about summary refs log tree commit diff
path: root/library/std/src/sync/mutex.rs
diff options
context:
space:
mode:
Diffstat (limited to 'library/std/src/sync/mutex.rs')
-rw-r--r--library/std/src/sync/mutex.rs767
1 files changed, 767 insertions, 0 deletions
diff --git a/library/std/src/sync/mutex.rs b/library/std/src/sync/mutex.rs
new file mode 100644
index 00000000000..8478457eabf
--- /dev/null
+++ b/library/std/src/sync/mutex.rs
@@ -0,0 +1,767 @@
+use crate::cell::UnsafeCell;
+use crate::fmt;
+use crate::mem;
+use crate::ops::{Deref, DerefMut};
+use crate::ptr;
+use crate::sys_common::mutex as sys;
+use crate::sys_common::poison::{self, LockResult, TryLockError, TryLockResult};
+
+/// A mutual exclusion primitive useful for protecting shared data
+///
+/// This mutex will block threads waiting for the lock to become available. The
+/// mutex can also be statically initialized or created via a [`new`]
+/// constructor. Each mutex has a type parameter which represents the data that
+/// it is protecting. The data can only be accessed through the RAII guards
+/// returned from [`lock`] and [`try_lock`], which guarantees that the data is only
+/// ever accessed when the mutex is locked.
+///
+/// # Poisoning
+///
+/// The mutexes in this module implement a strategy called "poisoning" where a
+/// mutex is considered poisoned whenever a thread panics while holding the
+/// mutex. Once a mutex is poisoned, all other threads are unable to access the
+/// data by default as it is likely tainted (some invariant is not being
+/// upheld).
+///
+/// For a mutex, this means that the [`lock`] and [`try_lock`] methods return a
+/// [`Result`] which indicates whether a mutex has been poisoned or not. Most
+/// usage of a mutex will simply [`unwrap()`] these results, propagating panics
+/// among threads to ensure that a possibly invalid invariant is not witnessed.
+///
+/// A poisoned mutex, however, does not prevent all access to the underlying
+/// data. The [`PoisonError`] type has an [`into_inner`] method which will return
+/// the guard that would have otherwise been returned on a successful lock. This
+/// allows access to the data, despite the lock being poisoned.
+///
+/// [`new`]: #method.new
+/// [`lock`]: #method.lock
+/// [`try_lock`]: #method.try_lock
+/// [`Result`]: ../../std/result/enum.Result.html
+/// [`unwrap()`]: ../../std/result/enum.Result.html#method.unwrap
+/// [`PoisonError`]: ../../std/sync/struct.PoisonError.html
+/// [`into_inner`]: ../../std/sync/struct.PoisonError.html#method.into_inner
+///
+/// # Examples
+///
+/// ```
+/// use std::sync::{Arc, Mutex};
+/// use std::thread;
+/// use std::sync::mpsc::channel;
+///
+/// const N: usize = 10;
+///
+/// // Spawn a few threads to increment a shared variable (non-atomically), and
+/// // let the main thread know once all increments are done.
+/// //
+/// // Here we're using an Arc to share memory among threads, and the data inside
+/// // the Arc is protected with a mutex.
+/// let data = Arc::new(Mutex::new(0));
+///
+/// let (tx, rx) = channel();
+/// for _ in 0..N {
+///     let (data, tx) = (Arc::clone(&data), tx.clone());
+///     thread::spawn(move || {
+///         // The shared state can only be accessed once the lock is held.
+///         // Our non-atomic increment is safe because we're the only thread
+///         // which can access the shared state when the lock is held.
+///         //
+///         // We unwrap() the return value to assert that we are not expecting
+///         // threads to ever fail while holding the lock.
+///         let mut data = data.lock().unwrap();
+///         *data += 1;
+///         if *data == N {
+///             tx.send(()).unwrap();
+///         }
+///         // the lock is unlocked here when `data` goes out of scope.
+///     });
+/// }
+///
+/// rx.recv().unwrap();
+/// ```
+///
+/// To recover from a poisoned mutex:
+///
+/// ```
+/// use std::sync::{Arc, Mutex};
+/// use std::thread;
+///
+/// let lock = Arc::new(Mutex::new(0_u32));
+/// let lock2 = lock.clone();
+///
+/// let _ = thread::spawn(move || -> () {
+///     // This thread will acquire the mutex first, unwrapping the result of
+///     // `lock` because the lock has not been poisoned.
+///     let _guard = lock2.lock().unwrap();
+///
+///     // This panic while holding the lock (`_guard` is in scope) will poison
+///     // the mutex.
+///     panic!();
+/// }).join();
+///
+/// // The lock is poisoned by this point, but the returned result can be
+/// // pattern matched on to return the underlying guard on both branches.
+/// let mut guard = match lock.lock() {
+///     Ok(guard) => guard,
+///     Err(poisoned) => poisoned.into_inner(),
+/// };
+///
+/// *guard += 1;
+/// ```
+///
+/// It is sometimes necessary to manually drop the mutex guard to unlock it
+/// sooner than the end of the enclosing scope.
+///
+/// ```
+/// use std::sync::{Arc, Mutex};
+/// use std::thread;
+///
+/// const N: usize = 3;
+///
+/// let data_mutex = Arc::new(Mutex::new(vec![1, 2, 3, 4]));
+/// let res_mutex = Arc::new(Mutex::new(0));
+///
+/// let mut threads = Vec::with_capacity(N);
+/// (0..N).for_each(|_| {
+///     let data_mutex_clone = Arc::clone(&data_mutex);
+///     let res_mutex_clone = Arc::clone(&res_mutex);
+///
+///     threads.push(thread::spawn(move || {
+///         let mut data = data_mutex_clone.lock().unwrap();
+///         // This is the result of some important and long-ish work.
+///         let result = data.iter().fold(0, |acc, x| acc + x * 2);
+///         data.push(result);
+///         drop(data);
+///         *res_mutex_clone.lock().unwrap() += result;
+///     }));
+/// });
+///
+/// let mut data = data_mutex.lock().unwrap();
+/// // This is the result of some important and long-ish work.
+/// let result = data.iter().fold(0, |acc, x| acc + x * 2);
+/// data.push(result);
+/// // We drop the `data` explicitly because it's not necessary anymore and the
+/// // thread still has work to do. This allow other threads to start working on
+/// // the data immediately, without waiting for the rest of the unrelated work
+/// // to be done here.
+/// //
+/// // It's even more important here than in the threads because we `.join` the
+/// // threads after that. If we had not dropped the mutex guard, a thread could
+/// // be waiting forever for it, causing a deadlock.
+/// drop(data);
+/// // Here the mutex guard is not assigned to a variable and so, even if the
+/// // scope does not end after this line, the mutex is still released: there is
+/// // no deadlock.
+/// *res_mutex.lock().unwrap() += result;
+///
+/// threads.into_iter().for_each(|thread| {
+///     thread
+///         .join()
+///         .expect("The thread creating or execution failed !")
+/// });
+///
+/// assert_eq!(*res_mutex.lock().unwrap(), 800);
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "mutex_type")]
+pub struct Mutex<T: ?Sized> {
+    // Note that this mutex is in a *box*, not inlined into the struct itself.
+    // Once a native mutex has been used once, its address can never change (it
+    // can't be moved). This mutex type can be safely moved at any time, so to
+    // ensure that the native mutex is used correctly we box the inner mutex to
+    // give it a constant address.
+    inner: Box<sys::Mutex>,
+    poison: poison::Flag,
+    data: UnsafeCell<T>,
+}
+
+// these are the only places where `T: Send` matters; all other
+// functionality works fine on a single thread.
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
+
+/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
+/// dropped (falls out of scope), the lock will be unlocked.
+///
+/// The data protected by the mutex can be accessed through this guard via its
+/// [`Deref`] and [`DerefMut`] implementations.
+///
+/// This structure is created by the [`lock`] and [`try_lock`] methods on
+/// [`Mutex`].
+///
+/// [`Deref`]: ../../std/ops/trait.Deref.html
+/// [`DerefMut`]: ../../std/ops/trait.DerefMut.html
+/// [`lock`]: struct.Mutex.html#method.lock
+/// [`try_lock`]: struct.Mutex.html#method.try_lock
+/// [`Mutex`]: struct.Mutex.html
+#[must_use = "if unused the Mutex will immediately unlock"]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct MutexGuard<'a, T: ?Sized + 'a> {
+    lock: &'a Mutex<T>,
+    poison: poison::Guard,
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> !Send for MutexGuard<'_, T> {}
+#[stable(feature = "mutexguard", since = "1.19.0")]
+unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}
+
+impl<T> Mutex<T> {
+    /// Creates a new mutex in an unlocked state ready for use.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::Mutex;
+    ///
+    /// let mutex = Mutex::new(0);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn new(t: T) -> Mutex<T> {
+        let mut m = Mutex {
+            inner: box sys::Mutex::new(),
+            poison: poison::Flag::new(),
+            data: UnsafeCell::new(t),
+        };
+        unsafe {
+            m.inner.init();
+        }
+        m
+    }
+}
+
+impl<T: ?Sized> Mutex<T> {
+    /// Acquires a mutex, blocking the current thread until it is able to do so.
+    ///
+    /// This function will block the local thread until it is available to acquire
+    /// the mutex. Upon returning, the thread is the only thread with the lock
+    /// held. An RAII guard is returned to allow scoped unlock of the lock. When
+    /// the guard goes out of scope, the mutex will be unlocked.
+    ///
+    /// The exact behavior on locking a mutex in the thread which already holds
+    /// the lock is left unspecified. However, this function will not return on
+    /// the second call (it might panic or deadlock, for example).
+    ///
+    /// # Errors
+    ///
+    /// If another user of this mutex panicked while holding the mutex, then
+    /// this call will return an error once the mutex is acquired.
+    ///
+    /// # Panics
+    ///
+    /// This function might panic when called if the lock is already held by
+    /// the current thread.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex};
+    /// use std::thread;
+    ///
+    /// let mutex = Arc::new(Mutex::new(0));
+    /// let c_mutex = mutex.clone();
+    ///
+    /// thread::spawn(move || {
+    ///     *c_mutex.lock().unwrap() = 10;
+    /// }).join().expect("thread::spawn failed");
+    /// assert_eq!(*mutex.lock().unwrap(), 10);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn lock(&self) -> LockResult<MutexGuard<'_, T>> {
+        unsafe {
+            self.inner.raw_lock();
+            MutexGuard::new(self)
+        }
+    }
+
+    /// Attempts to acquire this lock.
+    ///
+    /// If the lock could not be acquired at this time, then [`Err`] is returned.
+    /// Otherwise, an RAII guard is returned. The lock will be unlocked when the
+    /// guard is dropped.
+    ///
+    /// This function does not block.
+    ///
+    /// # Errors
+    ///
+    /// If another user of this mutex panicked while holding the mutex, then
+    /// this call will return failure if the mutex would otherwise be
+    /// acquired.
+    ///
+    /// [`Err`]: ../../std/result/enum.Result.html#variant.Err
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex};
+    /// use std::thread;
+    ///
+    /// let mutex = Arc::new(Mutex::new(0));
+    /// let c_mutex = mutex.clone();
+    ///
+    /// thread::spawn(move || {
+    ///     let mut lock = c_mutex.try_lock();
+    ///     if let Ok(ref mut mutex) = lock {
+    ///         **mutex = 10;
+    ///     } else {
+    ///         println!("try_lock failed");
+    ///     }
+    /// }).join().expect("thread::spawn failed");
+    /// assert_eq!(*mutex.lock().unwrap(), 10);
+    /// ```
+    #[stable(feature = "rust1", since = "1.0.0")]
+    pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> {
+        unsafe {
+            if self.inner.try_lock() {
+                Ok(MutexGuard::new(self)?)
+            } else {
+                Err(TryLockError::WouldBlock)
+            }
+        }
+    }
+
+    /// Determines whether the mutex is poisoned.
+    ///
+    /// If another thread is active, the mutex can still become poisoned at any
+    /// time. You should not trust a `false` value for program correctness
+    /// without additional synchronization.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::{Arc, Mutex};
+    /// use std::thread;
+    ///
+    /// let mutex = Arc::new(Mutex::new(0));
+    /// let c_mutex = mutex.clone();
+    ///
+    /// let _ = thread::spawn(move || {
+    ///     let _lock = c_mutex.lock().unwrap();
+    ///     panic!(); // the mutex gets poisoned
+    /// }).join();
+    /// assert_eq!(mutex.is_poisoned(), true);
+    /// ```
+    #[inline]
+    #[stable(feature = "sync_poison", since = "1.2.0")]
+    pub fn is_poisoned(&self) -> bool {
+        self.poison.get()
+    }
+
+    /// Consumes this mutex, returning the underlying data.
+    ///
+    /// # Errors
+    ///
+    /// If another user of this mutex panicked while holding the mutex, then
+    /// this call will return an error instead.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::Mutex;
+    ///
+    /// let mutex = Mutex::new(0);
+    /// assert_eq!(mutex.into_inner().unwrap(), 0);
+    /// ```
+    #[stable(feature = "mutex_into_inner", since = "1.6.0")]
+    pub fn into_inner(self) -> LockResult<T>
+    where
+        T: Sized,
+    {
+        // We know statically that there are no outstanding references to
+        // `self` so there's no need to lock the inner mutex.
+        //
+        // To get the inner value, we'd like to call `data.into_inner()`,
+        // but because `Mutex` impl-s `Drop`, we can't move out of it, so
+        // we'll have to destructure it manually instead.
+        unsafe {
+            // Like `let Mutex { inner, poison, data } = self`.
+            let (inner, poison, data) = {
+                let Mutex { ref inner, ref poison, ref data } = self;
+                (ptr::read(inner), ptr::read(poison), ptr::read(data))
+            };
+            mem::forget(self);
+            inner.destroy(); // Keep in sync with the `Drop` impl.
+            drop(inner);
+
+            poison::map_result(poison.borrow(), |_| data.into_inner())
+        }
+    }
+
+    /// Returns a mutable reference to the underlying data.
+    ///
+    /// Since this call borrows the `Mutex` mutably, no actual locking needs to
+    /// take place -- the mutable borrow statically guarantees no locks exist.
+    ///
+    /// # Errors
+    ///
+    /// If another user of this mutex panicked while holding the mutex, then
+    /// this call will return an error instead.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// use std::sync::Mutex;
+    ///
+    /// let mut mutex = Mutex::new(0);
+    /// *mutex.get_mut().unwrap() = 10;
+    /// assert_eq!(*mutex.lock().unwrap(), 10);
+    /// ```
+    #[stable(feature = "mutex_get_mut", since = "1.6.0")]
+    pub fn get_mut(&mut self) -> LockResult<&mut T> {
+        // We know statically that there are no other references to `self`, so
+        // there's no need to lock the inner mutex.
+        let data = unsafe { &mut *self.data.get() };
+        poison::map_result(self.poison.borrow(), |_| data)
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<#[may_dangle] T: ?Sized> Drop for Mutex<T> {
+    fn drop(&mut self) {
+        // This is actually safe b/c we know that there is no further usage of
+        // this mutex (it's up to the user to arrange for a mutex to get
+        // dropped, that's not our job)
+        //
+        // IMPORTANT: This code must be kept in sync with `Mutex::into_inner`.
+        unsafe { self.inner.destroy() }
+    }
+}
+
+#[stable(feature = "mutex_from", since = "1.24.0")]
+impl<T> From<T> for Mutex<T> {
+    /// Creates a new mutex in an unlocked state ready for use.
+    /// This is equivalent to [`Mutex::new`].
+    ///
+    /// [`Mutex::new`]: ../../std/sync/struct.Mutex.html#method.new
+    fn from(t: T) -> Self {
+        Mutex::new(t)
+    }
+}
+
+#[stable(feature = "mutex_default", since = "1.10.0")]
+impl<T: ?Sized + Default> Default for Mutex<T> {
+    /// Creates a `Mutex<T>`, with the `Default` value for T.
+    fn default() -> Mutex<T> {
+        Mutex::new(Default::default())
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        match self.try_lock() {
+            Ok(guard) => f.debug_struct("Mutex").field("data", &&*guard).finish(),
+            Err(TryLockError::Poisoned(err)) => {
+                f.debug_struct("Mutex").field("data", &&**err.get_ref()).finish()
+            }
+            Err(TryLockError::WouldBlock) => {
+                struct LockedPlaceholder;
+                impl fmt::Debug for LockedPlaceholder {
+                    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+                        f.write_str("<locked>")
+                    }
+                }
+
+                f.debug_struct("Mutex").field("data", &LockedPlaceholder).finish()
+            }
+        }
+    }
+}
+
+impl<'mutex, T: ?Sized> MutexGuard<'mutex, T> {
+    unsafe fn new(lock: &'mutex Mutex<T>) -> LockResult<MutexGuard<'mutex, T>> {
+        poison::map_result(lock.poison.borrow(), |guard| MutexGuard { lock, poison: guard })
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Deref for MutexGuard<'_, T> {
+    type Target = T;
+
+    fn deref(&self) -> &T {
+        unsafe { &*self.lock.data.get() }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
+    fn deref_mut(&mut self) -> &mut T {
+        unsafe { &mut *self.lock.data.get() }
+    }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Drop for MutexGuard<'_, T> {
+    #[inline]
+    fn drop(&mut self) {
+        unsafe {
+            self.lock.poison.done(&self.poison);
+            self.lock.inner.raw_unlock();
+        }
+    }
+}
+
+#[stable(feature = "std_debug", since = "1.16.0")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        fmt::Debug::fmt(&**self, f)
+    }
+}
+
+#[stable(feature = "std_guard_impls", since = "1.20.0")]
+impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        (**self).fmt(f)
+    }
+}
+
+pub fn guard_lock<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a sys::Mutex {
+    &guard.lock.inner
+}
+
+pub fn guard_poison<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a poison::Flag {
+    &guard.lock.poison
+}
+
+#[cfg(all(test, not(target_os = "emscripten")))]
+mod tests {
+    use crate::sync::atomic::{AtomicUsize, Ordering};
+    use crate::sync::mpsc::channel;
+    use crate::sync::{Arc, Condvar, Mutex};
+    use crate::thread;
+
+    struct Packet<T>(Arc<(Mutex<T>, Condvar)>);
+
+    #[derive(Eq, PartialEq, Debug)]
+    struct NonCopy(i32);
+
+    #[test]
+    fn smoke() {
+        let m = Mutex::new(());
+        drop(m.lock().unwrap());
+        drop(m.lock().unwrap());
+    }
+
+    #[test]
+    fn lots_and_lots() {
+        const J: u32 = 1000;
+        const K: u32 = 3;
+
+        let m = Arc::new(Mutex::new(0));
+
+        fn inc(m: &Mutex<u32>) {
+            for _ in 0..J {
+                *m.lock().unwrap() += 1;
+            }
+        }
+
+        let (tx, rx) = channel();
+        for _ in 0..K {
+            let tx2 = tx.clone();
+            let m2 = m.clone();
+            thread::spawn(move || {
+                inc(&m2);
+                tx2.send(()).unwrap();
+            });
+            let tx2 = tx.clone();
+            let m2 = m.clone();
+            thread::spawn(move || {
+                inc(&m2);
+                tx2.send(()).unwrap();
+            });
+        }
+
+        drop(tx);
+        for _ in 0..2 * K {
+            rx.recv().unwrap();
+        }
+        assert_eq!(*m.lock().unwrap(), J * K * 2);
+    }
+
+    #[test]
+    fn try_lock() {
+        let m = Mutex::new(());
+        *m.try_lock().unwrap() = ();
+    }
+
+    #[test]
+    fn test_into_inner() {
+        let m = Mutex::new(NonCopy(10));
+        assert_eq!(m.into_inner().unwrap(), NonCopy(10));
+    }
+
+    #[test]
+    fn test_into_inner_drop() {
+        struct Foo(Arc<AtomicUsize>);
+        impl Drop for Foo {
+            fn drop(&mut self) {
+                self.0.fetch_add(1, Ordering::SeqCst);
+            }
+        }
+        let num_drops = Arc::new(AtomicUsize::new(0));
+        let m = Mutex::new(Foo(num_drops.clone()));
+        assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+        {
+            let _inner = m.into_inner().unwrap();
+            assert_eq!(num_drops.load(Ordering::SeqCst), 0);
+        }
+        assert_eq!(num_drops.load(Ordering::SeqCst), 1);
+    }
+
+    #[test]
+    fn test_into_inner_poison() {
+        let m = Arc::new(Mutex::new(NonCopy(10)));
+        let m2 = m.clone();
+        let _ = thread::spawn(move || {
+            let _lock = m2.lock().unwrap();
+            panic!("test panic in inner thread to poison mutex");
+        })
+        .join();
+
+        assert!(m.is_poisoned());
+        match Arc::try_unwrap(m).unwrap().into_inner() {
+            Err(e) => assert_eq!(e.into_inner(), NonCopy(10)),
+            Ok(x) => panic!("into_inner of poisoned Mutex is Ok: {:?}", x),
+        }
+    }
+
+    #[test]
+    fn test_get_mut() {
+        let mut m = Mutex::new(NonCopy(10));
+        *m.get_mut().unwrap() = NonCopy(20);
+        assert_eq!(m.into_inner().unwrap(), NonCopy(20));
+    }
+
+    #[test]
+    fn test_get_mut_poison() {
+        let m = Arc::new(Mutex::new(NonCopy(10)));
+        let m2 = m.clone();
+        let _ = thread::spawn(move || {
+            let _lock = m2.lock().unwrap();
+            panic!("test panic in inner thread to poison mutex");
+        })
+        .join();
+
+        assert!(m.is_poisoned());
+        match Arc::try_unwrap(m).unwrap().get_mut() {
+            Err(e) => assert_eq!(*e.into_inner(), NonCopy(10)),
+            Ok(x) => panic!("get_mut of poisoned Mutex is Ok: {:?}", x),
+        }
+    }
+
+    #[test]
+    fn test_mutex_arc_condvar() {
+        let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
+        let packet2 = Packet(packet.0.clone());
+        let (tx, rx) = channel();
+        let _t = thread::spawn(move || {
+            // wait until parent gets in
+            rx.recv().unwrap();
+            let &(ref lock, ref cvar) = &*packet2.0;
+            let mut lock = lock.lock().unwrap();
+            *lock = true;
+            cvar.notify_one();
+        });
+
+        let &(ref lock, ref cvar) = &*packet.0;
+        let mut lock = lock.lock().unwrap();
+        tx.send(()).unwrap();
+        assert!(!*lock);
+        while !*lock {
+            lock = cvar.wait(lock).unwrap();
+        }
+    }
+
+    #[test]
+    fn test_arc_condvar_poison() {
+        let packet = Packet(Arc::new((Mutex::new(1), Condvar::new())));
+        let packet2 = Packet(packet.0.clone());
+        let (tx, rx) = channel();
+
+        let _t = thread::spawn(move || -> () {
+            rx.recv().unwrap();
+            let &(ref lock, ref cvar) = &*packet2.0;
+            let _g = lock.lock().unwrap();
+            cvar.notify_one();
+            // Parent should fail when it wakes up.
+            panic!();
+        });
+
+        let &(ref lock, ref cvar) = &*packet.0;
+        let mut lock = lock.lock().unwrap();
+        tx.send(()).unwrap();
+        while *lock == 1 {
+            match cvar.wait(lock) {
+                Ok(l) => {
+                    lock = l;
+                    assert_eq!(*lock, 1);
+                }
+                Err(..) => break,
+            }
+        }
+    }
+
+    #[test]
+    fn test_mutex_arc_poison() {
+        let arc = Arc::new(Mutex::new(1));
+        assert!(!arc.is_poisoned());
+        let arc2 = arc.clone();
+        let _ = thread::spawn(move || {
+            let lock = arc2.lock().unwrap();
+            assert_eq!(*lock, 2);
+        })
+        .join();
+        assert!(arc.lock().is_err());
+        assert!(arc.is_poisoned());
+    }
+
+    #[test]
+    fn test_mutex_arc_nested() {
+        // Tests nested mutexes and access
+        // to underlying data.
+        let arc = Arc::new(Mutex::new(1));
+        let arc2 = Arc::new(Mutex::new(arc));
+        let (tx, rx) = channel();
+        let _t = thread::spawn(move || {
+            let lock = arc2.lock().unwrap();
+            let lock2 = lock.lock().unwrap();
+            assert_eq!(*lock2, 1);
+            tx.send(()).unwrap();
+        });
+        rx.recv().unwrap();
+    }
+
+    #[test]
+    fn test_mutex_arc_access_in_unwind() {
+        let arc = Arc::new(Mutex::new(1));
+        let arc2 = arc.clone();
+        let _ = thread::spawn(move || -> () {
+            struct Unwinder {
+                i: Arc<Mutex<i32>>,
+            }
+            impl Drop for Unwinder {
+                fn drop(&mut self) {
+                    *self.i.lock().unwrap() += 1;
+                }
+            }
+            let _u = Unwinder { i: arc2 };
+            panic!();
+        })
+        .join();
+        let lock = arc.lock().unwrap();
+        assert_eq!(*lock, 2);
+    }
+
+    #[test]
+    fn test_mutex_unsized() {
+        let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
+        {
+            let b = &mut *mutex.lock().unwrap();
+            b[0] = 4;
+            b[2] = 5;
+        }
+        let comp: &[i32] = &[4, 2, 5];
+        assert_eq!(&*mutex.lock().unwrap(), comp);
+    }
+}