySanitizerOptions Options(
+          SanitizerOptions->SanitizeMemoryTrackOrigins,
+          SanitizerOptions->SanitizeMemoryRecover,
+          /*CompileKernel=*/false);
+#if LLVM_VERSION_GE(11, 0)
+      OptimizerLastEPCallbacks.push_back(
+        [Options](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
+          MPM.addPass(MemorySanitizerPass(Options));
+          MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass(Options)));
+        }
+      );
+#else
+#if LLVM_VERSION_GE(10, 0)
+      PipelineStartEPCallbacks.push_back([Options](ModulePassManager &MPM) {
+        MPM.addPass(MemorySanitizerPass(Options));
+      });
+#endif
+      OptimizerLastEPCallbacks.push_back(
+        [Options](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
+          FPM.addPass(MemorySanitizerPass(Options));
+        }
+      );
+#endif
+    }
+
+    if (SanitizerOptions->SanitizeThread) {
+#if LLVM_VERSION_GE(11, 0)
+      OptimizerLastEPCallbacks.push_back(
+        [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
+          MPM.addPass(ThreadSanitizerPass());
+          MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
+        }
+      );
+#else
+#if LLVM_VERSION_GE(10, 0)
+      PipelineStartEPCallbacks.push_back([](ModulePassManager &MPM) {
+        MPM.addPass(ThreadSanitizerPass());
+      });
+#endif
+      OptimizerLastEPCallbacks.push_back(
+        [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
+          FPM.addPass(ThreadSanitizerPass());
+        }
+      );
+#endif
+    }
+
+    if (SanitizerOptions->SanitizeAddress) {
+#if LLVM_VERSION_GE(11, 0)
+      OptimizerLastEPCallbacks.push_back(
+        [SanitizerOptions](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
+          MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
+          MPM.addPass(ModuleAddressSanitizerPass(
+              /*CompileKernel=*/false, SanitizerOptions->SanitizeAddressRecover));
+          MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass(
+              /*CompileKernel=*/false, SanitizerOptions->SanitizeAddressRecover,
+              /*UseAfterScope=*/true)));
+        }
+      );
+#else
+      PipelineStartEPCallbacks.push_back([&](ModulePassManager &MPM) {
+        MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
+      });
+      OptimizerLastEPCallbacks.push_back(
+        [SanitizerOptions](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
+          FPM.addPass(AddressSanitizerPass(
+              /*CompileKernel=*/false, SanitizerOptions->SanitizeAddressRecover,
+              /*UseAfterScope=*/true));
+        }
+      );
+      PipelineStartEPCallbacks.push_back(
+        [SanitizerOptions](ModulePassManager &MPM) {
+          MPM.addPass(ModuleAddressSanitizerPass(
+              /*CompileKernel=*/false, SanitizerOptions->SanitizeAddressRecover));
+        }
+      );
+#endif
+    }
+  }
+
+  ModulePassManager MPM(DebugPassManager);
+  if (!NoPrepopulatePasses) {
+    if (OptLevel == PassBuilder::OptimizationLevel::O0) {
+      for (const auto &C : PipelineStartEPCallbacks)
+        C(MPM);
+
+#if LLVM_VERSION_GE(11, 0)
+      for (const auto &C : OptimizerLastEPCallbacks)
+        C(MPM, OptLevel);
+#else
+      if (!OptimizerLastEPCallbacks.empty()) {
+        FunctionPassManager FPM(DebugPassManager);
+        for (const auto &C : OptimizerLastEPCallbacks)
+          C(FPM, OptLevel);
+        MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
+      }
+#endif
+
+      MPM.addPass(AlwaysInlinerPass(EmitLifetimeMarkers));
+
+#if LLVM_VERSION_GE(10, 0)
+      if (PGOOpt) {
+        PB.addPGOInstrPassesForO0(
+            MPM, DebugPassManager, PGOOpt->Action == PGOOptions::IRInstr,
+            /*IsCS=*/false, PGOOpt->ProfileFile, PGOOpt->ProfileRemappingFile);
+      }
+#endif
+    } else {
+      for (const auto &C : PipelineStartEPCallbacks)
+        PB.registerPipelineStartEPCallback(C);
+      if (OptStage != LLVMRustOptStage::PreLinkThinLTO) {
+        for (const auto &C : OptimizerLastEPCallbacks)
+          PB.registerOptimizerLastEPCallback(C);
+      }
+
+      switch (OptStage) {
+      case LLVMRustOptStage::PreLinkNoLTO:
+        MPM = PB.buildPerModuleDefaultPipeline(OptLevel, DebugPassManager);
+        break;
+      case LLVMRustOptStage::PreLinkThinLTO:
+        MPM = PB.buildThinLTOPreLinkDefaultPipeline(OptLevel, DebugPassManager);
+#if LLVM_VERSION_GE(11, 0)
+        for (const auto &C : OptimizerLastEPCallbacks)
+          C(MPM, OptLevel);
+#else
+        if (!OptimizerLastEPCallbacks.empty()) {
+          FunctionPassManager FPM(DebugPassManager);
+          for (const auto &C : OptimizerLastEPCallbacks)
+            C(FPM, OptLevel);
+          MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
+        }
+#endif
+        break;
+      case LLVMRustOptStage::PreLinkFatLTO:
+        MPM = PB.buildLTOPreLinkDefaultPipeline(OptLevel, DebugPassManager);
+        break;
+      case LLVMRustOptStage::ThinLTO:
+        // FIXME: Does it make sense to pass the ModuleSummaryIndex?
+        // It only seems to be needed for C++ specific optimizations.
+        MPM = PB.buildThinLTODefaultPipeline(OptLevel, DebugPassManager, nullptr);
+        break;
+      case LLVMRustOptStage::FatLTO:
+        MPM = PB.buildLTODefaultPipeline(OptLevel, DebugPassManager, nullptr);
+        break;
+      }
+    }
+  }
+
+  if (UseThinLTOBuffers) {
+    MPM.addPass(CanonicalizeAliasesPass());
+    MPM.addPass(NameAnonGlobalPass());
+  }
+
+  // Upgrade all calls to old intrinsics first.
+  for (Module::iterator I = TheModule->begin(), E = TheModule->end(); I != E;)
+    UpgradeCallsToIntrinsic(&*I++); // must be post-increment, as we remove
+
+  MPM.run(*TheModule, MAM);
+#else
+  // The new pass manager has been available for a long time,
+  // but we don't bother supporting it on old LLVM versions.
+  report_fatal_error("New pass manager only supported since LLVM 9");
+#endif
+}
+
+// Callback to demangle function name
+// Parameters:
+// * name to be demangled
+// * name len
+// * output buffer
+// * output buffer len
+// Returns len of demangled string, or 0 if demangle failed.
+typedef size_t (*DemangleFn)(const char*, size_t, char*, size_t);
+
+
+namespace {
+
+class RustAssemblyAnnotationWriter : public AssemblyAnnotationWriter {
+  DemangleFn Demangle;
+  std::vector<char> Buf;
+
+public:
+  RustAssemblyAnnotationWriter(DemangleFn Demangle) : Demangle(Demangle) {}
+
+  // Return empty string if demangle failed
+  // or if name does not need to be demangled
+  StringRef CallDemangle(StringRef name) {
+    if (!Demangle) {
+      return StringRef();
+    }
+
+    if (Buf.size() < name.size() * 2) {
+      // Semangled name usually shorter than mangled,
+      // but allocate twice as much memory just in case
+      Buf.resize(name.size() * 2);
+    }
+
+    auto R = Demangle(name.data(), name.size(), Buf.data(), Buf.size());
+    if (!R) {
+      // Demangle failed.
+      return StringRef();
+    }
+
+    auto Demangled = StringRef(Buf.data(), R);
+    if (Demangled == name) {
+      // Do not print anything if demangled name is equal to mangled.
+      return StringRef();
+    }
+
+    return Demangled;
+  }
+
+  void emitFunctionAnnot(const Function *F,
+                         formatted_raw_ostream &OS) override {
+    StringRef Demangled = CallDemangle(F->getName());
+    if (Demangled.empty()) {
+        return;
+    }
+
+    OS << "; " << Demangled << "\n";
+  }
+
+  void emitInstructionAnnot(const Instruction *I,
+                            formatted_raw_ostream &OS) override {
+    const char *Name;
+    const Value *Value;
+    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
+      Name = "call";
+      Value = CI->getCalledOperand();
+    } else if (const InvokeInst* II = dyn_cast<InvokeInst>(I)) {
+      Name = "invoke";
+      Value = II->getCalledOperand();
+    } else {
+      // Could demangle more operations, e. g.
+      // `store %place, @function`.
+      return;
+    }
+
+    if (!Value->hasName()) {
+      return;
+    }
+
+    StringRef Demangled = CallDemangle(Value->getName());
+    if (Demangled.empty()) {
+      return;
+    }
+
+    OS << "; " << Name << " " << Demangled << "\n";
+  }
+};
+
+} // namespace
+
+extern "C" LLVMRustResult
+LLVMRustPrintModule(LLVMModuleRef M, const char *Path, DemangleFn Demangle) {
+  std::string ErrorInfo;
+  std::error_code EC;
+  raw_fd_ostream OS(Path, EC, sys::fs::F_None);
+  if (EC)
+    ErrorInfo = EC.message();
+  if (ErrorInfo != "") {
+    LLVMRustSetLastError(ErrorInfo.c_str());
+    return LLVMRustResult::Failure;
+  }
+
+  RustAssemblyAnnotationWriter AAW(Demangle);
+  formatted_raw_ostream FOS(OS);
+  unwrap(M)->print(FOS, &AAW);
+
+  return LLVMRustResult::Success;
+}
+
+extern "C" void LLVMRustPrintPasses() {
+  LLVMInitializePasses();
+  struct MyListener : PassRegistrationListener {
+    void passEnumerate(const PassInfo *Info) {
+      StringRef PassArg = Info->getPassArgument();
+      StringRef PassName = Info->getPassName();
+      if (!PassArg.empty()) {
+        // These unsigned->signed casts could theoretically overflow, but
+        // realistically never will (and even if, the result is implementation
+        // defined rather plain UB).
+        printf("%15.*s - %.*s\n", (int)PassArg.size(), PassArg.data(),
+               (int)PassName.size(), PassName.data());
+      }
+    }
+  } Listener;
+
+  PassRegistry *PR = PassRegistry::getPassRegistry();
+  PR->enumerateWith(&Listener);
+}
+
+extern "C" void LLVMRustAddAlwaysInlinePass(LLVMPassManagerBuilderRef PMBR,
+                                            bool AddLifetimes) {
+  unwrap(PMBR)->Inliner = llvm::createAlwaysInlinerLegacyPass(AddLifetimes);
+}
+
+extern "C" void LLVMRustRunRestrictionPass(LLVMModuleRef M, char **Symbols,
+                                           size_t Len) {
+  llvm::legacy::PassManager passes;
+
+  auto PreserveFunctions = [=](const GlobalValue &GV) {
+    for (size_t I = 0; I < Len; I++) {
+      if (GV.getName() == Symbols[I]) {
+        return true;
+      }
+    }
+    return false;
+  };
+
+  passes.add(llvm::createInternalizePass(PreserveFunctions));
+
+  passes.run(*unwrap(M));
+}
+
+extern "C" void LLVMRustMarkAllFunctionsNounwind(LLVMModuleRef M) {
+  for (Module::iterator GV = unwrap(M)->begin(), E = unwrap(M)->end(); GV != E;
+       ++GV) {
+    GV->setDoesNotThrow();
+    Function *F = dyn_cast<Function>(GV);
+    if (F == nullptr)
+      continue;
+
+    for (Function::iterator B = F->begin(), BE = F->end(); B != BE; ++B) {
+      for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ++I) {
+        if (isa<InvokeInst>(I)) {
+          InvokeInst *CI = cast<InvokeInst>(I);
+          CI->setDoesNotThrow();
+        }
+      }
+    }
+  }
+}
+
+extern "C" void
+LLVMRustSetDataLayoutFromTargetMachine(LLVMModuleRef Module,
+                                       LLVMTargetMachineRef TMR) {
+  TargetMachine *Target = unwrap(TMR);
+  unwrap(Module)->setDataLayout(Target->createDataLayout());
+}
+
+extern "C" void LLVMRustSetModulePICLevel(LLVMModuleRef M) {
+  unwrap(M)->setPICLevel(PICLevel::Level::BigPIC);
+}
+
+extern "C" void LLVMRustSetModulePIELevel(LLVMModuleRef M) {
+  unwrap(M)->setPIELevel(PIELevel::Level::Large);
+}
+
+// Here you'll find an implementation of ThinLTO as used by the Rust compiler
+// right now. This ThinLTO support is only enabled on "recent ish" versions of
+// LLVM, and otherwise it's just blanket rejected from other compilers.
+//
+// Most of this implementation is straight copied from LLVM. At the time of
+// this writing it wasn't *quite* suitable to reuse more code from upstream
+// for our purposes, but we should strive to upstream this support once it's
+// ready to go! I figure we may want a bit of testing locally first before
+// sending this upstream to LLVM. I hear though they're quite eager to receive
+// feedback like this!
+//
+// If you're reading this code and wondering "what in the world" or you're
+// working "good lord by LLVM upgrade is *still* failing due to these bindings"
+// then fear not! (ok maybe fear a little). All code here is mostly based
+// on `lib/LTO/ThinLTOCodeGenerator.cpp` in LLVM.
+//
+// You'll find that the general layout here roughly corresponds to the `run`
+// method in that file as well as `ProcessThinLTOModule`. Functions are
+// specifically commented below as well, but if you're updating this code
+// or otherwise trying to understand it, the LLVM source will be useful in
+// interpreting the mysteries within.
+//
+// Otherwise I'll apologize in advance, it probably requires a relatively
+// significant investment on your part to "truly understand" what's going on
+// here. Not saying I do myself, but it took me awhile staring at LLVM's source
+// and various online resources about ThinLTO to make heads or tails of all
+// this.
+
+// This is a shared data structure which *must* be threadsafe to share
+// read-only amongst threads. This also corresponds basically to the arguments
+// of the `ProcessThinLTOModule` function in the LLVM source.
+struct LLVMRustThinLTOData {
+  // The combined index that is the global analysis over all modules we're
+  // performing ThinLTO for. This is mostly managed by LLVM.
+  ModuleSummaryIndex Index;
+
+  // All modules we may look at, stored as in-memory serialized versions. This
+  // is later used when inlining to ensure we can extract any module to inline
+  // from.
+  StringMap<MemoryBufferRef> ModuleMap;
+
+  // A set that we manage of everything we *don't* want internalized. Note that
+  // this includes all transitive references right now as well, but it may not
+  // always!
+  DenseSet<GlobalValue::GUID> GUIDPreservedSymbols;
+
+  // Not 100% sure what these are, but they impact what's internalized and
+  // what's inlined across modules, I believe.
+  StringMap<FunctionImporter::ImportMapTy> ImportLists;
+  StringMap<FunctionImporter::ExportSetTy> ExportLists;
+  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries;
+
+  LLVMRustThinLTOData() : Index(/* HaveGVs = */ false) {}
+};
+
+// Just an argument to the `LLVMRustCreateThinLTOData` function below.
+struct LLVMRustThinLTOModule {
+  const char *identifier;
+  const char *data;
+  size_t len;
+};
+
+// This is copied from `lib/LTO/ThinLTOCodeGenerator.cpp`, not sure what it
+// does.
+static const GlobalValueSummary *
+getFirstDefinitionForLinker(const GlobalValueSummaryList &GVSummaryList) {
+  auto StrongDefForLinker = llvm::find_if(
+      GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) {
+        auto Linkage = Summary->linkage();
+        return !GlobalValue::isAvailableExternallyLinkage(Linkage) &&
+               !GlobalValue::isWeakForLinker(Linkage);
+      });
+  if (StrongDefForLinker != GVSummaryList.end())
+    return StrongDefForLinker->get();
+
+  auto FirstDefForLinker = llvm::find_if(
+      GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) {
+        auto Linkage = Summary->linkage();
+        return !GlobalValue::isAvailableExternallyLinkage(Linkage);
+      });
+  if (FirstDefForLinker == GVSummaryList.end())
+    return nullptr;
+  return FirstDefForLinker->get();
+}
+
+// The main entry point for creating the global ThinLTO analysis. The structure
+// here is basically the same as before threads are spawned in the `run`
+// function of `lib/LTO/ThinLTOCodeGenerator.cpp`.
+extern "C" LLVMRustThinLTOData*
+LLVMRustCreateThinLTOData(LLVMRustThinLTOModule *modules,
+                          int num_modules,
+                          const char **preserved_symbols,
+                          int num_symbols) {
+#if LLVM_VERSION_GE(10, 0)
+  auto Ret = std::make_unique<LLVMRustThinLTOData>();
+#else
+  auto Ret = llvm::make_unique<LLVMRustThinLTOData>();
+#endif
+
+  // Load each module's summary and merge it into one combined index
+  for (int i = 0; i < num_modules; i++) {
+    auto module = &modules[i];
+    StringRef buffer(module->data, module->len);
+    MemoryBufferRef mem_buffer(buffer, module->identifier);
+
+    Ret->ModuleMap[module->identifier] = mem_buffer;
+
+    if (Error Err = readModuleSummaryIndex(mem_buffer, Ret->Index, i)) {
+      LLVMRustSetLastError(toString(std::move(Err)).c_str());
+      return nullptr;
+    }
+  }
+
+  // Collect for each module the list of function it defines (GUID -> Summary)
+  Ret->Index.collectDefinedGVSummariesPerModule(Ret->ModuleToDefinedGVSummaries);
+
+  // Convert the preserved symbols set from string to GUID, this is then needed
+  // for internalization.
+  for (int i = 0; i < num_symbols; i++) {
+    auto GUID = GlobalValue::getGUID(preserved_symbols[i]);
+    Ret->GUIDPreservedSymbols.insert(GUID);
+  }
+
+  // Collect the import/export lists for all modules from the call-graph in the
+  // combined index
+  //
+  // This is copied from `lib/LTO/ThinLTOCodeGenerator.cpp`
+  auto deadIsPrevailing = [&](GlobalValue::GUID G) {
+    return PrevailingType::Unknown;
+  };
+  // We don't have a complete picture in our use of ThinLTO, just our immediate
+  // crate, so we need `ImportEnabled = false` to limit internalization.
+  // Otherwise, we sometimes lose `static` values -- see #60184.
+  computeDeadSymbolsWithConstProp(Ret->Index, Ret->GUIDPreservedSymbols,
+                                  deadIsPrevailing, /* ImportEnabled = */ false);
+  ComputeCrossModuleImport(
+    Ret->Index,
+    Ret->ModuleToDefinedGVSummaries,
+    Ret->ImportLists,
+    Ret->ExportLists
+  );
+
+  // Resolve LinkOnce/Weak symbols, this has to be computed early be cause it
+  // impacts the caching.
+  //
+  // This is copied from `lib/LTO/ThinLTOCodeGenerator.cpp` with some of this
+  // being lifted from `lib/LTO/LTO.cpp` as well
+  StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
+  DenseMap<GlobalValue::GUID, const GlobalValueSummary *> PrevailingCopy;
+  for (auto &I : Ret->Index) {
+    if (I.second.SummaryList.size() > 1)
+      PrevailingCopy[I.first] = getFirstDefinitionForLinker(I.second.SummaryList);
+  }
+  auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) {
+    const auto &Prevailing = PrevailingCopy.find(GUID);
+    if (Prevailing == PrevailingCopy.end())
+      return true;
+    return Prevailing->second == S;
+  };
+  auto recordNewLinkage = [&](StringRef ModuleIdentifier,
+                              GlobalValue::GUID GUID,
+                              GlobalValue::LinkageTypes NewLinkage) {
+    ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
+  };
+#if LLVM_VERSION_GE(9, 0)
+  thinLTOResolvePrevailingInIndex(Ret->Index, isPrevailing, recordNewLinkage,
+                                  Ret->GUIDPreservedSymbols);
+#else
+  thinLTOResolvePrevailingInIndex(Ret->Index, isPrevailing, recordNewLinkage);
+#endif
+
+  // Here we calculate an `ExportedGUIDs` set for use in the `isExported`
+  // callback below. This callback below will dictate the linkage for all
+  // summaries in the index, and we basically just only want to ensure that dead
+  // symbols are internalized. Otherwise everything that's already external
+  // linkage will stay as external, and internal will stay as internal.
+  std::set<GlobalValue::GUID> ExportedGUIDs;
+  for (auto &List : Ret->Index) {
+    for (auto &GVS: List.second.SummaryList) {
+      if (GlobalValue::isLocalLinkage(GVS->linkage()))
+        continue;
+      auto GUID = GVS->getOriginalName();
+      if (GVS->flags().Live)
+        ExportedGUIDs.insert(GUID);
+    }
+  }
+#if LLVM_VERSION_GE(10, 0)
+  auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) {
+    const auto &ExportList = Ret->ExportLists.find(ModuleIdentifier);
+    return (ExportList != Ret->ExportLists.end() &&
+      ExportList->second.count(VI)) ||
+      ExportedGUIDs.count(VI.getGUID());
+  };
+  thinLTOInternalizeAndPromoteInIndex(Ret->Index, isExported, isPrevailing);
+#else
+  auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) {
+    const auto &ExportList = Ret->ExportLists.find(ModuleIdentifier);
+    return (ExportList != Ret->ExportLists.end() &&
+      ExportList->second.count(GUID)) ||
+      ExportedGUIDs.count(GUID);
+  };
+  thinLTOInternalizeAndPromoteInIndex(Ret->Index, isExported);
+#endif
+
+  return Ret.release();
+}
+
+extern "C" void
+LLVMRustFreeThinLTOData(LLVMRustThinLTOData *Data) {
+  delete Data;
+}
+
+// Below are the various passes that happen *per module* when doing ThinLTO.
+//
+// In other words, these are the functions that are all run concurrently
+// with one another, one per module. The passes here correspond to the analysis
+// passes in `lib/LTO/ThinLTOCodeGenerator.cpp`, currently found in the
+// `ProcessThinLTOModule` function. Here they're split up into separate steps
+// so rustc can save off the intermediate bytecode between each step.
+
+#if LLVM_VERSION_GE(11, 0)
+static bool
+clearDSOLocalOnDeclarations(Module &Mod, TargetMachine &TM) {
+  // When linking an ELF shared object, dso_local should be dropped. We
+  // conservatively do this for -fpic.
+  bool ClearDSOLocalOnDeclarations =
+      TM.getTargetTriple().isOSBinFormatELF() &&
+      TM.getRelocationModel() != Reloc::Static &&
+      Mod.getPIELevel() == PIELevel::Default;
+  return ClearDSOLocalOnDeclarations;
+}
+#endif
+
+extern "C" bool
+LLVMRustPrepareThinLTORename(const LLVMRustThinLTOData *Data, LLVMModuleRef M,
+                             LLVMTargetMachineRef TM) {
+  Module &Mod = *unwrap(M);
+  TargetMachine &Target = *unwrap(TM);
+
+#if LLVM_VERSION_GE(11, 0)
+  bool ClearDSOLocal = clearDSOLocalOnDeclarations(Mod, Target);
+  bool error = renameModuleForThinLTO(Mod, Data->Index, ClearDSOLocal);
+#else
+  bool error = renameModuleForThinLTO(Mod, Data->Index);
+#endif
+
+  if (error) {
+    LLVMRustSetLastError("renameModuleForThinLTO failed");
+    return false;
+  }
+  return true;
+}
+
+extern "C" bool
+LLVMRustPrepareThinLTOResolveWeak(const LLVMRustThinLTOData *Data, LLVMModuleRef M) {
+  Module &Mod = *unwrap(M);
+  const auto &DefinedGlobals = Data->ModuleToDefinedGVSummaries.lookup(Mod.getModuleIdentifier());
+  thinLTOResolvePrevailingInModule(Mod, DefinedGlobals);
+  return true;
+}
+
+extern "C" bool
+LLVMRustPrepareThinLTOInternalize(const LLVMRustThinLTOData *Data, LLVMModuleRef M) {
+  Module &Mod = *unwrap(M);
+  const auto &DefinedGlobals = Data->ModuleToDefinedGVSummaries.lookup(Mod.getModuleIdentifier());
+  thinLTOInternalizeModule(Mod, DefinedGlobals);
+  return true;
+}
+
+extern "C" bool
+LLVMRustPrepareThinLTOImport(const LLVMRustThinLTOData *Data, LLVMModuleRef M,
+                             LLVMTargetMachineRef TM) {
+  Module &Mod = *unwrap(M);
+  TargetMachine &Target = *unwrap(TM);
+
+  const auto &ImportList = Data->ImportLists.lookup(Mod.getModuleIdentifier());
+  auto Loader = [&](StringRef Identifier) {
+    const auto &Memory = Data->ModuleMap.lookup(Identifier);
+    auto &Context = Mod.getContext();
+    auto MOrErr = getLazyBitcodeModule(Memory, Context, true, true);
+
+    if (!MOrErr)
+      return MOrErr;
+
+    // The rest of this closure is a workaround for
+    // https://bugs.llvm.org/show_bug.cgi?id=38184 where during ThinLTO imports
+    // we accidentally import wasm custom sections into different modules,
+    // duplicating them by in the final output artifact.
+    //
+    // The issue is worked around here by manually removing the
+    // `wasm.custom_sections` named metadata node from any imported module. This
+    // we know isn't used by any optimization pass so there's no need for it to
+    // be imported.
+    //
+    // Note that the metadata is currently lazily loaded, so we materialize it
+    // here before looking up if there's metadata inside. The `FunctionImporter`
+    // will immediately materialize metadata anyway after an import, so this
+    // shouldn't be a perf hit.
+    if (Error Err = (*MOrErr)->materializeMetadata()) {
+      Expected<std::unique_ptr<Module>> Ret(std::move(Err));
+      return Ret;
+    }
+
+    auto *WasmCustomSections = (*MOrErr)->getNamedMetadata("wasm.custom_sections");
+    if (WasmCustomSections)
+      WasmCustomSections->eraseFromParent();
+
+    return MOrErr;
+  };
+#if LLVM_VERSION_GE(11, 0)
+  bool ClearDSOLocal = clearDSOLocalOnDeclarations(Mod, Target);
+  FunctionImporter Importer(Data->Index, Loader, ClearDSOLocal);
+#else
+  FunctionImporter Importer(Data->Index, Loader);
+#endif
+  Expected<bool> Result = Importer.importFunctions(Mod, ImportList);
+  if (!Result) {
+    LLVMRustSetLastError(toString(Result.takeError()).c_str());
+    return false;
+  }
+  return true;
+}
+
+extern "C" typedef void (*LLVMRustModuleNameCallback)(void*, // payload
+                                                      const char*, // importing module name
+                                                      const char*); // imported module name
+
+// Calls `module_name_callback` for each module import done by ThinLTO.
+// The callback is provided with regular null-terminated C strings.
+extern "C" void
+LLVMRustGetThinLTOModuleImports(const LLVMRustThinLTOData *data,
+                                LLVMRustModuleNameCallback module_name_callback,
+                                void* callback_payload) {
+  for (const auto& importing_module : data->ImportLists) {
+    const std::string importing_module_id = importing_module.getKey().str();
+    const auto& imports = importing_module.getValue();
+    for (const auto& imported_module : imports) {
+      const std::string imported_module_id = imported_module.getKey().str();
+      module_name_callback(callback_payload,
+                           importing_module_id.c_str(),
+                           imported_module_id.c_str());
+    }
+  }
+}
+
+// This struct and various functions are sort of a hack right now, but the
+// problem is that we've got in-memory LLVM modules after we generate and
+// optimize all codegen-units for one compilation in rustc. To be compatible
+// with the LTO support above we need to serialize the modules plus their
+// ThinLTO summary into memory.
+//
+// This structure is basically an owned version of a serialize module, with
+// a ThinLTO summary attached.
+struct LLVMRustThinLTOBuffer {
+  std::string data;
+};
+
+extern "C" LLVMRustThinLTOBuffer*
+LLVMRustThinLTOBufferCreate(LLVMModuleRef M) {
+#if LLVM_VERSION_GE(10, 0)
+  auto Ret = std::make_unique<LLVMRustThinLTOBuffer>();
+#else
+  auto Ret = llvm::make_unique<LLVMRustThinLTOBuffer>();
+#endif
+  {
+    raw_string_ostream OS(Ret->data);
+    {
+      legacy::PassManager PM;
+      PM.add(createWriteThinLTOBitcodePass(OS));
+      PM.run(*unwrap(M));
+    }
+  }
+  return Ret.release();
+}
+
+extern "C" void
+LLVMRustThinLTOBufferFree(LLVMRustThinLTOBuffer *Buffer) {
+  delete Buffer;
+}
+
+extern "C" const void*
+LLVMRustThinLTOBufferPtr(const LLVMRustThinLTOBuffer *Buffer) {
+  return Buffer->data.data();
+}
+
+extern "C" size_t
+LLVMRustThinLTOBufferLen(const LLVMRustThinLTOBuffer *Buffer) {
+  return Buffer->data.length();
+}
+
+// This is what we used to parse upstream bitcode for actual ThinLTO
+// processing.  We'll call this once per module optimized through ThinLTO, and
+// it'll be called concurrently on many threads.
+extern "C" LLVMModuleRef
+LLVMRustParseBitcodeForLTO(LLVMContextRef Context,
+                           const char *data,
+                           size_t len,
+                           const char *identifier) {
+  StringRef Data(data, len);
+  MemoryBufferRef Buffer(Data, identifier);
+  unwrap(Context)->enableDebugTypeODRUniquing();
+  Expected<std::unique_ptr<Module>> SrcOrError =
+      parseBitcodeFile(Buffer, *unwrap(Context));
+  if (!SrcOrError) {
+    LLVMRustSetLastError(toString(SrcOrError.takeError()).c_str());
+    return nullptr;
+  }
+  return wrap(std::move(*SrcOrError).release());
+}
+
+// Find the bitcode section in the object file data and return it as a slice.
+// Fail if the bitcode section is present but empty.
+//
+// On success, the return value is the pointer to the start of the slice and
+// `out_len` is filled with the (non-zero) length. On failure, the return value
+// is `nullptr` and `out_len` is set to zero.
+extern "C" const char*
+LLVMRustGetBitcodeSliceFromObjectData(const char *data,
+                                      size_t len,
+                                      size_t *out_len) {
+  *out_len = 0;
+
+  StringRef Data(data, len);
+  MemoryBufferRef Buffer(Data, ""); // The id is unused.
+
+  Expected<MemoryBufferRef> BitcodeOrError =
+    object::IRObjectFile::findBitcodeInMemBuffer(Buffer);
+  if (!BitcodeOrError) {
+    LLVMRustSetLastError(toString(BitcodeOrError.takeError()).c_str());
+    return nullptr;
+  }
+
+  *out_len = BitcodeOrError->getBufferSize();
+  return BitcodeOrError->getBufferStart();
+}
+
+// Rewrite all `DICompileUnit` pointers to the `DICompileUnit` specified. See
+// the comment in `back/lto.rs` for why this exists.
+extern "C" void
+LLVMRustThinLTOGetDICompileUnit(LLVMModuleRef Mod,
+                                DICompileUnit **A,
+                                DICompileUnit **B) {
+  Module *M = unwrap(Mod);
+  DICompileUnit **Cur = A;
+  DICompileUnit **Next = B;
+  for (DICompileUnit *CU : M->debug_compile_units()) {
+    *Cur = CU;
+    Cur = Next;
+    Next = nullptr;
+    if (Cur == nullptr)
+      break;
+  }
+}
+
+// Rewrite all `DICompileUnit` pointers to the `DICompileUnit` specified. See
+// the comment in `back/lto.rs` for why this exists.
+extern "C" void
+LLVMRustThinLTOPatchDICompileUnit(LLVMModuleRef Mod, DICompileUnit *Unit) {
+  Module *M = unwrap(Mod);
+
+  // If the original source module didn't have a `DICompileUnit` then try to
+  // merge all the existing compile units. If there aren't actually any though
+  // then there's not much for us to do so return.
+  if (Unit == nullptr) {
+    for (DICompileUnit *CU : M->debug_compile_units()) {
+      Unit = CU;
+      break;
+    }
+    if (Unit == nullptr)
+      return;
+  }
+
+  // Use LLVM's built-in `DebugInfoFinder` to find a bunch of debuginfo and
+  // process it recursively. Note that we used to specifically iterate over
+  // instructions to ensure we feed everything into it, but `processModule`
+  // started doing this the same way in LLVM 7 (commit d769eb36ab2b8).
+  DebugInfoFinder Finder;
+  Finder.processModule(*M);
+
+  // After we've found all our debuginfo, rewrite all subprograms to point to
+  // the same `DICompileUnit`.
+  for (auto &F : Finder.subprograms()) {
+    F->replaceUnit(Unit);
+  }
+
+  // Erase any other references to other `DICompileUnit` instances, the verifier
+  // will later ensure that we don't actually have any other stale references to
+  // worry about.
+  auto *MD = M->getNamedMetadata("llvm.dbg.cu");
+  MD->clearOperands();
+  MD->addOperand(Unit);
+}