about summary refs log tree commit diff
path: root/library/compiler-builtins/libm/src/math/jnf.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/compiler-builtins/libm/src/math/jnf.rs')
-rw-r--r--library/compiler-builtins/libm/src/math/jnf.rs253
1 files changed, 253 insertions, 0 deletions
diff --git a/library/compiler-builtins/libm/src/math/jnf.rs b/library/compiler-builtins/libm/src/math/jnf.rs
new file mode 100644
index 00000000000..52cf7d8a8bd
--- /dev/null
+++ b/library/compiler-builtins/libm/src/math/jnf.rs
@@ -0,0 +1,253 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{fabsf, j0f, j1f, logf, y0f, y1f};
+
+/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn jnf(n: i32, mut x: f32) -> f32 {
+    let mut ix: u32;
+    let mut nm1: i32;
+    let mut sign: bool;
+    let mut i: i32;
+    let mut a: f32;
+    let mut b: f32;
+    let mut temp: f32;
+
+    ix = x.to_bits();
+    sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+    if ix > 0x7f800000 {
+        /* nan */
+        return x;
+    }
+
+    /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
+    if n == 0 {
+        return j0f(x);
+    }
+    if n < 0 {
+        nm1 = -(n + 1);
+        x = -x;
+        sign = !sign;
+    } else {
+        nm1 = n - 1;
+    }
+    if nm1 == 0 {
+        return j1f(x);
+    }
+
+    sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
+    x = fabsf(x);
+    if ix == 0 || ix == 0x7f800000 {
+        /* if x is 0 or inf */
+        b = 0.0;
+    } else if (nm1 as f32) < x {
+        /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+        a = j0f(x);
+        b = j1f(x);
+        i = 0;
+        while i < nm1 {
+            i += 1;
+            temp = b;
+            b = b * (2.0 * (i as f32) / x) - a;
+            a = temp;
+        }
+    } else if ix < 0x35800000 {
+        /* x < 2**-20 */
+        /* x is tiny, return the first Taylor expansion of J(n,x)
+         * J(n,x) = 1/n!*(x/2)^n  - ...
+         */
+        if nm1 > 8 {
+            /* underflow */
+            nm1 = 8;
+        }
+        temp = 0.5 * x;
+        b = temp;
+        a = 1.0;
+        i = 2;
+        while i <= nm1 + 1 {
+            a *= i as f32; /* a = n! */
+            b *= temp; /* b = (x/2)^n */
+            i += 1;
+        }
+        b = b / a;
+    } else {
+        /* use backward recurrence */
+        /*                      x      x^2      x^2
+         *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
+         *                      2n  - 2(n+1) - 2(n+2)
+         *
+         *                      1      1        1
+         *  (for large x)   =  ----  ------   ------   .....
+         *                      2n   2(n+1)   2(n+2)
+         *                      -- - ------ - ------ -
+         *                       x     x         x
+         *
+         * Let w = 2n/x and h=2/x, then the above quotient
+         * is equal to the continued fraction:
+         *                  1
+         *      = -----------------------
+         *                     1
+         *         w - -----------------
+         *                        1
+         *              w+h - ---------
+         *                     w+2h - ...
+         *
+         * To determine how many terms needed, let
+         * Q(0) = w, Q(1) = w(w+h) - 1,
+         * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+         * When Q(k) > 1e4      good for single
+         * When Q(k) > 1e9      good for double
+         * When Q(k) > 1e17     good for quadruple
+         */
+        /* determine k */
+        let mut t: f32;
+        let mut q0: f32;
+        let mut q1: f32;
+        let mut w: f32;
+        let h: f32;
+        let mut z: f32;
+        let mut tmp: f32;
+        let nf: f32;
+        let mut k: i32;
+
+        nf = (nm1 as f32) + 1.0;
+        w = 2.0 * nf / x;
+        h = 2.0 / x;
+        z = w + h;
+        q0 = w;
+        q1 = w * z - 1.0;
+        k = 1;
+        while q1 < 1.0e4 {
+            k += 1;
+            z += h;
+            tmp = z * q1 - q0;
+            q0 = q1;
+            q1 = tmp;
+        }
+        t = 0.0;
+        i = k;
+        while i >= 0 {
+            t = 1.0 / (2.0 * ((i as f32) + nf) / x - t);
+            i -= 1;
+        }
+        a = t;
+        b = 1.0;
+        /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+         *  Hence, if n*(log(2n/x)) > ...
+         *  single 8.8722839355e+01
+         *  double 7.09782712893383973096e+02
+         *  long double 1.1356523406294143949491931077970765006170e+04
+         *  then recurrent value may overflow and the result is
+         *  likely underflow to zero
+         */
+        tmp = nf * logf(fabsf(w));
+        if tmp < 88.721679688 {
+            i = nm1;
+            while i > 0 {
+                temp = b;
+                b = 2.0 * (i as f32) * b / x - a;
+                a = temp;
+                i -= 1;
+            }
+        } else {
+            i = nm1;
+            while i > 0 {
+                temp = b;
+                b = 2.0 * (i as f32) * b / x - a;
+                a = temp;
+                /* scale b to avoid spurious overflow */
+                let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60
+                if b > x1p60 {
+                    a /= b;
+                    t /= b;
+                    b = 1.0;
+                }
+                i -= 1;
+            }
+        }
+        z = j0f(x);
+        w = j1f(x);
+        if fabsf(z) >= fabsf(w) {
+            b = t * z / b;
+        } else {
+            b = t * w / a;
+        }
+    }
+
+    if sign { -b } else { b }
+}
+
+/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ynf(n: i32, x: f32) -> f32 {
+    let mut ix: u32;
+    let mut ib: u32;
+    let nm1: i32;
+    let mut sign: bool;
+    let mut i: i32;
+    let mut a: f32;
+    let mut b: f32;
+    let mut temp: f32;
+
+    ix = x.to_bits();
+    sign = (ix >> 31) != 0;
+    ix &= 0x7fffffff;
+    if ix > 0x7f800000 {
+        /* nan */
+        return x;
+    }
+    if sign && ix != 0 {
+        /* x < 0 */
+        return 0.0 / 0.0;
+    }
+    if ix == 0x7f800000 {
+        return 0.0;
+    }
+
+    if n == 0 {
+        return y0f(x);
+    }
+    if n < 0 {
+        nm1 = -(n + 1);
+        sign = (n & 1) != 0;
+    } else {
+        nm1 = n - 1;
+        sign = false;
+    }
+    if nm1 == 0 {
+        if sign {
+            return -y1f(x);
+        } else {
+            return y1f(x);
+        }
+    }
+
+    a = y0f(x);
+    b = y1f(x);
+    /* quit if b is -inf */
+    ib = b.to_bits();
+    i = 0;
+    while i < nm1 && ib != 0xff800000 {
+        i += 1;
+        temp = b;
+        b = (2.0 * (i as f32) / x) * b - a;
+        ib = b.to_bits();
+        a = temp;
+    }
+
+    if sign { -b } else { b }
+}