diff options
Diffstat (limited to 'library/std/src/sync')
| -rw-r--r-- | library/std/src/sync/rwlock.rs | 74 | ||||
| -rw-r--r-- | library/std/src/sync/rwlock/tests.rs | 105 |
2 files changed, 175 insertions, 4 deletions
diff --git a/library/std/src/sync/rwlock.rs b/library/std/src/sync/rwlock.rs index da2da6f9dfc..d55d1c80dca 100644 --- a/library/std/src/sync/rwlock.rs +++ b/library/std/src/sync/rwlock.rs @@ -4,10 +4,10 @@ mod tests; use crate::cell::UnsafeCell; use crate::fmt; use crate::marker::PhantomData; -use crate::mem::ManuallyDrop; +use crate::mem::{ManuallyDrop, forget}; use crate::ops::{Deref, DerefMut}; use crate::ptr::NonNull; -use crate::sync::{LockResult, TryLockError, TryLockResult, poison}; +use crate::sync::{LockResult, PoisonError, TryLockError, TryLockResult, poison}; use crate::sys::sync as sys; /// A reader-writer lock @@ -574,8 +574,12 @@ impl<T> From<T> for RwLock<T> { impl<'rwlock, T: ?Sized> RwLockReadGuard<'rwlock, T> { /// Creates a new instance of `RwLockReadGuard<T>` from a `RwLock<T>`. - // SAFETY: if and only if `lock.inner.read()` (or `lock.inner.try_read()`) has been - // successfully called from the same thread before instantiating this object. + /// + /// # Safety + /// + /// This function is safe if and only if the same thread has successfully and safely called + /// `lock.inner.read()`, `lock.inner.try_read()`, or `lock.inner.downgrade()` before + /// instantiating this object. unsafe fn new(lock: &'rwlock RwLock<T>) -> LockResult<RwLockReadGuard<'rwlock, T>> { poison::map_result(lock.poison.borrow(), |()| RwLockReadGuard { data: unsafe { NonNull::new_unchecked(lock.data.get()) }, @@ -957,6 +961,68 @@ impl<'a, T: ?Sized> RwLockWriteGuard<'a, T> { None => Err(orig), } } + + /// Downgrades a write-locked `RwLockWriteGuard` into a read-locked [`RwLockReadGuard`]. + /// + /// This method will atomically change the state of the [`RwLock`] from exclusive mode into + /// shared mode. This means that it is impossible for a writing thread to get in between a + /// thread calling `downgrade` and the same thread reading whatever it wrote while it had the + /// [`RwLock`] in write mode. + /// + /// Note that since we have the `RwLockWriteGuard`, we know that the [`RwLock`] is already + /// locked for writing, so this method cannot fail. + /// + /// # Example + /// + /// ``` + /// #![feature(rwlock_downgrade)] + /// use std::sync::{Arc, RwLock, RwLockWriteGuard}; + /// + /// // The inner value starts as 0. + /// let rw = Arc::new(RwLock::new(0)); + /// + /// // Put the lock in write mode. + /// let mut main_write_guard = rw.write().unwrap(); + /// + /// let evil = rw.clone(); + /// let handle = std::thread::spawn(move || { + /// // This will not return until the main thread drops the `main_read_guard`. + /// let mut evil_guard = evil.write().unwrap(); + /// + /// assert_eq!(*evil_guard, 1); + /// *evil_guard = 2; + /// }); + /// + /// // After spawning the writer thread, set the inner value to 1. + /// *main_write_guard = 1; + /// + /// // Atomically downgrade the write guard into a read guard. + /// let main_read_guard = RwLockWriteGuard::downgrade(main_write_guard); + /// + /// // Since `downgrade` is atomic, the writer thread cannot have set the inner value to 2. + /// assert_eq!(*main_read_guard, 1, "`downgrade` was not atomic"); + /// + /// // Clean up everything now + /// drop(main_read_guard); + /// handle.join().unwrap(); + /// + /// let final_check = rw.read().unwrap(); + /// assert_eq!(*final_check, 2); + /// ``` + #[unstable(feature = "rwlock_downgrade", issue = "128203")] + pub fn downgrade(s: Self) -> RwLockReadGuard<'a, T> { + let lock = s.lock; + + // We don't want to call the destructor since that calls `write_unlock`. + forget(s); + + // SAFETY: We take ownership of a write guard, so we must already have the `RwLock` in write + // mode, satisfying the `downgrade` contract. + unsafe { lock.inner.downgrade() }; + + // SAFETY: We have just successfully called `downgrade`, so we fulfill the safety contract. + unsafe { RwLockReadGuard::new(lock).unwrap_or_else(PoisonError::into_inner) } + } } impl<'a, T: ?Sized> MappedRwLockWriteGuard<'a, T> { diff --git a/library/std/src/sync/rwlock/tests.rs b/library/std/src/sync/rwlock/tests.rs index 37a2e41641a..02ac1c85b91 100644 --- a/library/std/src/sync/rwlock/tests.rs +++ b/library/std/src/sync/rwlock/tests.rs @@ -501,3 +501,108 @@ fn panic_while_mapping_write_unlocked_poison() { drop(lock); } + +#[test] +fn test_downgrade_basic() { + let r = RwLock::new(()); + + let write_guard = r.write().unwrap(); + let _read_guard = RwLockWriteGuard::downgrade(write_guard); +} + +#[test] +fn test_downgrade_observe() { + // Taken from the test `test_rwlock_downgrade` from: + // https://github.com/Amanieu/parking_lot/blob/master/src/rwlock.rs + + const W: usize = 20; + const N: usize = 100; + + // This test spawns `W` writer threads, where each will increment a counter `N` times, ensuring + // that the value they wrote has not changed after downgrading. + + let rw = Arc::new(RwLock::new(0)); + + // Spawn the writers that will do `W * N` operations and checks. + let handles: Vec<_> = (0..W) + .map(|_| { + let rw = rw.clone(); + thread::spawn(move || { + for _ in 0..N { + // Increment the counter. + let mut write_guard = rw.write().unwrap(); + *write_guard += 1; + let cur_val = *write_guard; + + // Downgrade the lock to read mode, where the value protected cannot be modified. + let read_guard = RwLockWriteGuard::downgrade(write_guard); + assert_eq!(cur_val, *read_guard); + } + }) + }) + .collect(); + + for handle in handles { + handle.join().unwrap(); + } + + assert_eq!(*rw.read().unwrap(), W * N); +} + +#[test] +fn test_downgrade_atomic() { + const NEW_VALUE: i32 = -1; + + // This test checks that `downgrade` is atomic, meaning as soon as a write lock has been + // downgraded, the lock must be in read mode and no other threads can take the write lock to + // modify the protected value. + + // `W` is the number of evil writer threads. + const W: usize = 20; + let rwlock = Arc::new(RwLock::new(0)); + + // Spawns many evil writer threads that will try and write to the locked value before the + // initial writer (who has the exclusive lock) can read after it downgrades. + // If the `RwLock` behaves correctly, then the initial writer should read the value it wrote + // itself as no other thread should be able to mutate the protected value. + + // Put the lock in write mode, causing all future threads trying to access this go to sleep. + let mut main_write_guard = rwlock.write().unwrap(); + + // Spawn all of the evil writer threads. They will each increment the protected value by 1. + let handles: Vec<_> = (0..W) + .map(|_| { + let rwlock = rwlock.clone(); + thread::spawn(move || { + // Will go to sleep since the main thread initially has the write lock. + let mut evil_guard = rwlock.write().unwrap(); + *evil_guard += 1; + }) + }) + .collect(); + + // Wait for a good amount of time so that evil threads go to sleep. + // Note: this is not strictly necessary... + let eternity = crate::time::Duration::from_millis(42); + thread::sleep(eternity); + + // Once everyone is asleep, set the value to `NEW_VALUE`. + *main_write_guard = NEW_VALUE; + + // Atomically downgrade the write guard into a read guard. + let main_read_guard = RwLockWriteGuard::downgrade(main_write_guard); + + // If the above is not atomic, then it would be possible for an evil thread to get in front of + // this read and change the value to be non-negative. + assert_eq!(*main_read_guard, NEW_VALUE, "`downgrade` was not atomic"); + + // Drop the main read guard and allow the evil writer threads to start incrementing. + drop(main_read_guard); + + for handle in handles { + handle.join().unwrap(); + } + + let final_check = rwlock.read().unwrap(); + assert_eq!(*final_check, W as i32 + NEW_VALUE); +} |
