diff options
Diffstat (limited to 'compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp')
| -rw-r--r-- | compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp | 1592 |
1 files changed, 1592 insertions, 0 deletions
diff --git a/compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp b/compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp new file mode 100644 index 00000000000..55e1c84c8a2 --- /dev/null +++ b/compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp @@ -0,0 +1,1592 @@ +#include <stdio.h> + +#include <cstddef> +#include <iomanip> +#include <vector> +#include <set> + +#include "LLVMWrapper.h" + +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/CodeGen/CommandFlags.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/AutoUpgrade.h" +#include "llvm/IR/AssemblyAnnotationWriter.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Verifier.h" +#include "llvm/MC/TargetRegistry.h" +#include "llvm/Object/ObjectFile.h" +#include "llvm/Object/IRObjectFile.h" +#include "llvm/Passes/PassBuilder.h" +#include "llvm/Passes/PassPlugin.h" +#include "llvm/Passes/StandardInstrumentations.h" +#include "llvm/Support/CBindingWrapping.h" +#include "llvm/Support/FileSystem.h" +#if LLVM_VERSION_GE(17, 0) +#include "llvm/Support/VirtualFileSystem.h" +#endif +#include "llvm/Target/TargetMachine.h" +#include "llvm/Transforms/IPO/AlwaysInliner.h" +#include "llvm/Transforms/IPO/FunctionImport.h" +#include "llvm/Transforms/IPO/Internalize.h" +#include "llvm/Transforms/IPO/LowerTypeTests.h" +#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" +#include "llvm/Transforms/Utils/AddDiscriminators.h" +#include "llvm/Transforms/Utils/FunctionImportUtils.h" +#include "llvm/LTO/LTO.h" +#include "llvm/Bitcode/BitcodeWriter.h" + +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Instrumentation/AddressSanitizer.h" +#include "llvm/Support/TimeProfiler.h" +#include "llvm/Transforms/Instrumentation/GCOVProfiler.h" +#include "llvm/Transforms/Instrumentation/InstrProfiling.h" +#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" +#include "llvm/Transforms/Instrumentation/MemorySanitizer.h" +#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" +#include "llvm/Transforms/Utils/CanonicalizeAliases.h" +#include "llvm/Transforms/Utils/NameAnonGlobals.h" +#include "llvm/Transforms/Utils.h" + +using namespace llvm; + +static codegen::RegisterCodeGenFlags CGF; + +typedef struct LLVMOpaquePass *LLVMPassRef; +typedef struct LLVMOpaqueTargetMachine *LLVMTargetMachineRef; + +DEFINE_STDCXX_CONVERSION_FUNCTIONS(Pass, LLVMPassRef) +DEFINE_STDCXX_CONVERSION_FUNCTIONS(TargetMachine, LLVMTargetMachineRef) + +extern "C" void LLVMRustTimeTraceProfilerInitialize() { + timeTraceProfilerInitialize( + /* TimeTraceGranularity */ 0, + /* ProcName */ "rustc"); +} + +extern "C" void LLVMRustTimeTraceProfilerFinishThread() { + timeTraceProfilerFinishThread(); +} + +extern "C" void LLVMRustTimeTraceProfilerFinish(const char* FileName) { + StringRef FN(FileName); + std::error_code EC; + raw_fd_ostream OS(FN, EC, sys::fs::CD_CreateAlways); + + timeTraceProfilerWrite(OS); + timeTraceProfilerCleanup(); +} + +#ifdef LLVM_COMPONENT_X86 +#define SUBTARGET_X86 SUBTARGET(X86) +#else +#define SUBTARGET_X86 +#endif + +#ifdef LLVM_COMPONENT_ARM +#define SUBTARGET_ARM SUBTARGET(ARM) +#else +#define SUBTARGET_ARM +#endif + +#ifdef LLVM_COMPONENT_AARCH64 +#define SUBTARGET_AARCH64 SUBTARGET(AArch64) +#else +#define SUBTARGET_AARCH64 +#endif + +#ifdef LLVM_COMPONENT_AVR +#define SUBTARGET_AVR SUBTARGET(AVR) +#else +#define SUBTARGET_AVR +#endif + +#ifdef LLVM_COMPONENT_M68k +#define SUBTARGET_M68K SUBTARGET(M68k) +#else +#define SUBTARGET_M68K +#endif + +#ifdef LLVM_COMPONENT_CSKY +#define SUBTARGET_CSKY SUBTARGET(CSKY) +#else +#define SUBTARGET_CSKY +#endif + +#ifdef LLVM_COMPONENT_MIPS +#define SUBTARGET_MIPS SUBTARGET(Mips) +#else +#define SUBTARGET_MIPS +#endif + +#ifdef LLVM_COMPONENT_POWERPC +#define SUBTARGET_PPC SUBTARGET(PPC) +#else +#define SUBTARGET_PPC +#endif + +#ifdef LLVM_COMPONENT_SYSTEMZ +#define SUBTARGET_SYSTEMZ SUBTARGET(SystemZ) +#else +#define SUBTARGET_SYSTEMZ +#endif + +#ifdef LLVM_COMPONENT_MSP430 +#define SUBTARGET_MSP430 SUBTARGET(MSP430) +#else +#define SUBTARGET_MSP430 +#endif + +#ifdef LLVM_COMPONENT_RISCV +#define SUBTARGET_RISCV SUBTARGET(RISCV) +#else +#define SUBTARGET_RISCV +#endif + +#ifdef LLVM_COMPONENT_SPARC +#define SUBTARGET_SPARC SUBTARGET(Sparc) +#else +#define SUBTARGET_SPARC +#endif + +#ifdef LLVM_COMPONENT_HEXAGON +#define SUBTARGET_HEXAGON SUBTARGET(Hexagon) +#else +#define SUBTARGET_HEXAGON +#endif + +#ifdef LLVM_COMPONENT_LOONGARCH +#define SUBTARGET_LOONGARCH SUBTARGET(LoongArch) +#else +#define SUBTARGET_LOONGARCH +#endif + +#define GEN_SUBTARGETS \ + SUBTARGET_X86 \ + SUBTARGET_ARM \ + SUBTARGET_AARCH64 \ + SUBTARGET_AVR \ + SUBTARGET_M68K \ + SUBTARGET_CSKY \ + SUBTARGET_MIPS \ + SUBTARGET_PPC \ + SUBTARGET_SYSTEMZ \ + SUBTARGET_MSP430 \ + SUBTARGET_SPARC \ + SUBTARGET_HEXAGON \ + SUBTARGET_RISCV \ + SUBTARGET_LOONGARCH \ + +#define SUBTARGET(x) \ + namespace llvm { \ + extern const SubtargetFeatureKV x##FeatureKV[]; \ + extern const SubtargetFeatureKV x##SubTypeKV[]; \ + } + +GEN_SUBTARGETS +#undef SUBTARGET + +extern "C" bool LLVMRustHasFeature(LLVMTargetMachineRef TM, + const char *Feature) { + TargetMachine *Target = unwrap(TM); + const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo(); + return MCInfo->checkFeatures(std::string("+") + Feature); +} + +enum class LLVMRustCodeModel { + Tiny, + Small, + Kernel, + Medium, + Large, + None, +}; + +static std::optional<CodeModel::Model> +fromRust(LLVMRustCodeModel Model) { + switch (Model) { + case LLVMRustCodeModel::Tiny: + return CodeModel::Tiny; + case LLVMRustCodeModel::Small: + return CodeModel::Small; + case LLVMRustCodeModel::Kernel: + return CodeModel::Kernel; + case LLVMRustCodeModel::Medium: + return CodeModel::Medium; + case LLVMRustCodeModel::Large: + return CodeModel::Large; + case LLVMRustCodeModel::None: + return std::nullopt; + default: + report_fatal_error("Bad CodeModel."); + } +} + +enum class LLVMRustCodeGenOptLevel { + None, + Less, + Default, + Aggressive, +}; + +#if LLVM_VERSION_GE(18, 0) + using CodeGenOptLevelEnum = llvm::CodeGenOptLevel; +#else + using CodeGenOptLevelEnum = llvm::CodeGenOpt::Level; +#endif + +static CodeGenOptLevelEnum fromRust(LLVMRustCodeGenOptLevel Level) { + switch (Level) { + case LLVMRustCodeGenOptLevel::None: + return CodeGenOptLevelEnum::None; + case LLVMRustCodeGenOptLevel::Less: + return CodeGenOptLevelEnum::Less; + case LLVMRustCodeGenOptLevel::Default: + return CodeGenOptLevelEnum::Default; + case LLVMRustCodeGenOptLevel::Aggressive: + return CodeGenOptLevelEnum::Aggressive; + default: + report_fatal_error("Bad CodeGenOptLevel."); + } +} + +enum class LLVMRustPassBuilderOptLevel { + O0, + O1, + O2, + O3, + Os, + Oz, +}; + +static OptimizationLevel fromRust(LLVMRustPassBuilderOptLevel Level) { + switch (Level) { + case LLVMRustPassBuilderOptLevel::O0: + return OptimizationLevel::O0; + case LLVMRustPassBuilderOptLevel::O1: + return OptimizationLevel::O1; + case LLVMRustPassBuilderOptLevel::O2: + return OptimizationLevel::O2; + case LLVMRustPassBuilderOptLevel::O3: + return OptimizationLevel::O3; + case LLVMRustPassBuilderOptLevel::Os: + return OptimizationLevel::Os; + case LLVMRustPassBuilderOptLevel::Oz: + return OptimizationLevel::Oz; + default: + report_fatal_error("Bad PassBuilderOptLevel."); + } +} + +enum class LLVMRustRelocModel { + Static, + PIC, + DynamicNoPic, + ROPI, + RWPI, + ROPIRWPI, +}; + +static Reloc::Model fromRust(LLVMRustRelocModel RustReloc) { + switch (RustReloc) { + case LLVMRustRelocModel::Static: + return Reloc::Static; + case LLVMRustRelocModel::PIC: + return Reloc::PIC_; + case LLVMRustRelocModel::DynamicNoPic: + return Reloc::DynamicNoPIC; + case LLVMRustRelocModel::ROPI: + return Reloc::ROPI; + case LLVMRustRelocModel::RWPI: + return Reloc::RWPI; + case LLVMRustRelocModel::ROPIRWPI: + return Reloc::ROPI_RWPI; + } + report_fatal_error("Bad RelocModel."); +} + +/// getLongestEntryLength - Return the length of the longest entry in the table. +template<typename KV> +static size_t getLongestEntryLength(ArrayRef<KV> Table) { + size_t MaxLen = 0; + for (auto &I : Table) + MaxLen = std::max(MaxLen, std::strlen(I.Key)); + return MaxLen; +} + +using PrintBackendInfo = void(void*, const char* Data, size_t Len); + +extern "C" void LLVMRustPrintTargetCPUs(LLVMTargetMachineRef TM, + const char* TargetCPU, + PrintBackendInfo Print, + void* Out) { + const TargetMachine *Target = unwrap(TM); + const Triple::ArchType HostArch = Triple(sys::getDefaultTargetTriple()).getArch(); + const Triple::ArchType TargetArch = Target->getTargetTriple().getArch(); + + std::ostringstream Buf; + +#if LLVM_VERSION_GE(17, 0) + const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo(); + const ArrayRef<SubtargetSubTypeKV> CPUTable = MCInfo->getAllProcessorDescriptions(); +#else + Buf << "Full target CPU help is not supported by this LLVM version.\n\n"; + SubtargetSubTypeKV TargetCPUKV = { TargetCPU, {{}}, {{}} }; + const ArrayRef<SubtargetSubTypeKV> CPUTable = TargetCPUKV; +#endif + unsigned MaxCPULen = getLongestEntryLength(CPUTable); + + Buf << "Available CPUs for this target:\n"; + // Don't print the "native" entry when the user specifies --target with a + // different arch since that could be wrong or misleading. + if (HostArch == TargetArch) { + MaxCPULen = std::max(MaxCPULen, (unsigned) std::strlen("native")); + const StringRef HostCPU = sys::getHostCPUName(); + Buf << " " << std::left << std::setw(MaxCPULen) << "native" + << " - Select the CPU of the current host " + "(currently " << HostCPU.str() << ").\n"; + } + for (auto &CPU : CPUTable) { + // Compare cpu against current target to label the default + if (strcmp(CPU.Key, TargetCPU) == 0) { + Buf << " " << std::left << std::setw(MaxCPULen) << CPU.Key + << " - This is the default target CPU for the current build target " + "(currently " << Target->getTargetTriple().str() << ")."; + } + else { + Buf << " " << CPU.Key; + } + Buf << "\n"; + } + + const auto &BufString = Buf.str(); + Print(Out, BufString.data(), BufString.size()); +} + +extern "C" size_t LLVMRustGetTargetFeaturesCount(LLVMTargetMachineRef TM) { +#ifdef LLVM_RUSTLLVM + const TargetMachine *Target = unwrap(TM); + const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo(); + const ArrayRef<SubtargetFeatureKV> FeatTable = MCInfo->getFeatureTable(); + return FeatTable.size(); +#else + return 0; +#endif +} + +extern "C" void LLVMRustGetTargetFeature(LLVMTargetMachineRef TM, size_t Index, + const char** Feature, const char** Desc) { +#ifdef LLVM_RUSTLLVM + const TargetMachine *Target = unwrap(TM); + const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo(); + const ArrayRef<SubtargetFeatureKV> FeatTable = MCInfo->getFeatureTable(); + const SubtargetFeatureKV Feat = FeatTable[Index]; + *Feature = Feat.Key; + *Desc = Feat.Desc; +#endif +} + +extern "C" const char* LLVMRustGetHostCPUName(size_t *len) { + StringRef Name = sys::getHostCPUName(); + *len = Name.size(); + return Name.data(); +} + +extern "C" LLVMTargetMachineRef LLVMRustCreateTargetMachine( + const char *TripleStr, const char *CPU, const char *Feature, + const char *ABIStr, LLVMRustCodeModel RustCM, LLVMRustRelocModel RustReloc, + LLVMRustCodeGenOptLevel RustOptLevel, bool UseSoftFloat, + bool FunctionSections, + bool DataSections, + bool UniqueSectionNames, + bool TrapUnreachable, + bool Singlethread, + bool AsmComments, + bool EmitStackSizeSection, + bool RelaxELFRelocations, + bool UseInitArray, + const char *SplitDwarfFile, + const char *OutputObjFile, + const char *DebugInfoCompression, + bool UseEmulatedTls, + const char *ArgsCstrBuff, size_t ArgsCstrBuffLen) { + + auto OptLevel = fromRust(RustOptLevel); + auto RM = fromRust(RustReloc); + auto CM = fromRust(RustCM); + + std::string Error; + Triple Trip(Triple::normalize(TripleStr)); + const llvm::Target *TheTarget = + TargetRegistry::lookupTarget(Trip.getTriple(), Error); + if (TheTarget == nullptr) { + LLVMRustSetLastError(Error.c_str()); + return nullptr; + } + + TargetOptions Options = codegen::InitTargetOptionsFromCodeGenFlags(Trip); + + Options.FloatABIType = FloatABI::Default; + if (UseSoftFloat) { + Options.FloatABIType = FloatABI::Soft; + } + Options.DataSections = DataSections; + Options.FunctionSections = FunctionSections; + Options.UniqueSectionNames = UniqueSectionNames; + Options.MCOptions.AsmVerbose = AsmComments; + Options.MCOptions.PreserveAsmComments = AsmComments; + Options.MCOptions.ABIName = ABIStr; + if (SplitDwarfFile) { + Options.MCOptions.SplitDwarfFile = SplitDwarfFile; + } + if (OutputObjFile) { + Options.ObjectFilenameForDebug = OutputObjFile; + } + if (!strcmp("zlib", DebugInfoCompression) && llvm::compression::zlib::isAvailable()) { + Options.CompressDebugSections = DebugCompressionType::Zlib; + } else if (!strcmp("zstd", DebugInfoCompression) && llvm::compression::zstd::isAvailable()) { + Options.CompressDebugSections = DebugCompressionType::Zstd; + } else if (!strcmp("none", DebugInfoCompression)) { + Options.CompressDebugSections = DebugCompressionType::None; + } + + Options.RelaxELFRelocations = RelaxELFRelocations; + Options.UseInitArray = UseInitArray; + +#if LLVM_VERSION_LT(17, 0) + Options.ExplicitEmulatedTLS = true; +#endif + Options.EmulatedTLS = UseEmulatedTls; + + if (TrapUnreachable) { + // Tell LLVM to codegen `unreachable` into an explicit trap instruction. + // This limits the extent of possible undefined behavior in some cases, as + // it prevents control flow from "falling through" into whatever code + // happens to be laid out next in memory. + Options.TrapUnreachable = true; + } + + if (Singlethread) { + Options.ThreadModel = ThreadModel::Single; + } + + Options.EmitStackSizeSection = EmitStackSizeSection; + + + if (ArgsCstrBuff != nullptr) + { + int buffer_offset = 0; + assert(ArgsCstrBuff[ArgsCstrBuffLen - 1] == '\0'); + + const size_t arg0_len = std::strlen(ArgsCstrBuff); + char* arg0 = new char[arg0_len + 1]; + memcpy(arg0, ArgsCstrBuff, arg0_len); + arg0[arg0_len] = '\0'; + buffer_offset += arg0_len + 1; + + const int num_cmd_arg_strings = + std::count(&ArgsCstrBuff[buffer_offset], &ArgsCstrBuff[ArgsCstrBuffLen], '\0'); + + std::string* cmd_arg_strings = new std::string[num_cmd_arg_strings]; + for (int i = 0; i < num_cmd_arg_strings; ++i) + { + assert(buffer_offset < ArgsCstrBuffLen); + const int len = std::strlen(ArgsCstrBuff + buffer_offset); + cmd_arg_strings[i] = std::string(&ArgsCstrBuff[buffer_offset], len); + buffer_offset += len + 1; + } + + assert(buffer_offset == ArgsCstrBuffLen); + + Options.MCOptions.Argv0 = arg0; + Options.MCOptions.CommandLineArgs = + llvm::ArrayRef<std::string>(cmd_arg_strings, num_cmd_arg_strings); + } + + TargetMachine *TM = TheTarget->createTargetMachine( + Trip.getTriple(), CPU, Feature, Options, RM, CM, OptLevel); + return wrap(TM); +} + +extern "C" void LLVMRustDisposeTargetMachine(LLVMTargetMachineRef TM) { + + MCTargetOptions& MCOptions = unwrap(TM)->Options.MCOptions; + delete[] MCOptions.Argv0; + delete[] MCOptions.CommandLineArgs.data(); + + delete unwrap(TM); +} + +// Unfortunately, the LLVM C API doesn't provide a way to create the +// TargetLibraryInfo pass, so we use this method to do so. +extern "C" void LLVMRustAddLibraryInfo(LLVMPassManagerRef PMR, LLVMModuleRef M) { + Triple TargetTriple(unwrap(M)->getTargetTriple()); + TargetLibraryInfoImpl TLII(TargetTriple); + unwrap(PMR)->add(new TargetLibraryInfoWrapperPass(TLII)); +} + +extern "C" void LLVMRustSetLLVMOptions(int Argc, char **Argv) { + // Initializing the command-line options more than once is not allowed. So, + // check if they've already been initialized. (This could happen if we're + // being called from rustpkg, for example). If the arguments change, then + // that's just kinda unfortunate. + static bool Initialized = false; + if (Initialized) + return; + Initialized = true; + cl::ParseCommandLineOptions(Argc, Argv); +} + +enum class LLVMRustFileType { + AssemblyFile, + ObjectFile, +}; + +static CodeGenFileType fromRust(LLVMRustFileType Type) { + switch (Type) { + case LLVMRustFileType::AssemblyFile: +#if LLVM_VERSION_GE(18, 0) + return CodeGenFileType::AssemblyFile; +#else + return CGFT_AssemblyFile; +#endif + case LLVMRustFileType::ObjectFile: +#if LLVM_VERSION_GE(18, 0) + return CodeGenFileType::ObjectFile; +#else + return CGFT_ObjectFile; +#endif + default: + report_fatal_error("Bad FileType."); + } +} + +extern "C" LLVMRustResult +LLVMRustWriteOutputFile(LLVMTargetMachineRef Target, LLVMPassManagerRef PMR, + LLVMModuleRef M, const char *Path, const char *DwoPath, + LLVMRustFileType RustFileType) { + llvm::legacy::PassManager *PM = unwrap<llvm::legacy::PassManager>(PMR); + auto FileType = fromRust(RustFileType); + + std::string ErrorInfo; + std::error_code EC; + raw_fd_ostream OS(Path, EC, sys::fs::OF_None); + if (EC) + ErrorInfo = EC.message(); + if (ErrorInfo != "") { + LLVMRustSetLastError(ErrorInfo.c_str()); + return LLVMRustResult::Failure; + } + + buffer_ostream BOS(OS); + if (DwoPath) { + raw_fd_ostream DOS(DwoPath, EC, sys::fs::OF_None); + EC.clear(); + if (EC) + ErrorInfo = EC.message(); + if (ErrorInfo != "") { + LLVMRustSetLastError(ErrorInfo.c_str()); + return LLVMRustResult::Failure; + } + buffer_ostream DBOS(DOS); + unwrap(Target)->addPassesToEmitFile(*PM, BOS, &DBOS, FileType, false); + PM->run(*unwrap(M)); + } else { + unwrap(Target)->addPassesToEmitFile(*PM, BOS, nullptr, FileType, false); + PM->run(*unwrap(M)); + } + + // Apparently `addPassesToEmitFile` adds a pointer to our on-the-stack output + // stream (OS), so the only real safe place to delete this is here? Don't we + // wish this was written in Rust? + LLVMDisposePassManager(PMR); + return LLVMRustResult::Success; +} + +extern "C" typedef void (*LLVMRustSelfProfileBeforePassCallback)(void*, // LlvmSelfProfiler + const char*, // pass name + const char*); // IR name +extern "C" typedef void (*LLVMRustSelfProfileAfterPassCallback)(void*); // LlvmSelfProfiler + +std::string LLVMRustwrappedIrGetName(const llvm::Any &WrappedIr) { + if (const auto *Cast = any_cast<const Module *>(&WrappedIr)) + return (*Cast)->getName().str(); + if (const auto *Cast = any_cast<const Function *>(&WrappedIr)) + return (*Cast)->getName().str(); + if (const auto *Cast = any_cast<const Loop *>(&WrappedIr)) + return (*Cast)->getName().str(); + if (const auto *Cast = any_cast<const LazyCallGraph::SCC *>(&WrappedIr)) + return (*Cast)->getName(); + return "<UNKNOWN>"; +} + + +void LLVMSelfProfileInitializeCallbacks( + PassInstrumentationCallbacks& PIC, void* LlvmSelfProfiler, + LLVMRustSelfProfileBeforePassCallback BeforePassCallback, + LLVMRustSelfProfileAfterPassCallback AfterPassCallback) { + PIC.registerBeforeNonSkippedPassCallback([LlvmSelfProfiler, BeforePassCallback]( + StringRef Pass, llvm::Any Ir) { + std::string PassName = Pass.str(); + std::string IrName = LLVMRustwrappedIrGetName(Ir); + BeforePassCallback(LlvmSelfProfiler, PassName.c_str(), IrName.c_str()); + }); + + PIC.registerAfterPassCallback( + [LlvmSelfProfiler, AfterPassCallback](StringRef Pass, llvm::Any IR, + const PreservedAnalyses &Preserved) { + AfterPassCallback(LlvmSelfProfiler); + }); + + PIC.registerAfterPassInvalidatedCallback( + [LlvmSelfProfiler, AfterPassCallback](StringRef Pass, const PreservedAnalyses &Preserved) { + AfterPassCallback(LlvmSelfProfiler); + }); + + PIC.registerBeforeAnalysisCallback([LlvmSelfProfiler, BeforePassCallback]( + StringRef Pass, llvm::Any Ir) { + std::string PassName = Pass.str(); + std::string IrName = LLVMRustwrappedIrGetName(Ir); + BeforePassCallback(LlvmSelfProfiler, PassName.c_str(), IrName.c_str()); + }); + + PIC.registerAfterAnalysisCallback( + [LlvmSelfProfiler, AfterPassCallback](StringRef Pass, llvm::Any Ir) { + AfterPassCallback(LlvmSelfProfiler); + }); +} + +enum class LLVMRustOptStage { + PreLinkNoLTO, + PreLinkThinLTO, + PreLinkFatLTO, + ThinLTO, + FatLTO, +}; + +struct LLVMRustSanitizerOptions { + bool SanitizeAddress; + bool SanitizeAddressRecover; + bool SanitizeCFI; + bool SanitizeKCFI; + bool SanitizeMemory; + bool SanitizeMemoryRecover; + int SanitizeMemoryTrackOrigins; + bool SanitizeThread; + bool SanitizeHWAddress; + bool SanitizeHWAddressRecover; + bool SanitizeKernelAddress; + bool SanitizeKernelAddressRecover; +}; + +extern "C" LLVMRustResult +LLVMRustOptimize( + LLVMModuleRef ModuleRef, + LLVMTargetMachineRef TMRef, + LLVMRustPassBuilderOptLevel OptLevelRust, + LLVMRustOptStage OptStage, + bool IsLinkerPluginLTO, + bool NoPrepopulatePasses, bool VerifyIR, bool UseThinLTOBuffers, + bool MergeFunctions, bool UnrollLoops, bool SLPVectorize, bool LoopVectorize, + bool EmitLifetimeMarkers, + LLVMRustSanitizerOptions *SanitizerOptions, + const char *PGOGenPath, const char *PGOUsePath, + bool InstrumentCoverage, const char *InstrProfileOutput, + bool InstrumentGCOV, + const char *PGOSampleUsePath, bool DebugInfoForProfiling, + void* LlvmSelfProfiler, + LLVMRustSelfProfileBeforePassCallback BeforePassCallback, + LLVMRustSelfProfileAfterPassCallback AfterPassCallback, + const char *ExtraPasses, size_t ExtraPassesLen, + const char *LLVMPlugins, size_t LLVMPluginsLen) { + Module *TheModule = unwrap(ModuleRef); + TargetMachine *TM = unwrap(TMRef); + OptimizationLevel OptLevel = fromRust(OptLevelRust); + + + PipelineTuningOptions PTO; + PTO.LoopUnrolling = UnrollLoops; + PTO.LoopInterleaving = UnrollLoops; + PTO.LoopVectorization = LoopVectorize; + PTO.SLPVectorization = SLPVectorize; + PTO.MergeFunctions = MergeFunctions; + + // FIXME: We may want to expose this as an option. + bool DebugPassManager = false; + + PassInstrumentationCallbacks PIC; + StandardInstrumentations SI(TheModule->getContext(), DebugPassManager); + SI.registerCallbacks(PIC); + + if (LlvmSelfProfiler){ + LLVMSelfProfileInitializeCallbacks(PIC,LlvmSelfProfiler,BeforePassCallback,AfterPassCallback); + } + + std::optional<PGOOptions> PGOOpt; +#if LLVM_VERSION_GE(17, 0) + auto FS = vfs::getRealFileSystem(); +#endif + if (PGOGenPath) { + assert(!PGOUsePath && !PGOSampleUsePath); + PGOOpt = PGOOptions(PGOGenPath, "", "", +#if LLVM_VERSION_GE(17, 0) + "", + FS, +#endif + PGOOptions::IRInstr, PGOOptions::NoCSAction, + DebugInfoForProfiling); + } else if (PGOUsePath) { + assert(!PGOSampleUsePath); + PGOOpt = PGOOptions(PGOUsePath, "", "", +#if LLVM_VERSION_GE(17, 0) + "", + FS, +#endif + PGOOptions::IRUse, PGOOptions::NoCSAction, + DebugInfoForProfiling); + } else if (PGOSampleUsePath) { + PGOOpt = PGOOptions(PGOSampleUsePath, "", "", +#if LLVM_VERSION_GE(17, 0) + "", + FS, +#endif + PGOOptions::SampleUse, PGOOptions::NoCSAction, + DebugInfoForProfiling); + } else if (DebugInfoForProfiling) { + PGOOpt = PGOOptions("", "", "", +#if LLVM_VERSION_GE(17, 0) + "", + FS, +#endif + PGOOptions::NoAction, PGOOptions::NoCSAction, + DebugInfoForProfiling); + } + + PassBuilder PB(TM, PTO, PGOOpt, &PIC); + LoopAnalysisManager LAM; + FunctionAnalysisManager FAM; + CGSCCAnalysisManager CGAM; + ModuleAnalysisManager MAM; + + if (LLVMPluginsLen) { + auto PluginsStr = StringRef(LLVMPlugins, LLVMPluginsLen); + SmallVector<StringRef> Plugins; + PluginsStr.split(Plugins, ',', -1, false); + for (auto PluginPath: Plugins) { + auto Plugin = PassPlugin::Load(PluginPath.str()); + if (!Plugin) { + LLVMRustSetLastError(("Failed to load pass plugin" + PluginPath.str()).c_str()); + return LLVMRustResult::Failure; + } + Plugin->registerPassBuilderCallbacks(PB); + } + } + + FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); + + Triple TargetTriple(TheModule->getTargetTriple()); + std::unique_ptr<TargetLibraryInfoImpl> TLII(new TargetLibraryInfoImpl(TargetTriple)); + FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); + + PB.registerModuleAnalyses(MAM); + PB.registerCGSCCAnalyses(CGAM); + PB.registerFunctionAnalyses(FAM); + PB.registerLoopAnalyses(LAM); + PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); + + // We manually collect pipeline callbacks so we can apply them at O0, where the + // PassBuilder does not create a pipeline. + std::vector<std::function<void(ModulePassManager &, OptimizationLevel)>> + PipelineStartEPCallbacks; + std::vector<std::function<void(ModulePassManager &, OptimizationLevel)>> + OptimizerLastEPCallbacks; + + if (!IsLinkerPluginLTO + && SanitizerOptions && SanitizerOptions->SanitizeCFI + && !NoPrepopulatePasses) { + PipelineStartEPCallbacks.push_back( + [](ModulePassManager &MPM, OptimizationLevel Level) { + MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, + /*ImportSummary=*/nullptr, + /*DropTypeTests=*/false)); + } + ); + } + + if (VerifyIR) { + PipelineStartEPCallbacks.push_back( + [VerifyIR](ModulePassManager &MPM, OptimizationLevel Level) { + MPM.addPass(VerifierPass()); + } + ); + } + + if (InstrumentGCOV) { + PipelineStartEPCallbacks.push_back( + [](ModulePassManager &MPM, OptimizationLevel Level) { + MPM.addPass(GCOVProfilerPass(GCOVOptions::getDefault())); + } + ); + } + + if (InstrumentCoverage) { + PipelineStartEPCallbacks.push_back( + [InstrProfileOutput](ModulePassManager &MPM, OptimizationLevel Level) { + InstrProfOptions Options; + if (InstrProfileOutput) { + Options.InstrProfileOutput = InstrProfileOutput; + } + // cargo run tests in multhreading mode by default + // so use atomics for coverage counters + Options.Atomic = true; + MPM.addPass(InstrProfiling(Options, false)); + } + ); + } + + if (SanitizerOptions) { + if (SanitizerOptions->SanitizeMemory) { + MemorySanitizerOptions Options( + SanitizerOptions->SanitizeMemoryTrackOrigins, + SanitizerOptions->SanitizeMemoryRecover, + /*CompileKernel=*/false, + /*EagerChecks=*/true); + OptimizerLastEPCallbacks.push_back( + [Options](ModulePassManager &MPM, OptimizationLevel Level) { + MPM.addPass(MemorySanitizerPass(Options)); + } + ); + } + + if (SanitizerOptions->SanitizeThread) { + OptimizerLastEPCallbacks.push_back( + [](ModulePassManager &MPM, OptimizationLevel Level) { + MPM.addPass(ModuleThreadSanitizerPass()); + MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); + } + ); + } + + if (SanitizerOptions->SanitizeAddress || SanitizerOptions->SanitizeKernelAddress) { + OptimizerLastEPCallbacks.push_back( + [SanitizerOptions](ModulePassManager &MPM, OptimizationLevel Level) { + auto CompileKernel = SanitizerOptions->SanitizeKernelAddress; + AddressSanitizerOptions opts = AddressSanitizerOptions{ + CompileKernel, + SanitizerOptions->SanitizeAddressRecover + || SanitizerOptions->SanitizeKernelAddressRecover, + /*UseAfterScope=*/true, + AsanDetectStackUseAfterReturnMode::Runtime, + }; + MPM.addPass(AddressSanitizerPass(opts)); + } + ); + } + if (SanitizerOptions->SanitizeHWAddress) { + OptimizerLastEPCallbacks.push_back( + [SanitizerOptions](ModulePassManager &MPM, OptimizationLevel Level) { + HWAddressSanitizerOptions opts( + /*CompileKernel=*/false, SanitizerOptions->SanitizeHWAddressRecover, + /*DisableOptimization=*/false); + MPM.addPass(HWAddressSanitizerPass(opts)); + } + ); + } + } + + ModulePassManager MPM; + bool NeedThinLTOBufferPasses = UseThinLTOBuffers; + if (!NoPrepopulatePasses) { + // The pre-link pipelines don't support O0 and require using buildO0DefaultPipeline() instead. + // At the same time, the LTO pipelines do support O0 and using them is required. + bool IsLTO = OptStage == LLVMRustOptStage::ThinLTO || OptStage == LLVMRustOptStage::FatLTO; + if (OptLevel == OptimizationLevel::O0 && !IsLTO) { + for (const auto &C : PipelineStartEPCallbacks) + PB.registerPipelineStartEPCallback(C); + for (const auto &C : OptimizerLastEPCallbacks) + PB.registerOptimizerLastEPCallback(C); + + // Pass false as we manually schedule ThinLTOBufferPasses below. + MPM = PB.buildO0DefaultPipeline(OptLevel, /* PreLinkLTO */ false); + } else { + for (const auto &C : PipelineStartEPCallbacks) + PB.registerPipelineStartEPCallback(C); + if (OptStage != LLVMRustOptStage::PreLinkThinLTO) { + for (const auto &C : OptimizerLastEPCallbacks) + PB.registerOptimizerLastEPCallback(C); + } + + switch (OptStage) { + case LLVMRustOptStage::PreLinkNoLTO: + MPM = PB.buildPerModuleDefaultPipeline(OptLevel, DebugPassManager); + break; + case LLVMRustOptStage::PreLinkThinLTO: + MPM = PB.buildThinLTOPreLinkDefaultPipeline(OptLevel); + // The ThinLTOPreLink pipeline already includes ThinLTOBuffer passes. However, callback + // passes may still run afterwards. This means we need to run the buffer passes again. + // FIXME: In LLVM 13, the ThinLTOPreLink pipeline also runs OptimizerLastEPCallbacks + // before the RequiredLTOPreLinkPasses, in which case we can remove these hacks. + if (OptimizerLastEPCallbacks.empty()) + NeedThinLTOBufferPasses = false; + for (const auto &C : OptimizerLastEPCallbacks) + C(MPM, OptLevel); + break; + case LLVMRustOptStage::PreLinkFatLTO: + MPM = PB.buildLTOPreLinkDefaultPipeline(OptLevel); + NeedThinLTOBufferPasses = false; + break; + case LLVMRustOptStage::ThinLTO: + // FIXME: Does it make sense to pass the ModuleSummaryIndex? + // It only seems to be needed for C++ specific optimizations. + MPM = PB.buildThinLTODefaultPipeline(OptLevel, nullptr); + break; + case LLVMRustOptStage::FatLTO: + MPM = PB.buildLTODefaultPipeline(OptLevel, nullptr); + break; + } + } + } else { + // We're not building any of the default pipelines but we still want to + // add the verifier, instrumentation, etc passes if they were requested + for (const auto &C : PipelineStartEPCallbacks) + C(MPM, OptLevel); + for (const auto &C : OptimizerLastEPCallbacks) + C(MPM, OptLevel); + } + + if (ExtraPassesLen) { + if (auto Err = PB.parsePassPipeline(MPM, StringRef(ExtraPasses, ExtraPassesLen))) { + std::string ErrMsg = toString(std::move(Err)); + LLVMRustSetLastError(ErrMsg.c_str()); + return LLVMRustResult::Failure; + } + } + + if (NeedThinLTOBufferPasses) { + MPM.addPass(CanonicalizeAliasesPass()); + MPM.addPass(NameAnonGlobalPass()); + } + + // Upgrade all calls to old intrinsics first. + for (Module::iterator I = TheModule->begin(), E = TheModule->end(); I != E;) + UpgradeCallsToIntrinsic(&*I++); // must be post-increment, as we remove + + MPM.run(*TheModule, MAM); + return LLVMRustResult::Success; +} + +// Callback to demangle function name +// Parameters: +// * name to be demangled +// * name len +// * output buffer +// * output buffer len +// Returns len of demangled string, or 0 if demangle failed. +typedef size_t (*DemangleFn)(const char*, size_t, char*, size_t); + + +namespace { + +class RustAssemblyAnnotationWriter : public AssemblyAnnotationWriter { + DemangleFn Demangle; + std::vector<char> Buf; + +public: + RustAssemblyAnnotationWriter(DemangleFn Demangle) : Demangle(Demangle) {} + + // Return empty string if demangle failed + // or if name does not need to be demangled + StringRef CallDemangle(StringRef name) { + if (!Demangle) { + return StringRef(); + } + + if (Buf.size() < name.size() * 2) { + // Semangled name usually shorter than mangled, + // but allocate twice as much memory just in case + Buf.resize(name.size() * 2); + } + + auto R = Demangle(name.data(), name.size(), Buf.data(), Buf.size()); + if (!R) { + // Demangle failed. + return StringRef(); + } + + auto Demangled = StringRef(Buf.data(), R); + if (Demangled == name) { + // Do not print anything if demangled name is equal to mangled. + return StringRef(); + } + + return Demangled; + } + + void emitFunctionAnnot(const Function *F, + formatted_raw_ostream &OS) override { + StringRef Demangled = CallDemangle(F->getName()); + if (Demangled.empty()) { + return; + } + + OS << "; " << Demangled << "\n"; + } + + void emitInstructionAnnot(const Instruction *I, + formatted_raw_ostream &OS) override { + const char *Name; + const Value *Value; + if (const CallInst *CI = dyn_cast<CallInst>(I)) { + Name = "call"; + Value = CI->getCalledOperand(); + } else if (const InvokeInst* II = dyn_cast<InvokeInst>(I)) { + Name = "invoke"; + Value = II->getCalledOperand(); + } else { + // Could demangle more operations, e. g. + // `store %place, @function`. + return; + } + + if (!Value->hasName()) { + return; + } + + StringRef Demangled = CallDemangle(Value->getName()); + if (Demangled.empty()) { + return; + } + + OS << "; " << Name << " " << Demangled << "\n"; + } +}; + +} // namespace + +extern "C" LLVMRustResult +LLVMRustPrintModule(LLVMModuleRef M, const char *Path, DemangleFn Demangle) { + std::string ErrorInfo; + std::error_code EC; + raw_fd_ostream OS(Path, EC, sys::fs::OF_None); + if (EC) + ErrorInfo = EC.message(); + if (ErrorInfo != "") { + LLVMRustSetLastError(ErrorInfo.c_str()); + return LLVMRustResult::Failure; + } + + RustAssemblyAnnotationWriter AAW(Demangle); + formatted_raw_ostream FOS(OS); + unwrap(M)->print(FOS, &AAW); + + return LLVMRustResult::Success; +} + +extern "C" void LLVMRustPrintPasses() { + PassBuilder PB; + PB.printPassNames(outs()); +} + +extern "C" void LLVMRustRunRestrictionPass(LLVMModuleRef M, char **Symbols, + size_t Len) { + auto PreserveFunctions = [=](const GlobalValue &GV) { + // Preserve LLVM-injected, ASAN-related symbols. + // See also https://github.com/rust-lang/rust/issues/113404. + if (GV.getName() == "___asan_globals_registered") { + return true; + } + + // Preserve symbols exported from Rust modules. + for (size_t I = 0; I < Len; I++) { + if (GV.getName() == Symbols[I]) { + return true; + } + } + return false; + }; + + internalizeModule(*unwrap(M), PreserveFunctions); +} + +extern "C" void +LLVMRustSetDataLayoutFromTargetMachine(LLVMModuleRef Module, + LLVMTargetMachineRef TMR) { + TargetMachine *Target = unwrap(TMR); + unwrap(Module)->setDataLayout(Target->createDataLayout()); +} + +extern "C" void LLVMRustSetModulePICLevel(LLVMModuleRef M) { + unwrap(M)->setPICLevel(PICLevel::Level::BigPIC); +} + +extern "C" void LLVMRustSetModulePIELevel(LLVMModuleRef M) { + unwrap(M)->setPIELevel(PIELevel::Level::Large); +} + +extern "C" void LLVMRustSetModuleCodeModel(LLVMModuleRef M, + LLVMRustCodeModel Model) { + auto CM = fromRust(Model); + if (!CM) + return; + unwrap(M)->setCodeModel(*CM); +} + +// Here you'll find an implementation of ThinLTO as used by the Rust compiler +// right now. This ThinLTO support is only enabled on "recent ish" versions of +// LLVM, and otherwise it's just blanket rejected from other compilers. +// +// Most of this implementation is straight copied from LLVM. At the time of +// this writing it wasn't *quite* suitable to reuse more code from upstream +// for our purposes, but we should strive to upstream this support once it's +// ready to go! I figure we may want a bit of testing locally first before +// sending this upstream to LLVM. I hear though they're quite eager to receive +// feedback like this! +// +// If you're reading this code and wondering "what in the world" or you're +// working "good lord by LLVM upgrade is *still* failing due to these bindings" +// then fear not! (ok maybe fear a little). All code here is mostly based +// on `lib/LTO/ThinLTOCodeGenerator.cpp` in LLVM. +// +// You'll find that the general layout here roughly corresponds to the `run` +// method in that file as well as `ProcessThinLTOModule`. Functions are +// specifically commented below as well, but if you're updating this code +// or otherwise trying to understand it, the LLVM source will be useful in +// interpreting the mysteries within. +// +// Otherwise I'll apologize in advance, it probably requires a relatively +// significant investment on your part to "truly understand" what's going on +// here. Not saying I do myself, but it took me awhile staring at LLVM's source +// and various online resources about ThinLTO to make heads or tails of all +// this. + +// This is a shared data structure which *must* be threadsafe to share +// read-only amongst threads. This also corresponds basically to the arguments +// of the `ProcessThinLTOModule` function in the LLVM source. +struct LLVMRustThinLTOData { + // The combined index that is the global analysis over all modules we're + // performing ThinLTO for. This is mostly managed by LLVM. + ModuleSummaryIndex Index; + + // All modules we may look at, stored as in-memory serialized versions. This + // is later used when inlining to ensure we can extract any module to inline + // from. + StringMap<MemoryBufferRef> ModuleMap; + + // A set that we manage of everything we *don't* want internalized. Note that + // this includes all transitive references right now as well, but it may not + // always! + DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; + + // Not 100% sure what these are, but they impact what's internalized and + // what's inlined across modules, I believe. +#if LLVM_VERSION_GE(18, 0) + DenseMap<StringRef, FunctionImporter::ImportMapTy> ImportLists; + DenseMap<StringRef, FunctionImporter::ExportSetTy> ExportLists; + DenseMap<StringRef, GVSummaryMapTy> ModuleToDefinedGVSummaries; +#else + StringMap<FunctionImporter::ImportMapTy> ImportLists; + StringMap<FunctionImporter::ExportSetTy> ExportLists; + StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries; +#endif + StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; + + LLVMRustThinLTOData() : Index(/* HaveGVs = */ false) {} +}; + +// Just an argument to the `LLVMRustCreateThinLTOData` function below. +struct LLVMRustThinLTOModule { + const char *identifier; + const char *data; + size_t len; +}; + +// This is copied from `lib/LTO/ThinLTOCodeGenerator.cpp`, not sure what it +// does. +static const GlobalValueSummary * +getFirstDefinitionForLinker(const GlobalValueSummaryList &GVSummaryList) { + auto StrongDefForLinker = llvm::find_if( + GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) { + auto Linkage = Summary->linkage(); + return !GlobalValue::isAvailableExternallyLinkage(Linkage) && + !GlobalValue::isWeakForLinker(Linkage); + }); + if (StrongDefForLinker != GVSummaryList.end()) + return StrongDefForLinker->get(); + + auto FirstDefForLinker = llvm::find_if( + GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) { + auto Linkage = Summary->linkage(); + return !GlobalValue::isAvailableExternallyLinkage(Linkage); + }); + if (FirstDefForLinker == GVSummaryList.end()) + return nullptr; + return FirstDefForLinker->get(); +} + +// The main entry point for creating the global ThinLTO analysis. The structure +// here is basically the same as before threads are spawned in the `run` +// function of `lib/LTO/ThinLTOCodeGenerator.cpp`. +extern "C" LLVMRustThinLTOData* +LLVMRustCreateThinLTOData(LLVMRustThinLTOModule *modules, + int num_modules, + const char **preserved_symbols, + int num_symbols) { + auto Ret = std::make_unique<LLVMRustThinLTOData>(); + + // Load each module's summary and merge it into one combined index + for (int i = 0; i < num_modules; i++) { + auto module = &modules[i]; + StringRef buffer(module->data, module->len); + MemoryBufferRef mem_buffer(buffer, module->identifier); + + Ret->ModuleMap[module->identifier] = mem_buffer; + +#if LLVM_VERSION_GE(18, 0) + if (Error Err = readModuleSummaryIndex(mem_buffer, Ret->Index)) { +#else + if (Error Err = readModuleSummaryIndex(mem_buffer, Ret->Index, i)) { +#endif + LLVMRustSetLastError(toString(std::move(Err)).c_str()); + return nullptr; + } + } + + // Collect for each module the list of function it defines (GUID -> Summary) + Ret->Index.collectDefinedGVSummariesPerModule(Ret->ModuleToDefinedGVSummaries); + + // Convert the preserved symbols set from string to GUID, this is then needed + // for internalization. + for (int i = 0; i < num_symbols; i++) { + auto GUID = GlobalValue::getGUID(preserved_symbols[i]); + Ret->GUIDPreservedSymbols.insert(GUID); + } + + // Collect the import/export lists for all modules from the call-graph in the + // combined index + // + // This is copied from `lib/LTO/ThinLTOCodeGenerator.cpp` + auto deadIsPrevailing = [&](GlobalValue::GUID G) { + return PrevailingType::Unknown; + }; + // We don't have a complete picture in our use of ThinLTO, just our immediate + // crate, so we need `ImportEnabled = false` to limit internalization. + // Otherwise, we sometimes lose `static` values -- see #60184. + computeDeadSymbolsWithConstProp(Ret->Index, Ret->GUIDPreservedSymbols, + deadIsPrevailing, /* ImportEnabled = */ false); + // Resolve LinkOnce/Weak symbols, this has to be computed early be cause it + // impacts the caching. + // + // This is copied from `lib/LTO/ThinLTOCodeGenerator.cpp` with some of this + // being lifted from `lib/LTO/LTO.cpp` as well + DenseMap<GlobalValue::GUID, const GlobalValueSummary *> PrevailingCopy; + for (auto &I : Ret->Index) { + if (I.second.SummaryList.size() > 1) + PrevailingCopy[I.first] = getFirstDefinitionForLinker(I.second.SummaryList); + } + auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) { + const auto &Prevailing = PrevailingCopy.find(GUID); + if (Prevailing == PrevailingCopy.end()) + return true; + return Prevailing->second == S; + }; + ComputeCrossModuleImport( + Ret->Index, + Ret->ModuleToDefinedGVSummaries, +#if LLVM_VERSION_GE(17, 0) + isPrevailing, +#endif + Ret->ImportLists, + Ret->ExportLists + ); + + auto recordNewLinkage = [&](StringRef ModuleIdentifier, + GlobalValue::GUID GUID, + GlobalValue::LinkageTypes NewLinkage) { + Ret->ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; + }; + + // Uses FromPrevailing visibility scheme which works for many binary + // formats. We probably could and should use ELF visibility scheme for many of + // our targets, however. + lto::Config conf; + thinLTOResolvePrevailingInIndex(conf, Ret->Index, isPrevailing, recordNewLinkage, + Ret->GUIDPreservedSymbols); + + // Here we calculate an `ExportedGUIDs` set for use in the `isExported` + // callback below. This callback below will dictate the linkage for all + // summaries in the index, and we basically just only want to ensure that dead + // symbols are internalized. Otherwise everything that's already external + // linkage will stay as external, and internal will stay as internal. + std::set<GlobalValue::GUID> ExportedGUIDs; + for (auto &List : Ret->Index) { + for (auto &GVS: List.second.SummaryList) { + if (GlobalValue::isLocalLinkage(GVS->linkage())) + continue; + auto GUID = GVS->getOriginalName(); + if (GVS->flags().Live) + ExportedGUIDs.insert(GUID); + } + } + auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { + const auto &ExportList = Ret->ExportLists.find(ModuleIdentifier); + return (ExportList != Ret->ExportLists.end() && + ExportList->second.count(VI)) || + ExportedGUIDs.count(VI.getGUID()); + }; + thinLTOInternalizeAndPromoteInIndex(Ret->Index, isExported, isPrevailing); + + return Ret.release(); +} + +extern "C" void +LLVMRustFreeThinLTOData(LLVMRustThinLTOData *Data) { + delete Data; +} + +// Below are the various passes that happen *per module* when doing ThinLTO. +// +// In other words, these are the functions that are all run concurrently +// with one another, one per module. The passes here correspond to the analysis +// passes in `lib/LTO/ThinLTOCodeGenerator.cpp`, currently found in the +// `ProcessThinLTOModule` function. Here they're split up into separate steps +// so rustc can save off the intermediate bytecode between each step. + +static bool +clearDSOLocalOnDeclarations(Module &Mod, TargetMachine &TM) { + // When linking an ELF shared object, dso_local should be dropped. We + // conservatively do this for -fpic. + bool ClearDSOLocalOnDeclarations = + TM.getTargetTriple().isOSBinFormatELF() && + TM.getRelocationModel() != Reloc::Static && + Mod.getPIELevel() == PIELevel::Default; + return ClearDSOLocalOnDeclarations; +} + +extern "C" bool +LLVMRustPrepareThinLTORename(const LLVMRustThinLTOData *Data, LLVMModuleRef M, + LLVMTargetMachineRef TM) { + Module &Mod = *unwrap(M); + TargetMachine &Target = *unwrap(TM); + + bool ClearDSOLocal = clearDSOLocalOnDeclarations(Mod, Target); + bool error = renameModuleForThinLTO(Mod, Data->Index, ClearDSOLocal); + + if (error) { + LLVMRustSetLastError("renameModuleForThinLTO failed"); + return false; + } + return true; +} + +extern "C" bool +LLVMRustPrepareThinLTOResolveWeak(const LLVMRustThinLTOData *Data, LLVMModuleRef M) { + Module &Mod = *unwrap(M); + const auto &DefinedGlobals = Data->ModuleToDefinedGVSummaries.lookup(Mod.getModuleIdentifier()); + thinLTOFinalizeInModule(Mod, DefinedGlobals, /*PropagateAttrs=*/true); + return true; +} + +extern "C" bool +LLVMRustPrepareThinLTOInternalize(const LLVMRustThinLTOData *Data, LLVMModuleRef M) { + Module &Mod = *unwrap(M); + const auto &DefinedGlobals = Data->ModuleToDefinedGVSummaries.lookup(Mod.getModuleIdentifier()); + thinLTOInternalizeModule(Mod, DefinedGlobals); + return true; +} + +extern "C" bool +LLVMRustPrepareThinLTOImport(const LLVMRustThinLTOData *Data, LLVMModuleRef M, + LLVMTargetMachineRef TM) { + Module &Mod = *unwrap(M); + TargetMachine &Target = *unwrap(TM); + + const auto &ImportList = Data->ImportLists.lookup(Mod.getModuleIdentifier()); + auto Loader = [&](StringRef Identifier) { + const auto &Memory = Data->ModuleMap.lookup(Identifier); + auto &Context = Mod.getContext(); + auto MOrErr = getLazyBitcodeModule(Memory, Context, true, true); + + if (!MOrErr) + return MOrErr; + + // The rest of this closure is a workaround for + // https://bugs.llvm.org/show_bug.cgi?id=38184 where during ThinLTO imports + // we accidentally import wasm custom sections into different modules, + // duplicating them by in the final output artifact. + // + // The issue is worked around here by manually removing the + // `wasm.custom_sections` named metadata node from any imported module. This + // we know isn't used by any optimization pass so there's no need for it to + // be imported. + // + // Note that the metadata is currently lazily loaded, so we materialize it + // here before looking up if there's metadata inside. The `FunctionImporter` + // will immediately materialize metadata anyway after an import, so this + // shouldn't be a perf hit. + if (Error Err = (*MOrErr)->materializeMetadata()) { + Expected<std::unique_ptr<Module>> Ret(std::move(Err)); + return Ret; + } + + auto *WasmCustomSections = (*MOrErr)->getNamedMetadata("wasm.custom_sections"); + if (WasmCustomSections) + WasmCustomSections->eraseFromParent(); + + // `llvm.ident` named metadata also gets duplicated. + auto *llvmIdent = (*MOrErr)->getNamedMetadata("llvm.ident"); + if (llvmIdent) + llvmIdent->eraseFromParent(); + + return MOrErr; + }; + bool ClearDSOLocal = clearDSOLocalOnDeclarations(Mod, Target); + FunctionImporter Importer(Data->Index, Loader, ClearDSOLocal); + Expected<bool> Result = Importer.importFunctions(Mod, ImportList); + if (!Result) { + LLVMRustSetLastError(toString(Result.takeError()).c_str()); + return false; + } + return true; +} + +// This struct and various functions are sort of a hack right now, but the +// problem is that we've got in-memory LLVM modules after we generate and +// optimize all codegen-units for one compilation in rustc. To be compatible +// with the LTO support above we need to serialize the modules plus their +// ThinLTO summary into memory. +// +// This structure is basically an owned version of a serialize module, with +// a ThinLTO summary attached. +struct LLVMRustThinLTOBuffer { + std::string data; +}; + +extern "C" LLVMRustThinLTOBuffer* +LLVMRustThinLTOBufferCreate(LLVMModuleRef M, bool is_thin) { + auto Ret = std::make_unique<LLVMRustThinLTOBuffer>(); + { + raw_string_ostream OS(Ret->data); + { + if (is_thin) { + PassBuilder PB; + LoopAnalysisManager LAM; + FunctionAnalysisManager FAM; + CGSCCAnalysisManager CGAM; + ModuleAnalysisManager MAM; + PB.registerModuleAnalyses(MAM); + PB.registerCGSCCAnalyses(CGAM); + PB.registerFunctionAnalyses(FAM); + PB.registerLoopAnalyses(LAM); + PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); + ModulePassManager MPM; + MPM.addPass(ThinLTOBitcodeWriterPass(OS, nullptr)); + MPM.run(*unwrap(M), MAM); + } else { + WriteBitcodeToFile(*unwrap(M), OS); + } + } + } + return Ret.release(); +} + +extern "C" void +LLVMRustThinLTOBufferFree(LLVMRustThinLTOBuffer *Buffer) { + delete Buffer; +} + +extern "C" const void* +LLVMRustThinLTOBufferPtr(const LLVMRustThinLTOBuffer *Buffer) { + return Buffer->data.data(); +} + +extern "C" size_t +LLVMRustThinLTOBufferLen(const LLVMRustThinLTOBuffer *Buffer) { + return Buffer->data.length(); +} + +// This is what we used to parse upstream bitcode for actual ThinLTO +// processing. We'll call this once per module optimized through ThinLTO, and +// it'll be called concurrently on many threads. +extern "C" LLVMModuleRef +LLVMRustParseBitcodeForLTO(LLVMContextRef Context, + const char *data, + size_t len, + const char *identifier) { + StringRef Data(data, len); + MemoryBufferRef Buffer(Data, identifier); + unwrap(Context)->enableDebugTypeODRUniquing(); + Expected<std::unique_ptr<Module>> SrcOrError = + parseBitcodeFile(Buffer, *unwrap(Context)); + if (!SrcOrError) { + LLVMRustSetLastError(toString(SrcOrError.takeError()).c_str()); + return nullptr; + } + return wrap(std::move(*SrcOrError).release()); +} + +// Find a section of an object file by name. Fail if the section is missing or +// empty. +extern "C" const char *LLVMRustGetSliceFromObjectDataByName(const char *data, + size_t len, + const char *name, + size_t *out_len) { + *out_len = 0; + StringRef Data(data, len); + MemoryBufferRef Buffer(Data, ""); // The id is unused. + file_magic Type = identify_magic(Buffer.getBuffer()); + Expected<std::unique_ptr<object::ObjectFile>> ObjFileOrError = + object::ObjectFile::createObjectFile(Buffer, Type); + if (!ObjFileOrError) { + LLVMRustSetLastError(toString(ObjFileOrError.takeError()).c_str()); + return nullptr; + } + for (const object::SectionRef &Sec : (*ObjFileOrError)->sections()) { + Expected<StringRef> Name = Sec.getName(); + if (Name && *Name == name) { + Expected<StringRef> SectionOrError = Sec.getContents(); + if (!SectionOrError) { + LLVMRustSetLastError(toString(SectionOrError.takeError()).c_str()); + return nullptr; + } + *out_len = SectionOrError->size(); + return SectionOrError->data(); + } + } + LLVMRustSetLastError("could not find requested section"); + return nullptr; +} + +// Computes the LTO cache key for the provided 'ModId' in the given 'Data', +// storing the result in 'KeyOut'. +// Currently, this cache key is a SHA-1 hash of anything that could affect +// the result of optimizing this module (e.g. module imports, exports, liveness +// of access globals, etc). +// The precise details are determined by LLVM in `computeLTOCacheKey`, which is +// used during the normal linker-plugin incremental thin-LTO process. +extern "C" void +LLVMRustComputeLTOCacheKey(RustStringRef KeyOut, const char *ModId, LLVMRustThinLTOData *Data) { + SmallString<40> Key; + llvm::lto::Config conf; + const auto &ImportList = Data->ImportLists.lookup(ModId); + const auto &ExportList = Data->ExportLists.lookup(ModId); + const auto &ResolvedODR = Data->ResolvedODR.lookup(ModId); + const auto &DefinedGlobals = Data->ModuleToDefinedGVSummaries.lookup(ModId); + std::set<GlobalValue::GUID> CfiFunctionDefs; + std::set<GlobalValue::GUID> CfiFunctionDecls; + + // Based on the 'InProcessThinBackend' constructor in LLVM + for (auto &Name : Data->Index.cfiFunctionDefs()) + CfiFunctionDefs.insert( + GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); + for (auto &Name : Data->Index.cfiFunctionDecls()) + CfiFunctionDecls.insert( + GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); + + llvm::computeLTOCacheKey(Key, conf, Data->Index, ModId, + ImportList, ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, CfiFunctionDecls + ); + + LLVMRustStringWriteImpl(KeyOut, Key.c_str(), Key.size()); +} |
