about summary refs log tree commit diff
path: root/compiler/rustc_middle/src/ty/fold.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_middle/src/ty/fold.rs')
-rw-r--r--compiler/rustc_middle/src/ty/fold.rs1019
1 files changed, 1019 insertions, 0 deletions
diff --git a/compiler/rustc_middle/src/ty/fold.rs b/compiler/rustc_middle/src/ty/fold.rs
new file mode 100644
index 00000000000..492f8ce9ef1
--- /dev/null
+++ b/compiler/rustc_middle/src/ty/fold.rs
@@ -0,0 +1,1019 @@
+//! Generalized type folding mechanism. The setup is a bit convoluted
+//! but allows for convenient usage. Let T be an instance of some
+//! "foldable type" (one which implements `TypeFoldable`) and F be an
+//! instance of a "folder" (a type which implements `TypeFolder`). Then
+//! the setup is intended to be:
+//!
+//!     T.fold_with(F) --calls--> F.fold_T(T) --calls--> T.super_fold_with(F)
+//!
+//! This way, when you define a new folder F, you can override
+//! `fold_T()` to customize the behavior, and invoke `T.super_fold_with()`
+//! to get the original behavior. Meanwhile, to actually fold
+//! something, you can just write `T.fold_with(F)`, which is
+//! convenient. (Note that `fold_with` will also transparently handle
+//! things like a `Vec<T>` where T is foldable and so on.)
+//!
+//! In this ideal setup, the only function that actually *does*
+//! anything is `T.super_fold_with()`, which traverses the type `T`.
+//! Moreover, `T.super_fold_with()` should only ever call `T.fold_with()`.
+//!
+//! In some cases, we follow a degenerate pattern where we do not have
+//! a `fold_T` method. Instead, `T.fold_with` traverses the structure directly.
+//! This is suboptimal because the behavior cannot be overridden, but it's
+//! much less work to implement. If you ever *do* need an override that
+//! doesn't exist, it's not hard to convert the degenerate pattern into the
+//! proper thing.
+//!
+//! A `TypeFoldable` T can also be visited by a `TypeVisitor` V using similar setup:
+//!
+//!     T.visit_with(V) --calls--> V.visit_T(T) --calls--> T.super_visit_with(V).
+//!
+//! These methods return true to indicate that the visitor has found what it is
+//! looking for, and does not need to visit anything else.
+
+use crate::ty::structural_impls::PredicateVisitor;
+use crate::ty::{self, flags::FlagComputation, Binder, Ty, TyCtxt, TypeFlags};
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+
+use rustc_data_structures::fx::FxHashSet;
+use std::collections::BTreeMap;
+use std::fmt;
+
+/// This trait is implemented for every type that can be folded.
+/// Basically, every type that has a corresponding method in `TypeFolder`.
+///
+/// To implement this conveniently, use the derive macro located in librustc_macros.
+pub trait TypeFoldable<'tcx>: fmt::Debug + Clone {
+    fn super_fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self;
+    fn fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self {
+        self.super_fold_with(folder)
+    }
+
+    fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool;
+    fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
+        self.super_visit_with(visitor)
+    }
+
+    /// Returns `true` if `self` has any late-bound regions that are either
+    /// bound by `binder` or bound by some binder outside of `binder`.
+    /// If `binder` is `ty::INNERMOST`, this indicates whether
+    /// there are any late-bound regions that appear free.
+    fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool {
+        self.visit_with(&mut HasEscapingVarsVisitor { outer_index: binder })
+    }
+
+    /// Returns `true` if this `self` has any regions that escape `binder` (and
+    /// hence are not bound by it).
+    fn has_vars_bound_above(&self, binder: ty::DebruijnIndex) -> bool {
+        self.has_vars_bound_at_or_above(binder.shifted_in(1))
+    }
+
+    fn has_escaping_bound_vars(&self) -> bool {
+        self.has_vars_bound_at_or_above(ty::INNERMOST)
+    }
+
+    fn has_type_flags(&self, flags: TypeFlags) -> bool {
+        self.visit_with(&mut HasTypeFlagsVisitor { flags })
+    }
+    fn has_projections(&self) -> bool {
+        self.has_type_flags(TypeFlags::HAS_PROJECTION)
+    }
+    fn has_opaque_types(&self) -> bool {
+        self.has_type_flags(TypeFlags::HAS_TY_OPAQUE)
+    }
+    fn references_error(&self) -> bool {
+        self.has_type_flags(TypeFlags::HAS_ERROR)
+    }
+    fn has_param_types_or_consts(&self) -> bool {
+        self.has_type_flags(TypeFlags::HAS_TY_PARAM | TypeFlags::HAS_CT_PARAM)
+    }
+    fn has_infer_regions(&self) -> bool {
+        self.has_type_flags(TypeFlags::HAS_RE_INFER)
+    }
+    fn has_infer_types(&self) -> bool {
+        self.has_type_flags(TypeFlags::HAS_TY_INFER)
+    }
+    fn has_infer_types_or_consts(&self) -> bool {
+        self.has_type_flags(TypeFlags::HAS_TY_INFER | TypeFlags::HAS_CT_INFER)
+    }
+    fn has_infer_consts(&self) -> bool {
+        self.has_type_flags(TypeFlags::HAS_CT_INFER)
+    }
+    fn needs_infer(&self) -> bool {
+        self.has_type_flags(TypeFlags::NEEDS_INFER)
+    }
+    fn has_placeholders(&self) -> bool {
+        self.has_type_flags(
+            TypeFlags::HAS_RE_PLACEHOLDER
+                | TypeFlags::HAS_TY_PLACEHOLDER
+                | TypeFlags::HAS_CT_PLACEHOLDER,
+        )
+    }
+    fn needs_subst(&self) -> bool {
+        self.has_type_flags(TypeFlags::NEEDS_SUBST)
+    }
+    fn has_re_placeholders(&self) -> bool {
+        self.has_type_flags(TypeFlags::HAS_RE_PLACEHOLDER)
+    }
+    /// "Free" regions in this context means that it has any region
+    /// that is not (a) erased or (b) late-bound.
+    fn has_free_regions(&self) -> bool {
+        self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
+    }
+
+    fn has_erased_regions(&self) -> bool {
+        self.has_type_flags(TypeFlags::HAS_RE_ERASED)
+    }
+
+    /// True if there are any un-erased free regions.
+    fn has_erasable_regions(&self) -> bool {
+        self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
+    }
+
+    /// Indicates whether this value references only 'global'
+    /// generic parameters that are the same regardless of what fn we are
+    /// in. This is used for caching.
+    fn is_global(&self) -> bool {
+        !self.has_type_flags(TypeFlags::HAS_FREE_LOCAL_NAMES)
+    }
+
+    /// True if there are any late-bound regions
+    fn has_late_bound_regions(&self) -> bool {
+        self.has_type_flags(TypeFlags::HAS_RE_LATE_BOUND)
+    }
+
+    /// Indicates whether this value still has parameters/placeholders/inference variables
+    /// which could be replaced later, in a way that would change the results of `impl`
+    /// specialization.
+    fn still_further_specializable(&self) -> bool {
+        self.has_type_flags(TypeFlags::STILL_FURTHER_SPECIALIZABLE)
+    }
+
+    /// A visitor that does not recurse into types, works like `fn walk_shallow` in `Ty`.
+    fn visit_tys_shallow(&self, visit: impl FnMut(Ty<'tcx>) -> bool) -> bool {
+        pub struct Visitor<F>(F);
+
+        impl<'tcx, F: FnMut(Ty<'tcx>) -> bool> TypeVisitor<'tcx> for Visitor<F> {
+            fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
+                self.0(ty)
+            }
+        }
+
+        self.visit_with(&mut Visitor(visit))
+    }
+}
+
+impl TypeFoldable<'tcx> for hir::Constness {
+    fn super_fold_with<F: TypeFolder<'tcx>>(&self, _: &mut F) -> Self {
+        *self
+    }
+    fn super_visit_with<V: TypeVisitor<'tcx>>(&self, _: &mut V) -> bool {
+        false
+    }
+}
+
+/// The `TypeFolder` trait defines the actual *folding*. There is a
+/// method defined for every foldable type. Each of these has a
+/// default implementation that does an "identity" fold. Within each
+/// identity fold, it should invoke `foo.fold_with(self)` to fold each
+/// sub-item.
+pub trait TypeFolder<'tcx>: Sized {
+    fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
+
+    fn fold_binder<T>(&mut self, t: &Binder<T>) -> Binder<T>
+    where
+        T: TypeFoldable<'tcx>,
+    {
+        t.super_fold_with(self)
+    }
+
+    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
+        t.super_fold_with(self)
+    }
+
+    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
+        r.super_fold_with(self)
+    }
+
+    fn fold_const(&mut self, c: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
+        c.super_fold_with(self)
+    }
+}
+
+pub trait TypeVisitor<'tcx>: Sized {
+    fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
+        t.super_visit_with(self)
+    }
+
+    fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
+        t.super_visit_with(self)
+    }
+
+    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
+        r.super_visit_with(self)
+    }
+
+    fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
+        c.super_visit_with(self)
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Some sample folders
+
+pub struct BottomUpFolder<'tcx, F, G, H>
+where
+    F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
+    G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
+    H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
+{
+    pub tcx: TyCtxt<'tcx>,
+    pub ty_op: F,
+    pub lt_op: G,
+    pub ct_op: H,
+}
+
+impl<'tcx, F, G, H> TypeFolder<'tcx> for BottomUpFolder<'tcx, F, G, H>
+where
+    F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
+    G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
+    H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
+{
+    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
+        self.tcx
+    }
+
+    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
+        let t = ty.super_fold_with(self);
+        (self.ty_op)(t)
+    }
+
+    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
+        let r = r.super_fold_with(self);
+        (self.lt_op)(r)
+    }
+
+    fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
+        let ct = ct.super_fold_with(self);
+        (self.ct_op)(ct)
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Region folder
+
+impl<'tcx> TyCtxt<'tcx> {
+    /// Folds the escaping and free regions in `value` using `f`, and
+    /// sets `skipped_regions` to true if any late-bound region was found
+    /// and skipped.
+    pub fn fold_regions<T>(
+        self,
+        value: &T,
+        skipped_regions: &mut bool,
+        mut f: impl FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
+    ) -> T
+    where
+        T: TypeFoldable<'tcx>,
+    {
+        value.fold_with(&mut RegionFolder::new(self, skipped_regions, &mut f))
+    }
+
+    /// Invoke `callback` on every region appearing free in `value`.
+    pub fn for_each_free_region(
+        self,
+        value: &impl TypeFoldable<'tcx>,
+        mut callback: impl FnMut(ty::Region<'tcx>),
+    ) {
+        self.any_free_region_meets(value, |r| {
+            callback(r);
+            false
+        });
+    }
+
+    /// Returns `true` if `callback` returns true for every region appearing free in `value`.
+    pub fn all_free_regions_meet(
+        self,
+        value: &impl TypeFoldable<'tcx>,
+        mut callback: impl FnMut(ty::Region<'tcx>) -> bool,
+    ) -> bool {
+        !self.any_free_region_meets(value, |r| !callback(r))
+    }
+
+    /// Returns `true` if `callback` returns true for some region appearing free in `value`.
+    pub fn any_free_region_meets(
+        self,
+        value: &impl TypeFoldable<'tcx>,
+        callback: impl FnMut(ty::Region<'tcx>) -> bool,
+    ) -> bool {
+        return value.visit_with(&mut RegionVisitor { outer_index: ty::INNERMOST, callback });
+
+        struct RegionVisitor<F> {
+            /// The index of a binder *just outside* the things we have
+            /// traversed. If we encounter a bound region bound by this
+            /// binder or one outer to it, it appears free. Example:
+            ///
+            /// ```
+            ///    for<'a> fn(for<'b> fn(), T)
+            /// ^          ^          ^     ^
+            /// |          |          |     | here, would be shifted in 1
+            /// |          |          | here, would be shifted in 2
+            /// |          | here, would be `INNERMOST` shifted in by 1
+            /// | here, initially, binder would be `INNERMOST`
+            /// ```
+            ///
+            /// You see that, initially, *any* bound value is free,
+            /// because we've not traversed any binders. As we pass
+            /// through a binder, we shift the `outer_index` by 1 to
+            /// account for the new binder that encloses us.
+            outer_index: ty::DebruijnIndex,
+            callback: F,
+        }
+
+        impl<'tcx, F> TypeVisitor<'tcx> for RegionVisitor<F>
+        where
+            F: FnMut(ty::Region<'tcx>) -> bool,
+        {
+            fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
+                self.outer_index.shift_in(1);
+                let result = t.as_ref().skip_binder().visit_with(self);
+                self.outer_index.shift_out(1);
+                result
+            }
+
+            fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
+                match *r {
+                    ty::ReLateBound(debruijn, _) if debruijn < self.outer_index => {
+                        false // ignore bound regions, keep visiting
+                    }
+                    _ => (self.callback)(r),
+                }
+            }
+
+            fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
+                // We're only interested in types involving regions
+                if ty.flags.intersects(TypeFlags::HAS_FREE_REGIONS) {
+                    ty.super_visit_with(self)
+                } else {
+                    false // keep visiting
+                }
+            }
+        }
+    }
+}
+
+/// Folds over the substructure of a type, visiting its component
+/// types and all regions that occur *free* within it.
+///
+/// That is, `Ty` can contain function or method types that bind
+/// regions at the call site (`ReLateBound`), and occurrences of
+/// regions (aka "lifetimes") that are bound within a type are not
+/// visited by this folder; only regions that occur free will be
+/// visited by `fld_r`.
+
+pub struct RegionFolder<'a, 'tcx> {
+    tcx: TyCtxt<'tcx>,
+    skipped_regions: &'a mut bool,
+
+    /// Stores the index of a binder *just outside* the stuff we have
+    /// visited.  So this begins as INNERMOST; when we pass through a
+    /// binder, it is incremented (via `shift_in`).
+    current_index: ty::DebruijnIndex,
+
+    /// Callback invokes for each free region. The `DebruijnIndex`
+    /// points to the binder *just outside* the ones we have passed
+    /// through.
+    fold_region_fn:
+        &'a mut (dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx> + 'a),
+}
+
+impl<'a, 'tcx> RegionFolder<'a, 'tcx> {
+    #[inline]
+    pub fn new(
+        tcx: TyCtxt<'tcx>,
+        skipped_regions: &'a mut bool,
+        fold_region_fn: &'a mut dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
+    ) -> RegionFolder<'a, 'tcx> {
+        RegionFolder { tcx, skipped_regions, current_index: ty::INNERMOST, fold_region_fn }
+    }
+}
+
+impl<'a, 'tcx> TypeFolder<'tcx> for RegionFolder<'a, 'tcx> {
+    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
+        self.tcx
+    }
+
+    fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
+        self.current_index.shift_in(1);
+        let t = t.super_fold_with(self);
+        self.current_index.shift_out(1);
+        t
+    }
+
+    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
+        match *r {
+            ty::ReLateBound(debruijn, _) if debruijn < self.current_index => {
+                debug!(
+                    "RegionFolder.fold_region({:?}) skipped bound region (current index={:?})",
+                    r, self.current_index
+                );
+                *self.skipped_regions = true;
+                r
+            }
+            _ => {
+                debug!(
+                    "RegionFolder.fold_region({:?}) folding free region (current_index={:?})",
+                    r, self.current_index
+                );
+                (self.fold_region_fn)(r, self.current_index)
+            }
+        }
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Bound vars replacer
+
+/// Replaces the escaping bound vars (late bound regions or bound types) in a type.
+struct BoundVarReplacer<'a, 'tcx> {
+    tcx: TyCtxt<'tcx>,
+
+    /// As with `RegionFolder`, represents the index of a binder *just outside*
+    /// the ones we have visited.
+    current_index: ty::DebruijnIndex,
+
+    fld_r: &'a mut (dyn FnMut(ty::BoundRegion) -> ty::Region<'tcx> + 'a),
+    fld_t: &'a mut (dyn FnMut(ty::BoundTy) -> Ty<'tcx> + 'a),
+    fld_c: &'a mut (dyn FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx> + 'a),
+}
+
+impl<'a, 'tcx> BoundVarReplacer<'a, 'tcx> {
+    fn new<F, G, H>(tcx: TyCtxt<'tcx>, fld_r: &'a mut F, fld_t: &'a mut G, fld_c: &'a mut H) -> Self
+    where
+        F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
+        G: FnMut(ty::BoundTy) -> Ty<'tcx>,
+        H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
+    {
+        BoundVarReplacer { tcx, current_index: ty::INNERMOST, fld_r, fld_t, fld_c }
+    }
+}
+
+impl<'a, 'tcx> TypeFolder<'tcx> for BoundVarReplacer<'a, 'tcx> {
+    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
+        self.tcx
+    }
+
+    fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
+        self.current_index.shift_in(1);
+        let t = t.super_fold_with(self);
+        self.current_index.shift_out(1);
+        t
+    }
+
+    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
+        match t.kind {
+            ty::Bound(debruijn, bound_ty) => {
+                if debruijn == self.current_index {
+                    let fld_t = &mut self.fld_t;
+                    let ty = fld_t(bound_ty);
+                    ty::fold::shift_vars(self.tcx, &ty, self.current_index.as_u32())
+                } else {
+                    t
+                }
+            }
+            _ => {
+                if !t.has_vars_bound_at_or_above(self.current_index) {
+                    // Nothing more to substitute.
+                    t
+                } else {
+                    t.super_fold_with(self)
+                }
+            }
+        }
+    }
+
+    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
+        match *r {
+            ty::ReLateBound(debruijn, br) if debruijn == self.current_index => {
+                let fld_r = &mut self.fld_r;
+                let region = fld_r(br);
+                if let ty::ReLateBound(debruijn1, br) = *region {
+                    // If the callback returns a late-bound region,
+                    // that region should always use the INNERMOST
+                    // debruijn index. Then we adjust it to the
+                    // correct depth.
+                    assert_eq!(debruijn1, ty::INNERMOST);
+                    self.tcx.mk_region(ty::ReLateBound(debruijn, br))
+                } else {
+                    region
+                }
+            }
+            _ => r,
+        }
+    }
+
+    fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
+        if let ty::Const { val: ty::ConstKind::Bound(debruijn, bound_const), ty } = *ct {
+            if debruijn == self.current_index {
+                let fld_c = &mut self.fld_c;
+                let ct = fld_c(bound_const, ty);
+                ty::fold::shift_vars(self.tcx, &ct, self.current_index.as_u32())
+            } else {
+                ct
+            }
+        } else {
+            if !ct.has_vars_bound_at_or_above(self.current_index) {
+                // Nothing more to substitute.
+                ct
+            } else {
+                ct.super_fold_with(self)
+            }
+        }
+    }
+}
+
+impl<'tcx> TyCtxt<'tcx> {
+    /// Replaces all regions bound by the given `Binder` with the
+    /// results returned by the closure; the closure is expected to
+    /// return a free region (relative to this binder), and hence the
+    /// binder is removed in the return type. The closure is invoked
+    /// once for each unique `BoundRegion`; multiple references to the
+    /// same `BoundRegion` will reuse the previous result. A map is
+    /// returned at the end with each bound region and the free region
+    /// that replaced it.
+    ///
+    /// This method only replaces late bound regions and the result may still
+    /// contain escaping bound types.
+    pub fn replace_late_bound_regions<T, F>(
+        self,
+        value: &Binder<T>,
+        fld_r: F,
+    ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
+    where
+        F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
+        T: TypeFoldable<'tcx>,
+    {
+        // identity for bound types and consts
+        let fld_t = |bound_ty| self.mk_ty(ty::Bound(ty::INNERMOST, bound_ty));
+        let fld_c = |bound_ct, ty| {
+            self.mk_const(ty::Const { val: ty::ConstKind::Bound(ty::INNERMOST, bound_ct), ty })
+        };
+        self.replace_escaping_bound_vars(value.as_ref().skip_binder(), fld_r, fld_t, fld_c)
+    }
+
+    /// Replaces all escaping bound vars. The `fld_r` closure replaces escaping
+    /// bound regions; the `fld_t` closure replaces escaping bound types and the `fld_c`
+    /// closure replaces escaping bound consts.
+    pub fn replace_escaping_bound_vars<T, F, G, H>(
+        self,
+        value: &T,
+        mut fld_r: F,
+        mut fld_t: G,
+        mut fld_c: H,
+    ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
+    where
+        F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
+        G: FnMut(ty::BoundTy) -> Ty<'tcx>,
+        H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
+        T: TypeFoldable<'tcx>,
+    {
+        use rustc_data_structures::fx::FxHashMap;
+
+        let mut region_map = BTreeMap::new();
+        let mut type_map = FxHashMap::default();
+        let mut const_map = FxHashMap::default();
+
+        if !value.has_escaping_bound_vars() {
+            (value.clone(), region_map)
+        } else {
+            let mut real_fld_r = |br| *region_map.entry(br).or_insert_with(|| fld_r(br));
+
+            let mut real_fld_t =
+                |bound_ty| *type_map.entry(bound_ty).or_insert_with(|| fld_t(bound_ty));
+
+            let mut real_fld_c =
+                |bound_ct, ty| *const_map.entry(bound_ct).or_insert_with(|| fld_c(bound_ct, ty));
+
+            let mut replacer =
+                BoundVarReplacer::new(self, &mut real_fld_r, &mut real_fld_t, &mut real_fld_c);
+            let result = value.fold_with(&mut replacer);
+            (result, region_map)
+        }
+    }
+
+    /// Replaces all types or regions bound by the given `Binder`. The `fld_r`
+    /// closure replaces bound regions while the `fld_t` closure replaces bound
+    /// types.
+    pub fn replace_bound_vars<T, F, G, H>(
+        self,
+        value: &Binder<T>,
+        fld_r: F,
+        fld_t: G,
+        fld_c: H,
+    ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
+    where
+        F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
+        G: FnMut(ty::BoundTy) -> Ty<'tcx>,
+        H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
+        T: TypeFoldable<'tcx>,
+    {
+        self.replace_escaping_bound_vars(value.as_ref().skip_binder(), fld_r, fld_t, fld_c)
+    }
+
+    /// Replaces any late-bound regions bound in `value` with
+    /// free variants attached to `all_outlive_scope`.
+    pub fn liberate_late_bound_regions<T>(
+        &self,
+        all_outlive_scope: DefId,
+        value: &ty::Binder<T>,
+    ) -> T
+    where
+        T: TypeFoldable<'tcx>,
+    {
+        self.replace_late_bound_regions(value, |br| {
+            self.mk_region(ty::ReFree(ty::FreeRegion {
+                scope: all_outlive_scope,
+                bound_region: br,
+            }))
+        })
+        .0
+    }
+
+    /// Returns a set of all late-bound regions that are constrained
+    /// by `value`, meaning that if we instantiate those LBR with
+    /// variables and equate `value` with something else, those
+    /// variables will also be equated.
+    pub fn collect_constrained_late_bound_regions<T>(
+        &self,
+        value: &Binder<T>,
+    ) -> FxHashSet<ty::BoundRegion>
+    where
+        T: TypeFoldable<'tcx>,
+    {
+        self.collect_late_bound_regions(value, true)
+    }
+
+    /// Returns a set of all late-bound regions that appear in `value` anywhere.
+    pub fn collect_referenced_late_bound_regions<T>(
+        &self,
+        value: &Binder<T>,
+    ) -> FxHashSet<ty::BoundRegion>
+    where
+        T: TypeFoldable<'tcx>,
+    {
+        self.collect_late_bound_regions(value, false)
+    }
+
+    fn collect_late_bound_regions<T>(
+        &self,
+        value: &Binder<T>,
+        just_constraint: bool,
+    ) -> FxHashSet<ty::BoundRegion>
+    where
+        T: TypeFoldable<'tcx>,
+    {
+        let mut collector = LateBoundRegionsCollector::new(just_constraint);
+        let result = value.as_ref().skip_binder().visit_with(&mut collector);
+        assert!(!result); // should never have stopped early
+        collector.regions
+    }
+
+    /// Replaces any late-bound regions bound in `value` with `'erased`. Useful in codegen but also
+    /// method lookup and a few other places where precise region relationships are not required.
+    pub fn erase_late_bound_regions<T>(self, value: &Binder<T>) -> T
+    where
+        T: TypeFoldable<'tcx>,
+    {
+        self.replace_late_bound_regions(value, |_| self.lifetimes.re_erased).0
+    }
+
+    /// Rewrite any late-bound regions so that they are anonymous. Region numbers are
+    /// assigned starting at 1 and increasing monotonically in the order traversed
+    /// by the fold operation.
+    ///
+    /// The chief purpose of this function is to canonicalize regions so that two
+    /// `FnSig`s or `TraitRef`s which are equivalent up to region naming will become
+    /// structurally identical. For example, `for<'a, 'b> fn(&'a isize, &'b isize)` and
+    /// `for<'a, 'b> fn(&'b isize, &'a isize)` will become identical after anonymization.
+    pub fn anonymize_late_bound_regions<T>(self, sig: &Binder<T>) -> Binder<T>
+    where
+        T: TypeFoldable<'tcx>,
+    {
+        let mut counter = 0;
+        Binder::bind(
+            self.replace_late_bound_regions(sig, |_| {
+                counter += 1;
+                self.mk_region(ty::ReLateBound(ty::INNERMOST, ty::BrAnon(counter)))
+            })
+            .0,
+        )
+    }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Shifter
+//
+// Shifts the De Bruijn indices on all escaping bound vars by a
+// fixed amount. Useful in substitution or when otherwise introducing
+// a binding level that is not intended to capture the existing bound
+// vars. See comment on `shift_vars_through_binders` method in
+// `subst.rs` for more details.
+
+enum Direction {
+    In,
+    Out,
+}
+
+struct Shifter<'tcx> {
+    tcx: TyCtxt<'tcx>,
+    current_index: ty::DebruijnIndex,
+    amount: u32,
+    direction: Direction,
+}
+
+impl Shifter<'tcx> {
+    pub fn new(tcx: TyCtxt<'tcx>, amount: u32, direction: Direction) -> Self {
+        Shifter { tcx, current_index: ty::INNERMOST, amount, direction }
+    }
+}
+
+impl TypeFolder<'tcx> for Shifter<'tcx> {
+    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
+        self.tcx
+    }
+
+    fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
+        self.current_index.shift_in(1);
+        let t = t.super_fold_with(self);
+        self.current_index.shift_out(1);
+        t
+    }
+
+    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
+        match *r {
+            ty::ReLateBound(debruijn, br) => {
+                if self.amount == 0 || debruijn < self.current_index {
+                    r
+                } else {
+                    let debruijn = match self.direction {
+                        Direction::In => debruijn.shifted_in(self.amount),
+                        Direction::Out => {
+                            assert!(debruijn.as_u32() >= self.amount);
+                            debruijn.shifted_out(self.amount)
+                        }
+                    };
+                    let shifted = ty::ReLateBound(debruijn, br);
+                    self.tcx.mk_region(shifted)
+                }
+            }
+            _ => r,
+        }
+    }
+
+    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
+        match ty.kind {
+            ty::Bound(debruijn, bound_ty) => {
+                if self.amount == 0 || debruijn < self.current_index {
+                    ty
+                } else {
+                    let debruijn = match self.direction {
+                        Direction::In => debruijn.shifted_in(self.amount),
+                        Direction::Out => {
+                            assert!(debruijn.as_u32() >= self.amount);
+                            debruijn.shifted_out(self.amount)
+                        }
+                    };
+                    self.tcx.mk_ty(ty::Bound(debruijn, bound_ty))
+                }
+            }
+
+            _ => ty.super_fold_with(self),
+        }
+    }
+
+    fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
+        if let ty::Const { val: ty::ConstKind::Bound(debruijn, bound_ct), ty } = *ct {
+            if self.amount == 0 || debruijn < self.current_index {
+                ct
+            } else {
+                let debruijn = match self.direction {
+                    Direction::In => debruijn.shifted_in(self.amount),
+                    Direction::Out => {
+                        assert!(debruijn.as_u32() >= self.amount);
+                        debruijn.shifted_out(self.amount)
+                    }
+                };
+                self.tcx.mk_const(ty::Const { val: ty::ConstKind::Bound(debruijn, bound_ct), ty })
+            }
+        } else {
+            ct.super_fold_with(self)
+        }
+    }
+}
+
+pub fn shift_region<'tcx>(
+    tcx: TyCtxt<'tcx>,
+    region: ty::Region<'tcx>,
+    amount: u32,
+) -> ty::Region<'tcx> {
+    match region {
+        ty::ReLateBound(debruijn, br) if amount > 0 => {
+            tcx.mk_region(ty::ReLateBound(debruijn.shifted_in(amount), *br))
+        }
+        _ => region,
+    }
+}
+
+pub fn shift_vars<'tcx, T>(tcx: TyCtxt<'tcx>, value: &T, amount: u32) -> T
+where
+    T: TypeFoldable<'tcx>,
+{
+    debug!("shift_vars(value={:?}, amount={})", value, amount);
+
+    value.fold_with(&mut Shifter::new(tcx, amount, Direction::In))
+}
+
+pub fn shift_out_vars<'tcx, T>(tcx: TyCtxt<'tcx>, value: &T, amount: u32) -> T
+where
+    T: TypeFoldable<'tcx>,
+{
+    debug!("shift_out_vars(value={:?}, amount={})", value, amount);
+
+    value.fold_with(&mut Shifter::new(tcx, amount, Direction::Out))
+}
+
+/// An "escaping var" is a bound var whose binder is not part of `t`. A bound var can be a
+/// bound region or a bound type.
+///
+/// So, for example, consider a type like the following, which has two binders:
+///
+///    for<'a> fn(x: for<'b> fn(&'a isize, &'b isize))
+///    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
+///                  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~  inner scope
+///
+/// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the
+/// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner
+/// fn type*, that type has an escaping region: `'a`.
+///
+/// Note that what I'm calling an "escaping var" is often just called a "free var". However,
+/// we already use the term "free var". It refers to the regions or types that we use to represent
+/// bound regions or type params on a fn definition while we are type checking its body.
+///
+/// To clarify, conceptually there is no particular difference between
+/// an "escaping" var and a "free" var. However, there is a big
+/// difference in practice. Basically, when "entering" a binding
+/// level, one is generally required to do some sort of processing to
+/// a bound var, such as replacing it with a fresh/placeholder
+/// var, or making an entry in the environment to represent the
+/// scope to which it is attached, etc. An escaping var represents
+/// a bound var for which this processing has not yet been done.
+struct HasEscapingVarsVisitor {
+    /// Anything bound by `outer_index` or "above" is escaping.
+    outer_index: ty::DebruijnIndex,
+}
+
+impl<'tcx> TypeVisitor<'tcx> for HasEscapingVarsVisitor {
+    fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
+        self.outer_index.shift_in(1);
+        let result = t.super_visit_with(self);
+        self.outer_index.shift_out(1);
+        result
+    }
+
+    fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
+        // If the outer-exclusive-binder is *strictly greater* than
+        // `outer_index`, that means that `t` contains some content
+        // bound at `outer_index` or above (because
+        // `outer_exclusive_binder` is always 1 higher than the
+        // content in `t`). Therefore, `t` has some escaping vars.
+        t.outer_exclusive_binder > self.outer_index
+    }
+
+    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
+        // If the region is bound by `outer_index` or anything outside
+        // of outer index, then it escapes the binders we have
+        // visited.
+        r.bound_at_or_above_binder(self.outer_index)
+    }
+
+    fn visit_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> bool {
+        // we don't have a `visit_infer_const` callback, so we have to
+        // hook in here to catch this case (annoying...), but
+        // otherwise we do want to remember to visit the rest of the
+        // const, as it has types/regions embedded in a lot of other
+        // places.
+        match ct.val {
+            ty::ConstKind::Bound(debruijn, _) if debruijn >= self.outer_index => true,
+            _ => ct.super_visit_with(self),
+        }
+    }
+}
+
+impl<'tcx> PredicateVisitor<'tcx> for HasEscapingVarsVisitor {
+    fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> bool {
+        predicate.inner.outer_exclusive_binder > self.outer_index
+    }
+}
+
+// FIXME: Optimize for checking for infer flags
+struct HasTypeFlagsVisitor {
+    flags: ty::TypeFlags,
+}
+
+impl<'tcx> TypeVisitor<'tcx> for HasTypeFlagsVisitor {
+    fn visit_ty(&mut self, t: Ty<'_>) -> bool {
+        debug!("HasTypeFlagsVisitor: t={:?} t.flags={:?} self.flags={:?}", t, t.flags, self.flags);
+        t.flags.intersects(self.flags)
+    }
+
+    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
+        let flags = r.type_flags();
+        debug!("HasTypeFlagsVisitor: r={:?} r.flags={:?} self.flags={:?}", r, flags, self.flags);
+        flags.intersects(self.flags)
+    }
+
+    fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
+        let flags = FlagComputation::for_const(c);
+        debug!("HasTypeFlagsVisitor: c={:?} c.flags={:?} self.flags={:?}", c, flags, self.flags);
+        flags.intersects(self.flags)
+    }
+}
+
+impl<'tcx> PredicateVisitor<'tcx> for HasTypeFlagsVisitor {
+    fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> bool {
+        debug!(
+            "HasTypeFlagsVisitor: predicate={:?} predicate.flags={:?} self.flags={:?}",
+            predicate, predicate.inner.flags, self.flags
+        );
+        predicate.inner.flags.intersects(self.flags)
+    }
+}
+/// Collects all the late-bound regions at the innermost binding level
+/// into a hash set.
+struct LateBoundRegionsCollector {
+    current_index: ty::DebruijnIndex,
+    regions: FxHashSet<ty::BoundRegion>,
+
+    /// `true` if we only want regions that are known to be
+    /// "constrained" when you equate this type with another type. In
+    /// particular, if you have e.g., `&'a u32` and `&'b u32`, equating
+    /// them constraints `'a == 'b`. But if you have `<&'a u32 as
+    /// Trait>::Foo` and `<&'b u32 as Trait>::Foo`, normalizing those
+    /// types may mean that `'a` and `'b` don't appear in the results,
+    /// so they are not considered *constrained*.
+    just_constrained: bool,
+}
+
+impl LateBoundRegionsCollector {
+    fn new(just_constrained: bool) -> Self {
+        LateBoundRegionsCollector {
+            current_index: ty::INNERMOST,
+            regions: Default::default(),
+            just_constrained,
+        }
+    }
+}
+
+impl<'tcx> TypeVisitor<'tcx> for LateBoundRegionsCollector {
+    fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
+        self.current_index.shift_in(1);
+        let result = t.super_visit_with(self);
+        self.current_index.shift_out(1);
+        result
+    }
+
+    fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
+        // if we are only looking for "constrained" region, we have to
+        // ignore the inputs to a projection, as they may not appear
+        // in the normalized form
+        if self.just_constrained {
+            if let ty::Projection(..) | ty::Opaque(..) = t.kind {
+                return false;
+            }
+        }
+
+        t.super_visit_with(self)
+    }
+
+    fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
+        // if we are only looking for "constrained" region, we have to
+        // ignore the inputs of an unevaluated const, as they may not appear
+        // in the normalized form
+        if self.just_constrained {
+            if let ty::ConstKind::Unevaluated(..) = c.val {
+                return false;
+            }
+        }
+
+        c.super_visit_with(self)
+    }
+
+    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
+        if let ty::ReLateBound(debruijn, br) = *r {
+            if debruijn == self.current_index {
+                self.regions.insert(br);
+            }
+        }
+        false
+    }
+}