diff options
Diffstat (limited to 'compiler/rustc_pattern_analysis/src')
| -rw-r--r-- | compiler/rustc_pattern_analysis/src/constructor.rs | 18 | ||||
| -rw-r--r-- | compiler/rustc_pattern_analysis/src/lib.rs | 8 | ||||
| -rw-r--r-- | compiler/rustc_pattern_analysis/src/pat.rs | 26 | ||||
| -rw-r--r-- | compiler/rustc_pattern_analysis/src/pat_column.rs | 6 | ||||
| -rw-r--r-- | compiler/rustc_pattern_analysis/src/rustc.rs | 4 | ||||
| -rw-r--r-- | compiler/rustc_pattern_analysis/src/usefulness.rs | 74 | 
6 files changed, 68 insertions, 68 deletions
| diff --git a/compiler/rustc_pattern_analysis/src/constructor.rs b/compiler/rustc_pattern_analysis/src/constructor.rs index 2d55785cd06..1faecb7e1dd 100644 --- a/compiler/rustc_pattern_analysis/src/constructor.rs +++ b/compiler/rustc_pattern_analysis/src/constructor.rs @@ -40,7 +40,7 @@ //! - That have no non-trivial intersection with any of the constructors in the column (i.e. they're //! each either disjoint with or covered by any given column constructor). //! -//! We compute this in two steps: first [`TypeCx::ctors_for_ty`] determines the +//! We compute this in two steps: first [`PatCx::ctors_for_ty`] determines the //! set of all possible constructors for the type. Then [`ConstructorSet::split`] looks at the //! column of constructors and splits the set into groups accordingly. The precise invariants of //! [`ConstructorSet::split`] is described in [`SplitConstructorSet`]. @@ -136,7 +136,7 @@ //! the algorithm can't distinguish them from a nonempty constructor. The only known case where this //! could happen is the `[..]` pattern on `[!; N]` with `N > 0` so we must take care to not emit it. //! -//! This is all handled by [`TypeCx::ctors_for_ty`] and +//! This is all handled by [`PatCx::ctors_for_ty`] and //! [`ConstructorSet::split`]. The invariants of [`SplitConstructorSet`] are also of interest. //! //! @@ -162,7 +162,7 @@ use self::MaybeInfiniteInt::*; use self::SliceKind::*; use crate::index; -use crate::TypeCx; +use crate::PatCx; /// Whether we have seen a constructor in the column or not. #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] @@ -651,7 +651,7 @@ impl OpaqueId { /// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and /// `Fields`. #[derive(Debug)] -pub enum Constructor<Cx: TypeCx> { +pub enum Constructor<Cx: PatCx> { /// Tuples and structs. Struct, /// Enum variants. @@ -696,7 +696,7 @@ pub enum Constructor<Cx: TypeCx> { PrivateUninhabited, } -impl<Cx: TypeCx> Clone for Constructor<Cx> { +impl<Cx: PatCx> Clone for Constructor<Cx> { fn clone(&self) -> Self { match self { Constructor::Struct => Constructor::Struct, @@ -720,7 +720,7 @@ impl<Cx: TypeCx> Clone for Constructor<Cx> { } } -impl<Cx: TypeCx> Constructor<Cx> { +impl<Cx: PatCx> Constructor<Cx> { pub(crate) fn is_non_exhaustive(&self) -> bool { matches!(self, NonExhaustive) } @@ -838,7 +838,7 @@ pub enum VariantVisibility { /// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the /// `exhaustive_patterns` feature. #[derive(Debug)] -pub enum ConstructorSet<Cx: TypeCx> { +pub enum ConstructorSet<Cx: PatCx> { /// The type is a tuple or struct. `empty` tracks whether the type is empty. Struct { empty: bool }, /// This type has the following list of constructors. If `variants` is empty and @@ -889,13 +889,13 @@ pub enum ConstructorSet<Cx: TypeCx> { /// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be /// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4. #[derive(Debug)] -pub struct SplitConstructorSet<Cx: TypeCx> { +pub struct SplitConstructorSet<Cx: PatCx> { pub present: SmallVec<[Constructor<Cx>; 1]>, pub missing: Vec<Constructor<Cx>>, pub missing_empty: Vec<Constructor<Cx>>, } -impl<Cx: TypeCx> ConstructorSet<Cx> { +impl<Cx: PatCx> ConstructorSet<Cx> { /// This analyzes a column of constructors to 1/ determine which constructors of the type (if /// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges /// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation diff --git a/compiler/rustc_pattern_analysis/src/lib.rs b/compiler/rustc_pattern_analysis/src/lib.rs index 41ae60a8b7f..ff085d2a422 100644 --- a/compiler/rustc_pattern_analysis/src/lib.rs +++ b/compiler/rustc_pattern_analysis/src/lib.rs @@ -84,7 +84,7 @@ pub struct PrivateUninhabitedField(pub bool); /// Context that provides type information about constructors. /// /// Most of the crate is parameterized on a type that implements this trait. -pub trait TypeCx: Sized + fmt::Debug { +pub trait PatCx: Sized + fmt::Debug { /// The type of a pattern. type Ty: Clone + fmt::Debug; /// Errors that can abort analysis. @@ -155,19 +155,19 @@ pub trait TypeCx: Sized + fmt::Debug { /// The arm of a match expression. #[derive(Debug)] -pub struct MatchArm<'p, Cx: TypeCx> { +pub struct MatchArm<'p, Cx: PatCx> { pub pat: &'p DeconstructedPat<Cx>, pub has_guard: bool, pub arm_data: Cx::ArmData, } -impl<'p, Cx: TypeCx> Clone for MatchArm<'p, Cx> { +impl<'p, Cx: PatCx> Clone for MatchArm<'p, Cx> { fn clone(&self) -> Self { Self { pat: self.pat, has_guard: self.has_guard, arm_data: self.arm_data } } } -impl<'p, Cx: TypeCx> Copy for MatchArm<'p, Cx> {} +impl<'p, Cx: PatCx> Copy for MatchArm<'p, Cx> {} /// The entrypoint for this crate. Computes whether a match is exhaustive and which of its arms are /// useful, and runs some lints. diff --git a/compiler/rustc_pattern_analysis/src/pat.rs b/compiler/rustc_pattern_analysis/src/pat.rs index cefc1d8e3b3..e3667d44bc9 100644 --- a/compiler/rustc_pattern_analysis/src/pat.rs +++ b/compiler/rustc_pattern_analysis/src/pat.rs @@ -5,7 +5,7 @@ use std::fmt; use smallvec::{smallvec, SmallVec}; use crate::constructor::{Constructor, Slice, SliceKind}; -use crate::{PrivateUninhabitedField, TypeCx}; +use crate::{PatCx, PrivateUninhabitedField}; use self::Constructor::*; @@ -21,7 +21,7 @@ impl PatId { } /// A pattern with an index denoting which field it corresponds to. -pub struct IndexedPat<Cx: TypeCx> { +pub struct IndexedPat<Cx: PatCx> { pub idx: usize, pub pat: DeconstructedPat<Cx>, } @@ -29,7 +29,7 @@ pub struct IndexedPat<Cx: TypeCx> { /// Values and patterns can be represented as a constructor applied to some fields. This represents /// a pattern in this form. A `DeconstructedPat` will almost always come from user input; the only /// exception are some `Wildcard`s introduced during pattern lowering. -pub struct DeconstructedPat<Cx: TypeCx> { +pub struct DeconstructedPat<Cx: PatCx> { ctor: Constructor<Cx>, fields: Vec<IndexedPat<Cx>>, /// The number of fields in this pattern. E.g. if the pattern is `SomeStruct { field12: true, .. @@ -43,7 +43,7 @@ pub struct DeconstructedPat<Cx: TypeCx> { pub(crate) uid: PatId, } -impl<Cx: TypeCx> DeconstructedPat<Cx> { +impl<Cx: PatCx> DeconstructedPat<Cx> { pub fn new( ctor: Constructor<Cx>, fields: Vec<IndexedPat<Cx>>, @@ -136,7 +136,7 @@ impl<Cx: TypeCx> DeconstructedPat<Cx> { } /// This is best effort and not good enough for a `Display` impl. -impl<Cx: TypeCx> fmt::Debug for DeconstructedPat<Cx> { +impl<Cx: PatCx> fmt::Debug for DeconstructedPat<Cx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let pat = self; let mut first = true; @@ -219,14 +219,14 @@ impl<Cx: TypeCx> fmt::Debug for DeconstructedPat<Cx> { /// algorithm. Do not use `Wild` to represent a wildcard pattern comping from user input. /// /// This is morally `Option<&'p DeconstructedPat>` where `None` is interpreted as a wildcard. -pub(crate) enum PatOrWild<'p, Cx: TypeCx> { +pub(crate) enum PatOrWild<'p, Cx: PatCx> { /// A non-user-provided wildcard, created during specialization. Wild, /// A user-provided pattern. Pat(&'p DeconstructedPat<Cx>), } -impl<'p, Cx: TypeCx> Clone for PatOrWild<'p, Cx> { +impl<'p, Cx: PatCx> Clone for PatOrWild<'p, Cx> { fn clone(&self) -> Self { match self { PatOrWild::Wild => PatOrWild::Wild, @@ -235,9 +235,9 @@ impl<'p, Cx: TypeCx> Clone for PatOrWild<'p, Cx> { } } -impl<'p, Cx: TypeCx> Copy for PatOrWild<'p, Cx> {} +impl<'p, Cx: PatCx> Copy for PatOrWild<'p, Cx> {} -impl<'p, Cx: TypeCx> PatOrWild<'p, Cx> { +impl<'p, Cx: PatCx> PatOrWild<'p, Cx> { pub(crate) fn as_pat(&self) -> Option<&'p DeconstructedPat<Cx>> { match self { PatOrWild::Wild => None, @@ -283,7 +283,7 @@ impl<'p, Cx: TypeCx> PatOrWild<'p, Cx> { } } -impl<'p, Cx: TypeCx> fmt::Debug for PatOrWild<'p, Cx> { +impl<'p, Cx: PatCx> fmt::Debug for PatOrWild<'p, Cx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { PatOrWild::Wild => write!(f, "_"), @@ -295,19 +295,19 @@ impl<'p, Cx: TypeCx> fmt::Debug for PatOrWild<'p, Cx> { /// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics /// purposes. As such they don't use interning and can be cloned. #[derive(Debug)] -pub struct WitnessPat<Cx: TypeCx> { +pub struct WitnessPat<Cx: PatCx> { ctor: Constructor<Cx>, pub(crate) fields: Vec<WitnessPat<Cx>>, ty: Cx::Ty, } -impl<Cx: TypeCx> Clone for WitnessPat<Cx> { +impl<Cx: PatCx> Clone for WitnessPat<Cx> { fn clone(&self) -> Self { Self { ctor: self.ctor.clone(), fields: self.fields.clone(), ty: self.ty.clone() } } } -impl<Cx: TypeCx> WitnessPat<Cx> { +impl<Cx: PatCx> WitnessPat<Cx> { pub(crate) fn new(ctor: Constructor<Cx>, fields: Vec<Self>, ty: Cx::Ty) -> Self { Self { ctor, fields, ty } } diff --git a/compiler/rustc_pattern_analysis/src/pat_column.rs b/compiler/rustc_pattern_analysis/src/pat_column.rs index ce14fdc364f..eb4e095c1c6 100644 --- a/compiler/rustc_pattern_analysis/src/pat_column.rs +++ b/compiler/rustc_pattern_analysis/src/pat_column.rs @@ -1,6 +1,6 @@ use crate::constructor::{Constructor, SplitConstructorSet}; use crate::pat::{DeconstructedPat, PatOrWild}; -use crate::{Captures, MatchArm, TypeCx}; +use crate::{Captures, MatchArm, PatCx}; /// A column of patterns in a match, where a column is the intuitive notion of "subpatterns that /// inspect the same subvalue/place". @@ -11,12 +11,12 @@ use crate::{Captures, MatchArm, TypeCx}; /// /// This is not used in the usefulness algorithm; only in lints. #[derive(Debug)] -pub struct PatternColumn<'p, Cx: TypeCx> { +pub struct PatternColumn<'p, Cx: PatCx> { /// This must not contain an or-pattern. `expand_and_push` takes care to expand them. patterns: Vec<&'p DeconstructedPat<Cx>>, } -impl<'p, Cx: TypeCx> PatternColumn<'p, Cx> { +impl<'p, Cx: PatCx> PatternColumn<'p, Cx> { pub fn new(arms: &[MatchArm<'p, Cx>]) -> Self { let patterns = Vec::with_capacity(arms.len()); let mut column = PatternColumn { patterns }; diff --git a/compiler/rustc_pattern_analysis/src/rustc.rs b/compiler/rustc_pattern_analysis/src/rustc.rs index 53a32d3237e..6de12f1f6ba 100644 --- a/compiler/rustc_pattern_analysis/src/rustc.rs +++ b/compiler/rustc_pattern_analysis/src/rustc.rs @@ -18,7 +18,7 @@ use rustc_target::abi::{FieldIdx, Integer, VariantIdx, FIRST_VARIANT}; use crate::constructor::{ IntRange, MaybeInfiniteInt, OpaqueId, RangeEnd, Slice, SliceKind, VariantVisibility, }; -use crate::{errors, Captures, PrivateUninhabitedField, TypeCx}; +use crate::{errors, Captures, PatCx, PrivateUninhabitedField}; use crate::constructor::Constructor::*; @@ -843,7 +843,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> { } } -impl<'p, 'tcx: 'p> TypeCx for RustcMatchCheckCtxt<'p, 'tcx> { +impl<'p, 'tcx: 'p> PatCx for RustcMatchCheckCtxt<'p, 'tcx> { type Ty = RevealedTy<'tcx>; type Error = ErrorGuaranteed; type VariantIdx = VariantIdx; diff --git a/compiler/rustc_pattern_analysis/src/usefulness.rs b/compiler/rustc_pattern_analysis/src/usefulness.rs index 495785066ce..3760db8b688 100644 --- a/compiler/rustc_pattern_analysis/src/usefulness.rs +++ b/compiler/rustc_pattern_analysis/src/usefulness.rs @@ -242,7 +242,7 @@ //! Therefore `usefulness(tp_1, tp_2, tq)` returns the single witness-tuple `[Variant2(Some(true), 0)]`. //! //! -//! Computing the set of constructors for a type is done in [`TypeCx::ctors_for_ty`]. See +//! Computing the set of constructors for a type is done in [`PatCx::ctors_for_ty`]. See //! the following sections for more accurate versions of the algorithm and corresponding links. //! //! @@ -716,7 +716,7 @@ use std::fmt; use crate::constructor::{Constructor, ConstructorSet, IntRange}; use crate::pat::{DeconstructedPat, PatId, PatOrWild, WitnessPat}; -use crate::{Captures, MatchArm, PrivateUninhabitedField, TypeCx}; +use crate::{Captures, MatchArm, PatCx, PrivateUninhabitedField}; use self::PlaceValidity::*; @@ -728,7 +728,7 @@ pub fn ensure_sufficient_stack<R>(f: impl FnOnce() -> R) -> R { } /// Context that provides information for usefulness checking. -struct UsefulnessCtxt<'a, Cx: TypeCx> { +struct UsefulnessCtxt<'a, Cx: PatCx> { /// The context for type information. tycx: &'a Cx, /// Collect the patterns found useful during usefulness checking. This is used to lint @@ -738,7 +738,7 @@ struct UsefulnessCtxt<'a, Cx: TypeCx> { complexity_level: usize, } -impl<'a, Cx: TypeCx> UsefulnessCtxt<'a, Cx> { +impl<'a, Cx: PatCx> UsefulnessCtxt<'a, Cx> { fn increase_complexity_level(&mut self, complexity_add: usize) -> Result<(), Cx::Error> { self.complexity_level += complexity_add; if self @@ -752,26 +752,26 @@ impl<'a, Cx: TypeCx> UsefulnessCtxt<'a, Cx> { } /// Context that provides information local to a place under investigation. -struct PlaceCtxt<'a, Cx: TypeCx> { +struct PlaceCtxt<'a, Cx: PatCx> { cx: &'a Cx, /// Type of the place under investigation. ty: &'a Cx::Ty, } -impl<'a, Cx: TypeCx> Copy for PlaceCtxt<'a, Cx> {} -impl<'a, Cx: TypeCx> Clone for PlaceCtxt<'a, Cx> { +impl<'a, Cx: PatCx> Copy for PlaceCtxt<'a, Cx> {} +impl<'a, Cx: PatCx> Clone for PlaceCtxt<'a, Cx> { fn clone(&self) -> Self { Self { cx: self.cx, ty: self.ty } } } -impl<'a, Cx: TypeCx> fmt::Debug for PlaceCtxt<'a, Cx> { +impl<'a, Cx: PatCx> fmt::Debug for PlaceCtxt<'a, Cx> { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_struct("PlaceCtxt").field("ty", self.ty).finish() } } -impl<'a, Cx: TypeCx> PlaceCtxt<'a, Cx> { +impl<'a, Cx: PatCx> PlaceCtxt<'a, Cx> { fn ctor_arity(&self, ctor: &Constructor<Cx>) -> usize { self.cx.ctor_arity(ctor, self.ty) } @@ -802,7 +802,7 @@ impl PlaceValidity { /// /// Pending further opsem decisions, the current behavior is: validity is preserved, except /// inside `&` and union fields where validity is reset to `MaybeInvalid`. - fn specialize<Cx: TypeCx>(self, ctor: &Constructor<Cx>) -> Self { + fn specialize<Cx: PatCx>(self, ctor: &Constructor<Cx>) -> Self { // We preserve validity except when we go inside a reference or a union field. if matches!(ctor, Constructor::Ref | Constructor::UnionField) { // Validity of `x: &T` does not imply validity of `*x: T`. @@ -825,7 +825,7 @@ impl fmt::Display for PlaceValidity { /// Data about a place under investigation. Its methods contain a lot of the logic used to analyze /// the constructors in the matrix. -struct PlaceInfo<Cx: TypeCx> { +struct PlaceInfo<Cx: PatCx> { /// The type of the place. ty: Cx::Ty, /// Whether the place is a private uninhabited field. If so we skip this field during analysis @@ -837,7 +837,7 @@ struct PlaceInfo<Cx: TypeCx> { is_scrutinee: bool, } -impl<Cx: TypeCx> PlaceInfo<Cx> { +impl<Cx: PatCx> PlaceInfo<Cx> { /// Given a constructor for the current place, we return one `PlaceInfo` for each field of the /// constructor. fn specialize<'a>( @@ -932,7 +932,7 @@ impl<Cx: TypeCx> PlaceInfo<Cx> { } } -impl<Cx: TypeCx> Clone for PlaceInfo<Cx> { +impl<Cx: PatCx> Clone for PlaceInfo<Cx> { fn clone(&self) -> Self { Self { ty: self.ty.clone(), @@ -947,7 +947,7 @@ impl<Cx: TypeCx> Clone for PlaceInfo<Cx> { // The three lifetimes are: // - 'p coming from the input // - Cx global compilation context -struct PatStack<'p, Cx: TypeCx> { +struct PatStack<'p, Cx: PatCx> { // Rows of len 1 are very common, which is why `SmallVec[_; 2]` works well. pats: SmallVec<[PatOrWild<'p, Cx>; 2]>, /// Sometimes we know that as far as this row is concerned, the current case is already handled @@ -956,13 +956,13 @@ struct PatStack<'p, Cx: TypeCx> { relevant: bool, } -impl<'p, Cx: TypeCx> Clone for PatStack<'p, Cx> { +impl<'p, Cx: PatCx> Clone for PatStack<'p, Cx> { fn clone(&self) -> Self { Self { pats: self.pats.clone(), relevant: self.relevant } } } -impl<'p, Cx: TypeCx> PatStack<'p, Cx> { +impl<'p, Cx: PatCx> PatStack<'p, Cx> { fn from_pattern(pat: &'p DeconstructedPat<Cx>) -> Self { PatStack { pats: smallvec![PatOrWild::Pat(pat)], relevant: true } } @@ -1022,7 +1022,7 @@ impl<'p, Cx: TypeCx> PatStack<'p, Cx> { } } -impl<'p, Cx: TypeCx> fmt::Debug for PatStack<'p, Cx> { +impl<'p, Cx: PatCx> fmt::Debug for PatStack<'p, Cx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // We pretty-print similarly to the `Debug` impl of `Matrix`. write!(f, "+")?; @@ -1035,7 +1035,7 @@ impl<'p, Cx: TypeCx> fmt::Debug for PatStack<'p, Cx> { /// A row of the matrix. #[derive(Clone)] -struct MatrixRow<'p, Cx: TypeCx> { +struct MatrixRow<'p, Cx: PatCx> { // The patterns in the row. pats: PatStack<'p, Cx>, /// Whether the original arm had a guard. This is inherited when specializing. @@ -1055,7 +1055,7 @@ struct MatrixRow<'p, Cx: TypeCx> { intersects: BitSet<usize>, } -impl<'p, Cx: TypeCx> MatrixRow<'p, Cx> { +impl<'p, Cx: PatCx> MatrixRow<'p, Cx> { fn is_empty(&self) -> bool { self.pats.is_empty() } @@ -1104,7 +1104,7 @@ impl<'p, Cx: TypeCx> MatrixRow<'p, Cx> { } } -impl<'p, Cx: TypeCx> fmt::Debug for MatrixRow<'p, Cx> { +impl<'p, Cx: PatCx> fmt::Debug for MatrixRow<'p, Cx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.pats.fmt(f) } @@ -1121,7 +1121,7 @@ impl<'p, Cx: TypeCx> fmt::Debug for MatrixRow<'p, Cx> { /// specializing `(,)` and `Some` on a pattern of type `(Option<u32>, bool)`, the first column of /// the matrix will correspond to `scrutinee.0.Some.0` and the second column to `scrutinee.1`. #[derive(Clone)] -struct Matrix<'p, Cx: TypeCx> { +struct Matrix<'p, Cx: PatCx> { /// Vector of rows. The rows must form a rectangular 2D array. Moreover, all the patterns of /// each column must have the same type. Each column corresponds to a place within the /// scrutinee. @@ -1134,7 +1134,7 @@ struct Matrix<'p, Cx: TypeCx> { wildcard_row_is_relevant: bool, } -impl<'p, Cx: TypeCx> Matrix<'p, Cx> { +impl<'p, Cx: PatCx> Matrix<'p, Cx> { /// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively /// expands it. Internal method, prefer [`Matrix::new`]. fn expand_and_push(&mut self, mut row: MatrixRow<'p, Cx>) { @@ -1256,7 +1256,7 @@ impl<'p, Cx: TypeCx> Matrix<'p, Cx> { /// + _ + [_, _, tail @ ..] + /// | ✓ | ? | // column validity /// ``` -impl<'p, Cx: TypeCx> fmt::Debug for Matrix<'p, Cx> { +impl<'p, Cx: PatCx> fmt::Debug for Matrix<'p, Cx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "\n")?; @@ -1347,15 +1347,15 @@ impl<'p, Cx: TypeCx> fmt::Debug for Matrix<'p, Cx> { /// /// See the top of the file for more detailed explanations and examples. #[derive(Debug)] -struct WitnessStack<Cx: TypeCx>(Vec<WitnessPat<Cx>>); +struct WitnessStack<Cx: PatCx>(Vec<WitnessPat<Cx>>); -impl<Cx: TypeCx> Clone for WitnessStack<Cx> { +impl<Cx: PatCx> Clone for WitnessStack<Cx> { fn clone(&self) -> Self { Self(self.0.clone()) } } -impl<Cx: TypeCx> WitnessStack<Cx> { +impl<Cx: PatCx> WitnessStack<Cx> { /// Asserts that the witness contains a single pattern, and returns it. fn single_pattern(self) -> WitnessPat<Cx> { assert_eq!(self.0.len(), 1); @@ -1400,15 +1400,15 @@ impl<Cx: TypeCx> WitnessStack<Cx> { /// Just as the `Matrix` starts with a single column, by the end of the algorithm, this has a single /// column, which contains the patterns that are missing for the match to be exhaustive. #[derive(Debug)] -struct WitnessMatrix<Cx: TypeCx>(Vec<WitnessStack<Cx>>); +struct WitnessMatrix<Cx: PatCx>(Vec<WitnessStack<Cx>>); -impl<Cx: TypeCx> Clone for WitnessMatrix<Cx> { +impl<Cx: PatCx> Clone for WitnessMatrix<Cx> { fn clone(&self) -> Self { Self(self.0.clone()) } } -impl<Cx: TypeCx> WitnessMatrix<Cx> { +impl<Cx: PatCx> WitnessMatrix<Cx> { /// New matrix with no witnesses. fn empty() -> Self { WitnessMatrix(Vec::new()) @@ -1482,7 +1482,7 @@ impl<Cx: TypeCx> WitnessMatrix<Cx> { /// /// We can however get false negatives because exhaustiveness does not explore all cases. See the /// section on relevancy at the top of the file. -fn collect_overlapping_range_endpoints<'p, Cx: TypeCx>( +fn collect_overlapping_range_endpoints<'p, Cx: PatCx>( cx: &Cx, overlap_range: IntRange, matrix: &Matrix<'p, Cx>, @@ -1541,7 +1541,7 @@ fn collect_overlapping_range_endpoints<'p, Cx: TypeCx>( } /// Collect ranges that have a singleton gap between them. -fn collect_non_contiguous_range_endpoints<'p, Cx: TypeCx>( +fn collect_non_contiguous_range_endpoints<'p, Cx: PatCx>( cx: &Cx, gap_range: &IntRange, matrix: &Matrix<'p, Cx>, @@ -1582,7 +1582,7 @@ fn collect_non_contiguous_range_endpoints<'p, Cx: TypeCx>( /// (using `apply_constructor` and by updating `row.useful` for each parent row). /// This is all explained at the top of the file. #[instrument(level = "debug", skip(mcx), ret)] -fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>( +fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: PatCx>( mcx: &mut UsefulnessCtxt<'a, Cx>, matrix: &mut Matrix<'p, Cx>, ) -> Result<WitnessMatrix<Cx>, Cx::Error> { @@ -1679,7 +1679,7 @@ fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>( /// Indicates whether or not a given arm is useful. #[derive(Clone, Debug)] -pub enum Usefulness<'p, Cx: TypeCx> { +pub enum Usefulness<'p, Cx: PatCx> { /// The arm is useful. This additionally carries a set of or-pattern branches that have been /// found to be redundant despite the overall arm being useful. Used only in the presence of /// or-patterns, otherwise it stays empty. @@ -1690,11 +1690,11 @@ pub enum Usefulness<'p, Cx: TypeCx> { } /// Report whether this pattern was found useful, and its subpatterns that were not useful if any. -fn collect_pattern_usefulness<'p, Cx: TypeCx>( +fn collect_pattern_usefulness<'p, Cx: PatCx>( useful_subpatterns: &FxHashSet<PatId>, pat: &'p DeconstructedPat<Cx>, ) -> Usefulness<'p, Cx> { - fn pat_is_useful<'p, Cx: TypeCx>( + fn pat_is_useful<'p, Cx: PatCx>( useful_subpatterns: &FxHashSet<PatId>, pat: &'p DeconstructedPat<Cx>, ) -> bool { @@ -1732,7 +1732,7 @@ fn collect_pattern_usefulness<'p, Cx: TypeCx>( } /// The output of checking a match for exhaustiveness and arm usefulness. -pub struct UsefulnessReport<'p, Cx: TypeCx> { +pub struct UsefulnessReport<'p, Cx: PatCx> { /// For each arm of the input, whether that arm is useful after the arms above it. pub arm_usefulness: Vec<(MatchArm<'p, Cx>, Usefulness<'p, Cx>)>, /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of @@ -1742,7 +1742,7 @@ pub struct UsefulnessReport<'p, Cx: TypeCx> { /// Computes whether a match is exhaustive and which of its arms are useful. #[instrument(skip(tycx, arms), level = "debug")] -pub fn compute_match_usefulness<'p, Cx: TypeCx>( +pub fn compute_match_usefulness<'p, Cx: PatCx>( tycx: &Cx, arms: &[MatchArm<'p, Cx>], scrut_ty: Cx::Ty, | 
