about summary refs log tree commit diff
path: root/library/std/src/sync/nonpoison
diff options
context:
space:
mode:
Diffstat (limited to 'library/std/src/sync/nonpoison')
-rw-r--r--library/std/src/sync/nonpoison/mutex.rs2
-rw-r--r--library/std/src/sync/nonpoison/rwlock.rs1081
2 files changed, 1082 insertions, 1 deletions
diff --git a/library/std/src/sync/nonpoison/mutex.rs b/library/std/src/sync/nonpoison/mutex.rs
index b6861c78f00..fd1e671d7a3 100644
--- a/library/std/src/sync/nonpoison/mutex.rs
+++ b/library/std/src/sync/nonpoison/mutex.rs
@@ -100,7 +100,7 @@ pub struct MutexGuard<'a, T: ?Sized + 'a> {
     lock: &'a Mutex<T>,
 }
 
-/// A [`MutexGuard`] is not `Send` to maximize platform portablity.
+/// A [`MutexGuard`] is not `Send` to maximize platform portability.
 ///
 /// On platforms that use POSIX threads (commonly referred to as pthreads) there is a requirement to
 /// release mutex locks on the same thread they were acquired.
diff --git a/library/std/src/sync/nonpoison/rwlock.rs b/library/std/src/sync/nonpoison/rwlock.rs
new file mode 100644
index 00000000000..eb0aef99cc1
--- /dev/null
+++ b/library/std/src/sync/nonpoison/rwlock.rs
@@ -0,0 +1,1081 @@
+use crate::cell::UnsafeCell;
+use crate::fmt;
+use crate::marker::PhantomData;
+use crate::mem::{self, ManuallyDrop, forget};
+use crate::ops::{Deref, DerefMut};
+use crate::ptr::NonNull;
+use crate::sync::nonpoison::{TryLockResult, WouldBlock};
+use crate::sys::sync as sys;
+
+/// A reader-writer lock that does not keep track of lock poisoning.
+///
+/// For more information about reader-writer locks, check out the documentation for the poisoning
+/// variant of this lock (which can be found at [`poison::RwLock`]).
+///
+/// [`poison::RwLock`]: crate::sync::poison::RwLock
+///
+/// # Examples
+///
+/// ```
+/// #![feature(nonpoison_rwlock)]
+///
+/// use std::sync::nonpoison::RwLock;
+///
+/// let lock = RwLock::new(5);
+///
+/// // many reader locks can be held at once
+/// {
+///     let r1 = lock.read();
+///     let r2 = lock.read();
+///     assert_eq!(*r1, 5);
+///     assert_eq!(*r2, 5);
+/// } // read locks are dropped at this point
+///
+/// // only one write lock may be held, however
+/// {
+///     let mut w = lock.write();
+///     *w += 1;
+///     assert_eq!(*w, 6);
+/// } // write lock is dropped here
+/// ```
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "NonPoisonRwLock")]
+pub struct RwLock<T: ?Sized> {
+    /// The inner [`sys::RwLock`] that synchronizes thread access to the protected data.
+    inner: sys::RwLock,
+    /// The lock-protected data.
+    data: UnsafeCell<T>,
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+unsafe impl<T: ?Sized + Send> Send for RwLock<T> {}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+unsafe impl<T: ?Sized + Send + Sync> Sync for RwLock<T> {}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+// Guards
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/// RAII structure used to release the shared read access of a lock when
+/// dropped.
+///
+/// This structure is created by the [`read`] and [`try_read`] methods on
+/// [`RwLock`].
+///
+/// [`read`]: RwLock::read
+/// [`try_read`]: RwLock::try_read
+#[must_use = "if unused the RwLock will immediately unlock"]
+#[must_not_suspend = "holding a RwLockReadGuard across suspend \
+                      points can cause deadlocks, delays, \
+                      and cause Futures to not implement `Send`"]
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+#[clippy::has_significant_drop]
+#[cfg_attr(not(test), rustc_diagnostic_item = "NonPoisonRwLockReadGuard")]
+pub struct RwLockReadGuard<'rwlock, T: ?Sized + 'rwlock> {
+    /// A pointer to the data protected by the `RwLock`. Note that we use a pointer here instead of
+    /// `&'rwlock T` to avoid `noalias` violations, because a `RwLockReadGuard` instance only holds
+    /// immutability until it drops, not for its whole scope.
+    /// `NonNull` is preferable over `*const T` to allow for niche optimizations. `NonNull` is also
+    /// covariant over `T`, just like we would have with `&T`.
+    data: NonNull<T>,
+    /// A reference to the internal [`sys::RwLock`] that we have read-locked.
+    inner_lock: &'rwlock sys::RwLock,
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> !Send for RwLockReadGuard<'_, T> {}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+unsafe impl<T: ?Sized + Sync> Sync for RwLockReadGuard<'_, T> {}
+
+/// RAII structure used to release the exclusive write access of a lock when
+/// dropped.
+///
+/// This structure is created by the [`write`] and [`try_write`] methods
+/// on [`RwLock`].
+///
+/// [`write`]: RwLock::write
+/// [`try_write`]: RwLock::try_write
+#[must_use = "if unused the RwLock will immediately unlock"]
+#[must_not_suspend = "holding a RwLockWriteGuard across suspend \
+                      points can cause deadlocks, delays, \
+                      and cause Future's to not implement `Send`"]
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+#[clippy::has_significant_drop]
+#[cfg_attr(not(test), rustc_diagnostic_item = "NonPoisonRwLockWriteGuard")]
+pub struct RwLockWriteGuard<'rwlock, T: ?Sized + 'rwlock> {
+    /// A reference to the [`RwLock`] that we have write-locked.
+    lock: &'rwlock RwLock<T>,
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> !Send for RwLockWriteGuard<'_, T> {}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+unsafe impl<T: ?Sized + Sync> Sync for RwLockWriteGuard<'_, T> {}
+
+/// RAII structure used to release the shared read access of a lock when
+/// dropped, which can point to a subfield of the protected data.
+///
+/// This structure is created by the [`map`] and [`filter_map`] methods
+/// on [`RwLockReadGuard`].
+///
+/// [`map`]: RwLockReadGuard::map
+/// [`filter_map`]: RwLockReadGuard::filter_map
+#[must_use = "if unused the RwLock will immediately unlock"]
+#[must_not_suspend = "holding a MappedRwLockReadGuard across suspend \
+                      points can cause deadlocks, delays, \
+                      and cause Futures to not implement `Send`"]
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+#[clippy::has_significant_drop]
+pub struct MappedRwLockReadGuard<'rwlock, T: ?Sized + 'rwlock> {
+    /// A pointer to the data protected by the `RwLock`. Note that we use a pointer here instead of
+    /// `&'rwlock T` to avoid `noalias` violations, because a `MappedRwLockReadGuard` instance only
+    /// holds immutability until it drops, not for its whole scope.
+    /// `NonNull` is preferable over `*const T` to allow for niche optimizations. `NonNull` is also
+    /// covariant over `T`, just like we would have with `&T`.
+    data: NonNull<T>,
+    /// A reference to the internal [`sys::RwLock`] that we have read-locked.
+    inner_lock: &'rwlock sys::RwLock,
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> !Send for MappedRwLockReadGuard<'_, T> {}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+unsafe impl<T: ?Sized + Sync> Sync for MappedRwLockReadGuard<'_, T> {}
+
+/// RAII structure used to release the exclusive write access of a lock when
+/// dropped, which can point to a subfield of the protected data.
+///
+/// This structure is created by the [`map`] and [`filter_map`] methods
+/// on [`RwLockWriteGuard`].
+///
+/// [`map`]: RwLockWriteGuard::map
+/// [`filter_map`]: RwLockWriteGuard::filter_map
+#[must_use = "if unused the RwLock will immediately unlock"]
+#[must_not_suspend = "holding a MappedRwLockWriteGuard across suspend \
+                      points can cause deadlocks, delays, \
+                      and cause Future's to not implement `Send`"]
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+#[clippy::has_significant_drop]
+pub struct MappedRwLockWriteGuard<'rwlock, T: ?Sized + 'rwlock> {
+    /// A pointer to the data protected by the `RwLock`. Note that we use a pointer here instead of
+    /// `&'rwlock T` to avoid `noalias` violations, because a `MappedRwLockWriteGuard` instance only
+    /// holds uniquneness until it drops, not for its whole scope.
+    /// `NonNull` is preferable over `*const T` to allow for niche optimizations.
+    data: NonNull<T>,
+    /// `NonNull` is covariant over `T`, so we add a `PhantomData<&'rwlock mut T>` field here to
+    /// enforce the correct invariance over `T`.
+    _variance: PhantomData<&'rwlock mut T>,
+    /// A reference to the internal [`sys::RwLock`] that we have write-locked.
+    inner_lock: &'rwlock sys::RwLock,
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> !Send for MappedRwLockWriteGuard<'_, T> {}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+unsafe impl<T: ?Sized + Sync> Sync for MappedRwLockWriteGuard<'_, T> {}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+// Implementations
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+impl<T> RwLock<T> {
+    /// Creates a new instance of an `RwLock<T>` which is unlocked.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(nonpoison_rwlock)]
+    ///
+    /// use std::sync::nonpoison::RwLock;
+    ///
+    /// let lock = RwLock::new(5);
+    /// ```
+    #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    #[inline]
+    pub const fn new(t: T) -> RwLock<T> {
+        RwLock { inner: sys::RwLock::new(), data: UnsafeCell::new(t) }
+    }
+
+    /// Returns the contained value by cloning it.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(nonpoison_rwlock)]
+    /// #![feature(lock_value_accessors)]
+    ///
+    /// use std::sync::nonpoison::RwLock;
+    ///
+    /// let mut lock = RwLock::new(7);
+    ///
+    /// assert_eq!(lock.get_cloned(), 7);
+    /// ```
+    #[unstable(feature = "lock_value_accessors", issue = "133407")]
+    // #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn get_cloned(&self) -> T
+    where
+        T: Clone,
+    {
+        self.read().clone()
+    }
+
+    /// Sets the contained value.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(nonpoison_rwlock)]
+    /// #![feature(lock_value_accessors)]
+    ///
+    /// use std::sync::nonpoison::RwLock;
+    ///
+    /// let mut lock = RwLock::new(7);
+    ///
+    /// assert_eq!(lock.get_cloned(), 7);
+    /// lock.set(11);
+    /// assert_eq!(lock.get_cloned(), 11);
+    /// ```
+    #[unstable(feature = "lock_value_accessors", issue = "133407")]
+    // #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn set(&self, value: T) {
+        if mem::needs_drop::<T>() {
+            // If the contained value has a non-trivial destructor, we
+            // call that destructor after the lock has been released.
+            drop(self.replace(value))
+        } else {
+            *self.write() = value;
+        }
+    }
+
+    /// Replaces the contained value with `value`, and returns the old contained value.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(nonpoison_rwlock)]
+    /// #![feature(lock_value_accessors)]
+    ///
+    /// use std::sync::nonpoison::RwLock;
+    ///
+    /// let mut lock = RwLock::new(7);
+    ///
+    /// assert_eq!(lock.replace(11), 7);
+    /// assert_eq!(lock.get_cloned(), 11);
+    /// ```
+    #[unstable(feature = "lock_value_accessors", issue = "133407")]
+    // #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn replace(&self, value: T) -> T {
+        let mut guard = self.write();
+        mem::replace(&mut *guard, value)
+    }
+}
+
+impl<T: ?Sized> RwLock<T> {
+    /// Locks this `RwLock` with shared read access, blocking the current thread
+    /// until it can be acquired.
+    ///
+    /// The calling thread will be blocked until there are no more writers which
+    /// hold the lock. There may be other readers currently inside the lock when
+    /// this method returns. This method does not provide any guarantees with
+    /// respect to the ordering of whether contentious readers or writers will
+    /// acquire the lock first.
+    ///
+    /// Returns an RAII guard which will release this thread's shared access
+    /// once it is dropped.
+    ///
+    /// # Panics
+    ///
+    /// This function might panic when called if the lock is already held by the current thread.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(nonpoison_rwlock)]
+    ///
+    /// use std::sync::Arc;
+    /// use std::sync::nonpoison::RwLock;
+    /// use std::thread;
+    ///
+    /// let lock = Arc::new(RwLock::new(1));
+    /// let c_lock = Arc::clone(&lock);
+    ///
+    /// let n = lock.read();
+    /// assert_eq!(*n, 1);
+    ///
+    /// thread::spawn(move || {
+    ///     let r = c_lock.read();
+    /// }).join().unwrap();
+    /// ```
+    #[inline]
+    #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn read(&self) -> RwLockReadGuard<'_, T> {
+        unsafe {
+            self.inner.read();
+            RwLockReadGuard::new(self)
+        }
+    }
+
+    /// Attempts to acquire this `RwLock` with shared read access.
+    ///
+    /// If the access could not be granted at this time, then `Err` is returned.
+    /// Otherwise, an RAII guard is returned which will release the shared access
+    /// when it is dropped.
+    ///
+    /// This function does not block.
+    ///
+    /// This function does not provide any guarantees with respect to the ordering
+    /// of whether contentious readers or writers will acquire the lock first.
+    ///
+    /// # Errors
+    ///
+    /// This function will return the [`WouldBlock`] error if the `RwLock` could
+    /// not be acquired because it was already locked exclusively.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(nonpoison_rwlock)]
+    ///
+    /// use std::sync::nonpoison::RwLock;
+    ///
+    /// let lock = RwLock::new(1);
+    ///
+    /// match lock.try_read() {
+    ///     Ok(n) => assert_eq!(*n, 1),
+    ///     Err(_) => unreachable!(),
+    /// };
+    /// ```
+    #[inline]
+    #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn try_read(&self) -> TryLockResult<RwLockReadGuard<'_, T>> {
+        unsafe {
+            if self.inner.try_read() { Ok(RwLockReadGuard::new(self)) } else { Err(WouldBlock) }
+        }
+    }
+
+    /// Locks this `RwLock` with exclusive write access, blocking the current
+    /// thread until it can be acquired.
+    ///
+    /// This function will not return while other writers or other readers
+    /// currently have access to the lock.
+    ///
+    /// Returns an RAII guard which will drop the write access of this `RwLock`
+    /// when dropped.
+    ///
+    /// # Panics
+    ///
+    /// This function might panic when called if the lock is already held by the current thread.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(nonpoison_rwlock)]
+    ///
+    /// use std::sync::nonpoison::RwLock;
+    ///
+    /// let lock = RwLock::new(1);
+    ///
+    /// let mut n = lock.write();
+    /// *n = 2;
+    ///
+    /// assert!(lock.try_read().is_err());
+    /// ```
+    #[inline]
+    #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn write(&self) -> RwLockWriteGuard<'_, T> {
+        unsafe {
+            self.inner.write();
+            RwLockWriteGuard::new(self)
+        }
+    }
+
+    /// Attempts to lock this `RwLock` with exclusive write access.
+    ///
+    /// If the lock could not be acquired at this time, then `Err` is returned.
+    /// Otherwise, an RAII guard is returned which will release the lock when
+    /// it is dropped.
+    ///
+    /// This function does not block.
+    ///
+    /// This function does not provide any guarantees with respect to the ordering
+    /// of whether contentious readers or writers will acquire the lock first.
+    ///
+    /// # Errors
+    ///
+    /// This function will return the [`WouldBlock`] error if the `RwLock` could
+    /// not be acquired because it was already locked.
+    ///
+    /// [`WouldBlock`]: WouldBlock
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(nonpoison_rwlock)]
+    ///
+    /// use std::sync::nonpoison::RwLock;
+    ///
+    /// let lock = RwLock::new(1);
+    ///
+    /// let n = lock.read();
+    /// assert_eq!(*n, 1);
+    ///
+    /// assert!(lock.try_write().is_err());
+    /// ```
+    #[inline]
+    #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn try_write(&self) -> TryLockResult<RwLockWriteGuard<'_, T>> {
+        unsafe {
+            if self.inner.try_write() { Ok(RwLockWriteGuard::new(self)) } else { Err(WouldBlock) }
+        }
+    }
+
+    /// Consumes this `RwLock`, returning the underlying data.
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(nonpoison_rwlock)]
+    ///
+    /// use std::sync::nonpoison::RwLock;
+    ///
+    /// let lock = RwLock::new(String::new());
+    /// {
+    ///     let mut s = lock.write();
+    ///     *s = "modified".to_owned();
+    /// }
+    /// assert_eq!(lock.into_inner(), "modified");
+    /// ```
+    #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn into_inner(self) -> T
+    where
+        T: Sized,
+    {
+        self.data.into_inner()
+    }
+
+    /// Returns a mutable reference to the underlying data.
+    ///
+    /// Since this call borrows the `RwLock` mutably, no actual locking needs to
+    /// take place -- the mutable borrow statically guarantees no new locks can be acquired
+    /// while this reference exists. Note that this method does not clear any previously abandoned
+    /// locks (e.g., via [`forget()`] on a [`RwLockReadGuard`] or [`RwLockWriteGuard`]).
+    ///
+    /// # Examples
+    ///
+    /// ```
+    /// #![feature(nonpoison_rwlock)]
+    ///
+    /// use std::sync::nonpoison::RwLock;
+    ///
+    /// let mut lock = RwLock::new(0);
+    /// *lock.get_mut() = 10;
+    /// assert_eq!(*lock.read(), 10);
+    /// ```
+    #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn get_mut(&mut self) -> &mut T {
+        self.data.get_mut()
+    }
+
+    /// Returns a raw pointer to the underlying data.
+    ///
+    /// The returned pointer is always non-null and properly aligned, but it is
+    /// the user's responsibility to ensure that any reads and writes through it
+    /// are properly synchronized to avoid data races, and that it is not read
+    /// or written through after the lock is dropped.
+    #[unstable(feature = "rwlock_data_ptr", issue = "140368")]
+    // #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn data_ptr(&self) -> *mut T {
+        self.data.get()
+    }
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for RwLock<T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        let mut d = f.debug_struct("RwLock");
+        match self.try_read() {
+            Ok(guard) => {
+                d.field("data", &&*guard);
+            }
+            Err(WouldBlock) => {
+                d.field("data", &format_args!("<locked>"));
+            }
+        }
+        d.finish_non_exhaustive()
+    }
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: Default> Default for RwLock<T> {
+    /// Creates a new `RwLock<T>`, with the `Default` value for T.
+    fn default() -> RwLock<T> {
+        RwLock::new(Default::default())
+    }
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T> From<T> for RwLock<T> {
+    /// Creates a new instance of an `RwLock<T>` which is unlocked.
+    /// This is equivalent to [`RwLock::new`].
+    fn from(t: T) -> Self {
+        RwLock::new(t)
+    }
+}
+
+impl<'rwlock, T: ?Sized> RwLockReadGuard<'rwlock, T> {
+    /// Creates a new instance of `RwLockReadGuard<T>` from a `RwLock<T>`.
+    ///
+    /// # Safety
+    ///
+    /// This function is safe if and only if the same thread has successfully and safely called
+    /// `lock.inner.read()`, `lock.inner.try_read()`, or `lock.inner.downgrade()` before
+    /// instantiating this object.
+    unsafe fn new(lock: &'rwlock RwLock<T>) -> RwLockReadGuard<'rwlock, T> {
+        RwLockReadGuard {
+            data: unsafe { NonNull::new_unchecked(lock.data.get()) },
+            inner_lock: &lock.inner,
+        }
+    }
+
+    /// Makes a [`MappedRwLockReadGuard`] for a component of the borrowed data, e.g.
+    /// an enum variant.
+    ///
+    /// The `RwLock` is already locked for reading, so this cannot fail.
+    ///
+    /// This is an associated function that needs to be used as
+    /// `RwLockReadGuard::map(...)`. A method would interfere with methods of
+    /// the same name on the contents of the `RwLockReadGuard` used through
+    /// `Deref`.
+    ///
+    /// # Panics
+    ///
+    /// If the closure panics, the guard will be dropped (unlocked).
+    #[unstable(feature = "mapped_lock_guards", issue = "117108")]
+    // #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn map<U, F>(orig: Self, f: F) -> MappedRwLockReadGuard<'rwlock, U>
+    where
+        F: FnOnce(&T) -> &U,
+        U: ?Sized,
+    {
+        // SAFETY: the conditions of `RwLockReadGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `filter_map`.
+        // The signature of the closure guarantees that it will not "leak" the lifetime of the
+        // reference passed to it. If the closure panics, the guard will be dropped.
+        let data = NonNull::from(f(unsafe { orig.data.as_ref() }));
+        let orig = ManuallyDrop::new(orig);
+        MappedRwLockReadGuard { data, inner_lock: &orig.inner_lock }
+    }
+
+    /// Makes a [`MappedRwLockReadGuard`] for a component of the borrowed data. The
+    /// original guard is returned as an `Err(...)` if the closure returns
+    /// `None`.
+    ///
+    /// The `RwLock` is already locked for reading, so this cannot fail.
+    ///
+    /// This is an associated function that needs to be used as
+    /// `RwLockReadGuard::filter_map(...)`. A method would interfere with methods
+    /// of the same name on the contents of the `RwLockReadGuard` used through
+    /// `Deref`.
+    ///
+    /// # Panics
+    ///
+    /// If the closure panics, the guard will be dropped (unlocked).
+    #[unstable(feature = "mapped_lock_guards", issue = "117108")]
+    // #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn filter_map<U, F>(orig: Self, f: F) -> Result<MappedRwLockReadGuard<'rwlock, U>, Self>
+    where
+        F: FnOnce(&T) -> Option<&U>,
+        U: ?Sized,
+    {
+        // SAFETY: the conditions of `RwLockReadGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `filter_map`.
+        // The signature of the closure guarantees that it will not "leak" the lifetime of the
+        // reference passed to it. If the closure panics, the guard will be dropped.
+        match f(unsafe { orig.data.as_ref() }) {
+            Some(data) => {
+                let data = NonNull::from(data);
+                let orig = ManuallyDrop::new(orig);
+                Ok(MappedRwLockReadGuard { data, inner_lock: &orig.inner_lock })
+            }
+            None => Err(orig),
+        }
+    }
+}
+
+impl<'rwlock, T: ?Sized> RwLockWriteGuard<'rwlock, T> {
+    /// Creates a new instance of `RwLockWriteGuard<T>` from a `RwLock<T>`.
+    ///
+    /// # Safety
+    ///
+    /// This function is safe if and only if the same thread has successfully and safely called
+    /// `lock.inner.write()`, `lock.inner.try_write()`, or `lock.inner.try_upgrade` before
+    /// instantiating this object.
+    unsafe fn new(lock: &'rwlock RwLock<T>) -> RwLockWriteGuard<'rwlock, T> {
+        RwLockWriteGuard { lock }
+    }
+
+    /// Downgrades a write-locked `RwLockWriteGuard` into a read-locked [`RwLockReadGuard`].
+    ///
+    /// Since we have the `RwLockWriteGuard`, the [`RwLock`] must already be locked for writing, so
+    /// this method cannot fail.
+    ///
+    /// After downgrading, other readers will be allowed to read the protected data.
+    ///
+    /// # Examples
+    ///
+    /// `downgrade` takes ownership of the `RwLockWriteGuard` and returns a [`RwLockReadGuard`].
+    ///
+    /// ```
+    /// #![feature(nonpoison_rwlock)]
+    /// #![feature(rwlock_downgrade)]
+    ///
+    /// use std::sync::nonpoison::{RwLock, RwLockWriteGuard};
+    ///
+    /// let rw = RwLock::new(0);
+    ///
+    /// let mut write_guard = rw.write();
+    /// *write_guard = 42;
+    ///
+    /// let read_guard = RwLockWriteGuard::downgrade(write_guard);
+    /// assert_eq!(42, *read_guard);
+    /// ```
+    ///
+    /// `downgrade` will _atomically_ change the state of the [`RwLock`] from exclusive mode into
+    /// shared mode. This means that it is impossible for another writing thread to get in between a
+    /// thread calling `downgrade` and any reads it performs after downgrading.
+    ///
+    /// ```
+    /// #![feature(nonpoison_rwlock)]
+    /// #![feature(rwlock_downgrade)]
+    ///
+    /// use std::sync::Arc;
+    /// use std::sync::nonpoison::{RwLock, RwLockWriteGuard};
+    ///
+    /// let rw = Arc::new(RwLock::new(1));
+    ///
+    /// // Put the lock in write mode.
+    /// let mut main_write_guard = rw.write();
+    ///
+    /// let rw_clone = rw.clone();
+    /// let evil_handle = std::thread::spawn(move || {
+    ///     // This will not return until the main thread drops the `main_read_guard`.
+    ///     let mut evil_guard = rw_clone.write();
+    ///
+    ///     assert_eq!(*evil_guard, 2);
+    ///     *evil_guard = 3;
+    /// });
+    ///
+    /// *main_write_guard = 2;
+    ///
+    /// // Atomically downgrade the write guard into a read guard.
+    /// let main_read_guard = RwLockWriteGuard::downgrade(main_write_guard);
+    ///
+    /// // Since `downgrade` is atomic, the writer thread cannot have changed the protected data.
+    /// assert_eq!(*main_read_guard, 2, "`downgrade` was not atomic");
+    /// #
+    /// # drop(main_read_guard);
+    /// # evil_handle.join().unwrap();
+    /// #
+    /// # let final_check = rw.read();
+    /// # assert_eq!(*final_check, 3);
+    /// ```
+    #[unstable(feature = "rwlock_downgrade", issue = "128203")]
+    // #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn downgrade(s: Self) -> RwLockReadGuard<'rwlock, T> {
+        let lock = s.lock;
+
+        // We don't want to call the destructor since that calls `write_unlock`.
+        forget(s);
+
+        // SAFETY: We take ownership of a write guard, so we must already have the `RwLock` in write
+        // mode, satisfying the `downgrade` contract.
+        unsafe { lock.inner.downgrade() };
+
+        // SAFETY: We have just successfully called `downgrade`, so we fulfill the safety contract.
+        unsafe { RwLockReadGuard::new(lock) }
+    }
+
+    /// Makes a [`MappedRwLockWriteGuard`] for a component of the borrowed data, e.g.
+    /// an enum variant.
+    ///
+    /// The `RwLock` is already locked for writing, so this cannot fail.
+    ///
+    /// This is an associated function that needs to be used as
+    /// `RwLockWriteGuard::map(...)`. A method would interfere with methods of
+    /// the same name on the contents of the `RwLockWriteGuard` used through
+    /// `Deref`.
+    ///
+    /// # Panics
+    ///
+    /// If the closure panics, the guard will be dropped (unlocked).
+    #[unstable(feature = "mapped_lock_guards", issue = "117108")]
+    // #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn map<U, F>(orig: Self, f: F) -> MappedRwLockWriteGuard<'rwlock, U>
+    where
+        F: FnOnce(&mut T) -> &mut U,
+        U: ?Sized,
+    {
+        // SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `filter_map`.
+        // The signature of the closure guarantees that it will not "leak" the lifetime of the
+        // reference passed to it. If the closure panics, the guard will be dropped.
+        let data = NonNull::from(f(unsafe { &mut *orig.lock.data.get() }));
+        let orig = ManuallyDrop::new(orig);
+        MappedRwLockWriteGuard { data, inner_lock: &orig.lock.inner, _variance: PhantomData }
+    }
+
+    /// Makes a [`MappedRwLockWriteGuard`] for a component of the borrowed data. The
+    /// original guard is returned as an `Err(...)` if the closure returns
+    /// `None`.
+    ///
+    /// The `RwLock` is already locked for writing, so this cannot fail.
+    ///
+    /// This is an associated function that needs to be used as
+    /// `RwLockWriteGuard::filter_map(...)`. A method would interfere with methods
+    /// of the same name on the contents of the `RwLockWriteGuard` used through
+    /// `Deref`.
+    ///
+    /// # Panics
+    ///
+    /// If the closure panics, the guard will be dropped (unlocked).
+    #[unstable(feature = "mapped_lock_guards", issue = "117108")]
+    // #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn filter_map<U, F>(orig: Self, f: F) -> Result<MappedRwLockWriteGuard<'rwlock, U>, Self>
+    where
+        F: FnOnce(&mut T) -> Option<&mut U>,
+        U: ?Sized,
+    {
+        // SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `filter_map`.
+        // The signature of the closure guarantees that it will not "leak" the lifetime of the
+        // reference passed to it. If the closure panics, the guard will be dropped.
+        match f(unsafe { &mut *orig.lock.data.get() }) {
+            Some(data) => {
+                let data = NonNull::from(data);
+                let orig = ManuallyDrop::new(orig);
+                Ok(MappedRwLockWriteGuard {
+                    data,
+                    inner_lock: &orig.lock.inner,
+                    _variance: PhantomData,
+                })
+            }
+            None => Err(orig),
+        }
+    }
+}
+
+impl<'rwlock, T: ?Sized> MappedRwLockReadGuard<'rwlock, T> {
+    /// Makes a [`MappedRwLockReadGuard`] for a component of the borrowed data,
+    /// e.g. an enum variant.
+    ///
+    /// The `RwLock` is already locked for reading, so this cannot fail.
+    ///
+    /// This is an associated function that needs to be used as
+    /// `MappedRwLockReadGuard::map(...)`. A method would interfere with
+    /// methods of the same name on the contents of the `MappedRwLockReadGuard`
+    /// used through `Deref`.
+    ///
+    /// # Panics
+    ///
+    /// If the closure panics, the guard will be dropped (unlocked).
+    #[unstable(feature = "mapped_lock_guards", issue = "117108")]
+    // #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn map<U, F>(orig: Self, f: F) -> MappedRwLockReadGuard<'rwlock, U>
+    where
+        F: FnOnce(&T) -> &U,
+        U: ?Sized,
+    {
+        // SAFETY: the conditions of `RwLockReadGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `filter_map`.
+        // The signature of the closure guarantees that it will not "leak" the lifetime of the
+        // reference passed to it. If the closure panics, the guard will be dropped.
+        let data = NonNull::from(f(unsafe { orig.data.as_ref() }));
+        let orig = ManuallyDrop::new(orig);
+        MappedRwLockReadGuard { data, inner_lock: &orig.inner_lock }
+    }
+
+    /// Makes a [`MappedRwLockReadGuard`] for a component of the borrowed data.
+    /// The original guard is returned as an `Err(...)` if the closure returns
+    /// `None`.
+    ///
+    /// The `RwLock` is already locked for reading, so this cannot fail.
+    ///
+    /// This is an associated function that needs to be used as
+    /// `MappedRwLockReadGuard::filter_map(...)`. A method would interfere with
+    /// methods of the same name on the contents of the `MappedRwLockReadGuard`
+    /// used through `Deref`.
+    ///
+    /// # Panics
+    ///
+    /// If the closure panics, the guard will be dropped (unlocked).
+    #[unstable(feature = "mapped_lock_guards", issue = "117108")]
+    // #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn filter_map<U, F>(orig: Self, f: F) -> Result<MappedRwLockReadGuard<'rwlock, U>, Self>
+    where
+        F: FnOnce(&T) -> Option<&U>,
+        U: ?Sized,
+    {
+        // SAFETY: the conditions of `RwLockReadGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `filter_map`.
+        // The signature of the closure guarantees that it will not "leak" the lifetime of the
+        // reference passed to it. If the closure panics, the guard will be dropped.
+        match f(unsafe { orig.data.as_ref() }) {
+            Some(data) => {
+                let data = NonNull::from(data);
+                let orig = ManuallyDrop::new(orig);
+                Ok(MappedRwLockReadGuard { data, inner_lock: &orig.inner_lock })
+            }
+            None => Err(orig),
+        }
+    }
+}
+
+impl<'rwlock, T: ?Sized> MappedRwLockWriteGuard<'rwlock, T> {
+    /// Makes a [`MappedRwLockWriteGuard`] for a component of the borrowed data,
+    /// e.g. an enum variant.
+    ///
+    /// The `RwLock` is already locked for writing, so this cannot fail.
+    ///
+    /// This is an associated function that needs to be used as
+    /// `MappedRwLockWriteGuard::map(...)`. A method would interfere with
+    /// methods of the same name on the contents of the `MappedRwLockWriteGuard`
+    /// used through `Deref`.
+    ///
+    /// # Panics
+    ///
+    /// If the closure panics, the guard will be dropped (unlocked).
+    #[unstable(feature = "mapped_lock_guards", issue = "117108")]
+    // #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn map<U, F>(mut orig: Self, f: F) -> MappedRwLockWriteGuard<'rwlock, U>
+    where
+        F: FnOnce(&mut T) -> &mut U,
+        U: ?Sized,
+    {
+        // SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `filter_map`.
+        // The signature of the closure guarantees that it will not "leak" the lifetime of the
+        // reference passed to it. If the closure panics, the guard will be dropped.
+        let data = NonNull::from(f(unsafe { orig.data.as_mut() }));
+        let orig = ManuallyDrop::new(orig);
+        MappedRwLockWriteGuard { data, inner_lock: orig.inner_lock, _variance: PhantomData }
+    }
+
+    /// Makes a [`MappedRwLockWriteGuard`] for a component of the borrowed data.
+    /// The original guard is returned as an `Err(...)` if the closure returns
+    /// `None`.
+    ///
+    /// The `RwLock` is already locked for writing, so this cannot fail.
+    ///
+    /// This is an associated function that needs to be used as
+    /// `MappedRwLockWriteGuard::filter_map(...)`. A method would interfere with
+    /// methods of the same name on the contents of the `MappedRwLockWriteGuard`
+    /// used through `Deref`.
+    ///
+    /// # Panics
+    ///
+    /// If the closure panics, the guard will be dropped (unlocked).
+    #[unstable(feature = "mapped_lock_guards", issue = "117108")]
+    // #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+    pub fn filter_map<U, F>(
+        mut orig: Self,
+        f: F,
+    ) -> Result<MappedRwLockWriteGuard<'rwlock, U>, Self>
+    where
+        F: FnOnce(&mut T) -> Option<&mut U>,
+        U: ?Sized,
+    {
+        // SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `filter_map`.
+        // The signature of the closure guarantees that it will not "leak" the lifetime of the
+        // reference passed to it. If the closure panics, the guard will be dropped.
+        match f(unsafe { orig.data.as_mut() }) {
+            Some(data) => {
+                let data = NonNull::from(data);
+                let orig = ManuallyDrop::new(orig);
+                Ok(MappedRwLockWriteGuard {
+                    data,
+                    inner_lock: orig.inner_lock,
+                    _variance: PhantomData,
+                })
+            }
+            None => Err(orig),
+        }
+    }
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> Drop for RwLockReadGuard<'_, T> {
+    fn drop(&mut self) {
+        // SAFETY: the conditions of `RwLockReadGuard::new` were satisfied when created.
+        unsafe {
+            self.inner_lock.read_unlock();
+        }
+    }
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> Drop for RwLockWriteGuard<'_, T> {
+    fn drop(&mut self) {
+        // SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when created.
+        unsafe {
+            self.lock.inner.write_unlock();
+        }
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> Drop for MappedRwLockReadGuard<'_, T> {
+    fn drop(&mut self) {
+        // SAFETY: the conditions of `RwLockReadGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `filter_map`.
+        unsafe {
+            self.inner_lock.read_unlock();
+        }
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> Drop for MappedRwLockWriteGuard<'_, T> {
+    fn drop(&mut self) {
+        // SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `filter_map`.
+        unsafe {
+            self.inner_lock.write_unlock();
+        }
+    }
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> Deref for RwLockReadGuard<'_, T> {
+    type Target = T;
+
+    fn deref(&self) -> &T {
+        // SAFETY: the conditions of `RwLockReadGuard::new` were satisfied when created.
+        unsafe { self.data.as_ref() }
+    }
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> Deref for RwLockWriteGuard<'_, T> {
+    type Target = T;
+
+    fn deref(&self) -> &T {
+        // SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when created.
+        unsafe { &*self.lock.data.get() }
+    }
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> DerefMut for RwLockWriteGuard<'_, T> {
+    fn deref_mut(&mut self) -> &mut T {
+        // SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when created.
+        unsafe { &mut *self.lock.data.get() }
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> Deref for MappedRwLockReadGuard<'_, T> {
+    type Target = T;
+
+    fn deref(&self) -> &T {
+        // SAFETY: the conditions of `RwLockReadGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `filter_map`.
+        unsafe { self.data.as_ref() }
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> Deref for MappedRwLockWriteGuard<'_, T> {
+    type Target = T;
+
+    fn deref(&self) -> &T {
+        // SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `filter_map`.
+        unsafe { self.data.as_ref() }
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized> DerefMut for MappedRwLockWriteGuard<'_, T> {
+    fn deref_mut(&mut self) -> &mut T {
+        // SAFETY: the conditions of `RwLockWriteGuard::new` were satisfied when the original guard
+        // was created, and have been upheld throughout `map` and/or `filter_map`.
+        unsafe { self.data.as_mut() }
+    }
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for RwLockReadGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        (**self).fmt(f)
+    }
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized + fmt::Display> fmt::Display for RwLockReadGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        (**self).fmt(f)
+    }
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for RwLockWriteGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        (**self).fmt(f)
+    }
+}
+
+#[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized + fmt::Display> fmt::Display for RwLockWriteGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        (**self).fmt(f)
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for MappedRwLockReadGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        (**self).fmt(f)
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized + fmt::Display> fmt::Display for MappedRwLockReadGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        (**self).fmt(f)
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for MappedRwLockWriteGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        (**self).fmt(f)
+    }
+}
+
+#[unstable(feature = "mapped_lock_guards", issue = "117108")]
+// #[unstable(feature = "nonpoison_rwlock", issue = "134645")]
+impl<T: ?Sized + fmt::Display> fmt::Display for MappedRwLockWriteGuard<'_, T> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        (**self).fmt(f)
+    }
+}