about summary refs log tree commit diff
path: root/compiler/rustc_pattern_analysis/src
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_pattern_analysis/src')
-rw-r--r--compiler/rustc_pattern_analysis/src/lib.rs2
-rw-r--r--compiler/rustc_pattern_analysis/src/rustc.rs206
-rw-r--r--compiler/rustc_pattern_analysis/src/rustc/print.rs277
-rw-r--r--compiler/rustc_pattern_analysis/src/usefulness.rs19
4 files changed, 236 insertions, 268 deletions
diff --git a/compiler/rustc_pattern_analysis/src/lib.rs b/compiler/rustc_pattern_analysis/src/lib.rs
index a5c0b13c90b..6c9c848bb10 100644
--- a/compiler/rustc_pattern_analysis/src/lib.rs
+++ b/compiler/rustc_pattern_analysis/src/lib.rs
@@ -5,6 +5,7 @@
 // tidy-alphabetical-start
 #![allow(rustc::diagnostic_outside_of_impl)]
 #![allow(rustc::untranslatable_diagnostic)]
+#![cfg_attr(feature = "rustc", feature(let_chains))]
 // tidy-alphabetical-end
 
 pub mod constructor;
@@ -54,7 +55,6 @@ pub trait PatCx: Sized + fmt::Debug {
     type PatData: Clone;
 
     fn is_exhaustive_patterns_feature_on(&self) -> bool;
-    fn is_min_exhaustive_patterns_feature_on(&self) -> bool;
 
     /// The number of fields for this constructor.
     fn ctor_arity(&self, ctor: &Constructor<Self>, ty: &Self::Ty) -> usize;
diff --git a/compiler/rustc_pattern_analysis/src/rustc.rs b/compiler/rustc_pattern_analysis/src/rustc.rs
index 6290aeb2523..d7885e05a2f 100644
--- a/compiler/rustc_pattern_analysis/src/rustc.rs
+++ b/compiler/rustc_pattern_analysis/src/rustc.rs
@@ -23,6 +23,7 @@ use crate::constructor::{
 };
 use crate::lints::lint_nonexhaustive_missing_variants;
 use crate::pat_column::PatternColumn;
+use crate::rustc::print::EnumInfo;
 use crate::usefulness::{compute_match_usefulness, PlaceValidity};
 use crate::{errors, Captures, PatCx, PrivateUninhabitedField};
 
@@ -237,9 +238,7 @@ impl<'p, 'tcx: 'p> RustcPatCtxt<'p, 'tcx> {
                         let tys = cx.variant_sub_tys(ty, variant).map(|(field, ty)| {
                             let is_visible =
                                 adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
-                            let is_uninhabited = (cx.tcx.features().exhaustive_patterns
-                                || cx.tcx.features().min_exhaustive_patterns)
-                                && cx.is_uninhabited(*ty);
+                            let is_uninhabited = cx.is_uninhabited(*ty);
                             let skip = is_uninhabited && (!is_visible || is_non_exhaustive);
                             (ty, PrivateUninhabitedField(skip))
                         });
@@ -414,7 +413,7 @@ impl<'p, 'tcx: 'p> RustcPatCtxt<'p, 'tcx> {
             | ty::Foreign(_)
             | ty::RawPtr(_, _)
             | ty::FnDef(_, _)
-            | ty::FnPtr(_)
+            | ty::FnPtr(..)
             | ty::Pat(_, _)
             | ty::Dynamic(_, _, _)
             | ty::Closure(..)
@@ -775,17 +774,16 @@ impl<'p, 'tcx: 'p> RustcPatCtxt<'p, 'tcx> {
         }
     }
 
-    /// Convert to a [`print::Pat`] for diagnostic purposes.
-    fn hoist_pat_range(&self, range: &IntRange, ty: RevealedTy<'tcx>) -> print::Pat<'tcx> {
-        use print::{Pat, PatKind};
+    /// Prints an [`IntRange`] to a string for diagnostic purposes.
+    fn print_pat_range(&self, range: &IntRange, ty: RevealedTy<'tcx>) -> String {
         use MaybeInfiniteInt::*;
         let cx = self;
-        let kind = if matches!((range.lo, range.hi), (NegInfinity, PosInfinity)) {
-            PatKind::Wild
+        if matches!((range.lo, range.hi), (NegInfinity, PosInfinity)) {
+            "_".to_string()
         } else if range.is_singleton() {
             let lo = cx.hoist_pat_range_bdy(range.lo, ty);
             let value = lo.as_finite().unwrap();
-            PatKind::Constant { value }
+            value.to_string()
         } else {
             // We convert to an inclusive range for diagnostics.
             let mut end = rustc_hir::RangeEnd::Included;
@@ -808,99 +806,96 @@ impl<'p, 'tcx: 'p> RustcPatCtxt<'p, 'tcx> {
                 range.hi
             };
             let hi = cx.hoist_pat_range_bdy(hi, ty);
-            PatKind::Range(Box::new(PatRange { lo, hi, end, ty: ty.inner() }))
-        };
-
-        Pat { ty: ty.inner(), kind }
+            PatRange { lo, hi, end, ty: ty.inner() }.to_string()
+        }
     }
 
     /// Prints a [`WitnessPat`] to an owned string, for diagnostic purposes.
+    ///
+    /// This panics for patterns that don't appear in diagnostics, like float ranges.
     pub fn print_witness_pat(&self, pat: &WitnessPat<'p, 'tcx>) -> String {
-        // This works by converting the witness pattern to a `print::Pat`
-        // and then printing that, but callers don't need to know that.
-        self.hoist_witness_pat(pat).to_string()
-    }
-
-    /// Convert to a [`print::Pat`] for diagnostic purposes. This panics for patterns that don't
-    /// appear in diagnostics, like float ranges.
-    fn hoist_witness_pat(&self, pat: &WitnessPat<'p, 'tcx>) -> print::Pat<'tcx> {
-        use print::{FieldPat, Pat, PatKind};
         let cx = self;
-        let is_wildcard = |pat: &Pat<'_>| matches!(pat.kind, PatKind::Wild);
-        let mut subpatterns = pat.iter_fields().map(|p| Box::new(cx.hoist_witness_pat(p)));
-        let kind = match pat.ctor() {
-            Bool(b) => PatKind::Constant { value: mir::Const::from_bool(cx.tcx, *b) },
-            IntRange(range) => return self.hoist_pat_range(range, *pat.ty()),
-            Struct | Variant(_) | UnionField => match pat.ty().kind() {
-                ty::Tuple(..) => PatKind::Leaf {
-                    subpatterns: subpatterns
-                        .enumerate()
-                        .map(|(i, pattern)| FieldPat { field: FieldIdx::new(i), pattern })
-                        .collect(),
-                },
-                ty::Adt(adt_def, _) if adt_def.is_box() => {
-                    // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
-                    // of `std`). So this branch is only reachable when the feature is enabled and
-                    // the pattern is a box pattern.
-                    PatKind::Deref { subpattern: subpatterns.next().unwrap() }
-                }
-                ty::Adt(adt_def, _args) => {
-                    let variant_index = RustcPatCtxt::variant_index_for_adt(&pat.ctor(), *adt_def);
-                    let subpatterns = subpatterns
-                        .enumerate()
-                        .map(|(i, pattern)| FieldPat { field: FieldIdx::new(i), pattern })
-                        .collect();
+        let print = |p| cx.print_witness_pat(p);
+        match pat.ctor() {
+            Bool(b) => b.to_string(),
+            Str(s) => s.to_string(),
+            IntRange(range) => return self.print_pat_range(range, *pat.ty()),
+            Struct if pat.ty().is_box() => {
+                // Outside of the `alloc` crate, the only way to create a struct pattern
+                // of type `Box` is to use a `box` pattern via #[feature(box_patterns)].
+                format!("box {}", print(&pat.fields[0]))
+            }
+            Struct | Variant(_) | UnionField => {
+                let enum_info = match *pat.ty().kind() {
+                    ty::Adt(adt_def, _) if adt_def.is_enum() => EnumInfo::Enum {
+                        adt_def,
+                        variant_index: RustcPatCtxt::variant_index_for_adt(pat.ctor(), adt_def),
+                    },
+                    ty::Adt(..) | ty::Tuple(..) => EnumInfo::NotEnum,
+                    _ => bug!("unexpected ctor for type {:?} {:?}", pat.ctor(), *pat.ty()),
+                };
 
-                    if adt_def.is_enum() {
-                        PatKind::Variant { adt_def: *adt_def, variant_index, subpatterns }
-                    } else {
-                        PatKind::Leaf { subpatterns }
-                    }
-                }
-                _ => bug!("unexpected ctor for type {:?} {:?}", pat.ctor(), *pat.ty()),
-            },
-            // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
-            // be careful to reconstruct the correct constant pattern here. However a string
-            // literal pattern will never be reported as a non-exhaustiveness witness, so we
-            // ignore this issue.
-            Ref => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
+                let subpatterns = pat
+                    .iter_fields()
+                    .enumerate()
+                    .map(|(i, pat)| print::FieldPat {
+                        field: FieldIdx::new(i),
+                        pattern: print(pat),
+                        is_wildcard: would_print_as_wildcard(cx.tcx, pat),
+                    })
+                    .collect::<Vec<_>>();
+
+                let mut s = String::new();
+                print::write_struct_like(
+                    &mut s,
+                    self.tcx,
+                    pat.ty().inner(),
+                    &enum_info,
+                    &subpatterns,
+                )
+                .unwrap();
+                s
+            }
+            Ref => {
+                let mut s = String::new();
+                print::write_ref_like(&mut s, pat.ty().inner(), &print(&pat.fields[0])).unwrap();
+                s
+            }
             Slice(slice) => {
-                match slice.kind {
-                    SliceKind::FixedLen(_) => PatKind::Slice {
-                        prefix: subpatterns.collect(),
-                        slice: None,
-                        suffix: Box::new([]),
-                    },
-                    SliceKind::VarLen(prefix, _) => {
-                        let mut subpatterns = subpatterns.peekable();
-                        let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
-                        if slice.array_len.is_some() {
-                            // Improves diagnostics a bit: if the type is a known-size array, instead
-                            // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
-                            // This is incorrect if the size is not known, since `[_, ..]` captures
-                            // arrays of lengths `>= 1` whereas `[..]` captures any length.
-                            while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
-                                prefix.pop();
-                            }
-                            while subpatterns.peek().is_some()
-                                && is_wildcard(subpatterns.peek().unwrap())
-                            {
-                                subpatterns.next();
-                            }
-                        }
-                        let suffix: Box<[_]> = subpatterns.collect();
-                        let wild = Pat { ty: pat.ty().inner(), kind: PatKind::Wild };
-                        PatKind::Slice {
-                            prefix: prefix.into_boxed_slice(),
-                            slice: Some(Box::new(wild)),
-                            suffix,
-                        }
+                let (prefix_len, has_dot_dot) = match slice.kind {
+                    SliceKind::FixedLen(len) => (len, false),
+                    SliceKind::VarLen(prefix_len, _) => (prefix_len, true),
+                };
+
+                let (mut prefix, mut suffix) = pat.fields.split_at(prefix_len);
+
+                // If the pattern contains a `..`, but is applied to values of statically-known
+                // length (arrays), then we can slightly simplify diagnostics by merging any
+                // adjacent wildcard patterns into the `..`: `[x, _, .., _, y]` => `[x, .., y]`.
+                // (This simplification isn't allowed for slice values, because in that case
+                // `[x, .., y]` would match some slices that `[x, _, .., _, y]` would not.)
+                if has_dot_dot && slice.array_len.is_some() {
+                    while let [rest @ .., last] = prefix
+                        && would_print_as_wildcard(cx.tcx, last)
+                    {
+                        prefix = rest;
+                    }
+                    while let [first, rest @ ..] = suffix
+                        && would_print_as_wildcard(cx.tcx, first)
+                    {
+                        suffix = rest;
                     }
                 }
+
+                let prefix = prefix.iter().map(print).collect::<Vec<_>>();
+                let suffix = suffix.iter().map(print).collect::<Vec<_>>();
+
+                let mut s = String::new();
+                print::write_slice_like(&mut s, &prefix, has_dot_dot, &suffix).unwrap();
+                s
             }
-            &Str(value) => PatKind::Constant { value },
-            Never if self.tcx.features().never_patterns => PatKind::Never,
-            Never | Wildcard | NonExhaustive | Hidden | PrivateUninhabited => PatKind::Wild,
+            Never if self.tcx.features().never_patterns => "!".to_string(),
+            Never | Wildcard | NonExhaustive | Hidden | PrivateUninhabited => "_".to_string(),
             Missing { .. } => bug!(
                 "trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
                 `Missing` should have been processed in `apply_constructors`"
@@ -908,9 +903,23 @@ impl<'p, 'tcx: 'p> RustcPatCtxt<'p, 'tcx> {
             F16Range(..) | F32Range(..) | F64Range(..) | F128Range(..) | Opaque(..) | Or => {
                 bug!("can't convert to pattern: {:?}", pat)
             }
-        };
+        }
+    }
+}
 
-        Pat { ty: pat.ty().inner(), kind }
+/// Returns `true` if the given pattern would be printed as a wildcard (`_`).
+fn would_print_as_wildcard(tcx: TyCtxt<'_>, p: &WitnessPat<'_, '_>) -> bool {
+    match p.ctor() {
+        Constructor::IntRange(IntRange {
+            lo: MaybeInfiniteInt::NegInfinity,
+            hi: MaybeInfiniteInt::PosInfinity,
+        })
+        | Constructor::Wildcard
+        | Constructor::NonExhaustive
+        | Constructor::Hidden
+        | Constructor::PrivateUninhabited => true,
+        Constructor::Never if !tcx.features().never_patterns => true,
+        _ => false,
     }
 }
 
@@ -925,9 +934,6 @@ impl<'p, 'tcx: 'p> PatCx for RustcPatCtxt<'p, 'tcx> {
     fn is_exhaustive_patterns_feature_on(&self) -> bool {
         self.tcx.features().exhaustive_patterns
     }
-    fn is_min_exhaustive_patterns_feature_on(&self) -> bool {
-        self.tcx.features().min_exhaustive_patterns
-    }
 
     fn ctor_arity(&self, ctor: &crate::constructor::Constructor<Self>, ty: &Self::Ty) -> usize {
         self.ctor_arity(ctor, *ty)
@@ -973,7 +979,7 @@ impl<'p, 'tcx: 'p> PatCx for RustcPatCtxt<'p, 'tcx> {
         overlaps_on: IntRange,
         overlaps_with: &[&crate::pat::DeconstructedPat<Self>],
     ) {
-        let overlap_as_pat = self.hoist_pat_range(&overlaps_on, *pat.ty());
+        let overlap_as_pat = self.print_pat_range(&overlaps_on, *pat.ty());
         let overlaps: Vec<_> = overlaps_with
             .iter()
             .map(|pat| pat.data().span)
@@ -1013,7 +1019,7 @@ impl<'p, 'tcx: 'p> PatCx for RustcPatCtxt<'p, 'tcx> {
             suggested_range.end = rustc_hir::RangeEnd::Included;
             suggested_range.to_string()
         };
-        let gap_as_pat = self.hoist_pat_range(&gap, *pat.ty());
+        let gap_as_pat = self.print_pat_range(&gap, *pat.ty());
         if gapped_with.is_empty() {
             // If `gapped_with` is empty, `gap == T::MAX`.
             self.tcx.emit_node_span_lint(
diff --git a/compiler/rustc_pattern_analysis/src/rustc/print.rs b/compiler/rustc_pattern_analysis/src/rustc/print.rs
index 4b76764e8b1..17e389df17e 100644
--- a/compiler/rustc_pattern_analysis/src/rustc/print.rs
+++ b/compiler/rustc_pattern_analysis/src/rustc/print.rs
@@ -11,183 +11,150 @@
 
 use std::fmt;
 
-use rustc_middle::thir::PatRange;
-use rustc_middle::ty::{self, AdtDef, Ty};
-use rustc_middle::{bug, mir};
+use rustc_middle::bug;
+use rustc_middle::ty::{self, AdtDef, Ty, TyCtxt};
 use rustc_span::sym;
 use rustc_target::abi::{FieldIdx, VariantIdx};
 
 #[derive(Clone, Debug)]
-pub(crate) struct FieldPat<'tcx> {
+pub(crate) struct FieldPat {
     pub(crate) field: FieldIdx,
-    pub(crate) pattern: Box<Pat<'tcx>>,
+    pub(crate) pattern: String,
+    pub(crate) is_wildcard: bool,
 }
 
-#[derive(Clone, Debug)]
-pub(crate) struct Pat<'tcx> {
-    pub(crate) ty: Ty<'tcx>,
-    pub(crate) kind: PatKind<'tcx>,
+/// Returns a closure that will return `""` when called the first time,
+/// and then return `", "` when called any subsequent times.
+/// Useful for printing comma-separated lists.
+fn start_or_comma() -> impl FnMut() -> &'static str {
+    let mut first = true;
+    move || {
+        if first {
+            first = false;
+            ""
+        } else {
+            ", "
+        }
+    }
 }
 
 #[derive(Clone, Debug)]
-pub(crate) enum PatKind<'tcx> {
-    Wild,
-
-    Variant {
-        adt_def: AdtDef<'tcx>,
-        variant_index: VariantIdx,
-        subpatterns: Vec<FieldPat<'tcx>>,
-    },
-
-    Leaf {
-        subpatterns: Vec<FieldPat<'tcx>>,
-    },
+pub(crate) enum EnumInfo<'tcx> {
+    Enum { adt_def: AdtDef<'tcx>, variant_index: VariantIdx },
+    NotEnum,
+}
 
-    Deref {
-        subpattern: Box<Pat<'tcx>>,
-    },
+pub(crate) fn write_struct_like<'tcx>(
+    f: &mut impl fmt::Write,
+    tcx: TyCtxt<'_>,
+    ty: Ty<'tcx>,
+    enum_info: &EnumInfo<'tcx>,
+    subpatterns: &[FieldPat],
+) -> fmt::Result {
+    let variant_and_name = match *enum_info {
+        EnumInfo::Enum { adt_def, variant_index } => {
+            let variant = adt_def.variant(variant_index);
+            let adt_did = adt_def.did();
+            let name = if tcx.is_diagnostic_item(sym::Option, adt_did)
+                || tcx.is_diagnostic_item(sym::Result, adt_did)
+            {
+                variant.name.to_string()
+            } else {
+                format!("{}::{}", tcx.def_path_str(adt_def.did()), variant.name)
+            };
+            Some((variant, name))
+        }
+        EnumInfo::NotEnum => ty.ty_adt_def().and_then(|adt_def| {
+            Some((adt_def.non_enum_variant(), tcx.def_path_str(adt_def.did())))
+        }),
+    };
 
-    Constant {
-        value: mir::Const<'tcx>,
-    },
+    let mut start_or_comma = start_or_comma();
 
-    Range(Box<PatRange<'tcx>>),
+    if let Some((variant, name)) = &variant_and_name {
+        write!(f, "{name}")?;
 
-    Slice {
-        prefix: Box<[Box<Pat<'tcx>>]>,
-        slice: Option<Box<Pat<'tcx>>>,
-        suffix: Box<[Box<Pat<'tcx>>]>,
-    },
+        // Only for Adt we can have `S {...}`,
+        // which we handle separately here.
+        if variant.ctor.is_none() {
+            write!(f, " {{ ")?;
 
-    Never,
-}
+            let mut printed = 0;
+            for &FieldPat { field, ref pattern, is_wildcard } in subpatterns {
+                if is_wildcard {
+                    continue;
+                }
+                let field_name = variant.fields[field].name;
+                write!(f, "{}{field_name}: {pattern}", start_or_comma())?;
+                printed += 1;
+            }
 
-impl<'tcx> fmt::Display for Pat<'tcx> {
-    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        // Printing lists is a chore.
-        let mut first = true;
-        let mut start_or_continue = |s| {
-            if first {
-                first = false;
-                ""
-            } else {
-                s
+            let is_union = ty.ty_adt_def().is_some_and(|adt| adt.is_union());
+            if printed < variant.fields.len() && (!is_union || printed == 0) {
+                write!(f, "{}..", start_or_comma())?;
             }
-        };
-        let mut start_or_comma = || start_or_continue(", ");
-
-        match self.kind {
-            PatKind::Wild => write!(f, "_"),
-            PatKind::Never => write!(f, "!"),
-            PatKind::Variant { ref subpatterns, .. } | PatKind::Leaf { ref subpatterns } => {
-                let variant_and_name = match self.kind {
-                    PatKind::Variant { adt_def, variant_index, .. } => ty::tls::with(|tcx| {
-                        let variant = adt_def.variant(variant_index);
-                        let adt_did = adt_def.did();
-                        let name = if tcx.get_diagnostic_item(sym::Option) == Some(adt_did)
-                            || tcx.get_diagnostic_item(sym::Result) == Some(adt_did)
-                        {
-                            variant.name.to_string()
-                        } else {
-                            format!("{}::{}", tcx.def_path_str(adt_def.did()), variant.name)
-                        };
-                        Some((variant, name))
-                    }),
-                    _ => self.ty.ty_adt_def().and_then(|adt_def| {
-                        if !adt_def.is_enum() {
-                            ty::tls::with(|tcx| {
-                                Some((adt_def.non_enum_variant(), tcx.def_path_str(adt_def.did())))
-                            })
-                        } else {
-                            None
-                        }
-                    }),
-                };
-
-                if let Some((variant, name)) = &variant_and_name {
-                    write!(f, "{name}")?;
-
-                    // Only for Adt we can have `S {...}`,
-                    // which we handle separately here.
-                    if variant.ctor.is_none() {
-                        write!(f, " {{ ")?;
-
-                        let mut printed = 0;
-                        for p in subpatterns {
-                            if let PatKind::Wild = p.pattern.kind {
-                                continue;
-                            }
-                            let name = variant.fields[p.field].name;
-                            write!(f, "{}{}: {}", start_or_comma(), name, p.pattern)?;
-                            printed += 1;
-                        }
-
-                        let is_union = self.ty.ty_adt_def().is_some_and(|adt| adt.is_union());
-                        if printed < variant.fields.len() && (!is_union || printed == 0) {
-                            write!(f, "{}..", start_or_comma())?;
-                        }
-
-                        return write!(f, " }}");
-                    }
-                }
 
-                let num_fields =
-                    variant_and_name.as_ref().map_or(subpatterns.len(), |(v, _)| v.fields.len());
-                if num_fields != 0 || variant_and_name.is_none() {
-                    write!(f, "(")?;
-                    for i in 0..num_fields {
-                        write!(f, "{}", start_or_comma())?;
-
-                        // Common case: the field is where we expect it.
-                        if let Some(p) = subpatterns.get(i) {
-                            if p.field.index() == i {
-                                write!(f, "{}", p.pattern)?;
-                                continue;
-                            }
-                        }
-
-                        // Otherwise, we have to go looking for it.
-                        if let Some(p) = subpatterns.iter().find(|p| p.field.index() == i) {
-                            write!(f, "{}", p.pattern)?;
-                        } else {
-                            write!(f, "_")?;
-                        }
-                    }
-                    write!(f, ")")?;
-                }
+            return write!(f, " }}");
+        }
+    }
 
-                Ok(())
-            }
-            PatKind::Deref { ref subpattern } => {
-                match self.ty.kind() {
-                    ty::Adt(def, _) if def.is_box() => write!(f, "box ")?,
-                    ty::Ref(_, _, mutbl) => {
-                        write!(f, "&{}", mutbl.prefix_str())?;
-                    }
-                    _ => bug!("{} is a bad Deref pattern type", self.ty),
+    let num_fields = variant_and_name.as_ref().map_or(subpatterns.len(), |(v, _)| v.fields.len());
+    if num_fields != 0 || variant_and_name.is_none() {
+        write!(f, "(")?;
+        for i in 0..num_fields {
+            write!(f, "{}", start_or_comma())?;
+
+            // Common case: the field is where we expect it.
+            if let Some(p) = subpatterns.get(i) {
+                if p.field.index() == i {
+                    write!(f, "{}", p.pattern)?;
+                    continue;
                 }
-                write!(f, "{subpattern}")
             }
-            PatKind::Constant { value } => write!(f, "{value}"),
-            PatKind::Range(ref range) => write!(f, "{range}"),
-            PatKind::Slice { ref prefix, ref slice, ref suffix } => {
-                write!(f, "[")?;
-                for p in prefix.iter() {
-                    write!(f, "{}{}", start_or_comma(), p)?;
-                }
-                if let Some(ref slice) = *slice {
-                    write!(f, "{}", start_or_comma())?;
-                    match slice.kind {
-                        PatKind::Wild => {}
-                        _ => write!(f, "{slice}")?,
-                    }
-                    write!(f, "..")?;
-                }
-                for p in suffix.iter() {
-                    write!(f, "{}{}", start_or_comma(), p)?;
-                }
-                write!(f, "]")
+
+            // Otherwise, we have to go looking for it.
+            if let Some(p) = subpatterns.iter().find(|p| p.field.index() == i) {
+                write!(f, "{}", p.pattern)?;
+            } else {
+                write!(f, "_")?;
             }
         }
+        write!(f, ")")?;
+    }
+
+    Ok(())
+}
+
+pub(crate) fn write_ref_like<'tcx>(
+    f: &mut impl fmt::Write,
+    ty: Ty<'tcx>,
+    subpattern: &str,
+) -> fmt::Result {
+    match ty.kind() {
+        ty::Ref(_, _, mutbl) => {
+            write!(f, "&{}", mutbl.prefix_str())?;
+        }
+        _ => bug!("{ty} is a bad ref pattern type"),
+    }
+    write!(f, "{subpattern}")
+}
+
+pub(crate) fn write_slice_like(
+    f: &mut impl fmt::Write,
+    prefix: &[String],
+    has_dot_dot: bool,
+    suffix: &[String],
+) -> fmt::Result {
+    let mut start_or_comma = start_or_comma();
+    write!(f, "[")?;
+    for p in prefix.iter() {
+        write!(f, "{}{}", start_or_comma(), p)?;
+    }
+    if has_dot_dot {
+        write!(f, "{}..", start_or_comma())?;
+    }
+    for p in suffix.iter() {
+        write!(f, "{}{}", start_or_comma(), p)?;
     }
+    write!(f, "]")
 }
diff --git a/compiler/rustc_pattern_analysis/src/usefulness.rs b/compiler/rustc_pattern_analysis/src/usefulness.rs
index 9710c9e1303..6535afcc398 100644
--- a/compiler/rustc_pattern_analysis/src/usefulness.rs
+++ b/compiler/rustc_pattern_analysis/src/usefulness.rs
@@ -543,13 +543,11 @@
 //! recurse into subpatterns. That second part is done through [`PlaceValidity`], most notably
 //! [`PlaceValidity::specialize`].
 //!
-//! Having said all that, in practice we don't fully follow what's been presented in this section.
-//! Let's call "toplevel exception" the case where the match scrutinee itself has type `!` or
-//! `EmptyEnum`. First, on stable rust, we require `_` patterns for empty types in all cases apart
-//! from the toplevel exception. The `exhaustive_patterns` and `min_exaustive_patterns` allow
-//! omitting patterns in the cases described above. There's a final detail: in the toplevel
-//! exception or with the `exhaustive_patterns` feature, we ignore place validity when checking
-//! whether a pattern is required for exhaustiveness. I (Nadrieril) hope to deprecate this behavior.
+//! Having said all that, we don't fully follow what's been presented in this section. For
+//! backwards-compatibility, we ignore place validity when checking whether a pattern is required
+//! for exhaustiveness in two cases: when the `exhaustive_patterns` feature gate is on, or when the
+//! match scrutinee itself has type `!` or `EmptyEnum`. I (Nadrieril) hope to deprecate this
+//! exception.
 //!
 //!
 //!
@@ -953,13 +951,10 @@ impl<Cx: PatCx> PlaceInfo<Cx> {
             self.is_scrutinee && matches!(ctors_for_ty, ConstructorSet::NoConstructors);
         // Whether empty patterns are counted as useful or not. We only warn an empty arm unreachable if
         // it is guaranteed unreachable by the opsem (i.e. if the place is `known_valid`).
-        let empty_arms_are_unreachable = self.validity.is_known_valid()
-            && (is_toplevel_exception
-                || cx.is_exhaustive_patterns_feature_on()
-                || cx.is_min_exhaustive_patterns_feature_on());
+        let empty_arms_are_unreachable = self.validity.is_known_valid();
         // Whether empty patterns can be omitted for exhaustiveness. We ignore place validity in the
         // toplevel exception and `exhaustive_patterns` cases for backwards compatibility.
-        let can_omit_empty_arms = empty_arms_are_unreachable
+        let can_omit_empty_arms = self.validity.is_known_valid()
             || is_toplevel_exception
             || cx.is_exhaustive_patterns_feature_on();