about summary refs log tree commit diff
path: root/compiler/rustc_pattern_analysis/src
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_pattern_analysis/src')
-rw-r--r--compiler/rustc_pattern_analysis/src/constructor.rs174
-rw-r--r--compiler/rustc_pattern_analysis/src/errors.rs61
-rw-r--r--compiler/rustc_pattern_analysis/src/lib.rs49
-rw-r--r--compiler/rustc_pattern_analysis/src/lints.rs16
-rw-r--r--compiler/rustc_pattern_analysis/src/pat.rs229
-rw-r--r--compiler/rustc_pattern_analysis/src/pat_column.rs6
-rw-r--r--compiler/rustc_pattern_analysis/src/rustc.rs218
-rw-r--r--compiler/rustc_pattern_analysis/src/usefulness.rs224
8 files changed, 647 insertions, 330 deletions
diff --git a/compiler/rustc_pattern_analysis/src/constructor.rs b/compiler/rustc_pattern_analysis/src/constructor.rs
index 767227619b0..95c5556410d 100644
--- a/compiler/rustc_pattern_analysis/src/constructor.rs
+++ b/compiler/rustc_pattern_analysis/src/constructor.rs
@@ -40,7 +40,7 @@
 //! - That have no non-trivial intersection with any of the constructors in the column (i.e. they're
 //!     each either disjoint with or covered by any given column constructor).
 //!
-//! We compute this in two steps: first [`TypeCx::ctors_for_ty`] determines the
+//! We compute this in two steps: first [`PatCx::ctors_for_ty`] determines the
 //! set of all possible constructors for the type. Then [`ConstructorSet::split`] looks at the
 //! column of constructors and splits the set into groups accordingly. The precise invariants of
 //! [`ConstructorSet::split`] is described in [`SplitConstructorSet`].
@@ -136,7 +136,7 @@
 //! the algorithm can't distinguish them from a nonempty constructor. The only known case where this
 //! could happen is the `[..]` pattern on `[!; N]` with `N > 0` so we must take care to not emit it.
 //!
-//! This is all handled by [`TypeCx::ctors_for_ty`] and
+//! This is all handled by [`PatCx::ctors_for_ty`] and
 //! [`ConstructorSet::split`]. The invariants of [`SplitConstructorSet`] are also of interest.
 //!
 //!
@@ -162,7 +162,7 @@ use self::MaybeInfiniteInt::*;
 use self::SliceKind::*;
 
 use crate::index;
-use crate::TypeCx;
+use crate::PatCx;
 
 /// Whether we have seen a constructor in the column or not.
 #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
@@ -192,11 +192,9 @@ impl fmt::Display for RangeEnd {
 #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
 pub enum MaybeInfiniteInt {
     NegInfinity,
-    /// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite`.
+    /// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite_{int,uint}`.
     #[non_exhaustive]
     Finite(u128),
-    /// The integer after `u128::MAX`. We need it to represent `x..=u128::MAX` as an exclusive range.
-    JustAfterMax,
     PosInfinity,
 }
 
@@ -229,25 +227,22 @@ impl MaybeInfiniteInt {
     }
 
     /// Note: this will not turn a finite value into an infinite one or vice-versa.
-    pub fn minus_one(self) -> Self {
+    pub fn minus_one(self) -> Option<Self> {
         match self {
-            Finite(n) => match n.checked_sub(1) {
-                Some(m) => Finite(m),
-                None => panic!("Called `MaybeInfiniteInt::minus_one` on 0"),
-            },
-            JustAfterMax => Finite(u128::MAX),
-            x => x,
+            Finite(n) => n.checked_sub(1).map(Finite),
+            x => Some(x),
         }
     }
-    /// Note: this will not turn a finite value into an infinite one or vice-versa.
-    pub fn plus_one(self) -> Self {
+    /// Note: this will turn `u128::MAX` into `PosInfinity`. This means `plus_one` and `minus_one`
+    /// are not strictly inverses, but that poses no problem in our use of them.
+    /// this will not turn a finite value into an infinite one or vice-versa.
+    pub fn plus_one(self) -> Option<Self> {
         match self {
             Finite(n) => match n.checked_add(1) {
-                Some(m) => Finite(m),
-                None => JustAfterMax,
+                Some(m) => Some(Finite(m)),
+                None => Some(PosInfinity),
             },
-            JustAfterMax => panic!("Called `MaybeInfiniteInt::plus_one` on u128::MAX+1"),
-            x => x,
+            x => Some(x),
         }
     }
 }
@@ -268,18 +263,23 @@ impl IntRange {
     pub fn is_singleton(&self) -> bool {
         // Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
         // to infinite, this correctly only detects ranges that contain exacly one `Finite(x)`.
-        self.lo.plus_one() == self.hi
+        self.lo.plus_one() == Some(self.hi)
     }
 
+    /// Construct a singleton range.
+    /// `x` must be a `Finite(_)` value.
     #[inline]
     pub fn from_singleton(x: MaybeInfiniteInt) -> IntRange {
-        IntRange { lo: x, hi: x.plus_one() }
+        // `unwrap()` is ok on a finite value
+        IntRange { lo: x, hi: x.plus_one().unwrap() }
     }
 
+    /// Construct a range with these boundaries.
+    /// `lo` must not be `PosInfinity`. `hi` must not be `NegInfinity`.
     #[inline]
     pub fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
         if end == RangeEnd::Included {
-            hi = hi.plus_one();
+            hi = hi.plus_one().unwrap();
         }
         if lo >= hi {
             // This should have been caught earlier by E0030.
@@ -420,7 +420,7 @@ pub enum SliceKind {
 }
 
 impl SliceKind {
-    fn arity(self) -> usize {
+    pub fn arity(self) -> usize {
         match self {
             FixedLen(length) => length,
             VarLen(prefix, suffix) => prefix + suffix,
@@ -459,7 +459,7 @@ impl Slice {
         Slice { array_len, kind }
     }
 
-    pub(crate) fn arity(self) -> usize {
+    pub fn arity(self) -> usize {
         self.kind.arity()
     }
 
@@ -648,7 +648,7 @@ impl OpaqueId {
 /// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
 /// `Fields`.
 #[derive(Debug)]
-pub enum Constructor<Cx: TypeCx> {
+pub enum Constructor<Cx: PatCx> {
     /// Tuples and structs.
     Struct,
     /// Enum variants.
@@ -678,22 +678,26 @@ pub enum Constructor<Cx: TypeCx> {
     Or,
     /// Wildcard pattern.
     Wildcard,
+    /// Never pattern. Only used in `WitnessPat`. An actual never pattern should be lowered as
+    /// `Wildcard`.
+    Never,
     /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
-    /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
+    /// for those types for which we cannot list constructors explicitly, like `f64` and `str`. Only
+    /// used in `WitnessPat`.
     NonExhaustive,
-    /// Fake extra constructor for variants that should not be mentioned in diagnostics.
-    /// We use this for variants behind an unstable gate as well as
-    /// `#[doc(hidden)]` ones.
+    /// Fake extra constructor for variants that should not be mentioned in diagnostics. We use this
+    /// for variants behind an unstable gate as well as `#[doc(hidden)]` ones. Only used in
+    /// `WitnessPat`.
     Hidden,
     /// Fake extra constructor for constructors that are not seen in the matrix, as explained at the
-    /// top of the file.
+    /// top of the file. Only used for specialization.
     Missing,
     /// Fake extra constructor that indicates and empty field that is private. When we encounter one
     /// we skip the column entirely so we don't observe its emptiness. Only used for specialization.
     PrivateUninhabited,
 }
 
-impl<Cx: TypeCx> Clone for Constructor<Cx> {
+impl<Cx: PatCx> Clone for Constructor<Cx> {
     fn clone(&self) -> Self {
         match self {
             Constructor::Struct => Constructor::Struct,
@@ -708,6 +712,7 @@ impl<Cx: TypeCx> Clone for Constructor<Cx> {
             Constructor::Str(value) => Constructor::Str(value.clone()),
             Constructor::Opaque(inner) => Constructor::Opaque(inner.clone()),
             Constructor::Or => Constructor::Or,
+            Constructor::Never => Constructor::Never,
             Constructor::Wildcard => Constructor::Wildcard,
             Constructor::NonExhaustive => Constructor::NonExhaustive,
             Constructor::Hidden => Constructor::Hidden,
@@ -717,7 +722,7 @@ impl<Cx: TypeCx> Clone for Constructor<Cx> {
     }
 }
 
-impl<Cx: TypeCx> Constructor<Cx> {
+impl<Cx: PatCx> Constructor<Cx> {
     pub(crate) fn is_non_exhaustive(&self) -> bool {
         matches!(self, NonExhaustive)
     }
@@ -814,6 +819,81 @@ impl<Cx: TypeCx> Constructor<Cx> {
             }
         })
     }
+
+    pub(crate) fn fmt_fields(
+        &self,
+        f: &mut fmt::Formatter<'_>,
+        ty: &Cx::Ty,
+        mut fields: impl Iterator<Item = impl fmt::Debug>,
+    ) -> fmt::Result {
+        let mut first = true;
+        let mut start_or_continue = |s| {
+            if first {
+                first = false;
+                ""
+            } else {
+                s
+            }
+        };
+        let mut start_or_comma = || start_or_continue(", ");
+
+        match self {
+            Struct | Variant(_) | UnionField => {
+                Cx::write_variant_name(f, self, ty)?;
+                // Without `cx`, we can't know which field corresponds to which, so we can't
+                // get the names of the fields. Instead we just display everything as a tuple
+                // struct, which should be good enough.
+                write!(f, "(")?;
+                for p in fields {
+                    write!(f, "{}{:?}", start_or_comma(), p)?;
+                }
+                write!(f, ")")?;
+            }
+            // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
+            // be careful to detect strings here. However a string literal pattern will never
+            // be reported as a non-exhaustiveness witness, so we can ignore this issue.
+            Ref => {
+                write!(f, "&{:?}", &fields.next().unwrap())?;
+            }
+            Slice(slice) => {
+                write!(f, "[")?;
+                match slice.kind {
+                    SliceKind::FixedLen(_) => {
+                        for p in fields {
+                            write!(f, "{}{:?}", start_or_comma(), p)?;
+                        }
+                    }
+                    SliceKind::VarLen(prefix_len, _) => {
+                        for p in fields.by_ref().take(prefix_len) {
+                            write!(f, "{}{:?}", start_or_comma(), p)?;
+                        }
+                        write!(f, "{}..", start_or_comma())?;
+                        for p in fields {
+                            write!(f, "{}{:?}", start_or_comma(), p)?;
+                        }
+                    }
+                }
+                write!(f, "]")?;
+            }
+            Bool(b) => write!(f, "{b}")?,
+            // Best-effort, will render signed ranges incorrectly
+            IntRange(range) => write!(f, "{range:?}")?,
+            F32Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
+            F64Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
+            Str(value) => write!(f, "{value:?}")?,
+            Opaque(..) => write!(f, "<constant pattern>")?,
+            Or => {
+                for pat in fields {
+                    write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
+                }
+            }
+            Never => write!(f, "!")?,
+            Wildcard | Missing | NonExhaustive | Hidden | PrivateUninhabited => {
+                write!(f, "_ : {:?}", ty)?
+            }
+        }
+        Ok(())
+    }
 }
 
 #[derive(Debug, Clone, Copy)]
@@ -835,7 +915,7 @@ pub enum VariantVisibility {
 /// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the
 /// `exhaustive_patterns` feature.
 #[derive(Debug)]
-pub enum ConstructorSet<Cx: TypeCx> {
+pub enum ConstructorSet<Cx: PatCx> {
     /// The type is a tuple or struct. `empty` tracks whether the type is empty.
     Struct { empty: bool },
     /// This type has the following list of constructors. If `variants` is empty and
@@ -886,13 +966,13 @@ pub enum ConstructorSet<Cx: TypeCx> {
 /// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be
 /// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4.
 #[derive(Debug)]
-pub struct SplitConstructorSet<Cx: TypeCx> {
+pub struct SplitConstructorSet<Cx: PatCx> {
     pub present: SmallVec<[Constructor<Cx>; 1]>,
     pub missing: Vec<Constructor<Cx>>,
     pub missing_empty: Vec<Constructor<Cx>>,
 }
 
-impl<Cx: TypeCx> ConstructorSet<Cx> {
+impl<Cx: PatCx> ConstructorSet<Cx> {
     /// This analyzes a column of constructors to 1/ determine which constructors of the type (if
     /// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
     /// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation
@@ -1040,10 +1120,32 @@ impl<Cx: TypeCx> ConstructorSet<Cx> {
                 // In a `MaybeInvalid` place even an empty pattern may be reachable. We therefore
                 // add a dummy empty constructor here, which will be ignored if the place is
                 // `ValidOnly`.
-                missing_empty.push(NonExhaustive);
+                missing_empty.push(Never);
             }
         }
 
         SplitConstructorSet { present, missing, missing_empty }
     }
+
+    /// Whether this set only contains empty constructors.
+    pub(crate) fn all_empty(&self) -> bool {
+        match self {
+            ConstructorSet::Bool
+            | ConstructorSet::Integers { .. }
+            | ConstructorSet::Ref
+            | ConstructorSet::Union
+            | ConstructorSet::Unlistable => false,
+            ConstructorSet::NoConstructors => true,
+            ConstructorSet::Struct { empty } => *empty,
+            ConstructorSet::Variants { variants, non_exhaustive } => {
+                !*non_exhaustive
+                    && variants
+                        .iter()
+                        .all(|visibility| matches!(visibility, VariantVisibility::Empty))
+            }
+            ConstructorSet::Slice { array_len, subtype_is_empty } => {
+                *subtype_is_empty && matches!(array_len, Some(1..))
+            }
+        }
+    }
 }
diff --git a/compiler/rustc_pattern_analysis/src/errors.rs b/compiler/rustc_pattern_analysis/src/errors.rs
index 2d592b35159..75b7b7c8f67 100644
--- a/compiler/rustc_pattern_analysis/src/errors.rs
+++ b/compiler/rustc_pattern_analysis/src/errors.rs
@@ -1,10 +1,10 @@
-use rustc_errors::{AddToDiagnostic, Diag, EmissionGuarantee, SubdiagnosticMessageOp};
+use rustc_errors::{Diag, EmissionGuarantee, SubdiagMessageOp, Subdiagnostic};
 use rustc_macros::{LintDiagnostic, Subdiagnostic};
 use rustc_middle::thir::Pat;
 use rustc_middle::ty::Ty;
 use rustc_span::Span;
 
-use crate::rustc::{RustcMatchCheckCtxt, WitnessPat};
+use crate::rustc::{RustcPatCtxt, WitnessPat};
 
 #[derive(Subdiagnostic)]
 #[label(pattern_analysis_uncovered)]
@@ -21,7 +21,7 @@ pub struct Uncovered<'tcx> {
 impl<'tcx> Uncovered<'tcx> {
     pub fn new<'p>(
         span: Span,
-        cx: &RustcMatchCheckCtxt<'p, 'tcx>,
+        cx: &RustcPatCtxt<'p, 'tcx>,
         witnesses: Vec<WitnessPat<'p, 'tcx>>,
     ) -> Self
     where
@@ -61,8 +61,8 @@ pub struct Overlap<'tcx> {
     pub range: Pat<'tcx>,
 }
 
-impl<'tcx> AddToDiagnostic for Overlap<'tcx> {
-    fn add_to_diagnostic_with<G: EmissionGuarantee, F: SubdiagnosticMessageOp<G>>(
+impl<'tcx> Subdiagnostic for Overlap<'tcx> {
+    fn add_to_diag_with<G: EmissionGuarantee, F: SubdiagMessageOp<G>>(
         self,
         diag: &mut Diag<'_, G>,
         _: F,
@@ -77,6 +77,57 @@ impl<'tcx> AddToDiagnostic for Overlap<'tcx> {
 }
 
 #[derive(LintDiagnostic)]
+#[diag(pattern_analysis_excluside_range_missing_max)]
+pub struct ExclusiveRangeMissingMax<'tcx> {
+    #[label]
+    #[suggestion(code = "{suggestion}", applicability = "maybe-incorrect")]
+    /// This is an exclusive range that looks like `lo..max` (i.e. doesn't match `max`).
+    pub first_range: Span,
+    /// Suggest `lo..=max` instead.
+    pub suggestion: String,
+    pub max: Pat<'tcx>,
+}
+
+#[derive(LintDiagnostic)]
+#[diag(pattern_analysis_excluside_range_missing_gap)]
+pub struct ExclusiveRangeMissingGap<'tcx> {
+    #[label]
+    #[suggestion(code = "{suggestion}", applicability = "maybe-incorrect")]
+    /// This is an exclusive range that looks like `lo..gap` (i.e. doesn't match `gap`).
+    pub first_range: Span,
+    pub gap: Pat<'tcx>,
+    /// Suggest `lo..=gap` instead.
+    pub suggestion: String,
+    #[subdiagnostic]
+    /// All these ranges skipped over `gap` which we think is probably a mistake.
+    pub gap_with: Vec<GappedRange<'tcx>>,
+}
+
+pub struct GappedRange<'tcx> {
+    pub span: Span,
+    pub gap: Pat<'tcx>,
+    pub first_range: Pat<'tcx>,
+}
+
+impl<'tcx> Subdiagnostic for GappedRange<'tcx> {
+    fn add_to_diag_with<G: EmissionGuarantee, F: SubdiagMessageOp<G>>(
+        self,
+        diag: &mut Diag<'_, G>,
+        _: F,
+    ) {
+        let GappedRange { span, gap, first_range } = self;
+
+        // FIXME(mejrs) unfortunately `#[derive(LintDiagnostic)]`
+        // does not support `#[subdiagnostic(eager)]`...
+        let message = format!(
+            "this could appear to continue range `{first_range}`, but `{gap}` isn't matched by \
+            either of them"
+        );
+        diag.span_label(span, message);
+    }
+}
+
+#[derive(LintDiagnostic)]
 #[diag(pattern_analysis_non_exhaustive_omitted_pattern)]
 #[help]
 #[note]
diff --git a/compiler/rustc_pattern_analysis/src/lib.rs b/compiler/rustc_pattern_analysis/src/lib.rs
index d4b38d260e7..1a1da5c55f6 100644
--- a/compiler/rustc_pattern_analysis/src/lib.rs
+++ b/compiler/rustc_pattern_analysis/src/lib.rs
@@ -49,6 +49,12 @@ pub mod index {
         }
     }
 
+    impl<V> FromIterator<V> for IdxContainer<usize, V> {
+        fn from_iter<T: IntoIterator<Item = V>>(iter: T) -> Self {
+            Self(iter.into_iter().enumerate().collect())
+        }
+    }
+
     #[derive(Debug)]
     pub struct IdxSet<T>(pub rustc_hash::FxHashSet<T>);
     impl<T: Idx> IdxSet<T> {
@@ -70,14 +76,8 @@ use rustc_middle::ty::Ty;
 use rustc_span::ErrorGuaranteed;
 
 use crate::constructor::{Constructor, ConstructorSet, IntRange};
-#[cfg(feature = "rustc")]
-use crate::lints::lint_nonexhaustive_missing_variants;
 use crate::pat::DeconstructedPat;
 use crate::pat_column::PatternColumn;
-#[cfg(feature = "rustc")]
-use crate::rustc::RustcMatchCheckCtxt;
-#[cfg(feature = "rustc")]
-use crate::usefulness::{compute_match_usefulness, ValidityConstraint};
 
 pub trait Captures<'a> {}
 impl<'a, T: ?Sized> Captures<'a> for T {}
@@ -90,7 +90,7 @@ pub struct PrivateUninhabitedField(pub bool);
 /// Context that provides type information about constructors.
 ///
 /// Most of the crate is parameterized on a type that implements this trait.
-pub trait TypeCx: Sized + fmt::Debug {
+pub trait PatCx: Sized + fmt::Debug {
     /// The type of a pattern.
     type Ty: Clone + fmt::Debug;
     /// Errors that can abort analysis.
@@ -126,7 +126,8 @@ pub trait TypeCx: Sized + fmt::Debug {
     /// `DeconstructedPat`. Only invoqued when `pat.ctor()` is `Struct | Variant(_) | UnionField`.
     fn write_variant_name(
         f: &mut fmt::Formatter<'_>,
-        pat: &crate::pat::DeconstructedPat<Self>,
+        ctor: &crate::constructor::Constructor<Self>,
+        ty: &Self::Ty,
     ) -> fmt::Result;
 
     /// Raise a bug.
@@ -142,35 +143,55 @@ pub trait TypeCx: Sized + fmt::Debug {
         _overlaps_with: &[&DeconstructedPat<Self>],
     ) {
     }
+
+    /// The maximum pattern complexity limit was reached.
+    fn complexity_exceeded(&self) -> Result<(), Self::Error>;
+
+    /// Lint that there is a gap `gap` between `pat` and all of `gapped_with` such that the gap is
+    /// not matched by another range. If `gapped_with` is empty, then `gap` is `T::MAX`. We only
+    /// detect singleton gaps.
+    /// The default implementation does nothing.
+    fn lint_non_contiguous_range_endpoints(
+        &self,
+        _pat: &DeconstructedPat<Self>,
+        _gap: IntRange,
+        _gapped_with: &[&DeconstructedPat<Self>],
+    ) {
+    }
 }
 
 /// The arm of a match expression.
 #[derive(Debug)]
-pub struct MatchArm<'p, Cx: TypeCx> {
+pub struct MatchArm<'p, Cx: PatCx> {
     pub pat: &'p DeconstructedPat<Cx>,
     pub has_guard: bool,
     pub arm_data: Cx::ArmData,
 }
 
-impl<'p, Cx: TypeCx> Clone for MatchArm<'p, Cx> {
+impl<'p, Cx: PatCx> Clone for MatchArm<'p, Cx> {
     fn clone(&self) -> Self {
         Self { pat: self.pat, has_guard: self.has_guard, arm_data: self.arm_data }
     }
 }
 
-impl<'p, Cx: TypeCx> Copy for MatchArm<'p, Cx> {}
+impl<'p, Cx: PatCx> Copy for MatchArm<'p, Cx> {}
 
 /// The entrypoint for this crate. Computes whether a match is exhaustive and which of its arms are
 /// useful, and runs some lints.
 #[cfg(feature = "rustc")]
 pub fn analyze_match<'p, 'tcx>(
-    tycx: &RustcMatchCheckCtxt<'p, 'tcx>,
+    tycx: &rustc::RustcPatCtxt<'p, 'tcx>,
     arms: &[rustc::MatchArm<'p, 'tcx>],
     scrut_ty: Ty<'tcx>,
+    pattern_complexity_limit: Option<usize>,
 ) -> Result<rustc::UsefulnessReport<'p, 'tcx>, ErrorGuaranteed> {
+    use lints::lint_nonexhaustive_missing_variants;
+    use usefulness::{compute_match_usefulness, PlaceValidity};
+
     let scrut_ty = tycx.reveal_opaque_ty(scrut_ty);
-    let scrut_validity = ValidityConstraint::from_bool(tycx.known_valid_scrutinee);
-    let report = compute_match_usefulness(tycx, arms, scrut_ty, scrut_validity)?;
+    let scrut_validity = PlaceValidity::from_bool(tycx.known_valid_scrutinee);
+    let report =
+        compute_match_usefulness(tycx, arms, scrut_ty, scrut_validity, pattern_complexity_limit)?;
 
     // Run the non_exhaustive_omitted_patterns lint. Only run on refutable patterns to avoid hitting
     // `if let`s. Only run if the match is exhaustive otherwise the error is redundant.
diff --git a/compiler/rustc_pattern_analysis/src/lints.rs b/compiler/rustc_pattern_analysis/src/lints.rs
index 30e775733de..3ca5ebdb0dd 100644
--- a/compiler/rustc_pattern_analysis/src/lints.rs
+++ b/compiler/rustc_pattern_analysis/src/lints.rs
@@ -4,15 +4,15 @@ use rustc_span::ErrorGuaranteed;
 use crate::constructor::Constructor;
 use crate::errors::{NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Uncovered};
 use crate::pat_column::PatternColumn;
-use crate::rustc::{RevealedTy, RustcMatchCheckCtxt, WitnessPat};
+use crate::rustc::{RevealedTy, RustcPatCtxt, WitnessPat};
 use crate::MatchArm;
 
 /// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned
 /// in a given column.
 #[instrument(level = "debug", skip(cx), ret)]
 fn collect_nonexhaustive_missing_variants<'p, 'tcx>(
-    cx: &RustcMatchCheckCtxt<'p, 'tcx>,
-    column: &PatternColumn<'p, RustcMatchCheckCtxt<'p, 'tcx>>,
+    cx: &RustcPatCtxt<'p, 'tcx>,
+    column: &PatternColumn<'p, RustcPatCtxt<'p, 'tcx>>,
 ) -> Result<Vec<WitnessPat<'p, 'tcx>>, ErrorGuaranteed> {
     let Some(&ty) = column.head_ty() else {
         return Ok(Vec::new());
@@ -57,9 +57,9 @@ fn collect_nonexhaustive_missing_variants<'p, 'tcx>(
 }
 
 pub(crate) fn lint_nonexhaustive_missing_variants<'p, 'tcx>(
-    rcx: &RustcMatchCheckCtxt<'p, 'tcx>,
-    arms: &[MatchArm<'p, RustcMatchCheckCtxt<'p, 'tcx>>],
-    pat_column: &PatternColumn<'p, RustcMatchCheckCtxt<'p, 'tcx>>,
+    rcx: &RustcPatCtxt<'p, 'tcx>,
+    arms: &[MatchArm<'p, RustcPatCtxt<'p, 'tcx>>],
+    pat_column: &PatternColumn<'p, RustcPatCtxt<'p, 'tcx>>,
     scrut_ty: RevealedTy<'tcx>,
 ) -> Result<(), ErrorGuaranteed> {
     if !matches!(
@@ -97,8 +97,8 @@ pub(crate) fn lint_nonexhaustive_missing_variants<'p, 'tcx>(
                     lint_name: "non_exhaustive_omitted_patterns",
                 };
 
-                use rustc_errors::DecorateLint;
-                let mut err = rcx.tcx.dcx().struct_span_warn(arm.pat.data().unwrap().span, "");
+                use rustc_errors::LintDiagnostic;
+                let mut err = rcx.tcx.dcx().struct_span_warn(arm.pat.data().span, "");
                 err.primary_message(decorator.msg());
                 decorator.decorate_lint(&mut err);
                 err.emit();
diff --git a/compiler/rustc_pattern_analysis/src/pat.rs b/compiler/rustc_pattern_analysis/src/pat.rs
index decbfa5c0cf..5f388ee9f89 100644
--- a/compiler/rustc_pattern_analysis/src/pat.rs
+++ b/compiler/rustc_pattern_analysis/src/pat.rs
@@ -5,7 +5,7 @@ use std::fmt;
 use smallvec::{smallvec, SmallVec};
 
 use crate::constructor::{Constructor, Slice, SliceKind};
-use crate::{PrivateUninhabitedField, TypeCx};
+use crate::{PatCx, PrivateUninhabitedField};
 
 use self::Constructor::*;
 
@@ -20,32 +20,42 @@ impl PatId {
     }
 }
 
+/// A pattern with an index denoting which field it corresponds to.
+pub struct IndexedPat<Cx: PatCx> {
+    pub idx: usize,
+    pub pat: DeconstructedPat<Cx>,
+}
+
 /// Values and patterns can be represented as a constructor applied to some fields. This represents
 /// a pattern in this form. A `DeconstructedPat` will almost always come from user input; the only
 /// exception are some `Wildcard`s introduced during pattern lowering.
-pub struct DeconstructedPat<Cx: TypeCx> {
+pub struct DeconstructedPat<Cx: PatCx> {
     ctor: Constructor<Cx>,
-    fields: Vec<DeconstructedPat<Cx>>,
+    fields: Vec<IndexedPat<Cx>>,
+    /// The number of fields in this pattern. E.g. if the pattern is `SomeStruct { field12: true, ..
+    /// }` this would be the total number of fields of the struct.
+    /// This is also the same as `self.ctor.arity(self.ty)`.
+    arity: usize,
     ty: Cx::Ty,
-    /// Extra data to store in a pattern. `None` if the pattern is a wildcard that does not
-    /// correspond to a user-supplied pattern.
-    data: Option<Cx::PatData>,
+    /// Extra data to store in a pattern.
+    data: Cx::PatData,
     /// Globally-unique id used to track usefulness at the level of subpatterns.
     pub(crate) uid: PatId,
 }
 
-impl<Cx: TypeCx> DeconstructedPat<Cx> {
-    pub fn wildcard(ty: Cx::Ty) -> Self {
-        DeconstructedPat { ctor: Wildcard, fields: Vec::new(), ty, data: None, uid: PatId::new() }
-    }
-
+impl<Cx: PatCx> DeconstructedPat<Cx> {
     pub fn new(
         ctor: Constructor<Cx>,
-        fields: Vec<DeconstructedPat<Cx>>,
+        fields: Vec<IndexedPat<Cx>>,
+        arity: usize,
         ty: Cx::Ty,
         data: Cx::PatData,
     ) -> Self {
-        DeconstructedPat { ctor, fields, ty, data: Some(data), uid: PatId::new() }
+        DeconstructedPat { ctor, fields, arity, ty, data, uid: PatId::new() }
+    }
+
+    pub fn at_index(self, idx: usize) -> IndexedPat<Cx> {
+        IndexedPat { idx, pat: self }
     }
 
     pub(crate) fn is_or_pat(&self) -> bool {
@@ -58,13 +68,15 @@ impl<Cx: TypeCx> DeconstructedPat<Cx> {
     pub fn ty(&self) -> &Cx::Ty {
         &self.ty
     }
-    /// Returns the extra data stored in a pattern. Returns `None` if the pattern is a wildcard that
-    /// does not correspond to a user-supplied pattern.
-    pub fn data(&self) -> Option<&Cx::PatData> {
-        self.data.as_ref()
+    /// Returns the extra data stored in a pattern.
+    pub fn data(&self) -> &Cx::PatData {
+        &self.data
+    }
+    pub fn arity(&self) -> usize {
+        self.arity
     }
 
-    pub fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a DeconstructedPat<Cx>> {
+    pub fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a IndexedPat<Cx>> {
         self.fields.iter()
     }
 
@@ -73,36 +85,40 @@ impl<Cx: TypeCx> DeconstructedPat<Cx> {
     pub(crate) fn specialize<'a>(
         &'a self,
         other_ctor: &Constructor<Cx>,
-        ctor_arity: usize,
+        other_ctor_arity: usize,
     ) -> SmallVec<[PatOrWild<'a, Cx>; 2]> {
-        let wildcard_sub_tys = || (0..ctor_arity).map(|_| PatOrWild::Wild).collect();
-        match (&self.ctor, other_ctor) {
-            // Return a wildcard for each field of `other_ctor`.
-            (Wildcard, _) => wildcard_sub_tys(),
+        if matches!(other_ctor, PrivateUninhabited) {
             // Skip this column.
-            (_, PrivateUninhabited) => smallvec![],
-            // The only non-trivial case: two slices of different arity. `other_slice` is
-            // guaranteed to have a larger arity, so we fill the middle part with enough
-            // wildcards to reach the length of the new, larger slice.
-            (
-                &Slice(self_slice @ Slice { kind: SliceKind::VarLen(prefix, suffix), .. }),
-                &Slice(other_slice),
-            ) if self_slice.arity() != other_slice.arity() => {
-                // Start with a slice of wildcards of the appropriate length.
-                let mut fields: SmallVec<[_; 2]> = wildcard_sub_tys();
-                // Fill in the fields from both ends.
-                let new_arity = fields.len();
-                for i in 0..prefix {
-                    fields[i] = PatOrWild::Pat(&self.fields[i]);
+            return smallvec![];
+        }
+
+        // Start with a slice of wildcards of the appropriate length.
+        let mut fields: SmallVec<[_; 2]> = (0..other_ctor_arity).map(|_| PatOrWild::Wild).collect();
+        // Fill `fields` with our fields. The arities are known to be compatible.
+        match self.ctor {
+            // The only non-trivial case: two slices of different arity. `other_ctor` is guaranteed
+            // to have a larger arity, so we adjust the indices of the patterns in the suffix so
+            // that they are correctly positioned in the larger slice.
+            Slice(Slice { kind: SliceKind::VarLen(prefix, _), .. })
+                if self.arity != other_ctor_arity =>
+            {
+                for ipat in &self.fields {
+                    let new_idx = if ipat.idx < prefix {
+                        ipat.idx
+                    } else {
+                        // Adjust the indices in the suffix.
+                        ipat.idx + other_ctor_arity - self.arity
+                    };
+                    fields[new_idx] = PatOrWild::Pat(&ipat.pat);
                 }
-                for i in 0..suffix {
-                    fields[new_arity - 1 - i] =
-                        PatOrWild::Pat(&self.fields[self.fields.len() - 1 - i]);
+            }
+            _ => {
+                for ipat in &self.fields {
+                    fields[ipat.idx] = PatOrWild::Pat(&ipat.pat);
                 }
-                fields
             }
-            _ => self.fields.iter().map(PatOrWild::Pat).collect(),
         }
+        fields
     }
 
     /// Walk top-down and call `it` in each place where a pattern occurs
@@ -114,85 +130,19 @@ impl<Cx: TypeCx> DeconstructedPat<Cx> {
         }
 
         for p in self.iter_fields() {
-            p.walk(it)
+            p.pat.walk(it)
         }
     }
 }
 
 /// This is best effort and not good enough for a `Display` impl.
-impl<Cx: TypeCx> fmt::Debug for DeconstructedPat<Cx> {
+impl<Cx: PatCx> fmt::Debug for DeconstructedPat<Cx> {
     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        let pat = self;
-        let mut first = true;
-        let mut start_or_continue = |s| {
-            if first {
-                first = false;
-                ""
-            } else {
-                s
-            }
-        };
-        let mut start_or_comma = || start_or_continue(", ");
-
-        match pat.ctor() {
-            Struct | Variant(_) | UnionField => {
-                Cx::write_variant_name(f, pat)?;
-                // Without `cx`, we can't know which field corresponds to which, so we can't
-                // get the names of the fields. Instead we just display everything as a tuple
-                // struct, which should be good enough.
-                write!(f, "(")?;
-                for p in pat.iter_fields() {
-                    write!(f, "{}", start_or_comma())?;
-                    write!(f, "{p:?}")?;
-                }
-                write!(f, ")")
-            }
-            // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
-            // be careful to detect strings here. However a string literal pattern will never
-            // be reported as a non-exhaustiveness witness, so we can ignore this issue.
-            Ref => {
-                let subpattern = pat.iter_fields().next().unwrap();
-                write!(f, "&{:?}", subpattern)
-            }
-            Slice(slice) => {
-                let mut subpatterns = pat.iter_fields();
-                write!(f, "[")?;
-                match slice.kind {
-                    SliceKind::FixedLen(_) => {
-                        for p in subpatterns {
-                            write!(f, "{}{:?}", start_or_comma(), p)?;
-                        }
-                    }
-                    SliceKind::VarLen(prefix_len, _) => {
-                        for p in subpatterns.by_ref().take(prefix_len) {
-                            write!(f, "{}{:?}", start_or_comma(), p)?;
-                        }
-                        write!(f, "{}", start_or_comma())?;
-                        write!(f, "..")?;
-                        for p in subpatterns {
-                            write!(f, "{}{:?}", start_or_comma(), p)?;
-                        }
-                    }
-                }
-                write!(f, "]")
-            }
-            Bool(b) => write!(f, "{b}"),
-            // Best-effort, will render signed ranges incorrectly
-            IntRange(range) => write!(f, "{range:?}"),
-            F32Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
-            F64Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
-            Str(value) => write!(f, "{value:?}"),
-            Opaque(..) => write!(f, "<constant pattern>"),
-            Or => {
-                for pat in pat.iter_fields() {
-                    write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
-                }
-                Ok(())
-            }
-            Wildcard | Missing | NonExhaustive | Hidden | PrivateUninhabited => {
-                write!(f, "_ : {:?}", pat.ty())
-            }
+        let mut fields: Vec<_> = (0..self.arity).map(|_| PatOrWild::Wild).collect();
+        for ipat in self.iter_fields() {
+            fields[ipat.idx] = PatOrWild::Pat(&ipat.pat);
         }
+        self.ctor().fmt_fields(f, self.ty(), fields.into_iter())
     }
 }
 
@@ -200,14 +150,14 @@ impl<Cx: TypeCx> fmt::Debug for DeconstructedPat<Cx> {
 /// algorithm. Do not use `Wild` to represent a wildcard pattern comping from user input.
 ///
 /// This is morally `Option<&'p DeconstructedPat>` where `None` is interpreted as a wildcard.
-pub(crate) enum PatOrWild<'p, Cx: TypeCx> {
+pub(crate) enum PatOrWild<'p, Cx: PatCx> {
     /// A non-user-provided wildcard, created during specialization.
     Wild,
     /// A user-provided pattern.
     Pat(&'p DeconstructedPat<Cx>),
 }
 
-impl<'p, Cx: TypeCx> Clone for PatOrWild<'p, Cx> {
+impl<'p, Cx: PatCx> Clone for PatOrWild<'p, Cx> {
     fn clone(&self) -> Self {
         match self {
             PatOrWild::Wild => PatOrWild::Wild,
@@ -216,9 +166,9 @@ impl<'p, Cx: TypeCx> Clone for PatOrWild<'p, Cx> {
     }
 }
 
-impl<'p, Cx: TypeCx> Copy for PatOrWild<'p, Cx> {}
+impl<'p, Cx: PatCx> Copy for PatOrWild<'p, Cx> {}
 
-impl<'p, Cx: TypeCx> PatOrWild<'p, Cx> {
+impl<'p, Cx: PatCx> PatOrWild<'p, Cx> {
     pub(crate) fn as_pat(&self) -> Option<&'p DeconstructedPat<Cx>> {
         match self {
             PatOrWild::Wild => None,
@@ -242,9 +192,10 @@ impl<'p, Cx: TypeCx> PatOrWild<'p, Cx> {
     /// Expand this (possibly-nested) or-pattern into its alternatives.
     pub(crate) fn flatten_or_pat(self) -> SmallVec<[Self; 1]> {
         match self {
-            PatOrWild::Pat(pat) if pat.is_or_pat() => {
-                pat.iter_fields().flat_map(|p| PatOrWild::Pat(p).flatten_or_pat()).collect()
-            }
+            PatOrWild::Pat(pat) if pat.is_or_pat() => pat
+                .iter_fields()
+                .flat_map(|ipat| PatOrWild::Pat(&ipat.pat).flatten_or_pat())
+                .collect(),
             _ => smallvec![self],
         }
     }
@@ -263,7 +214,7 @@ impl<'p, Cx: TypeCx> PatOrWild<'p, Cx> {
     }
 }
 
-impl<'p, Cx: TypeCx> fmt::Debug for PatOrWild<'p, Cx> {
+impl<'p, Cx: PatCx> fmt::Debug for PatOrWild<'p, Cx> {
     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
         match self {
             PatOrWild::Wild => write!(f, "_"),
@@ -274,35 +225,40 @@ impl<'p, Cx: TypeCx> fmt::Debug for PatOrWild<'p, Cx> {
 
 /// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics
 /// purposes. As such they don't use interning and can be cloned.
-#[derive(Debug)]
-pub struct WitnessPat<Cx: TypeCx> {
+pub struct WitnessPat<Cx: PatCx> {
     ctor: Constructor<Cx>,
     pub(crate) fields: Vec<WitnessPat<Cx>>,
     ty: Cx::Ty,
 }
 
-impl<Cx: TypeCx> Clone for WitnessPat<Cx> {
+impl<Cx: PatCx> Clone for WitnessPat<Cx> {
     fn clone(&self) -> Self {
         Self { ctor: self.ctor.clone(), fields: self.fields.clone(), ty: self.ty.clone() }
     }
 }
 
-impl<Cx: TypeCx> WitnessPat<Cx> {
+impl<Cx: PatCx> WitnessPat<Cx> {
     pub(crate) fn new(ctor: Constructor<Cx>, fields: Vec<Self>, ty: Cx::Ty) -> Self {
         Self { ctor, fields, ty }
     }
-    pub(crate) fn wildcard(ty: Cx::Ty) -> Self {
-        Self::new(Wildcard, Vec::new(), ty)
+    /// Create a wildcard pattern for this type. If the type is empty, we create a `!` pattern.
+    pub(crate) fn wildcard(cx: &Cx, ty: Cx::Ty) -> Self {
+        let is_empty = cx.ctors_for_ty(&ty).is_ok_and(|ctors| ctors.all_empty());
+        let ctor = if is_empty { Never } else { Wildcard };
+        Self::new(ctor, Vec::new(), ty)
     }
 
     /// Construct a pattern that matches everything that starts with this constructor.
     /// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
     /// `Some(_)`.
     pub(crate) fn wild_from_ctor(cx: &Cx, ctor: Constructor<Cx>, ty: Cx::Ty) -> Self {
+        if matches!(ctor, Wildcard) {
+            return Self::wildcard(cx, ty);
+        }
         let fields = cx
             .ctor_sub_tys(&ctor, &ty)
             .filter(|(_, PrivateUninhabitedField(skip))| !skip)
-            .map(|(ty, _)| Self::wildcard(ty))
+            .map(|(ty, _)| Self::wildcard(cx, ty))
             .collect();
         Self::new(ctor, fields, ty)
     }
@@ -314,7 +270,22 @@ impl<Cx: TypeCx> WitnessPat<Cx> {
         &self.ty
     }
 
+    pub fn is_never_pattern(&self) -> bool {
+        match self.ctor() {
+            Never => true,
+            Or => self.fields.iter().all(|p| p.is_never_pattern()),
+            _ => self.fields.iter().any(|p| p.is_never_pattern()),
+        }
+    }
+
     pub fn iter_fields(&self) -> impl Iterator<Item = &WitnessPat<Cx>> {
         self.fields.iter()
     }
 }
+
+/// This is best effort and not good enough for a `Display` impl.
+impl<Cx: PatCx> fmt::Debug for WitnessPat<Cx> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        self.ctor().fmt_fields(f, self.ty(), self.fields.iter())
+    }
+}
diff --git a/compiler/rustc_pattern_analysis/src/pat_column.rs b/compiler/rustc_pattern_analysis/src/pat_column.rs
index ce14fdc364f..eb4e095c1c6 100644
--- a/compiler/rustc_pattern_analysis/src/pat_column.rs
+++ b/compiler/rustc_pattern_analysis/src/pat_column.rs
@@ -1,6 +1,6 @@
 use crate::constructor::{Constructor, SplitConstructorSet};
 use crate::pat::{DeconstructedPat, PatOrWild};
-use crate::{Captures, MatchArm, TypeCx};
+use crate::{Captures, MatchArm, PatCx};
 
 /// A column of patterns in a match, where a column is the intuitive notion of "subpatterns that
 /// inspect the same subvalue/place".
@@ -11,12 +11,12 @@ use crate::{Captures, MatchArm, TypeCx};
 ///
 /// This is not used in the usefulness algorithm; only in lints.
 #[derive(Debug)]
-pub struct PatternColumn<'p, Cx: TypeCx> {
+pub struct PatternColumn<'p, Cx: PatCx> {
     /// This must not contain an or-pattern. `expand_and_push` takes care to expand them.
     patterns: Vec<&'p DeconstructedPat<Cx>>,
 }
 
-impl<'p, Cx: TypeCx> PatternColumn<'p, Cx> {
+impl<'p, Cx: PatCx> PatternColumn<'p, Cx> {
     pub fn new(arms: &[MatchArm<'p, Cx>]) -> Self {
         let patterns = Vec::with_capacity(arms.len());
         let mut column = PatternColumn { patterns };
diff --git a/compiler/rustc_pattern_analysis/src/rustc.rs b/compiler/rustc_pattern_analysis/src/rustc.rs
index f8839b0b590..b0f506c3651 100644
--- a/compiler/rustc_pattern_analysis/src/rustc.rs
+++ b/compiler/rustc_pattern_analysis/src/rustc.rs
@@ -8,7 +8,7 @@ use rustc_index::{Idx, IndexVec};
 use rustc_middle::middle::stability::EvalResult;
 use rustc_middle::mir::interpret::Scalar;
 use rustc_middle::mir::{self, Const};
-use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange, PatRangeBoundary};
+use rustc_middle::thir::{self, FieldPat, Pat, PatKind, PatRange, PatRangeBoundary};
 use rustc_middle::ty::layout::IntegerExt;
 use rustc_middle::ty::{self, FieldDef, OpaqueTypeKey, Ty, TyCtxt, TypeVisitableExt, VariantDef};
 use rustc_session::lint;
@@ -18,20 +18,19 @@ use rustc_target::abi::{FieldIdx, Integer, VariantIdx, FIRST_VARIANT};
 use crate::constructor::{
     IntRange, MaybeInfiniteInt, OpaqueId, RangeEnd, Slice, SliceKind, VariantVisibility,
 };
-use crate::{errors, Captures, PrivateUninhabitedField, TypeCx};
+use crate::{errors, Captures, PatCx, PrivateUninhabitedField};
 
 use crate::constructor::Constructor::*;
 
 // Re-export rustc-specific versions of all these types.
-pub type Constructor<'p, 'tcx> = crate::constructor::Constructor<RustcMatchCheckCtxt<'p, 'tcx>>;
-pub type ConstructorSet<'p, 'tcx> =
-    crate::constructor::ConstructorSet<RustcMatchCheckCtxt<'p, 'tcx>>;
-pub type DeconstructedPat<'p, 'tcx> = crate::pat::DeconstructedPat<RustcMatchCheckCtxt<'p, 'tcx>>;
-pub type MatchArm<'p, 'tcx> = crate::MatchArm<'p, RustcMatchCheckCtxt<'p, 'tcx>>;
-pub type Usefulness<'p, 'tcx> = crate::usefulness::Usefulness<'p, RustcMatchCheckCtxt<'p, 'tcx>>;
+pub type Constructor<'p, 'tcx> = crate::constructor::Constructor<RustcPatCtxt<'p, 'tcx>>;
+pub type ConstructorSet<'p, 'tcx> = crate::constructor::ConstructorSet<RustcPatCtxt<'p, 'tcx>>;
+pub type DeconstructedPat<'p, 'tcx> = crate::pat::DeconstructedPat<RustcPatCtxt<'p, 'tcx>>;
+pub type MatchArm<'p, 'tcx> = crate::MatchArm<'p, RustcPatCtxt<'p, 'tcx>>;
+pub type Usefulness<'p, 'tcx> = crate::usefulness::Usefulness<'p, RustcPatCtxt<'p, 'tcx>>;
 pub type UsefulnessReport<'p, 'tcx> =
-    crate::usefulness::UsefulnessReport<'p, RustcMatchCheckCtxt<'p, 'tcx>>;
-pub type WitnessPat<'p, 'tcx> = crate::pat::WitnessPat<RustcMatchCheckCtxt<'p, 'tcx>>;
+    crate::usefulness::UsefulnessReport<'p, RustcPatCtxt<'p, 'tcx>>;
+pub type WitnessPat<'p, 'tcx> = crate::pat::WitnessPat<RustcPatCtxt<'p, 'tcx>>;
 
 /// A type which has gone through `cx.reveal_opaque_ty`, i.e. if it was opaque it was replaced by
 /// the hidden type if allowed in the current body. This ensures we consistently inspect the hidden
@@ -62,7 +61,7 @@ impl<'tcx> RevealedTy<'tcx> {
 }
 
 #[derive(Clone)]
-pub struct RustcMatchCheckCtxt<'p, 'tcx: 'p> {
+pub struct RustcPatCtxt<'p, 'tcx: 'p> {
     pub tcx: TyCtxt<'tcx>,
     pub typeck_results: &'tcx ty::TypeckResults<'tcx>,
     /// The module in which the match occurs. This is necessary for
@@ -87,22 +86,19 @@ pub struct RustcMatchCheckCtxt<'p, 'tcx: 'p> {
     pub known_valid_scrutinee: bool,
 }
 
-impl<'p, 'tcx: 'p> fmt::Debug for RustcMatchCheckCtxt<'p, 'tcx> {
+impl<'p, 'tcx: 'p> fmt::Debug for RustcPatCtxt<'p, 'tcx> {
     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        f.debug_struct("RustcMatchCheckCtxt").finish()
+        f.debug_struct("RustcPatCtxt").finish()
     }
 }
 
-impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
+impl<'p, 'tcx: 'p> RustcPatCtxt<'p, 'tcx> {
     /// Type inference occasionally gives us opaque types in places where corresponding patterns
     /// have more specific types. To avoid inconsistencies as well as detect opaque uninhabited
     /// types, we use the corresponding concrete type if possible.
     #[inline]
     pub fn reveal_opaque_ty(&self, ty: Ty<'tcx>) -> RevealedTy<'tcx> {
-        fn reveal_inner<'tcx>(
-            cx: &RustcMatchCheckCtxt<'_, 'tcx>,
-            ty: Ty<'tcx>,
-        ) -> RevealedTy<'tcx> {
+        fn reveal_inner<'tcx>(cx: &RustcPatCtxt<'_, 'tcx>, ty: Ty<'tcx>) -> RevealedTy<'tcx> {
             let ty::Alias(ty::Opaque, alias_ty) = *ty.kind() else { bug!() };
             if let Some(local_def_id) = alias_ty.def_id.as_local() {
                 let key = ty::OpaqueTypeKey { def_id: local_def_id, args: alias_ty.args };
@@ -199,7 +195,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
     + ExactSizeIterator
     + Captures<'a> {
         fn reveal_and_alloc<'a, 'tcx>(
-            cx: &'a RustcMatchCheckCtxt<'_, 'tcx>,
+            cx: &'a RustcPatCtxt<'_, 'tcx>,
             iter: impl Iterator<Item = Ty<'tcx>>,
         ) -> &'a [(RevealedTy<'tcx>, PrivateUninhabitedField)] {
             cx.dropless_arena.alloc_from_iter(
@@ -218,7 +214,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                         reveal_and_alloc(cx, once(args.type_at(0)))
                     } else {
                         let variant =
-                            &adt.variant(RustcMatchCheckCtxt::variant_index_for_adt(&ctor, *adt));
+                            &adt.variant(RustcPatCtxt::variant_index_for_adt(&ctor, *adt));
 
                         // In the cases of either a `#[non_exhaustive]` field list or a non-public
                         // field, we skip uninhabited fields in order not to reveal the
@@ -251,7 +247,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                 _ => bug!("bad slice pattern {:?} {:?}", ctor, ty),
             },
             Bool(..) | IntRange(..) | F32Range(..) | F64Range(..) | Str(..) | Opaque(..)
-            | NonExhaustive | Hidden | Missing | PrivateUninhabited | Wildcard => &[],
+            | Never | NonExhaustive | Hidden | Missing | PrivateUninhabited | Wildcard => &[],
             Or => {
                 bug!("called `Fields::wildcards` on an `Or` ctor")
             }
@@ -270,7 +266,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                         // patterns. If we're here we can assume this is a box pattern.
                         1
                     } else {
-                        let variant_idx = RustcMatchCheckCtxt::variant_index_for_adt(&ctor, *adt);
+                        let variant_idx = RustcPatCtxt::variant_index_for_adt(&ctor, *adt);
                         adt.variant(variant_idx).fields.len()
                     }
                 }
@@ -279,7 +275,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
             Ref => 1,
             Slice(slice) => slice.arity(),
             Bool(..) | IntRange(..) | F32Range(..) | F64Range(..) | Str(..) | Opaque(..)
-            | NonExhaustive | Hidden | Missing | PrivateUninhabited | Wildcard => 0,
+            | Never | NonExhaustive | Hidden | Missing | PrivateUninhabited | Wildcard => 0,
             Or => bug!("The `Or` constructor doesn't have a fixed arity"),
         }
     }
@@ -402,7 +398,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
             ty::Float(_)
             | ty::Str
             | ty::Foreign(_)
-            | ty::RawPtr(_)
+            | ty::RawPtr(_, _)
             | ty::FnDef(_, _)
             | ty::FnPtr(_)
             | ty::Dynamic(_, _, _)
@@ -445,7 +441,8 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
         let cx = self;
         let ty = cx.reveal_opaque_ty(pat.ty);
         let ctor;
-        let mut fields: Vec<_>;
+        let arity;
+        let fields: Vec<_>;
         match &pat.kind {
             PatKind::AscribeUserType { subpattern, .. }
             | PatKind::InlineConstant { subpattern, .. } => return self.lower_pat(subpattern),
@@ -453,9 +450,11 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
             PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
                 ctor = Wildcard;
                 fields = vec![];
+                arity = 0;
             }
             PatKind::Deref { subpattern } => {
-                fields = vec![self.lower_pat(subpattern)];
+                fields = vec![self.lower_pat(subpattern).at_index(0)];
+                arity = 1;
                 ctor = match ty.kind() {
                     // This is a box pattern.
                     ty::Adt(adt, ..) if adt.is_box() => Struct,
@@ -463,20 +462,23 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                     _ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, ty),
                 };
             }
+            PatKind::DerefPattern { .. } => {
+                // FIXME(deref_patterns): At least detect that `box _` is irrefutable.
+                fields = vec![];
+                arity = 0;
+                ctor = Opaque(OpaqueId::new());
+            }
             PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
                 match ty.kind() {
                     ty::Tuple(fs) => {
                         ctor = Struct;
-                        fields = fs
+                        arity = fs.len();
+                        fields = subpatterns
                             .iter()
-                            .map(|ty| cx.reveal_opaque_ty(ty))
-                            .map(|ty| DeconstructedPat::wildcard(ty))
+                            .map(|ipat| self.lower_pat(&ipat.pattern).at_index(ipat.field.index()))
                             .collect();
-                        for pat in subpatterns {
-                            fields[pat.field.index()] = self.lower_pat(&pat.pattern);
-                        }
                     }
-                    ty::Adt(adt, args) if adt.is_box() => {
+                    ty::Adt(adt, _) if adt.is_box() => {
                         // The only legal patterns of type `Box` (outside `std`) are `_` and box
                         // patterns. If we're here we can assume this is a box pattern.
                         // FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
@@ -490,13 +492,13 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                         // solution when we introduce generalized deref patterns. Also need to
                         // prevent mixing of those two options.
                         let pattern = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
-                        let pat = if let Some(pat) = pattern {
-                            self.lower_pat(&pat.pattern)
+                        if let Some(pat) = pattern {
+                            fields = vec![self.lower_pat(&pat.pattern).at_index(0)];
                         } else {
-                            DeconstructedPat::wildcard(self.reveal_opaque_ty(args.type_at(0)))
-                        };
+                            fields = vec![];
+                        }
                         ctor = Struct;
-                        fields = vec![pat];
+                        arity = 1;
                     }
                     ty::Adt(adt, _) => {
                         ctor = match pat.kind {
@@ -506,14 +508,12 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                             _ => bug!(),
                         };
                         let variant =
-                            &adt.variant(RustcMatchCheckCtxt::variant_index_for_adt(&ctor, *adt));
-                        fields = cx
-                            .variant_sub_tys(ty, variant)
-                            .map(|(_, ty)| DeconstructedPat::wildcard(ty))
+                            &adt.variant(RustcPatCtxt::variant_index_for_adt(&ctor, *adt));
+                        arity = variant.fields.len();
+                        fields = subpatterns
+                            .iter()
+                            .map(|ipat| self.lower_pat(&ipat.pattern).at_index(ipat.field.index()))
                             .collect();
-                        for pat in subpatterns {
-                            fields[pat.field.index()] = self.lower_pat(&pat.pattern);
-                        }
                     }
                     _ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, ty),
                 }
@@ -526,6 +526,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                             None => Opaque(OpaqueId::new()),
                         };
                         fields = vec![];
+                        arity = 0;
                     }
                     ty::Char | ty::Int(_) | ty::Uint(_) => {
                         ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
@@ -542,6 +543,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                             None => Opaque(OpaqueId::new()),
                         };
                         fields = vec![];
+                        arity = 0;
                     }
                     ty::Float(ty::FloatTy::F32) => {
                         ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
@@ -553,6 +555,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                             None => Opaque(OpaqueId::new()),
                         };
                         fields = vec![];
+                        arity = 0;
                     }
                     ty::Float(ty::FloatTy::F64) => {
                         ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
@@ -564,6 +567,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                             None => Opaque(OpaqueId::new()),
                         };
                         fields = vec![];
+                        arity = 0;
                     }
                     ty::Ref(_, t, _) if t.is_str() => {
                         // We want a `&str` constant to behave like a `Deref` pattern, to be compatible
@@ -574,9 +578,10 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                         // subfields.
                         // Note: `t` is `str`, not `&str`.
                         let ty = self.reveal_opaque_ty(*t);
-                        let subpattern = DeconstructedPat::new(Str(*value), Vec::new(), ty, pat);
+                        let subpattern = DeconstructedPat::new(Str(*value), Vec::new(), 0, ty, pat);
                         ctor = Ref;
-                        fields = vec![subpattern]
+                        fields = vec![subpattern.at_index(0)];
+                        arity = 1;
                     }
                     // All constants that can be structurally matched have already been expanded
                     // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
@@ -584,6 +589,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                     _ => {
                         ctor = Opaque(OpaqueId::new());
                         fields = vec![];
+                        arity = 0;
                     }
                 }
             }
@@ -623,6 +629,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                     _ => bug!("invalid type for range pattern: {}", ty.inner()),
                 };
                 fields = vec![];
+                arity = 0;
             }
             PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
                 let array_len = match ty.kind() {
@@ -638,12 +645,25 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                     SliceKind::FixedLen(prefix.len() + suffix.len())
                 };
                 ctor = Slice(Slice::new(array_len, kind));
-                fields = prefix.iter().chain(suffix.iter()).map(|p| self.lower_pat(&*p)).collect();
+                fields = prefix
+                    .iter()
+                    .chain(suffix.iter())
+                    .map(|p| self.lower_pat(&*p))
+                    .enumerate()
+                    .map(|(i, p)| p.at_index(i))
+                    .collect();
+                arity = kind.arity();
             }
             PatKind::Or { .. } => {
                 ctor = Or;
                 let pats = expand_or_pat(pat);
-                fields = pats.into_iter().map(|p| self.lower_pat(p)).collect();
+                fields = pats
+                    .into_iter()
+                    .map(|p| self.lower_pat(p))
+                    .enumerate()
+                    .map(|(i, p)| p.at_index(i))
+                    .collect();
+                arity = fields.len();
             }
             PatKind::Never => {
                 // A never pattern matches all the values of its type (namely none). Moreover it
@@ -651,13 +671,15 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                 // `Result<!, !>` which has other constructors. Hence we lower it as a wildcard.
                 ctor = Wildcard;
                 fields = vec![];
+                arity = 0;
             }
             PatKind::Error(_) => {
                 ctor = Opaque(OpaqueId::new());
                 fields = vec![];
+                arity = 0;
             }
         }
-        DeconstructedPat::new(ctor, fields, ty, pat)
+        DeconstructedPat::new(ctor, fields, arity, ty, pat)
     }
 
     /// Convert back to a `thir::PatRangeBoundary` for diagnostic purposes.
@@ -690,7 +712,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                     None => PatRangeBoundary::PosInfinity,
                 }
             }
-            JustAfterMax | PosInfinity => PatRangeBoundary::PosInfinity,
+            PosInfinity => PatRangeBoundary::PosInfinity,
         }
     }
 
@@ -718,12 +740,12 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                 let value = mir::Const::from_ty_const(c, cx.tcx);
                 lo = PatRangeBoundary::Finite(value);
             }
-            let hi = if matches!(range.hi, Finite(0)) {
+            let hi = if let Some(hi) = range.hi.minus_one() {
+                hi
+            } else {
                 // The range encodes `..ty::MIN`, so we can't convert it to an inclusive range.
                 end = rustc_hir::RangeEnd::Excluded;
                 range.hi
-            } else {
-                range.hi.minus_one()
             };
             let hi = cx.hoist_pat_range_bdy(hi, ty);
             PatKind::Range(Box::new(PatRange { lo, hi, end, ty: ty.inner() }))
@@ -754,8 +776,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                     PatKind::Deref { subpattern: subpatterns.next().unwrap() }
                 }
                 ty::Adt(adt_def, args) => {
-                    let variant_index =
-                        RustcMatchCheckCtxt::variant_index_for_adt(&pat.ctor(), *adt_def);
+                    let variant_index = RustcPatCtxt::variant_index_for_adt(&pat.ctor(), *adt_def);
                     let subpatterns = subpatterns
                         .enumerate()
                         .map(|(i, pattern)| FieldPat { field: FieldIdx::new(i), pattern })
@@ -809,7 +830,8 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
                 }
             }
             &Str(value) => PatKind::Constant { value },
-            Wildcard | NonExhaustive | Hidden | PrivateUninhabited => PatKind::Wild,
+            Never if self.tcx.features().never_patterns => PatKind::Never,
+            Never | Wildcard | NonExhaustive | Hidden | PrivateUninhabited => PatKind::Wild,
             Missing { .. } => bug!(
                 "trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
                 `Missing` should have been processed in `apply_constructors`"
@@ -823,7 +845,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
     }
 }
 
-impl<'p, 'tcx: 'p> TypeCx for RustcMatchCheckCtxt<'p, 'tcx> {
+impl<'p, 'tcx: 'p> PatCx for RustcPatCtxt<'p, 'tcx> {
     type Ty = RevealedTy<'tcx>;
     type Error = ErrorGuaranteed;
     type VariantIdx = VariantIdx;
@@ -858,13 +880,14 @@ impl<'p, 'tcx: 'p> TypeCx for RustcMatchCheckCtxt<'p, 'tcx> {
 
     fn write_variant_name(
         f: &mut fmt::Formatter<'_>,
-        pat: &crate::pat::DeconstructedPat<Self>,
+        ctor: &crate::constructor::Constructor<Self>,
+        ty: &Self::Ty,
     ) -> fmt::Result {
-        if let ty::Adt(adt, _) = pat.ty().kind() {
+        if let ty::Adt(adt, _) = ty.kind() {
             if adt.is_box() {
                 write!(f, "Box")?
             } else {
-                let variant = adt.variant(Self::variant_index_for_adt(pat.ctor(), *adt));
+                let variant = adt.variant(Self::variant_index_for_adt(ctor, *adt));
                 write!(f, "{}", variant.name)?;
             }
         }
@@ -884,10 +907,10 @@ impl<'p, 'tcx: 'p> TypeCx for RustcMatchCheckCtxt<'p, 'tcx> {
         let overlap_as_pat = self.hoist_pat_range(&overlaps_on, *pat.ty());
         let overlaps: Vec<_> = overlaps_with
             .iter()
-            .map(|pat| pat.data().unwrap().span)
+            .map(|pat| pat.data().span)
             .map(|span| errors::Overlap { range: overlap_as_pat.clone(), span })
             .collect();
-        let pat_span = pat.data().unwrap().span;
+        let pat_span = pat.data().span;
         self.tcx.emit_node_span_lint(
             lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
             self.match_lint_level,
@@ -895,6 +918,75 @@ impl<'p, 'tcx: 'p> TypeCx for RustcMatchCheckCtxt<'p, 'tcx> {
             errors::OverlappingRangeEndpoints { overlap: overlaps, range: pat_span },
         );
     }
+
+    fn complexity_exceeded(&self) -> Result<(), Self::Error> {
+        let span = self.whole_match_span.unwrap_or(self.scrut_span);
+        Err(self.tcx.dcx().span_err(span, "reached pattern complexity limit"))
+    }
+
+    fn lint_non_contiguous_range_endpoints(
+        &self,
+        pat: &crate::pat::DeconstructedPat<Self>,
+        gap: IntRange,
+        gapped_with: &[&crate::pat::DeconstructedPat<Self>],
+    ) {
+        let &thir_pat = pat.data();
+        let thir::PatKind::Range(range) = &thir_pat.kind else { return };
+        // Only lint when the left range is an exclusive range.
+        if range.end != rustc_hir::RangeEnd::Excluded {
+            return;
+        }
+        // `pat` is an exclusive range like `lo..gap`. `gapped_with` contains ranges that start with
+        // `gap+1`.
+        let suggested_range: thir::Pat<'_> = {
+            // Suggest `lo..=gap` instead.
+            let mut suggested_range = thir_pat.clone();
+            let thir::PatKind::Range(range) = &mut suggested_range.kind else { unreachable!() };
+            range.end = rustc_hir::RangeEnd::Included;
+            suggested_range
+        };
+        let gap_as_pat = self.hoist_pat_range(&gap, *pat.ty());
+        if gapped_with.is_empty() {
+            // If `gapped_with` is empty, `gap == T::MAX`.
+            self.tcx.emit_node_span_lint(
+                lint::builtin::NON_CONTIGUOUS_RANGE_ENDPOINTS,
+                self.match_lint_level,
+                thir_pat.span,
+                errors::ExclusiveRangeMissingMax {
+                    // Point at this range.
+                    first_range: thir_pat.span,
+                    // That's the gap that isn't covered.
+                    max: gap_as_pat.clone(),
+                    // Suggest `lo..=max` instead.
+                    suggestion: suggested_range.to_string(),
+                },
+            );
+        } else {
+            self.tcx.emit_node_span_lint(
+                lint::builtin::NON_CONTIGUOUS_RANGE_ENDPOINTS,
+                self.match_lint_level,
+                thir_pat.span,
+                errors::ExclusiveRangeMissingGap {
+                    // Point at this range.
+                    first_range: thir_pat.span,
+                    // That's the gap that isn't covered.
+                    gap: gap_as_pat.clone(),
+                    // Suggest `lo..=gap` instead.
+                    suggestion: suggested_range.to_string(),
+                    // All these ranges skipped over `gap` which we think is probably a
+                    // mistake.
+                    gap_with: gapped_with
+                        .iter()
+                        .map(|pat| errors::GappedRange {
+                            span: pat.data().span,
+                            gap: gap_as_pat.clone(),
+                            first_range: thir_pat.clone(),
+                        })
+                        .collect(),
+                },
+            );
+        }
+    }
 }
 
 /// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
diff --git a/compiler/rustc_pattern_analysis/src/usefulness.rs b/compiler/rustc_pattern_analysis/src/usefulness.rs
index bbe02f94c0a..cdc03eaeb37 100644
--- a/compiler/rustc_pattern_analysis/src/usefulness.rs
+++ b/compiler/rustc_pattern_analysis/src/usefulness.rs
@@ -242,7 +242,7 @@
 //! Therefore `usefulness(tp_1, tp_2, tq)` returns the single witness-tuple `[Variant2(Some(true), 0)]`.
 //!
 //!
-//! Computing the set of constructors for a type is done in [`TypeCx::ctors_for_ty`]. See
+//! Computing the set of constructors for a type is done in [`PatCx::ctors_for_ty`]. See
 //! the following sections for more accurate versions of the algorithm and corresponding links.
 //!
 //!
@@ -540,8 +540,8 @@
 //! We track in the algorithm whether a given place is known to contain valid data. This is done
 //! first by inspecting the scrutinee syntactically (which gives us `cx.known_valid_scrutinee`), and
 //! then by tracking validity of each column of the matrix (which correspond to places) as we
-//! recurse into subpatterns. That second part is done through [`ValidityConstraint`], most notably
-//! [`ValidityConstraint::specialize`].
+//! recurse into subpatterns. That second part is done through [`PlaceValidity`], most notably
+//! [`PlaceValidity::specialize`].
 //!
 //! Having said all that, in practice we don't fully follow what's been presented in this section.
 //! Let's call "toplevel exception" the case where the match scrutinee itself has type `!` or
@@ -716,9 +716,9 @@ use std::fmt;
 
 use crate::constructor::{Constructor, ConstructorSet, IntRange};
 use crate::pat::{DeconstructedPat, PatId, PatOrWild, WitnessPat};
-use crate::{Captures, MatchArm, PrivateUninhabitedField, TypeCx};
+use crate::{Captures, MatchArm, PatCx, PrivateUninhabitedField};
 
-use self::ValidityConstraint::*;
+use self::PlaceValidity::*;
 
 #[cfg(feature = "rustc")]
 use rustc_data_structures::stack::ensure_sufficient_stack;
@@ -728,35 +728,50 @@ pub fn ensure_sufficient_stack<R>(f: impl FnOnce() -> R) -> R {
 }
 
 /// Context that provides information for usefulness checking.
-struct UsefulnessCtxt<'a, Cx: TypeCx> {
+struct UsefulnessCtxt<'a, Cx: PatCx> {
     /// The context for type information.
     tycx: &'a Cx,
     /// Collect the patterns found useful during usefulness checking. This is used to lint
     /// unreachable (sub)patterns.
     useful_subpatterns: FxHashSet<PatId>,
+    complexity_limit: Option<usize>,
+    complexity_level: usize,
+}
+
+impl<'a, Cx: PatCx> UsefulnessCtxt<'a, Cx> {
+    fn increase_complexity_level(&mut self, complexity_add: usize) -> Result<(), Cx::Error> {
+        self.complexity_level += complexity_add;
+        if self
+            .complexity_limit
+            .is_some_and(|complexity_limit| complexity_limit < self.complexity_level)
+        {
+            return self.tycx.complexity_exceeded();
+        }
+        Ok(())
+    }
 }
 
 /// Context that provides information local to a place under investigation.
-struct PlaceCtxt<'a, Cx: TypeCx> {
+struct PlaceCtxt<'a, Cx: PatCx> {
     cx: &'a Cx,
     /// Type of the place under investigation.
     ty: &'a Cx::Ty,
 }
 
-impl<'a, Cx: TypeCx> Copy for PlaceCtxt<'a, Cx> {}
-impl<'a, Cx: TypeCx> Clone for PlaceCtxt<'a, Cx> {
+impl<'a, Cx: PatCx> Copy for PlaceCtxt<'a, Cx> {}
+impl<'a, Cx: PatCx> Clone for PlaceCtxt<'a, Cx> {
     fn clone(&self) -> Self {
         Self { cx: self.cx, ty: self.ty }
     }
 }
 
-impl<'a, Cx: TypeCx> fmt::Debug for PlaceCtxt<'a, Cx> {
+impl<'a, Cx: PatCx> fmt::Debug for PlaceCtxt<'a, Cx> {
     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
         fmt.debug_struct("PlaceCtxt").field("ty", self.ty).finish()
     }
 }
 
-impl<'a, Cx: TypeCx> PlaceCtxt<'a, Cx> {
+impl<'a, Cx: PatCx> PlaceCtxt<'a, Cx> {
     fn ctor_arity(&self, ctor: &Constructor<Cx>) -> usize {
         self.cx.ctor_arity(ctor, self.ty)
     }
@@ -765,18 +780,14 @@ impl<'a, Cx: TypeCx> PlaceCtxt<'a, Cx> {
     }
 }
 
-/// Serves two purposes:
-/// - in a wildcard, tracks whether the wildcard matches only valid values (i.e. is a binding `_a`)
-///     or also invalid values (i.e. is a true `_` pattern).
-/// - in the matrix, track whether a given place (aka column) is known to contain a valid value or
-///     not.
+/// Track whether a given place (aka column) is known to contain a valid value or not.
 #[derive(Debug, Copy, Clone, PartialEq, Eq)]
-pub enum ValidityConstraint {
+pub enum PlaceValidity {
     ValidOnly,
     MaybeInvalid,
 }
 
-impl ValidityConstraint {
+impl PlaceValidity {
     pub fn from_bool(is_valid_only: bool) -> Self {
         if is_valid_only { ValidOnly } else { MaybeInvalid }
     }
@@ -791,7 +802,7 @@ impl ValidityConstraint {
     ///
     /// Pending further opsem decisions, the current behavior is: validity is preserved, except
     /// inside `&` and union fields where validity is reset to `MaybeInvalid`.
-    fn specialize<Cx: TypeCx>(self, ctor: &Constructor<Cx>) -> Self {
+    fn specialize<Cx: PatCx>(self, ctor: &Constructor<Cx>) -> Self {
         // We preserve validity except when we go inside a reference or a union field.
         if matches!(ctor, Constructor::Ref | Constructor::UnionField) {
             // Validity of `x: &T` does not imply validity of `*x: T`.
@@ -802,7 +813,7 @@ impl ValidityConstraint {
     }
 }
 
-impl fmt::Display for ValidityConstraint {
+impl fmt::Display for PlaceValidity {
     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
         let s = match self {
             ValidOnly => "✓",
@@ -814,19 +825,19 @@ impl fmt::Display for ValidityConstraint {
 
 /// Data about a place under investigation. Its methods contain a lot of the logic used to analyze
 /// the constructors in the matrix.
-struct PlaceInfo<Cx: TypeCx> {
+struct PlaceInfo<Cx: PatCx> {
     /// The type of the place.
     ty: Cx::Ty,
     /// Whether the place is a private uninhabited field. If so we skip this field during analysis
     /// so that we don't observe its emptiness.
     private_uninhabited: bool,
     /// Whether the place is known to contain valid data.
-    validity: ValidityConstraint,
+    validity: PlaceValidity,
     /// Whether the place is the scrutinee itself or a subplace of it.
     is_scrutinee: bool,
 }
 
-impl<Cx: TypeCx> PlaceInfo<Cx> {
+impl<Cx: PatCx> PlaceInfo<Cx> {
     /// Given a constructor for the current place, we return one `PlaceInfo` for each field of the
     /// constructor.
     fn specialize<'a>(
@@ -921,7 +932,7 @@ impl<Cx: TypeCx> PlaceInfo<Cx> {
     }
 }
 
-impl<Cx: TypeCx> Clone for PlaceInfo<Cx> {
+impl<Cx: PatCx> Clone for PlaceInfo<Cx> {
     fn clone(&self) -> Self {
         Self {
             ty: self.ty.clone(),
@@ -936,7 +947,7 @@ impl<Cx: TypeCx> Clone for PlaceInfo<Cx> {
 // The three lifetimes are:
 // - 'p coming from the input
 // - Cx global compilation context
-struct PatStack<'p, Cx: TypeCx> {
+struct PatStack<'p, Cx: PatCx> {
     // Rows of len 1 are very common, which is why `SmallVec[_; 2]` works well.
     pats: SmallVec<[PatOrWild<'p, Cx>; 2]>,
     /// Sometimes we know that as far as this row is concerned, the current case is already handled
@@ -945,13 +956,13 @@ struct PatStack<'p, Cx: TypeCx> {
     relevant: bool,
 }
 
-impl<'p, Cx: TypeCx> Clone for PatStack<'p, Cx> {
+impl<'p, Cx: PatCx> Clone for PatStack<'p, Cx> {
     fn clone(&self) -> Self {
         Self { pats: self.pats.clone(), relevant: self.relevant }
     }
 }
 
-impl<'p, Cx: TypeCx> PatStack<'p, Cx> {
+impl<'p, Cx: PatCx> PatStack<'p, Cx> {
     fn from_pattern(pat: &'p DeconstructedPat<Cx>) -> Self {
         PatStack { pats: smallvec![PatOrWild::Pat(pat)], relevant: true }
     }
@@ -986,23 +997,32 @@ impl<'p, Cx: TypeCx> PatStack<'p, Cx> {
     /// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
     fn pop_head_constructor(
         &self,
+        cx: &Cx,
         ctor: &Constructor<Cx>,
         ctor_arity: usize,
         ctor_is_relevant: bool,
-    ) -> PatStack<'p, Cx> {
+    ) -> Result<PatStack<'p, Cx>, Cx::Error> {
+        let head_pat = self.head();
+        if head_pat.as_pat().is_some_and(|pat| pat.arity() > ctor_arity) {
+            // Arity can be smaller in case of variable-length slices, but mustn't be larger.
+            return Err(cx.bug(format_args!(
+                "uncaught type error: pattern {:?} has inconsistent arity (expected arity <= {ctor_arity})",
+                head_pat.as_pat().unwrap()
+            )));
+        }
         // We pop the head pattern and push the new fields extracted from the arguments of
         // `self.head()`.
-        let mut new_pats = self.head().specialize(ctor, ctor_arity);
+        let mut new_pats = head_pat.specialize(ctor, ctor_arity);
         new_pats.extend_from_slice(&self.pats[1..]);
         // `ctor` is relevant for this row if it is the actual constructor of this row, or if the
         // row has a wildcard and `ctor` is relevant for wildcards.
         let ctor_is_relevant =
             !matches!(self.head().ctor(), Constructor::Wildcard) || ctor_is_relevant;
-        PatStack { pats: new_pats, relevant: self.relevant && ctor_is_relevant }
+        Ok(PatStack { pats: new_pats, relevant: self.relevant && ctor_is_relevant })
     }
 }
 
-impl<'p, Cx: TypeCx> fmt::Debug for PatStack<'p, Cx> {
+impl<'p, Cx: PatCx> fmt::Debug for PatStack<'p, Cx> {
     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
         // We pretty-print similarly to the `Debug` impl of `Matrix`.
         write!(f, "+")?;
@@ -1015,14 +1035,14 @@ impl<'p, Cx: TypeCx> fmt::Debug for PatStack<'p, Cx> {
 
 /// A row of the matrix.
 #[derive(Clone)]
-struct MatrixRow<'p, Cx: TypeCx> {
+struct MatrixRow<'p, Cx: PatCx> {
     // The patterns in the row.
     pats: PatStack<'p, Cx>,
     /// Whether the original arm had a guard. This is inherited when specializing.
     is_under_guard: bool,
     /// When we specialize, we remember which row of the original matrix produced a given row of the
     /// specialized matrix. When we unspecialize, we use this to propagate usefulness back up the
-    /// callstack.
+    /// callstack. On creation, this stores the index of the original match arm.
     parent_row: usize,
     /// False when the matrix is just built. This is set to `true` by
     /// [`compute_exhaustiveness_and_usefulness`] if the arm is found to be useful.
@@ -1035,7 +1055,7 @@ struct MatrixRow<'p, Cx: TypeCx> {
     intersects: BitSet<usize>,
 }
 
-impl<'p, Cx: TypeCx> MatrixRow<'p, Cx> {
+impl<'p, Cx: PatCx> MatrixRow<'p, Cx> {
     fn is_empty(&self) -> bool {
         self.pats.is_empty()
     }
@@ -1068,22 +1088,23 @@ impl<'p, Cx: TypeCx> MatrixRow<'p, Cx> {
     /// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
     fn pop_head_constructor(
         &self,
+        cx: &Cx,
         ctor: &Constructor<Cx>,
         ctor_arity: usize,
         ctor_is_relevant: bool,
         parent_row: usize,
-    ) -> MatrixRow<'p, Cx> {
-        MatrixRow {
-            pats: self.pats.pop_head_constructor(ctor, ctor_arity, ctor_is_relevant),
+    ) -> Result<MatrixRow<'p, Cx>, Cx::Error> {
+        Ok(MatrixRow {
+            pats: self.pats.pop_head_constructor(cx, ctor, ctor_arity, ctor_is_relevant)?,
             parent_row,
             is_under_guard: self.is_under_guard,
             useful: false,
             intersects: BitSet::new_empty(0), // Initialized in `Matrix::expand_and_push`.
-        }
+        })
     }
 }
 
-impl<'p, Cx: TypeCx> fmt::Debug for MatrixRow<'p, Cx> {
+impl<'p, Cx: PatCx> fmt::Debug for MatrixRow<'p, Cx> {
     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
         self.pats.fmt(f)
     }
@@ -1100,7 +1121,7 @@ impl<'p, Cx: TypeCx> fmt::Debug for MatrixRow<'p, Cx> {
 /// specializing `(,)` and `Some` on a pattern of type `(Option<u32>, bool)`, the first column of
 /// the matrix will correspond to `scrutinee.0.Some.0` and the second column to `scrutinee.1`.
 #[derive(Clone)]
-struct Matrix<'p, Cx: TypeCx> {
+struct Matrix<'p, Cx: PatCx> {
     /// Vector of rows. The rows must form a rectangular 2D array. Moreover, all the patterns of
     /// each column must have the same type. Each column corresponds to a place within the
     /// scrutinee.
@@ -1113,7 +1134,7 @@ struct Matrix<'p, Cx: TypeCx> {
     wildcard_row_is_relevant: bool,
 }
 
-impl<'p, Cx: TypeCx> Matrix<'p, Cx> {
+impl<'p, Cx: PatCx> Matrix<'p, Cx> {
     /// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
     /// expands it. Internal method, prefer [`Matrix::new`].
     fn expand_and_push(&mut self, mut row: MatrixRow<'p, Cx>) {
@@ -1130,11 +1151,7 @@ impl<'p, Cx: TypeCx> Matrix<'p, Cx> {
     }
 
     /// Build a new matrix from an iterator of `MatchArm`s.
-    fn new(
-        arms: &[MatchArm<'p, Cx>],
-        scrut_ty: Cx::Ty,
-        scrut_validity: ValidityConstraint,
-    ) -> Self {
+    fn new(arms: &[MatchArm<'p, Cx>], scrut_ty: Cx::Ty, scrut_validity: PlaceValidity) -> Self {
         let place_info = PlaceInfo {
             ty: scrut_ty,
             private_uninhabited: false,
@@ -1146,10 +1163,10 @@ impl<'p, Cx: TypeCx> Matrix<'p, Cx> {
             place_info: smallvec![place_info],
             wildcard_row_is_relevant: true,
         };
-        for (row_id, arm) in arms.iter().enumerate() {
+        for (arm_id, arm) in arms.iter().enumerate() {
             let v = MatrixRow {
                 pats: PatStack::from_pattern(arm.pat),
-                parent_row: row_id, // dummy, we don't read it
+                parent_row: arm_id,
                 is_under_guard: arm.has_guard,
                 useful: false,
                 intersects: BitSet::new_empty(0), // Initialized in `Matrix::expand_and_push`.
@@ -1202,7 +1219,7 @@ impl<'p, Cx: TypeCx> Matrix<'p, Cx> {
         };
         for (i, row) in self.rows().enumerate() {
             if ctor.is_covered_by(pcx.cx, row.head().ctor())? {
-                let new_row = row.pop_head_constructor(ctor, arity, ctor_is_relevant, i);
+                let new_row = row.pop_head_constructor(pcx.cx, ctor, arity, ctor_is_relevant, i)?;
                 matrix.expand_and_push(new_row);
             }
         }
@@ -1239,7 +1256,7 @@ impl<'p, Cx: TypeCx> Matrix<'p, Cx> {
 /// + _     + [_, _, tail @ ..] +
 /// | ✓     | ?                 | // column validity
 /// ```
-impl<'p, Cx: TypeCx> fmt::Debug for Matrix<'p, Cx> {
+impl<'p, Cx: PatCx> fmt::Debug for Matrix<'p, Cx> {
     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
         write!(f, "\n")?;
 
@@ -1330,15 +1347,15 @@ impl<'p, Cx: TypeCx> fmt::Debug for Matrix<'p, Cx> {
 ///
 /// See the top of the file for more detailed explanations and examples.
 #[derive(Debug)]
-struct WitnessStack<Cx: TypeCx>(Vec<WitnessPat<Cx>>);
+struct WitnessStack<Cx: PatCx>(Vec<WitnessPat<Cx>>);
 
-impl<Cx: TypeCx> Clone for WitnessStack<Cx> {
+impl<Cx: PatCx> Clone for WitnessStack<Cx> {
     fn clone(&self) -> Self {
         Self(self.0.clone())
     }
 }
 
-impl<Cx: TypeCx> WitnessStack<Cx> {
+impl<Cx: PatCx> WitnessStack<Cx> {
     /// Asserts that the witness contains a single pattern, and returns it.
     fn single_pattern(self) -> WitnessPat<Cx> {
         assert_eq!(self.0.len(), 1);
@@ -1383,15 +1400,15 @@ impl<Cx: TypeCx> WitnessStack<Cx> {
 /// Just as the `Matrix` starts with a single column, by the end of the algorithm, this has a single
 /// column, which contains the patterns that are missing for the match to be exhaustive.
 #[derive(Debug)]
-struct WitnessMatrix<Cx: TypeCx>(Vec<WitnessStack<Cx>>);
+struct WitnessMatrix<Cx: PatCx>(Vec<WitnessStack<Cx>>);
 
-impl<Cx: TypeCx> Clone for WitnessMatrix<Cx> {
+impl<Cx: PatCx> Clone for WitnessMatrix<Cx> {
     fn clone(&self) -> Self {
         Self(self.0.clone())
     }
 }
 
-impl<Cx: TypeCx> WitnessMatrix<Cx> {
+impl<Cx: PatCx> WitnessMatrix<Cx> {
     /// New matrix with no witnesses.
     fn empty() -> Self {
         WitnessMatrix(Vec::new())
@@ -1465,8 +1482,8 @@ impl<Cx: TypeCx> WitnessMatrix<Cx> {
 ///
 /// We can however get false negatives because exhaustiveness does not explore all cases. See the
 /// section on relevancy at the top of the file.
-fn collect_overlapping_range_endpoints<'p, Cx: TypeCx>(
-    mcx: &mut UsefulnessCtxt<'_, Cx>,
+fn collect_overlapping_range_endpoints<'p, Cx: PatCx>(
+    cx: &Cx,
     overlap_range: IntRange,
     matrix: &Matrix<'p, Cx>,
     specialized_matrix: &Matrix<'p, Cx>,
@@ -1499,11 +1516,11 @@ fn collect_overlapping_range_endpoints<'p, Cx: TypeCx>(
                     .map(|&(_, pat)| pat)
                     .collect();
                 if !overlaps_with.is_empty() {
-                    mcx.tycx.lint_overlapping_range_endpoints(pat, overlap_range, &overlaps_with);
+                    cx.lint_overlapping_range_endpoints(pat, overlap_range, &overlaps_with);
                 }
             }
             suffixes.push((child_row_id, pat))
-        } else if this_range.hi == overlap.plus_one() {
+        } else if Some(this_range.hi) == overlap.plus_one() {
             // `this_range` looks like `this_range.lo..=overlap`; it overlaps with any
             // ranges that look like `overlap..=hi`.
             if !suffixes.is_empty() {
@@ -1515,7 +1532,7 @@ fn collect_overlapping_range_endpoints<'p, Cx: TypeCx>(
                     .map(|&(_, pat)| pat)
                     .collect();
                 if !overlaps_with.is_empty() {
-                    mcx.tycx.lint_overlapping_range_endpoints(pat, overlap_range, &overlaps_with);
+                    cx.lint_overlapping_range_endpoints(pat, overlap_range, &overlaps_with);
                 }
             }
             prefixes.push((child_row_id, pat))
@@ -1523,6 +1540,33 @@ fn collect_overlapping_range_endpoints<'p, Cx: TypeCx>(
     }
 }
 
+/// Collect ranges that have a singleton gap between them.
+fn collect_non_contiguous_range_endpoints<'p, Cx: PatCx>(
+    cx: &Cx,
+    gap_range: &IntRange,
+    matrix: &Matrix<'p, Cx>,
+) {
+    let gap = gap_range.lo;
+    // Ranges that look like `lo..gap`.
+    let mut onebefore: SmallVec<[_; 1]> = Default::default();
+    // Ranges that start on `gap+1` or singletons `gap+1`.
+    let mut oneafter: SmallVec<[_; 1]> = Default::default();
+    // Look through the column for ranges near the gap.
+    for pat in matrix.heads() {
+        let PatOrWild::Pat(pat) = pat else { continue };
+        let Constructor::IntRange(this_range) = pat.ctor() else { continue };
+        if gap == this_range.hi {
+            onebefore.push(pat)
+        } else if gap.plus_one() == Some(this_range.lo) {
+            oneafter.push(pat)
+        }
+    }
+
+    for pat_before in onebefore {
+        cx.lint_non_contiguous_range_endpoints(pat_before, *gap_range, oneafter.as_slice());
+    }
+}
+
 /// The core of the algorithm.
 ///
 /// This recursively computes witnesses of the non-exhaustiveness of `matrix` (if any). Also tracks
@@ -1538,7 +1582,7 @@ fn collect_overlapping_range_endpoints<'p, Cx: TypeCx>(
 ///     (using `apply_constructor` and by updating `row.useful` for each parent row).
 /// This is all explained at the top of the file.
 #[instrument(level = "debug", skip(mcx), ret)]
-fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>(
+fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: PatCx>(
     mcx: &mut UsefulnessCtxt<'a, Cx>,
     matrix: &mut Matrix<'p, Cx>,
 ) -> Result<WitnessMatrix<Cx>, Cx::Error> {
@@ -1552,6 +1596,7 @@ fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>(
     }
 
     let Some(place) = matrix.head_place() else {
+        mcx.increase_complexity_level(matrix.rows().len())?;
         // The base case: there are no columns in the matrix. We are morally pattern-matching on ().
         // A row is useful iff it has no (unguarded) rows above it.
         let mut useful = true; // Whether the next row is useful.
@@ -1602,13 +1647,24 @@ fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>(
                 && spec_matrix.rows.len() >= 2
                 && spec_matrix.rows.iter().any(|row| !row.intersects.is_empty())
             {
-                collect_overlapping_range_endpoints(mcx, overlap_range, matrix, &spec_matrix);
+                collect_overlapping_range_endpoints(mcx.tycx, overlap_range, matrix, &spec_matrix);
             }
         }
 
         matrix.unspecialize(spec_matrix);
     }
 
+    // Detect singleton gaps between ranges.
+    if missing_ctors.iter().any(|c| matches!(c, Constructor::IntRange(..))) {
+        for missing in &missing_ctors {
+            if let Constructor::IntRange(gap) = missing {
+                if gap.is_singleton() {
+                    collect_non_contiguous_range_endpoints(mcx.tycx, gap, matrix);
+                }
+            }
+        }
+    }
+
     // Record usefulness in the patterns.
     for row in matrix.rows() {
         if row.useful {
@@ -1623,7 +1679,7 @@ fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>(
 
 /// Indicates whether or not a given arm is useful.
 #[derive(Clone, Debug)]
-pub enum Usefulness<'p, Cx: TypeCx> {
+pub enum Usefulness<'p, Cx: PatCx> {
     /// The arm is useful. This additionally carries a set of or-pattern branches that have been
     /// found to be redundant despite the overall arm being useful. Used only in the presence of
     /// or-patterns, otherwise it stays empty.
@@ -1634,17 +1690,18 @@ pub enum Usefulness<'p, Cx: TypeCx> {
 }
 
 /// Report whether this pattern was found useful, and its subpatterns that were not useful if any.
-fn collect_pattern_usefulness<'p, Cx: TypeCx>(
+fn collect_pattern_usefulness<'p, Cx: PatCx>(
     useful_subpatterns: &FxHashSet<PatId>,
     pat: &'p DeconstructedPat<Cx>,
 ) -> Usefulness<'p, Cx> {
-    fn pat_is_useful<'p, Cx: TypeCx>(
+    fn pat_is_useful<'p, Cx: PatCx>(
         useful_subpatterns: &FxHashSet<PatId>,
         pat: &'p DeconstructedPat<Cx>,
     ) -> bool {
         if useful_subpatterns.contains(&pat.uid) {
             true
-        } else if pat.is_or_pat() && pat.iter_fields().any(|f| pat_is_useful(useful_subpatterns, f))
+        } else if pat.is_or_pat()
+            && pat.iter_fields().any(|f| pat_is_useful(useful_subpatterns, &f.pat))
         {
             // We always expand or patterns in the matrix, so we will never see the actual
             // or-pattern (the one with constructor `Or`) in the column. As such, it will not be
@@ -1675,23 +1732,32 @@ fn collect_pattern_usefulness<'p, Cx: TypeCx>(
 }
 
 /// The output of checking a match for exhaustiveness and arm usefulness.
-pub struct UsefulnessReport<'p, Cx: TypeCx> {
+pub struct UsefulnessReport<'p, Cx: PatCx> {
     /// For each arm of the input, whether that arm is useful after the arms above it.
     pub arm_usefulness: Vec<(MatchArm<'p, Cx>, Usefulness<'p, Cx>)>,
     /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
     /// exhaustiveness.
     pub non_exhaustiveness_witnesses: Vec<WitnessPat<Cx>>,
+    /// For each arm, a set of indices of arms above it that have non-empty intersection, i.e. there
+    /// is a value matched by both arms. This may miss real intersections.
+    pub arm_intersections: Vec<BitSet<usize>>,
 }
 
 /// Computes whether a match is exhaustive and which of its arms are useful.
 #[instrument(skip(tycx, arms), level = "debug")]
-pub fn compute_match_usefulness<'p, Cx: TypeCx>(
+pub fn compute_match_usefulness<'p, Cx: PatCx>(
     tycx: &Cx,
     arms: &[MatchArm<'p, Cx>],
     scrut_ty: Cx::Ty,
-    scrut_validity: ValidityConstraint,
+    scrut_validity: PlaceValidity,
+    complexity_limit: Option<usize>,
 ) -> Result<UsefulnessReport<'p, Cx>, Cx::Error> {
-    let mut cx = UsefulnessCtxt { tycx, useful_subpatterns: FxHashSet::default() };
+    let mut cx = UsefulnessCtxt {
+        tycx,
+        useful_subpatterns: FxHashSet::default(),
+        complexity_limit,
+        complexity_level: 0,
+    };
     let mut matrix = Matrix::new(arms, scrut_ty, scrut_validity);
     let non_exhaustiveness_witnesses = compute_exhaustiveness_and_usefulness(&mut cx, &mut matrix)?;
 
@@ -1706,5 +1772,19 @@ pub fn compute_match_usefulness<'p, Cx: TypeCx>(
         })
         .collect();
 
-    Ok(UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses })
+    let mut arm_intersections: Vec<_> =
+        arms.iter().enumerate().map(|(i, _)| BitSet::new_empty(i)).collect();
+    for row in matrix.rows() {
+        let arm_id = row.parent_row;
+        for intersection in row.intersects.iter() {
+            // Convert the matrix row ids into arm ids (they can differ because we expand or-patterns).
+            let arm_intersection = matrix.rows[intersection].parent_row;
+            // Note: self-intersection can happen with or-patterns.
+            if arm_intersection != arm_id {
+                arm_intersections[arm_id].insert(arm_intersection);
+            }
+        }
+    }
+
+    Ok(UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses, arm_intersections })
 }