diff options
Diffstat (limited to 'library')
71 files changed, 6002 insertions, 4145 deletions
diff --git a/library/Cargo.lock b/library/Cargo.lock index 97ca3cb06b2..02018057ed5 100644 --- a/library/Cargo.lock +++ b/library/Cargo.lock @@ -196,7 +196,6 @@ name = "panic_abort" version = "0.0.0" dependencies = [ "alloc", - "cfg-if", "compiler_builtins", "core", "libc", diff --git a/library/alloc/src/raw_vec/mod.rs b/library/alloc/src/raw_vec/mod.rs index a989e5b55b3..3e006a2d1bd 100644 --- a/library/alloc/src/raw_vec/mod.rs +++ b/library/alloc/src/raw_vec/mod.rs @@ -287,7 +287,7 @@ impl<T, A: Allocator> RawVec<T, A> { } #[inline] - pub(crate) fn non_null(&self) -> NonNull<T> { + pub(crate) const fn non_null(&self) -> NonNull<T> { self.inner.non_null() } diff --git a/library/alloc/src/string.rs b/library/alloc/src/string.rs index 4e42a5da7ea..37614a7ca45 100644 --- a/library/alloc/src/string.rs +++ b/library/alloc/src/string.rs @@ -2826,7 +2826,54 @@ impl SpecToString for bool { } } +macro_rules! impl_to_string { + ($($signed:ident, $unsigned:ident,)*) => { + $( + #[cfg(not(no_global_oom_handling))] + #[cfg(not(feature = "optimize_for_size"))] + impl SpecToString for $signed { + #[inline] + fn spec_to_string(&self) -> String { + const SIZE: usize = $signed::MAX.ilog(10) as usize + 1; + let mut buf = [core::mem::MaybeUninit::<u8>::uninit(); SIZE]; + // Only difference between signed and unsigned are these 8 lines. + let mut out; + if *self < 0 { + out = String::with_capacity(SIZE + 1); + out.push('-'); + } else { + out = String::with_capacity(SIZE); + } + + out.push_str(self.unsigned_abs()._fmt(&mut buf)); + out + } + } + #[cfg(not(no_global_oom_handling))] + #[cfg(not(feature = "optimize_for_size"))] + impl SpecToString for $unsigned { + #[inline] + fn spec_to_string(&self) -> String { + const SIZE: usize = $unsigned::MAX.ilog(10) as usize + 1; + let mut buf = [core::mem::MaybeUninit::<u8>::uninit(); SIZE]; + + self._fmt(&mut buf).to_string() + } + } + )* + } +} + +impl_to_string! { + i8, u8, + i16, u16, + i32, u32, + i64, u64, + isize, usize, +} + #[cfg(not(no_global_oom_handling))] +#[cfg(feature = "optimize_for_size")] impl SpecToString for u8 { #[inline] fn spec_to_string(&self) -> String { @@ -2846,6 +2893,7 @@ impl SpecToString for u8 { } #[cfg(not(no_global_oom_handling))] +#[cfg(feature = "optimize_for_size")] impl SpecToString for i8 { #[inline] fn spec_to_string(&self) -> String { diff --git a/library/alloc/src/vec/mod.rs b/library/alloc/src/vec/mod.rs index a97912304c8..59879f23d78 100644 --- a/library/alloc/src/vec/mod.rs +++ b/library/alloc/src/vec/mod.rs @@ -1816,10 +1816,10 @@ impl<T, A: Allocator> Vec<T, A> { /// [`as_ptr`]: Vec::as_ptr /// [`as_non_null`]: Vec::as_non_null #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")] + #[rustc_const_unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")] #[inline] - pub fn as_non_null(&mut self) -> NonNull<T> { - // SAFETY: A `Vec` always has a non-null pointer. - unsafe { NonNull::new_unchecked(self.as_mut_ptr()) } + pub const fn as_non_null(&mut self) -> NonNull<T> { + self.buf.non_null() } /// Returns a reference to the underlying allocator. diff --git a/library/core/Cargo.toml b/library/core/Cargo.toml index 99e52d0ada0..83ba17b93f5 100644 --- a/library/core/Cargo.toml +++ b/library/core/Cargo.toml @@ -35,4 +35,10 @@ check-cfg = [ # and to stdarch `core_arch` crate which messes-up with Cargo list # of declared features, we therefor expect any feature cfg 'cfg(feature, values(any()))', + # Internal features aren't marked known config by default, we use these to + # gate tests. + 'cfg(target_has_reliable_f16)', + 'cfg(target_has_reliable_f16_math)', + 'cfg(target_has_reliable_f128)', + 'cfg(target_has_reliable_f128_math)', ] diff --git a/library/core/src/array/mod.rs b/library/core/src/array/mod.rs index efa7bed7c8e..4476e3f7923 100644 --- a/library/core/src/array/mod.rs +++ b/library/core/src/array/mod.rs @@ -531,6 +531,7 @@ impl<T, const N: usize> [T; N] { /// let y = x.map(|v| v.len()); /// assert_eq!(y, [6, 9, 3, 3]); /// ``` + #[must_use] #[stable(feature = "array_map", since = "1.55.0")] pub fn map<F, U>(self, f: F) -> [U; N] where diff --git a/library/core/src/char/methods.rs b/library/core/src/char/methods.rs index 042925a352f..af2edf141b2 100644 --- a/library/core/src/char/methods.rs +++ b/library/core/src/char/methods.rs @@ -4,6 +4,7 @@ use super::*; use crate::panic::const_panic; use crate::slice; use crate::str::from_utf8_unchecked_mut; +use crate::ub_checks::assert_unsafe_precondition; use crate::unicode::printable::is_printable; use crate::unicode::{self, conversions}; @@ -1202,6 +1203,26 @@ impl char { } } + /// Converts this char into an [ASCII character](`ascii::Char`), without + /// checking whether it is valid. + /// + /// # Safety + /// + /// This char must be within the ASCII range, or else this is UB. + #[must_use] + #[unstable(feature = "ascii_char", issue = "110998")] + #[inline] + pub const unsafe fn as_ascii_unchecked(&self) -> ascii::Char { + assert_unsafe_precondition!( + check_library_ub, + "as_ascii_unchecked requires that the char is valid ASCII", + (it: &char = self) => it.is_ascii() + ); + + // SAFETY: the caller promised that this char is ASCII. + unsafe { ascii::Char::from_u8_unchecked(*self as u8) } + } + /// Makes a copy of the value in its ASCII upper case equivalent. /// /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', diff --git a/library/core/src/convert/mod.rs b/library/core/src/convert/mod.rs index e1b10e1074d..c542a28beb8 100644 --- a/library/core/src/convert/mod.rs +++ b/library/core/src/convert/mod.rs @@ -464,8 +464,8 @@ pub trait Into<T>: Sized { /// orphaning rules. /// See [`Into`] for more details. /// -/// Prefer using [`Into`] over using `From` when specifying trait bounds on a generic function. -/// This way, types that directly implement [`Into`] can be used as arguments as well. +/// Prefer using [`Into`] over [`From`] when specifying trait bounds on a generic function +/// to ensure that types that only implement [`Into`] can be used as well. /// /// The `From` trait is also very useful when performing error handling. When constructing a function /// that is capable of failing, the return type will generally be of the form `Result<T, E>`. @@ -597,6 +597,9 @@ pub trait From<T>: Sized { /// standard library. For more information on this, see the /// documentation for [`Into`]. /// +/// Prefer using [`TryInto`] over [`TryFrom`] when specifying trait bounds on a generic function +/// to ensure that types that only implement [`TryInto`] can be used as well. +/// /// # Implementing `TryInto` /// /// This suffers the same restrictions and reasoning as implementing @@ -636,6 +639,9 @@ pub trait TryInto<T>: Sized { /// When the [`!`] type is stabilized [`Infallible`] and [`!`] will be /// equivalent. /// +/// Prefer using [`TryInto`] over [`TryFrom`] when specifying trait bounds on a generic function +/// to ensure that types that only implement [`TryInto`] can be used as well. +/// /// `TryFrom<T>` can be implemented as follows: /// /// ``` diff --git a/library/core/src/fmt/float.rs b/library/core/src/fmt/float.rs index 870ad9df4fd..556db239f24 100644 --- a/library/core/src/fmt/float.rs +++ b/library/core/src/fmt/float.rs @@ -20,6 +20,8 @@ macro_rules! impl_general_format { } } +#[cfg(target_has_reliable_f16)] +impl_general_format! { f16 } impl_general_format! { f32 f64 } // Don't inline this so callers don't use the stack space this function @@ -231,6 +233,13 @@ macro_rules! floating { floating! { f32 f64 } +#[cfg(target_has_reliable_f16)] +floating! { f16 } + +// FIXME(f16_f128): A fallback is used when the backend+target does not support f16 well, in order +// to avoid ICEs. + +#[cfg(not(target_has_reliable_f16))] #[stable(feature = "rust1", since = "1.0.0")] impl Debug for f16 { #[inline] @@ -239,6 +248,33 @@ impl Debug for f16 { } } +#[cfg(not(target_has_reliable_f16))] +#[stable(feature = "rust1", since = "1.0.0")] +impl Display for f16 { + #[inline] + fn fmt(&self, fmt: &mut Formatter<'_>) -> Result { + Debug::fmt(self, fmt) + } +} + +#[cfg(not(target_has_reliable_f16))] +#[stable(feature = "rust1", since = "1.0.0")] +impl LowerExp for f16 { + #[inline] + fn fmt(&self, fmt: &mut Formatter<'_>) -> Result { + Debug::fmt(self, fmt) + } +} + +#[cfg(not(target_has_reliable_f16))] +#[stable(feature = "rust1", since = "1.0.0")] +impl UpperExp for f16 { + #[inline] + fn fmt(&self, fmt: &mut Formatter<'_>) -> Result { + Debug::fmt(self, fmt) + } +} + #[stable(feature = "rust1", since = "1.0.0")] impl Debug for f128 { #[inline] diff --git a/library/core/src/fmt/num.rs b/library/core/src/fmt/num.rs index 4467b37bd45..ba30518d70b 100644 --- a/library/core/src/fmt/num.rs +++ b/library/core/src/fmt/num.rs @@ -208,7 +208,11 @@ macro_rules! impl_Display { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { #[cfg(not(feature = "optimize_for_size"))] { - self._fmt(true, f) + const MAX_DEC_N: usize = $unsigned::MAX.ilog(10) as usize + 1; + // Buffer decimals for $unsigned with right alignment. + let mut buf = [MaybeUninit::<u8>::uninit(); MAX_DEC_N]; + + f.pad_integral(true, "", self._fmt(&mut buf)) } #[cfg(feature = "optimize_for_size")] { @@ -222,7 +226,11 @@ macro_rules! impl_Display { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { #[cfg(not(feature = "optimize_for_size"))] { - return self.unsigned_abs()._fmt(*self >= 0, f); + const MAX_DEC_N: usize = $unsigned::MAX.ilog(10) as usize + 1; + // Buffer decimals for $unsigned with right alignment. + let mut buf = [MaybeUninit::<u8>::uninit(); MAX_DEC_N]; + + f.pad_integral(*self >= 0, "", self.unsigned_abs()._fmt(&mut buf)) } #[cfg(feature = "optimize_for_size")] { @@ -233,10 +241,13 @@ macro_rules! impl_Display { #[cfg(not(feature = "optimize_for_size"))] impl $unsigned { - fn _fmt(self, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result { - const MAX_DEC_N: usize = $unsigned::MAX.ilog(10) as usize + 1; - // Buffer decimals for $unsigned with right alignment. - let mut buf = [MaybeUninit::<u8>::uninit(); MAX_DEC_N]; + #[doc(hidden)] + #[unstable( + feature = "fmt_internals", + reason = "specialized method meant to only be used by `SpecToString` implementation", + issue = "none" + )] + pub fn _fmt<'a>(self, buf: &'a mut [MaybeUninit::<u8>]) -> &'a str { // Count the number of bytes in buf that are not initialized. let mut offset = buf.len(); // Consume the least-significant decimals from a working copy. @@ -301,13 +312,12 @@ macro_rules! impl_Display { // SAFETY: All buf content since offset is set. let written = unsafe { buf.get_unchecked(offset..) }; // SAFETY: Writes use ASCII from the lookup table exclusively. - let as_str = unsafe { + unsafe { str::from_utf8_unchecked(slice::from_raw_parts( MaybeUninit::slice_as_ptr(written), written.len(), )) - }; - f.pad_integral(is_nonnegative, "", as_str) + } } })* diff --git a/library/core/src/lib.rs b/library/core/src/lib.rs index 64a7ec8906b..e605d7e0d78 100644 --- a/library/core/src/lib.rs +++ b/library/core/src/lib.rs @@ -101,6 +101,7 @@ #![feature(bstr)] #![feature(bstr_internals)] #![feature(cfg_match)] +#![feature(cfg_target_has_reliable_f16_f128)] #![feature(const_carrying_mul_add)] #![feature(const_eval_select)] #![feature(core_intrinsics)] @@ -111,7 +112,6 @@ #![feature(is_ascii_octdigit)] #![feature(lazy_get)] #![feature(link_cfg)] -#![feature(non_null_from_ref)] #![feature(offset_of_enum)] #![feature(panic_internals)] #![feature(ptr_alignment_type)] @@ -188,9 +188,9 @@ // // Target features: // tidy-alphabetical-start +#![cfg_attr(bootstrap, feature(avx512_target_feature))] #![feature(aarch64_unstable_target_feature)] #![feature(arm_target_feature)] -#![feature(avx512_target_feature)] #![feature(hexagon_target_feature)] #![feature(keylocker_x86)] #![feature(loongarch_target_feature)] diff --git a/library/core/src/num/dec2flt/float.rs b/library/core/src/num/dec2flt/float.rs index b8a28a67569..5bf0faf0bc9 100644 --- a/library/core/src/num/dec2flt/float.rs +++ b/library/core/src/num/dec2flt/float.rs @@ -45,7 +45,7 @@ macro_rules! int { } } -int!(u32, u64); +int!(u16, u32, u64); /// A helper trait to avoid duplicating basically all the conversion code for IEEE floats. /// @@ -189,9 +189,14 @@ pub trait RawFloat: /// Returns the mantissa, exponent and sign as integers. /// - /// That is, this returns `(m, p, s)` such that `s * m * 2^p` represents the original float. - /// For 0, the exponent will be `-(EXP_BIAS + SIG_BITS`, which is the - /// minimum subnormal power. + /// This returns `(m, p, s)` such that `s * m * 2^p` represents the original float. For 0, the + /// exponent will be `-(EXP_BIAS + SIG_BITS)`, which is the minimum subnormal power. For + /// infinity or NaN, the exponent will be `EXP_SAT - EXP_BIAS - SIG_BITS`. + /// + /// If subnormal, the mantissa will be shifted one bit to the left. Otherwise, it is returned + /// with the explicit bit set but otherwise unshifted + /// + /// `s` is only ever +/-1. fn integer_decode(self) -> (u64, i16, i8) { let bits = self.to_bits(); let sign: i8 = if bits >> (Self::BITS - 1) == Self::Int::ZERO { 1 } else { -1 }; @@ -213,6 +218,50 @@ const fn pow2_to_pow10(a: i64) -> i64 { res as i64 } +#[cfg(target_has_reliable_f16)] +impl RawFloat for f16 { + type Int = u16; + + const INFINITY: Self = Self::INFINITY; + const NEG_INFINITY: Self = Self::NEG_INFINITY; + const NAN: Self = Self::NAN; + const NEG_NAN: Self = -Self::NAN; + + const BITS: u32 = 16; + const SIG_TOTAL_BITS: u32 = Self::MANTISSA_DIGITS; + const EXP_MASK: Self::Int = Self::EXP_MASK; + const SIG_MASK: Self::Int = Self::MAN_MASK; + + const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -22; + const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 5; + const SMALLEST_POWER_OF_TEN: i32 = -27; + + #[inline] + fn from_u64(v: u64) -> Self { + debug_assert!(v <= Self::MAX_MANTISSA_FAST_PATH); + v as _ + } + + #[inline] + fn from_u64_bits(v: u64) -> Self { + Self::from_bits((v & 0xFFFF) as u16) + } + + fn pow10_fast_path(exponent: usize) -> Self { + #[allow(clippy::use_self)] + const TABLE: [f16; 8] = [1e0, 1e1, 1e2, 1e3, 1e4, 0.0, 0.0, 0.]; + TABLE[exponent & 7] + } + + fn to_bits(self) -> Self::Int { + self.to_bits() + } + + fn classify(self) -> FpCategory { + self.classify() + } +} + impl RawFloat for f32 { type Int = u32; diff --git a/library/core/src/num/dec2flt/mod.rs b/library/core/src/num/dec2flt/mod.rs index d1a0e1db313..abad7acb104 100644 --- a/library/core/src/num/dec2flt/mod.rs +++ b/library/core/src/num/dec2flt/mod.rs @@ -171,9 +171,25 @@ macro_rules! from_str_float_impl { } }; } + +#[cfg(target_has_reliable_f16)] +from_str_float_impl!(f16); from_str_float_impl!(f32); from_str_float_impl!(f64); +// FIXME(f16_f128): A fallback is used when the backend+target does not support f16 well, in order +// to avoid ICEs. + +#[cfg(not(target_has_reliable_f16))] +impl FromStr for f16 { + type Err = ParseFloatError; + + #[inline] + fn from_str(_src: &str) -> Result<Self, ParseFloatError> { + unimplemented!("requires target_has_reliable_f16") + } +} + /// An error which can be returned when parsing a float. /// /// This error is used as the error type for the [`FromStr`] implementation diff --git a/library/core/src/num/f128.rs b/library/core/src/num/f128.rs index 7e470185c86..0c2c4155d66 100644 --- a/library/core/src/num/f128.rs +++ b/library/core/src/num/f128.rs @@ -1415,3 +1415,413 @@ impl f128 { intrinsics::frem_algebraic(self, rhs) } } + +// Functions in this module fall into `core_float_math` +// FIXME(f16_f128): all doctests must be gated to platforms that have `long double` === `_Float128` +// due to https://github.com/llvm/llvm-project/issues/44744. aarch64 linux matches this. +// #[unstable(feature = "core_float_math", issue = "137578")] +#[cfg(not(test))] +impl f128 { + /// Returns the largest integer less than or equal to `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f128_math)] { + /// + /// let f = 3.7_f128; + /// let g = 3.0_f128; + /// let h = -3.7_f128; + /// + /// assert_eq!(f.floor(), 3.0); + /// assert_eq!(g.floor(), 3.0); + /// assert_eq!(h.floor(), -4.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn floor(self) -> f128 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::floorf128(self) } + } + + /// Returns the smallest integer greater than or equal to `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f128_math)] { + /// + /// let f = 3.01_f128; + /// let g = 4.0_f128; + /// + /// assert_eq!(f.ceil(), 4.0); + /// assert_eq!(g.ceil(), 4.0); + /// # } + /// ``` + #[inline] + #[doc(alias = "ceiling")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ceil(self) -> f128 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::ceilf128(self) } + } + + /// Returns the nearest integer to `self`. If a value is half-way between two + /// integers, round away from `0.0`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f128_math)] { + /// + /// let f = 3.3_f128; + /// let g = -3.3_f128; + /// let h = -3.7_f128; + /// let i = 3.5_f128; + /// let j = 4.5_f128; + /// + /// assert_eq!(f.round(), 3.0); + /// assert_eq!(g.round(), -3.0); + /// assert_eq!(h.round(), -4.0); + /// assert_eq!(i.round(), 4.0); + /// assert_eq!(j.round(), 5.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn round(self) -> f128 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::roundf128(self) } + } + + /// Returns the nearest integer to a number. Rounds half-way cases to the number + /// with an even least significant digit. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f128_math)] { + /// + /// let f = 3.3_f128; + /// let g = -3.3_f128; + /// let h = 3.5_f128; + /// let i = 4.5_f128; + /// + /// assert_eq!(f.round_ties_even(), 3.0); + /// assert_eq!(g.round_ties_even(), -3.0); + /// assert_eq!(h.round_ties_even(), 4.0); + /// assert_eq!(i.round_ties_even(), 4.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn round_ties_even(self) -> f128 { + intrinsics::round_ties_even_f128(self) + } + + /// Returns the integer part of `self`. + /// This means that non-integer numbers are always truncated towards zero. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f128_math)] { + /// + /// let f = 3.7_f128; + /// let g = 3.0_f128; + /// let h = -3.7_f128; + /// + /// assert_eq!(f.trunc(), 3.0); + /// assert_eq!(g.trunc(), 3.0); + /// assert_eq!(h.trunc(), -3.0); + /// # } + /// ``` + #[inline] + #[doc(alias = "truncate")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn trunc(self) -> f128 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::truncf128(self) } + } + + /// Returns the fractional part of `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f128_math)] { + /// + /// let x = 3.6_f128; + /// let y = -3.6_f128; + /// let abs_difference_x = (x.fract() - 0.6).abs(); + /// let abs_difference_y = (y.fract() - (-0.6)).abs(); + /// + /// assert!(abs_difference_x <= f128::EPSILON); + /// assert!(abs_difference_y <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn fract(self) -> f128 { + self - self.trunc() + } + + /// Fused multiply-add. Computes `(self * a) + b` with only one rounding + /// error, yielding a more accurate result than an unfused multiply-add. + /// + /// Using `mul_add` *may* be more performant than an unfused multiply-add if + /// the target architecture has a dedicated `fma` CPU instruction. However, + /// this is not always true, and will be heavily dependant on designing + /// algorithms with specific target hardware in mind. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. It is specified by IEEE 754 as + /// `fusedMultiplyAdd` and guaranteed not to change. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f128_math)] { + /// + /// let m = 10.0_f128; + /// let x = 4.0_f128; + /// let b = 60.0_f128; + /// + /// assert_eq!(m.mul_add(x, b), 100.0); + /// assert_eq!(m * x + b, 100.0); + /// + /// let one_plus_eps = 1.0_f128 + f128::EPSILON; + /// let one_minus_eps = 1.0_f128 - f128::EPSILON; + /// let minus_one = -1.0_f128; + /// + /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. + /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON); + /// // Different rounding with the non-fused multiply and add. + /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[doc(alias = "fmaf128", alias = "fusedMultiplyAdd")] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn mul_add(self, a: f128, b: f128) -> f128 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::fmaf128(self, a, b) } + } + + /// Calculates Euclidean division, the matching method for `rem_euclid`. + /// + /// This computes the integer `n` such that + /// `self = n * rhs + self.rem_euclid(rhs)`. + /// In other words, the result is `self / rhs` rounded to the integer `n` + /// such that `self >= n * rhs`. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f128_math)] { + /// + /// let a: f128 = 7.0; + /// let b = 4.0; + /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 + /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 + /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 + /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0 + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn div_euclid(self, rhs: f128) -> f128 { + let q = (self / rhs).trunc(); + if self % rhs < 0.0 { + return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; + } + q + } + + /// Calculates the least nonnegative remainder of `self (mod rhs)`. + /// + /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in + /// most cases. However, due to a floating point round-off error it can + /// result in `r == rhs.abs()`, violating the mathematical definition, if + /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`. + /// This result is not an element of the function's codomain, but it is the + /// closest floating point number in the real numbers and thus fulfills the + /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)` + /// approximately. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f128_math)] { + /// + /// let a: f128 = 7.0; + /// let b = 4.0; + /// assert_eq!(a.rem_euclid(b), 3.0); + /// assert_eq!((-a).rem_euclid(b), 1.0); + /// assert_eq!(a.rem_euclid(-b), 3.0); + /// assert_eq!((-a).rem_euclid(-b), 1.0); + /// // limitation due to round-off error + /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[doc(alias = "modulo", alias = "mod")] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn rem_euclid(self, rhs: f128) -> f128 { + let r = self % rhs; + if r < 0.0 { r + rhs.abs() } else { r } + } + + /// Raises a number to an integer power. + /// + /// Using this function is generally faster than using `powf`. + /// It might have a different sequence of rounding operations than `powf`, + /// so the results are not guaranteed to agree. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f128_math)] { + /// + /// let x = 2.0_f128; + /// let abs_difference = (x.powi(2) - (x * x)).abs(); + /// assert!(abs_difference <= f128::EPSILON); + /// + /// assert_eq!(f128::powi(f128::NAN, 0), 1.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn powi(self, n: i32) -> f128 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::powif128(self, n) } + } + + /// Returns the square root of a number. + /// + /// Returns NaN if `self` is a negative number other than `-0.0`. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. It is specified by IEEE 754 as `squareRoot` + /// and guaranteed not to change. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f128_math)] { + /// + /// let positive = 4.0_f128; + /// let negative = -4.0_f128; + /// let negative_zero = -0.0_f128; + /// + /// assert_eq!(positive.sqrt(), 2.0); + /// assert!(negative.sqrt().is_nan()); + /// assert!(negative_zero.sqrt() == negative_zero); + /// # } + /// ``` + #[inline] + #[doc(alias = "squareRoot")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sqrt(self) -> f128 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::sqrtf128(self) } + } +} diff --git a/library/core/src/num/f16.rs b/library/core/src/num/f16.rs index e47900cba55..1a859f2277f 100644 --- a/library/core/src/num/f16.rs +++ b/library/core/src/num/f16.rs @@ -13,6 +13,8 @@ use crate::convert::FloatToInt; use crate::num::FpCategory; +#[cfg(not(test))] +use crate::num::libm; use crate::panic::const_assert; use crate::{intrinsics, mem}; @@ -1391,3 +1393,446 @@ impl f16 { intrinsics::frem_algebraic(self, rhs) } } + +// Functions in this module fall into `core_float_math` +// #[unstable(feature = "core_float_math", issue = "137578")] +#[cfg(not(test))] +impl f16 { + /// Returns the largest integer less than or equal to `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f16_math)] { + /// + /// let f = 3.7_f16; + /// let g = 3.0_f16; + /// let h = -3.7_f16; + /// + /// assert_eq!(f.floor(), 3.0); + /// assert_eq!(g.floor(), 3.0); + /// assert_eq!(h.floor(), -4.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn floor(self) -> f16 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::floorf16(self) } + } + + /// Returns the smallest integer greater than or equal to `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f16_math)] { + /// + /// let f = 3.01_f16; + /// let g = 4.0_f16; + /// + /// assert_eq!(f.ceil(), 4.0); + /// assert_eq!(g.ceil(), 4.0); + /// # } + /// ``` + #[inline] + #[doc(alias = "ceiling")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ceil(self) -> f16 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::ceilf16(self) } + } + + /// Returns the nearest integer to `self`. If a value is half-way between two + /// integers, round away from `0.0`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f16_math)] { + /// + /// let f = 3.3_f16; + /// let g = -3.3_f16; + /// let h = -3.7_f16; + /// let i = 3.5_f16; + /// let j = 4.5_f16; + /// + /// assert_eq!(f.round(), 3.0); + /// assert_eq!(g.round(), -3.0); + /// assert_eq!(h.round(), -4.0); + /// assert_eq!(i.round(), 4.0); + /// assert_eq!(j.round(), 5.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn round(self) -> f16 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::roundf16(self) } + } + + /// Returns the nearest integer to a number. Rounds half-way cases to the number + /// with an even least significant digit. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f16_math)] { + /// + /// let f = 3.3_f16; + /// let g = -3.3_f16; + /// let h = 3.5_f16; + /// let i = 4.5_f16; + /// + /// assert_eq!(f.round_ties_even(), 3.0); + /// assert_eq!(g.round_ties_even(), -3.0); + /// assert_eq!(h.round_ties_even(), 4.0); + /// assert_eq!(i.round_ties_even(), 4.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn round_ties_even(self) -> f16 { + intrinsics::round_ties_even_f16(self) + } + + /// Returns the integer part of `self`. + /// This means that non-integer numbers are always truncated towards zero. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f16_math)] { + /// + /// let f = 3.7_f16; + /// let g = 3.0_f16; + /// let h = -3.7_f16; + /// + /// assert_eq!(f.trunc(), 3.0); + /// assert_eq!(g.trunc(), 3.0); + /// assert_eq!(h.trunc(), -3.0); + /// # } + /// ``` + #[inline] + #[doc(alias = "truncate")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn trunc(self) -> f16 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::truncf16(self) } + } + + /// Returns the fractional part of `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f16_math)] { + /// + /// let x = 3.6_f16; + /// let y = -3.6_f16; + /// let abs_difference_x = (x.fract() - 0.6).abs(); + /// let abs_difference_y = (y.fract() - (-0.6)).abs(); + /// + /// assert!(abs_difference_x <= f16::EPSILON); + /// assert!(abs_difference_y <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn fract(self) -> f16 { + self - self.trunc() + } + + /// Fused multiply-add. Computes `(self * a) + b` with only one rounding + /// error, yielding a more accurate result than an unfused multiply-add. + /// + /// Using `mul_add` *may* be more performant than an unfused multiply-add if + /// the target architecture has a dedicated `fma` CPU instruction. However, + /// this is not always true, and will be heavily dependant on designing + /// algorithms with specific target hardware in mind. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. It is specified by IEEE 754 as + /// `fusedMultiplyAdd` and guaranteed not to change. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f16_math)] { + /// + /// let m = 10.0_f16; + /// let x = 4.0_f16; + /// let b = 60.0_f16; + /// + /// assert_eq!(m.mul_add(x, b), 100.0); + /// assert_eq!(m * x + b, 100.0); + /// + /// let one_plus_eps = 1.0_f16 + f16::EPSILON; + /// let one_minus_eps = 1.0_f16 - f16::EPSILON; + /// let minus_one = -1.0_f16; + /// + /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. + /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f16::EPSILON * f16::EPSILON); + /// // Different rounding with the non-fused multiply and add. + /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[doc(alias = "fmaf16", alias = "fusedMultiplyAdd")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn mul_add(self, a: f16, b: f16) -> f16 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::fmaf16(self, a, b) } + } + + /// Calculates Euclidean division, the matching method for `rem_euclid`. + /// + /// This computes the integer `n` such that + /// `self = n * rhs + self.rem_euclid(rhs)`. + /// In other words, the result is `self / rhs` rounded to the integer `n` + /// such that `self >= n * rhs`. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f16_math)] { + /// + /// let a: f16 = 7.0; + /// let b = 4.0; + /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 + /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 + /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 + /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0 + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn div_euclid(self, rhs: f16) -> f16 { + let q = (self / rhs).trunc(); + if self % rhs < 0.0 { + return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; + } + q + } + + /// Calculates the least nonnegative remainder of `self (mod rhs)`. + /// + /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in + /// most cases. However, due to a floating point round-off error it can + /// result in `r == rhs.abs()`, violating the mathematical definition, if + /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`. + /// This result is not an element of the function's codomain, but it is the + /// closest floating point number in the real numbers and thus fulfills the + /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)` + /// approximately. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f16_math)] { + /// + /// let a: f16 = 7.0; + /// let b = 4.0; + /// assert_eq!(a.rem_euclid(b), 3.0); + /// assert_eq!((-a).rem_euclid(b), 1.0); + /// assert_eq!(a.rem_euclid(-b), 3.0); + /// assert_eq!((-a).rem_euclid(-b), 1.0); + /// // limitation due to round-off error + /// assert!((-f16::EPSILON).rem_euclid(3.0) != 0.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[doc(alias = "modulo", alias = "mod")] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn rem_euclid(self, rhs: f16) -> f16 { + let r = self % rhs; + if r < 0.0 { r + rhs.abs() } else { r } + } + + /// Raises a number to an integer power. + /// + /// Using this function is generally faster than using `powf`. + /// It might have a different sequence of rounding operations than `powf`, + /// so the results are not guaranteed to agree. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f16_math)] { + /// + /// let x = 2.0_f16; + /// let abs_difference = (x.powi(2) - (x * x)).abs(); + /// assert!(abs_difference <= f16::EPSILON); + /// + /// assert_eq!(f16::powi(f16::NAN, 0), 1.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn powi(self, n: i32) -> f16 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::powif16(self, n) } + } + + /// Returns the square root of a number. + /// + /// Returns NaN if `self` is a negative number other than `-0.0`. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. It is specified by IEEE 754 as `squareRoot` + /// and guaranteed not to change. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f16_math)] { + /// + /// let positive = 4.0_f16; + /// let negative = -4.0_f16; + /// let negative_zero = -0.0_f16; + /// + /// assert_eq!(positive.sqrt(), 2.0); + /// assert!(negative.sqrt().is_nan()); + /// assert!(negative_zero.sqrt() == negative_zero); + /// # } + /// ``` + #[inline] + #[doc(alias = "squareRoot")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sqrt(self) -> f16 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::sqrtf16(self) } + } + + /// Returns the cube root of a number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `cbrtf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #![feature(cfg_target_has_reliable_f16_f128)] + /// # #![expect(internal_features)] + /// # #[cfg(not(miri))] + /// # #[cfg(target_has_reliable_f16_math)] { + /// + /// let x = 8.0f16; + /// + /// // x^(1/3) - 2 == 0 + /// let abs_difference = (x.cbrt() - 2.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn cbrt(self) -> f16 { + libm::cbrtf(self as f32) as f16 + } +} diff --git a/library/core/src/num/f32.rs b/library/core/src/num/f32.rs index 5fbc6eb33f1..9525bdb6762 100644 --- a/library/core/src/num/f32.rs +++ b/library/core/src/num/f32.rs @@ -12,7 +12,7 @@ #![stable(feature = "rust1", since = "1.0.0")] use crate::convert::FloatToInt; -use crate::num::FpCategory; +use crate::num::{FpCategory, libm}; use crate::panic::const_assert; use crate::{cfg_match, intrinsics, mem}; @@ -1556,3 +1556,414 @@ impl f32 { intrinsics::frem_algebraic(self, rhs) } } + +/// Experimental version of `floor` in `core`. See [`f32::floor`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f32; +/// +/// let f = 3.7_f32; +/// let g = 3.0_f32; +/// let h = -3.7_f32; +/// +/// assert_eq!(f32::floor(f), 3.0); +/// assert_eq!(f32::floor(g), 3.0); +/// assert_eq!(f32::floor(h), -4.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f32::floor`]: ../../std/primitive.f32.html#method.floor +#[inline] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn floor(x: f32) -> f32 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::floorf32(x) } +} + +/// Experimental version of `ceil` in `core`. See [`f32::ceil`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f32; +/// +/// let f = 3.01_f32; +/// let g = 4.0_f32; +/// +/// assert_eq!(f32::ceil(f), 4.0); +/// assert_eq!(f32::ceil(g), 4.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f32::ceil`]: ../../std/primitive.f32.html#method.ceil +#[inline] +#[doc(alias = "ceiling")] +#[must_use = "method returns a new number and does not mutate the original value"] +#[unstable(feature = "core_float_math", issue = "137578")] +pub fn ceil(x: f32) -> f32 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::ceilf32(x) } +} + +/// Experimental version of `round` in `core`. See [`f32::round`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f32; +/// +/// let f = 3.3_f32; +/// let g = -3.3_f32; +/// let h = -3.7_f32; +/// let i = 3.5_f32; +/// let j = 4.5_f32; +/// +/// assert_eq!(f32::round(f), 3.0); +/// assert_eq!(f32::round(g), -3.0); +/// assert_eq!(f32::round(h), -4.0); +/// assert_eq!(f32::round(i), 4.0); +/// assert_eq!(f32::round(j), 5.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f32::round`]: ../../std/primitive.f32.html#method.round +#[inline] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn round(x: f32) -> f32 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::roundf32(x) } +} + +/// Experimental version of `round_ties_even` in `core`. See [`f32::round_ties_even`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f32; +/// +/// let f = 3.3_f32; +/// let g = -3.3_f32; +/// let h = 3.5_f32; +/// let i = 4.5_f32; +/// +/// assert_eq!(f32::round_ties_even(f), 3.0); +/// assert_eq!(f32::round_ties_even(g), -3.0); +/// assert_eq!(f32::round_ties_even(h), 4.0); +/// assert_eq!(f32::round_ties_even(i), 4.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f32::round_ties_even`]: ../../std/primitive.f32.html#method.round_ties_even +#[inline] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn round_ties_even(x: f32) -> f32 { + intrinsics::round_ties_even_f32(x) +} + +/// Experimental version of `trunc` in `core`. See [`f32::trunc`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f32; +/// +/// let f = 3.7_f32; +/// let g = 3.0_f32; +/// let h = -3.7_f32; +/// +/// assert_eq!(f32::trunc(f), 3.0); +/// assert_eq!(f32::trunc(g), 3.0); +/// assert_eq!(f32::trunc(h), -3.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f32::trunc`]: ../../std/primitive.f32.html#method.trunc +#[inline] +#[doc(alias = "truncate")] +#[must_use = "method returns a new number and does not mutate the original value"] +#[unstable(feature = "core_float_math", issue = "137578")] +pub fn trunc(x: f32) -> f32 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::truncf32(x) } +} + +/// Experimental version of `fract` in `core`. See [`f32::fract`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f32; +/// +/// let x = 3.6_f32; +/// let y = -3.6_f32; +/// let abs_difference_x = (f32::fract(x) - 0.6).abs(); +/// let abs_difference_y = (f32::fract(y) - (-0.6)).abs(); +/// +/// assert!(abs_difference_x <= f32::EPSILON); +/// assert!(abs_difference_y <= f32::EPSILON); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f32::fract`]: ../../std/primitive.f32.html#method.fract +#[inline] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn fract(x: f32) -> f32 { + x - trunc(x) +} + +/// Experimental version of `mul_add` in `core`. See [`f32::mul_add`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// # // FIXME(#140515): mingw has an incorrect fma https://sourceforge.net/p/mingw-w64/bugs/848/ +/// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] { +/// use core::f32; +/// +/// let m = 10.0_f32; +/// let x = 4.0_f32; +/// let b = 60.0_f32; +/// +/// assert_eq!(f32::mul_add(m, x, b), 100.0); +/// assert_eq!(m * x + b, 100.0); +/// +/// let one_plus_eps = 1.0_f32 + f32::EPSILON; +/// let one_minus_eps = 1.0_f32 - f32::EPSILON; +/// let minus_one = -1.0_f32; +/// +/// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. +/// assert_eq!(f32::mul_add(one_plus_eps, one_minus_eps, minus_one), -f32::EPSILON * f32::EPSILON); +/// // Different rounding with the non-fused multiply and add. +/// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); +/// # } +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f32::mul_add`]: ../../std/primitive.f32.html#method.mul_add +#[inline] +#[doc(alias = "fmaf", alias = "fusedMultiplyAdd")] +#[must_use = "method returns a new number and does not mutate the original value"] +#[unstable(feature = "core_float_math", issue = "137578")] +pub fn mul_add(x: f32, y: f32, z: f32) -> f32 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::fmaf32(x, y, z) } +} + +/// Experimental version of `div_euclid` in `core`. See [`f32::div_euclid`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f32; +/// +/// let a: f32 = 7.0; +/// let b = 4.0; +/// assert_eq!(f32::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0 +/// assert_eq!(f32::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0 +/// assert_eq!(f32::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0 +/// assert_eq!(f32::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0 +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f32::div_euclid`]: ../../std/primitive.f32.html#method.div_euclid +#[inline] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn div_euclid(x: f32, rhs: f32) -> f32 { + let q = trunc(x / rhs); + if x % rhs < 0.0 { + return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; + } + q +} + +/// Experimental version of `rem_euclid` in `core`. See [`f32::rem_euclid`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f32; +/// +/// let a: f32 = 7.0; +/// let b = 4.0; +/// assert_eq!(f32::rem_euclid(a, b), 3.0); +/// assert_eq!(f32::rem_euclid(-a, b), 1.0); +/// assert_eq!(f32::rem_euclid(a, -b), 3.0); +/// assert_eq!(f32::rem_euclid(-a, -b), 1.0); +/// // limitation due to round-off error +/// assert!(f32::rem_euclid(-f32::EPSILON, 3.0) != 0.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f32::rem_euclid`]: ../../std/primitive.f32.html#method.rem_euclid +#[inline] +#[doc(alias = "modulo", alias = "mod")] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn rem_euclid(x: f32, rhs: f32) -> f32 { + let r = x % rhs; + if r < 0.0 { r + rhs.abs() } else { r } +} + +/// Experimental version of `powi` in `core`. See [`f32::powi`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f32; +/// +/// let x = 2.0_f32; +/// let abs_difference = (f32::powi(x, 2) - (x * x)).abs(); +/// assert!(abs_difference <= f32::EPSILON); +/// +/// assert_eq!(f32::powi(f32::NAN, 0), 1.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f32::powi`]: ../../std/primitive.f32.html#method.powi +#[inline] +#[must_use = "method returns a new number and does not mutate the original value"] +#[unstable(feature = "core_float_math", issue = "137578")] +pub fn powi(x: f32, n: i32) -> f32 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::powif32(x, n) } +} + +/// Experimental version of `sqrt` in `core`. See [`f32::sqrt`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f32; +/// +/// let positive = 4.0_f32; +/// let negative = -4.0_f32; +/// let negative_zero = -0.0_f32; +/// +/// assert_eq!(f32::sqrt(positive), 2.0); +/// assert!(f32::sqrt(negative).is_nan()); +/// assert_eq!(f32::sqrt(negative_zero), negative_zero); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f32::sqrt`]: ../../std/primitive.f32.html#method.sqrt +#[inline] +#[doc(alias = "squareRoot")] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn sqrt(x: f32) -> f32 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::sqrtf32(x) } +} + +/// Experimental version of `abs_sub` in `core`. See [`f32::abs_sub`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f32; +/// +/// let x = 3.0f32; +/// let y = -3.0f32; +/// +/// let abs_difference_x = (f32::abs_sub(x, 1.0) - 2.0).abs(); +/// let abs_difference_y = (f32::abs_sub(y, 1.0) - 0.0).abs(); +/// +/// assert!(abs_difference_x <= f32::EPSILON); +/// assert!(abs_difference_y <= f32::EPSILON); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f32::abs_sub`]: ../../std/primitive.f32.html#method.abs_sub +#[inline] +#[stable(feature = "rust1", since = "1.0.0")] +#[deprecated( + since = "1.10.0", + note = "you probably meant `(self - other).abs()`: \ + this operation is `(self - other).max(0.0)` \ + except that `abs_sub` also propagates NaNs (also \ + known as `fdimf` in C). If you truly need the positive \ + difference, consider using that expression or the C function \ + `fdimf`, depending on how you wish to handle NaN (please consider \ + filing an issue describing your use-case too)." +)] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn abs_sub(x: f32, other: f32) -> f32 { + libm::fdimf(x, other) +} + +/// Experimental version of `cbrt` in `core`. See [`f32::cbrt`] for details. +/// +/// # Unspecified precision +/// +/// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and +/// can even differ within the same execution from one invocation to the next. +/// This function currently corresponds to the `cbrtf` from libc on Unix +/// and Windows. Note that this might change in the future. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f32; +/// +/// let x = 8.0f32; +/// +/// // x^(1/3) - 2 == 0 +/// let abs_difference = (f32::cbrt(x) - 2.0).abs(); +/// +/// assert!(abs_difference <= f32::EPSILON); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f32::cbrt`]: ../../std/primitive.f32.html#method.cbrt +#[inline] +#[must_use = "method returns a new number and does not mutate the original value"] +#[unstable(feature = "core_float_math", issue = "137578")] +pub fn cbrt(x: f32) -> f32 { + libm::cbrtf(x) +} diff --git a/library/core/src/num/f64.rs b/library/core/src/num/f64.rs index 81ab0f14c2b..76c4e5d1a6f 100644 --- a/library/core/src/num/f64.rs +++ b/library/core/src/num/f64.rs @@ -12,7 +12,7 @@ #![stable(feature = "rust1", since = "1.0.0")] use crate::convert::FloatToInt; -use crate::num::FpCategory; +use crate::num::{FpCategory, libm}; use crate::panic::const_assert; use crate::{intrinsics, mem}; @@ -1555,3 +1555,407 @@ impl f64 { intrinsics::frem_algebraic(self, rhs) } } + +/// Experimental version of `floor` in `core`. See [`f64::floor`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f64; +/// +/// let f = 3.7_f64; +/// let g = 3.0_f64; +/// let h = -3.7_f64; +/// +/// assert_eq!(f64::floor(f), 3.0); +/// assert_eq!(f64::floor(g), 3.0); +/// assert_eq!(f64::floor(h), -4.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f64::floor`]: ../../std/primitive.f64.html#method.floor +#[inline] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn floor(x: f64) -> f64 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::floorf64(x) } +} + +/// Experimental version of `ceil` in `core`. See [`f64::ceil`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f64; +/// +/// let f = 3.01_f64; +/// let g = 4.0_f64; +/// +/// assert_eq!(f64::ceil(f), 4.0); +/// assert_eq!(f64::ceil(g), 4.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f64::ceil`]: ../../std/primitive.f64.html#method.ceil +#[inline] +#[doc(alias = "ceiling")] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn ceil(x: f64) -> f64 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::ceilf64(x) } +} + +/// Experimental version of `round` in `core`. See [`f64::round`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f64; +/// +/// let f = 3.3_f64; +/// let g = -3.3_f64; +/// let h = -3.7_f64; +/// let i = 3.5_f64; +/// let j = 4.5_f64; +/// +/// assert_eq!(f64::round(f), 3.0); +/// assert_eq!(f64::round(g), -3.0); +/// assert_eq!(f64::round(h), -4.0); +/// assert_eq!(f64::round(i), 4.0); +/// assert_eq!(f64::round(j), 5.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f64::round`]: ../../std/primitive.f64.html#method.round +#[inline] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn round(x: f64) -> f64 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::roundf64(x) } +} + +/// Experimental version of `round_ties_even` in `core`. See [`f64::round_ties_even`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f64; +/// +/// let f = 3.3_f64; +/// let g = -3.3_f64; +/// let h = 3.5_f64; +/// let i = 4.5_f64; +/// +/// assert_eq!(f64::round_ties_even(f), 3.0); +/// assert_eq!(f64::round_ties_even(g), -3.0); +/// assert_eq!(f64::round_ties_even(h), 4.0); +/// assert_eq!(f64::round_ties_even(i), 4.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f64::round_ties_even`]: ../../std/primitive.f64.html#method.round_ties_even +#[inline] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn round_ties_even(x: f64) -> f64 { + intrinsics::round_ties_even_f64(x) +} + +/// Experimental version of `trunc` in `core`. See [`f64::trunc`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f64; +/// +/// let f = 3.7_f64; +/// let g = 3.0_f64; +/// let h = -3.7_f64; +/// +/// assert_eq!(f64::trunc(f), 3.0); +/// assert_eq!(f64::trunc(g), 3.0); +/// assert_eq!(f64::trunc(h), -3.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f64::trunc`]: ../../std/primitive.f64.html#method.trunc +#[inline] +#[doc(alias = "truncate")] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn trunc(x: f64) -> f64 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::truncf64(x) } +} + +/// Experimental version of `fract` in `core`. See [`f64::fract`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f64; +/// +/// let x = 3.6_f64; +/// let y = -3.6_f64; +/// let abs_difference_x = (f64::fract(x) - 0.6).abs(); +/// let abs_difference_y = (f64::fract(y) - (-0.6)).abs(); +/// +/// assert!(abs_difference_x < 1e-10); +/// assert!(abs_difference_y < 1e-10); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f64::fract`]: ../../std/primitive.f64.html#method.fract +#[inline] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn fract(x: f64) -> f64 { + x - trunc(x) +} + +/// Experimental version of `mul_add` in `core`. See [`f64::mul_add`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// # // FIXME(#140515): mingw has an incorrect fma https://sourceforge.net/p/mingw-w64/bugs/848/ +/// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] { +/// use core::f64; +/// +/// let m = 10.0_f64; +/// let x = 4.0_f64; +/// let b = 60.0_f64; +/// +/// assert_eq!(f64::mul_add(m, x, b), 100.0); +/// assert_eq!(m * x + b, 100.0); +/// +/// let one_plus_eps = 1.0_f64 + f64::EPSILON; +/// let one_minus_eps = 1.0_f64 - f64::EPSILON; +/// let minus_one = -1.0_f64; +/// +/// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. +/// assert_eq!(f64::mul_add(one_plus_eps, one_minus_eps, minus_one), -f64::EPSILON * f64::EPSILON); +/// // Different rounding with the non-fused multiply and add. +/// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); +/// # } +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f64::mul_add`]: ../../std/primitive.f64.html#method.mul_add +#[inline] +#[doc(alias = "fma", alias = "fusedMultiplyAdd")] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn mul_add(x: f64, a: f64, b: f64) -> f64 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::fmaf64(x, a, b) } +} + +/// Experimental version of `div_euclid` in `core`. See [`f64::div_euclid`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f64; +/// +/// let a: f64 = 7.0; +/// let b = 4.0; +/// assert_eq!(f64::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0 +/// assert_eq!(f64::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0 +/// assert_eq!(f64::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0 +/// assert_eq!(f64::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0 +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f64::div_euclid`]: ../../std/primitive.f64.html#method.div_euclid +#[inline] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn div_euclid(x: f64, rhs: f64) -> f64 { + let q = trunc(x / rhs); + if x % rhs < 0.0 { + return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; + } + q +} + +/// Experimental version of `rem_euclid` in `core`. See [`f64::rem_euclid`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f64; +/// +/// let a: f64 = 7.0; +/// let b = 4.0; +/// assert_eq!(f64::rem_euclid(a, b), 3.0); +/// assert_eq!(f64::rem_euclid(-a, b), 1.0); +/// assert_eq!(f64::rem_euclid(a, -b), 3.0); +/// assert_eq!(f64::rem_euclid(-a, -b), 1.0); +/// // limitation due to round-off error +/// assert!(f64::rem_euclid(-f64::EPSILON, 3.0) != 0.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f64::rem_euclid`]: ../../std/primitive.f64.html#method.rem_euclid +#[inline] +#[doc(alias = "modulo", alias = "mod")] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn rem_euclid(x: f64, rhs: f64) -> f64 { + let r = x % rhs; + if r < 0.0 { r + rhs.abs() } else { r } +} + +/// Experimental version of `powi` in `core`. See [`f64::powi`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f64; +/// +/// let x = 2.0_f64; +/// let abs_difference = (f64::powi(x, 2) - (x * x)).abs(); +/// assert!(abs_difference <= f64::EPSILON); +/// +/// assert_eq!(f64::powi(f64::NAN, 0), 1.0); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f64::powi`]: ../../std/primitive.f64.html#method.powi +#[inline] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn powi(x: f64, n: i32) -> f64 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::powif64(x, n) } +} + +/// Experimental version of `sqrt` in `core`. See [`f64::sqrt`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f64; +/// +/// let positive = 4.0_f64; +/// let negative = -4.0_f64; +/// let negative_zero = -0.0_f64; +/// +/// assert_eq!(f64::sqrt(positive), 2.0); +/// assert!(f64::sqrt(negative).is_nan()); +/// assert_eq!(f64::sqrt(negative_zero), negative_zero); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f64::sqrt`]: ../../std/primitive.f64.html#method.sqrt +#[inline] +#[doc(alias = "squareRoot")] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn sqrt(x: f64) -> f64 { + // SAFETY: intrinsic with no preconditions + unsafe { intrinsics::sqrtf64(x) } +} + +/// Experimental version of `abs_sub` in `core`. See [`f64::abs_sub`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f64; +/// +/// let x = 3.0_f64; +/// let y = -3.0_f64; +/// +/// let abs_difference_x = (f64::abs_sub(x, 1.0) - 2.0).abs(); +/// let abs_difference_y = (f64::abs_sub(y, 1.0) - 0.0).abs(); +/// +/// assert!(abs_difference_x < 1e-10); +/// assert!(abs_difference_y < 1e-10); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f64::abs_sub`]: ../../std/primitive.f64.html#method.abs_sub +#[inline] +#[unstable(feature = "core_float_math", issue = "137578")] +#[deprecated( + since = "1.10.0", + note = "you probably meant `(self - other).abs()`: \ + this operation is `(self - other).max(0.0)` \ + except that `abs_sub` also propagates NaNs (also \ + known as `fdim` in C). If you truly need the positive \ + difference, consider using that expression or the C function \ + `fdim`, depending on how you wish to handle NaN (please consider \ + filing an issue describing your use-case too)." +)] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn abs_sub(x: f64, other: f64) -> f64 { + libm::fdim(x, other) +} + +/// Experimental version of `cbrt` in `core`. See [`f64::cbrt`] for details. +/// +/// # Examples +/// +/// ``` +/// #![feature(core_float_math)] +/// +/// use core::f64; +/// +/// let x = 8.0_f64; +/// +/// // x^(1/3) - 2 == 0 +/// let abs_difference = (f64::cbrt(x) - 2.0).abs(); +/// +/// assert!(abs_difference < 1e-10); +/// ``` +/// +/// _This standalone function is for testing only. It will be stabilized as an inherent method._ +/// +/// [`f64::cbrt`]: ../../std/primitive.f64.html#method.cbrt +#[inline] +#[unstable(feature = "core_float_math", issue = "137578")] +#[must_use = "method returns a new number and does not mutate the original value"] +pub fn cbrt(x: f64) -> f64 { + libm::cbrt(x) +} diff --git a/library/core/src/num/flt2dec/decoder.rs b/library/core/src/num/flt2dec/decoder.rs index 40b3aae24a5..bd6e2cdbafe 100644 --- a/library/core/src/num/flt2dec/decoder.rs +++ b/library/core/src/num/flt2dec/decoder.rs @@ -45,6 +45,13 @@ pub trait DecodableFloat: RawFloat + Copy { fn min_pos_norm_value() -> Self; } +#[cfg(target_has_reliable_f16)] +impl DecodableFloat for f16 { + fn min_pos_norm_value() -> Self { + f16::MIN_POSITIVE + } +} + impl DecodableFloat for f32 { fn min_pos_norm_value() -> Self { f32::MIN_POSITIVE diff --git a/library/core/src/num/libm.rs b/library/core/src/num/libm.rs new file mode 100644 index 00000000000..aeabb087230 --- /dev/null +++ b/library/core/src/num/libm.rs @@ -0,0 +1,11 @@ +//! Bindings to math functions provided by the system `libm` or by the `libm` crate, exposed +//! via `compiler-builtins`. + +// SAFETY: These symbols have standard interfaces in C and are defined by `libm`, or are +// provided by `compiler-builtins` on unsupported platforms. +unsafe extern "C" { + pub(crate) safe fn cbrt(n: f64) -> f64; + pub(crate) safe fn cbrtf(n: f32) -> f32; + pub(crate) safe fn fdim(a: f64, b: f64) -> f64; + pub(crate) safe fn fdimf(a: f32, b: f32) -> f32; +} diff --git a/library/core/src/num/mod.rs b/library/core/src/num/mod.rs index ecc1c7bf902..5c73bddbef2 100644 --- a/library/core/src/num/mod.rs +++ b/library/core/src/num/mod.rs @@ -46,6 +46,7 @@ mod uint_macros; // import uint_impl! mod error; mod int_log10; mod int_sqrt; +pub(crate) mod libm; mod nonzero; mod overflow_panic; mod saturating; @@ -492,6 +493,26 @@ impl u8 { ascii::Char::from_u8(*self) } + /// Converts this byte to an [ASCII character](ascii::Char), without + /// checking whether or not it's valid. + /// + /// # Safety + /// + /// This byte must be valid ASCII, or else this is UB. + #[must_use] + #[unstable(feature = "ascii_char", issue = "110998")] + #[inline] + pub const unsafe fn as_ascii_unchecked(&self) -> ascii::Char { + assert_unsafe_precondition!( + check_library_ub, + "as_ascii_unchecked requires that the byte is valid ASCII", + (it: &u8 = self) => it.is_ascii() + ); + + // SAFETY: the caller promised that this byte is ASCII. + unsafe { ascii::Char::from_u8_unchecked(*self) } + } + /// Makes a copy of the value in its ASCII upper case equivalent. /// /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', diff --git a/library/core/src/pin.rs b/library/core/src/pin.rs index ecfa723722d..257424b355f 100644 --- a/library/core/src/pin.rs +++ b/library/core/src/pin.rs @@ -12,11 +12,11 @@ //! "pinned," in that it has been permanently (until the end of its lifespan) attached to its //! location in memory, as though pinned to a pinboard. Pinning a value is an incredibly useful //! building block for [`unsafe`] code to be able to reason about whether a raw pointer to the -//! pinned value is still valid. [As we'll see later][drop-guarantee], this is necessarily from the -//! time the value is first pinned until the end of its lifespan. This concept of "pinning" is -//! necessary to implement safe interfaces on top of things like self-referential types and -//! intrusive data structures which cannot currently be modeled in fully safe Rust using only -//! borrow-checked [references][reference]. +//! pinned value is still valid. [As we'll see later][drop-guarantee], once a value is pinned, +//! it is necessarily valid at its memory location until the end of its lifespan. This concept +//! of "pinning" is necessary to implement safe interfaces on top of things like self-referential +//! types and intrusive data structures which cannot currently be modeled in fully safe Rust using +//! only borrow-checked [references][reference]. //! //! "Pinning" allows us to put a *value* which exists at some location in memory into a state where //! safe code cannot *move* that value to a different location in memory or otherwise invalidate it diff --git a/library/core/src/ptr/non_null.rs b/library/core/src/ptr/non_null.rs index d05fb6a6d31..8b31328de04 100644 --- a/library/core/src/ptr/non_null.rs +++ b/library/core/src/ptr/non_null.rs @@ -262,7 +262,8 @@ impl<T: ?Sized> NonNull<T> { } /// Converts a reference to a `NonNull` pointer. - #[unstable(feature = "non_null_from_ref", issue = "130823")] + #[stable(feature = "non_null_from_ref", since = "CURRENT_RUSTC_VERSION")] + #[rustc_const_stable(feature = "non_null_from_ref", since = "CURRENT_RUSTC_VERSION")] #[inline] pub const fn from_ref(r: &T) -> Self { // SAFETY: A reference cannot be null. @@ -270,7 +271,8 @@ impl<T: ?Sized> NonNull<T> { } /// Converts a mutable reference to a `NonNull` pointer. - #[unstable(feature = "non_null_from_ref", issue = "130823")] + #[stable(feature = "non_null_from_ref", since = "CURRENT_RUSTC_VERSION")] + #[rustc_const_stable(feature = "non_null_from_ref", since = "CURRENT_RUSTC_VERSION")] #[inline] pub const fn from_mut(r: &mut T) -> Self { // SAFETY: A mutable reference cannot be null. diff --git a/library/core/src/str/mod.rs b/library/core/src/str/mod.rs index 9e7e949b722..e505e228095 100644 --- a/library/core/src/str/mod.rs +++ b/library/core/src/str/mod.rs @@ -17,6 +17,7 @@ use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher}; use crate::char::{self, EscapeDebugExtArgs}; use crate::ops::Range; use crate::slice::{self, SliceIndex}; +use crate::ub_checks::assert_unsafe_precondition; use crate::{ascii, mem}; pub mod pattern; @@ -2634,6 +2635,27 @@ impl str { self.as_bytes().as_ascii() } + /// Converts this string slice into a slice of [ASCII characters](ascii::Char), + /// without checking whether they are valid. + /// + /// # Safety + /// + /// Every character in this string must be ASCII, or else this is UB. + #[unstable(feature = "ascii_char", issue = "110998")] + #[must_use] + #[inline] + pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] { + assert_unsafe_precondition!( + check_library_ub, + "as_ascii_unchecked requires that the string is valid ASCII", + (it: &str = self) => it.is_ascii() + ); + + // SAFETY: the caller promised that every byte of this string slice + // is ASCII. + unsafe { self.as_bytes().as_ascii_unchecked() } + } + /// Checks that two strings are an ASCII case-insensitive match. /// /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, diff --git a/library/coretests/Cargo.toml b/library/coretests/Cargo.toml index 7656388d24b..e0ddcd466ae 100644 --- a/library/coretests/Cargo.toml +++ b/library/coretests/Cargo.toml @@ -26,3 +26,14 @@ test = true [dev-dependencies] rand = { version = "0.9.0", default-features = false } rand_xorshift = { version = "0.4.0", default-features = false } + +[lints.rust.unexpected_cfgs] +level = "warn" +check-cfg = [ + # Internal features aren't marked known config by default, we use these to + # gate tests. + 'cfg(target_has_reliable_f16)', + 'cfg(target_has_reliable_f16_math)', + 'cfg(target_has_reliable_f128)', + 'cfg(target_has_reliable_f128_math)', +] diff --git a/library/coretests/tests/array.rs b/library/coretests/tests/array.rs index b6d18f1ec38..30ccbbc3203 100644 --- a/library/coretests/tests/array.rs +++ b/library/coretests/tests/array.rs @@ -325,7 +325,7 @@ fn array_map_drop_safety() { let success = std::panic::catch_unwind(|| { let items = [0; 10]; let mut nth = 0; - items.map(|_| { + let _ = items.map(|_| { assert!(nth < num_to_create); nth += 1; DropCounter diff --git a/library/coretests/tests/floats/f128.rs b/library/coretests/tests/floats/f128.rs new file mode 100644 index 00000000000..12cf651f03f --- /dev/null +++ b/library/coretests/tests/floats/f128.rs @@ -0,0 +1,790 @@ +// FIXME(f16_f128): only tested on platforms that have symbols and aren't buggy +#![cfg(target_has_reliable_f128)] + +use std::f128::consts; +use std::num::FpCategory as Fp; +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +use std::ops::Rem; +use std::ops::{Add, Div, Mul, Sub}; + +// Note these tolerances make sense around zero, but not for more extreme exponents. + +/// Default tolerances. Works for values that should be near precise but not exact. Roughly +/// the precision carried by `100 * 100`. +const TOL: f128 = 1e-12; + +/// For operations that are near exact, usually not involving math of different +/// signs. +const TOL_PRECISE: f128 = 1e-28; + +/// Smallest number +const TINY_BITS: u128 = 0x1; + +/// Next smallest number +const TINY_UP_BITS: u128 = 0x2; + +/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 +const MAX_DOWN_BITS: u128 = 0x7ffefffffffffffffffffffffffffffe; + +/// Zeroed exponent, full significant +const LARGEST_SUBNORMAL_BITS: u128 = 0x0000ffffffffffffffffffffffffffff; + +/// Exponent = 0b1, zeroed significand +const SMALLEST_NORMAL_BITS: u128 = 0x00010000000000000000000000000000; + +/// First pattern over the mantissa +const NAN_MASK1: u128 = 0x0000aaaaaaaaaaaaaaaaaaaaaaaaaaaa; + +/// Second pattern over the mantissa +const NAN_MASK2: u128 = 0x00005555555555555555555555555555; + +/// Compare by representation +#[allow(unused_macros)] +macro_rules! assert_f128_biteq { + ($a:expr, $b:expr) => { + let (l, r): (&f128, &f128) = (&$a, &$b); + let lb = l.to_bits(); + let rb = r.to_bits(); + assert_eq!(lb, rb, "float {l:?} is not bitequal to {r:?}.\na: {lb:#034x}\nb: {rb:#034x}"); + }; +} + +#[test] +fn test_num_f128() { + // FIXME(f16_f128): replace with a `test_num` call once the required `fmodl`/`fmodf128` + // function is available on all platforms. + let ten = 10f128; + let two = 2f128; + assert_eq!(ten.add(two), ten + two); + assert_eq!(ten.sub(two), ten - two); + assert_eq!(ten.mul(two), ten * two); + assert_eq!(ten.div(two), ten / two); +} + +// FIXME(f16_f128,miri): many of these have to be disabled since miri does not yet support +// the intrinsics. + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_num_f128_rem() { + let ten = 10f128; + let two = 2f128; + assert_eq!(ten.rem(two), ten % two); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_min_nan() { + assert_eq!(f128::NAN.min(2.0), 2.0); + assert_eq!(2.0f128.min(f128::NAN), 2.0); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_max_nan() { + assert_eq!(f128::NAN.max(2.0), 2.0); + assert_eq!(2.0f128.max(f128::NAN), 2.0); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_minimum() { + assert!(f128::NAN.minimum(2.0).is_nan()); + assert!(2.0f128.minimum(f128::NAN).is_nan()); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_maximum() { + assert!(f128::NAN.maximum(2.0).is_nan()); + assert!(2.0f128.maximum(f128::NAN).is_nan()); +} + +#[test] +fn test_nan() { + let nan: f128 = f128::NAN; + assert!(nan.is_nan()); + assert!(!nan.is_infinite()); + assert!(!nan.is_finite()); + assert!(nan.is_sign_positive()); + assert!(!nan.is_sign_negative()); + assert!(!nan.is_normal()); + assert_eq!(Fp::Nan, nan.classify()); + // Ensure the quiet bit is set. + assert!(nan.to_bits() & (1 << (f128::MANTISSA_DIGITS - 2)) != 0); +} + +#[test] +fn test_infinity() { + let inf: f128 = f128::INFINITY; + assert!(inf.is_infinite()); + assert!(!inf.is_finite()); + assert!(inf.is_sign_positive()); + assert!(!inf.is_sign_negative()); + assert!(!inf.is_nan()); + assert!(!inf.is_normal()); + assert_eq!(Fp::Infinite, inf.classify()); +} + +#[test] +fn test_neg_infinity() { + let neg_inf: f128 = f128::NEG_INFINITY; + assert!(neg_inf.is_infinite()); + assert!(!neg_inf.is_finite()); + assert!(!neg_inf.is_sign_positive()); + assert!(neg_inf.is_sign_negative()); + assert!(!neg_inf.is_nan()); + assert!(!neg_inf.is_normal()); + assert_eq!(Fp::Infinite, neg_inf.classify()); +} + +#[test] +fn test_zero() { + let zero: f128 = 0.0f128; + assert_eq!(0.0, zero); + assert!(!zero.is_infinite()); + assert!(zero.is_finite()); + assert!(zero.is_sign_positive()); + assert!(!zero.is_sign_negative()); + assert!(!zero.is_nan()); + assert!(!zero.is_normal()); + assert_eq!(Fp::Zero, zero.classify()); +} + +#[test] +fn test_neg_zero() { + let neg_zero: f128 = -0.0; + assert_eq!(0.0, neg_zero); + assert!(!neg_zero.is_infinite()); + assert!(neg_zero.is_finite()); + assert!(!neg_zero.is_sign_positive()); + assert!(neg_zero.is_sign_negative()); + assert!(!neg_zero.is_nan()); + assert!(!neg_zero.is_normal()); + assert_eq!(Fp::Zero, neg_zero.classify()); +} + +#[test] +fn test_one() { + let one: f128 = 1.0f128; + assert_eq!(1.0, one); + assert!(!one.is_infinite()); + assert!(one.is_finite()); + assert!(one.is_sign_positive()); + assert!(!one.is_sign_negative()); + assert!(!one.is_nan()); + assert!(one.is_normal()); + assert_eq!(Fp::Normal, one.classify()); +} + +#[test] +fn test_is_nan() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert!(nan.is_nan()); + assert!(!0.0f128.is_nan()); + assert!(!5.3f128.is_nan()); + assert!(!(-10.732f128).is_nan()); + assert!(!inf.is_nan()); + assert!(!neg_inf.is_nan()); +} + +#[test] +fn test_is_infinite() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert!(!nan.is_infinite()); + assert!(inf.is_infinite()); + assert!(neg_inf.is_infinite()); + assert!(!0.0f128.is_infinite()); + assert!(!42.8f128.is_infinite()); + assert!(!(-109.2f128).is_infinite()); +} + +#[test] +fn test_is_finite() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert!(!nan.is_finite()); + assert!(!inf.is_finite()); + assert!(!neg_inf.is_finite()); + assert!(0.0f128.is_finite()); + assert!(42.8f128.is_finite()); + assert!((-109.2f128).is_finite()); +} + +#[test] +fn test_is_normal() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + let zero: f128 = 0.0f128; + let neg_zero: f128 = -0.0; + assert!(!nan.is_normal()); + assert!(!inf.is_normal()); + assert!(!neg_inf.is_normal()); + assert!(!zero.is_normal()); + assert!(!neg_zero.is_normal()); + assert!(1f128.is_normal()); + assert!(1e-4931f128.is_normal()); + assert!(!1e-4932f128.is_normal()); +} + +#[test] +fn test_classify() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + let zero: f128 = 0.0f128; + let neg_zero: f128 = -0.0; + assert_eq!(nan.classify(), Fp::Nan); + assert_eq!(inf.classify(), Fp::Infinite); + assert_eq!(neg_inf.classify(), Fp::Infinite); + assert_eq!(zero.classify(), Fp::Zero); + assert_eq!(neg_zero.classify(), Fp::Zero); + assert_eq!(1f128.classify(), Fp::Normal); + assert_eq!(1e-4931f128.classify(), Fp::Normal); + assert_eq!(1e-4932f128.classify(), Fp::Subnormal); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_floor() { + assert_approx_eq!(1.0f128.floor(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.floor(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.floor(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.floor(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.floor(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).floor(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).floor(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).floor(), -2.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).floor(), -2.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).floor(), -2.0f128, TOL_PRECISE); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_ceil() { + assert_approx_eq!(1.0f128.ceil(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.ceil(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.ceil(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.ceil(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.ceil(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).ceil(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).ceil(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).ceil(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).ceil(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).ceil(), -1.0f128, TOL_PRECISE); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_round() { + assert_approx_eq!(2.5f128.round(), 3.0f128, TOL_PRECISE); + assert_approx_eq!(1.0f128.round(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.round(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.round(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.round(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.round(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).round(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).round(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).round(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).round(), -2.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).round(), -2.0f128, TOL_PRECISE); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_round_ties_even() { + assert_approx_eq!(2.5f128.round_ties_even(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.0f128.round_ties_even(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.round_ties_even(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.round_ties_even(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.round_ties_even(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.round_ties_even(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).round_ties_even(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).round_ties_even(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).round_ties_even(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).round_ties_even(), -2.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).round_ties_even(), -2.0f128, TOL_PRECISE); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_trunc() { + assert_approx_eq!(1.0f128.trunc(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.trunc(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.trunc(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.trunc(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.trunc(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).trunc(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).trunc(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).trunc(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).trunc(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).trunc(), -1.0f128, TOL_PRECISE); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_fract() { + assert_approx_eq!(1.0f128.fract(), 0.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.fract(), 0.3f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.fract(), 0.5f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.fract(), 0.7f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.fract(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).fract(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).fract(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).fract(), -0.3f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).fract(), -0.5f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).fract(), -0.7f128, TOL_PRECISE); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_abs() { + assert_eq!(f128::INFINITY.abs(), f128::INFINITY); + assert_eq!(1f128.abs(), 1f128); + assert_eq!(0f128.abs(), 0f128); + assert_eq!((-0f128).abs(), 0f128); + assert_eq!((-1f128).abs(), 1f128); + assert_eq!(f128::NEG_INFINITY.abs(), f128::INFINITY); + assert_eq!((1f128 / f128::NEG_INFINITY).abs(), 0f128); + assert!(f128::NAN.abs().is_nan()); +} + +#[test] +fn test_is_sign_positive() { + assert!(f128::INFINITY.is_sign_positive()); + assert!(1f128.is_sign_positive()); + assert!(0f128.is_sign_positive()); + assert!(!(-0f128).is_sign_positive()); + assert!(!(-1f128).is_sign_positive()); + assert!(!f128::NEG_INFINITY.is_sign_positive()); + assert!(!(1f128 / f128::NEG_INFINITY).is_sign_positive()); + assert!(f128::NAN.is_sign_positive()); + assert!(!(-f128::NAN).is_sign_positive()); +} + +#[test] +fn test_is_sign_negative() { + assert!(!f128::INFINITY.is_sign_negative()); + assert!(!1f128.is_sign_negative()); + assert!(!0f128.is_sign_negative()); + assert!((-0f128).is_sign_negative()); + assert!((-1f128).is_sign_negative()); + assert!(f128::NEG_INFINITY.is_sign_negative()); + assert!((1f128 / f128::NEG_INFINITY).is_sign_negative()); + assert!(!f128::NAN.is_sign_negative()); + assert!((-f128::NAN).is_sign_negative()); +} + +#[test] +fn test_next_up() { + let tiny = f128::from_bits(TINY_BITS); + let tiny_up = f128::from_bits(TINY_UP_BITS); + let max_down = f128::from_bits(MAX_DOWN_BITS); + let largest_subnormal = f128::from_bits(LARGEST_SUBNORMAL_BITS); + let smallest_normal = f128::from_bits(SMALLEST_NORMAL_BITS); + assert_f128_biteq!(f128::NEG_INFINITY.next_up(), f128::MIN); + assert_f128_biteq!(f128::MIN.next_up(), -max_down); + assert_f128_biteq!((-1.0 - f128::EPSILON).next_up(), -1.0); + assert_f128_biteq!((-smallest_normal).next_up(), -largest_subnormal); + assert_f128_biteq!((-tiny_up).next_up(), -tiny); + assert_f128_biteq!((-tiny).next_up(), -0.0f128); + assert_f128_biteq!((-0.0f128).next_up(), tiny); + assert_f128_biteq!(0.0f128.next_up(), tiny); + assert_f128_biteq!(tiny.next_up(), tiny_up); + assert_f128_biteq!(largest_subnormal.next_up(), smallest_normal); + assert_f128_biteq!(1.0f128.next_up(), 1.0 + f128::EPSILON); + assert_f128_biteq!(f128::MAX.next_up(), f128::INFINITY); + assert_f128_biteq!(f128::INFINITY.next_up(), f128::INFINITY); + + // Check that NaNs roundtrip. + let nan0 = f128::NAN; + let nan1 = f128::from_bits(f128::NAN.to_bits() ^ 0x002a_aaaa); + let nan2 = f128::from_bits(f128::NAN.to_bits() ^ 0x0055_5555); + assert_f128_biteq!(nan0.next_up(), nan0); + assert_f128_biteq!(nan1.next_up(), nan1); + assert_f128_biteq!(nan2.next_up(), nan2); +} + +#[test] +fn test_next_down() { + let tiny = f128::from_bits(TINY_BITS); + let tiny_up = f128::from_bits(TINY_UP_BITS); + let max_down = f128::from_bits(MAX_DOWN_BITS); + let largest_subnormal = f128::from_bits(LARGEST_SUBNORMAL_BITS); + let smallest_normal = f128::from_bits(SMALLEST_NORMAL_BITS); + assert_f128_biteq!(f128::NEG_INFINITY.next_down(), f128::NEG_INFINITY); + assert_f128_biteq!(f128::MIN.next_down(), f128::NEG_INFINITY); + assert_f128_biteq!((-max_down).next_down(), f128::MIN); + assert_f128_biteq!((-1.0f128).next_down(), -1.0 - f128::EPSILON); + assert_f128_biteq!((-largest_subnormal).next_down(), -smallest_normal); + assert_f128_biteq!((-tiny).next_down(), -tiny_up); + assert_f128_biteq!((-0.0f128).next_down(), -tiny); + assert_f128_biteq!((0.0f128).next_down(), -tiny); + assert_f128_biteq!(tiny.next_down(), 0.0f128); + assert_f128_biteq!(tiny_up.next_down(), tiny); + assert_f128_biteq!(smallest_normal.next_down(), largest_subnormal); + assert_f128_biteq!((1.0 + f128::EPSILON).next_down(), 1.0f128); + assert_f128_biteq!(f128::MAX.next_down(), max_down); + assert_f128_biteq!(f128::INFINITY.next_down(), f128::MAX); + + // Check that NaNs roundtrip. + let nan0 = f128::NAN; + let nan1 = f128::from_bits(f128::NAN.to_bits() ^ 0x002a_aaaa); + let nan2 = f128::from_bits(f128::NAN.to_bits() ^ 0x0055_5555); + assert_f128_biteq!(nan0.next_down(), nan0); + assert_f128_biteq!(nan1.next_down(), nan1); + assert_f128_biteq!(nan2.next_down(), nan2); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_mul_add() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_approx_eq!(12.3f128.mul_add(4.5, 6.7), 62.05, TOL_PRECISE); + assert_approx_eq!((-12.3f128).mul_add(-4.5, -6.7), 48.65, TOL_PRECISE); + assert_approx_eq!(0.0f128.mul_add(8.9, 1.2), 1.2, TOL_PRECISE); + assert_approx_eq!(3.4f128.mul_add(-0.0, 5.6), 5.6, TOL_PRECISE); + assert!(nan.mul_add(7.8, 9.0).is_nan()); + assert_eq!(inf.mul_add(7.8, 9.0), inf); + assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf); + assert_eq!(8.9f128.mul_add(inf, 3.2), inf); + assert_eq!((-3.2f128).mul_add(2.4, neg_inf), neg_inf); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_recip() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_eq!(1.0f128.recip(), 1.0); + assert_eq!(2.0f128.recip(), 0.5); + assert_eq!((-0.4f128).recip(), -2.5); + assert_eq!(0.0f128.recip(), inf); + assert_approx_eq!( + f128::MAX.recip(), + 8.40525785778023376565669454330438228902076605e-4933, + 1e-4900 + ); + assert!(nan.recip().is_nan()); + assert_eq!(inf.recip(), 0.0); + assert_eq!(neg_inf.recip(), 0.0); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_powi() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_eq!(1.0f128.powi(1), 1.0); + assert_approx_eq!((-3.1f128).powi(2), 9.6100000000000005506706202140776519387, TOL); + assert_approx_eq!(5.9f128.powi(-2), 0.028727377190462507313100483690639638451, TOL); + assert_eq!(8.3f128.powi(0), 1.0); + assert!(nan.powi(2).is_nan()); + assert_eq!(inf.powi(3), inf); + assert_eq!(neg_inf.powi(2), inf); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] +fn test_sqrt_domain() { + assert!(f128::NAN.sqrt().is_nan()); + assert!(f128::NEG_INFINITY.sqrt().is_nan()); + assert!((-1.0f128).sqrt().is_nan()); + assert_eq!((-0.0f128).sqrt(), -0.0); + assert_eq!(0.0f128.sqrt(), 0.0); + assert_eq!(1.0f128.sqrt(), 1.0); + assert_eq!(f128::INFINITY.sqrt(), f128::INFINITY); +} + +#[test] +fn test_to_degrees() { + let pi: f128 = consts::PI; + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_eq!(0.0f128.to_degrees(), 0.0); + assert_approx_eq!((-5.8f128).to_degrees(), -332.31552117587745090765431723855668471, TOL); + assert_approx_eq!(pi.to_degrees(), 180.0, TOL); + assert!(nan.to_degrees().is_nan()); + assert_eq!(inf.to_degrees(), inf); + assert_eq!(neg_inf.to_degrees(), neg_inf); + assert_eq!(1_f128.to_degrees(), 57.2957795130823208767981548141051703); +} + +#[test] +fn test_to_radians() { + let pi: f128 = consts::PI; + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_eq!(0.0f128.to_radians(), 0.0); + assert_approx_eq!(154.6f128.to_radians(), 2.6982790235832334267135442069489767804, TOL); + assert_approx_eq!((-332.31f128).to_radians(), -5.7999036373023566567593094812182763013, TOL); + // check approx rather than exact because round trip for pi doesn't fall on an exactly + // representable value (unlike `f32` and `f64`). + assert_approx_eq!(180.0f128.to_radians(), pi, TOL_PRECISE); + assert!(nan.to_radians().is_nan()); + assert_eq!(inf.to_radians(), inf); + assert_eq!(neg_inf.to_radians(), neg_inf); +} + +#[test] +fn test_float_bits_conv() { + assert_eq!((1f128).to_bits(), 0x3fff0000000000000000000000000000); + assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000); + assert_eq!((1337f128).to_bits(), 0x40094e40000000000000000000000000); + assert_eq!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000); + assert_approx_eq!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0, TOL_PRECISE); + assert_approx_eq!(f128::from_bits(0x40029000000000000000000000000000), 12.5, TOL_PRECISE); + assert_approx_eq!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0, TOL_PRECISE); + assert_approx_eq!(f128::from_bits(0xc002c800000000000000000000000000), -14.25, TOL_PRECISE); + + // Check that NaNs roundtrip their bits regardless of signaling-ness + // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits + let masked_nan1 = f128::NAN.to_bits() ^ NAN_MASK1; + let masked_nan2 = f128::NAN.to_bits() ^ NAN_MASK2; + assert!(f128::from_bits(masked_nan1).is_nan()); + assert!(f128::from_bits(masked_nan2).is_nan()); + + assert_eq!(f128::from_bits(masked_nan1).to_bits(), masked_nan1); + assert_eq!(f128::from_bits(masked_nan2).to_bits(), masked_nan2); +} + +#[test] +#[should_panic] +fn test_clamp_min_greater_than_max() { + let _ = 1.0f128.clamp(3.0, 1.0); +} + +#[test] +#[should_panic] +fn test_clamp_min_is_nan() { + let _ = 1.0f128.clamp(f128::NAN, 1.0); +} + +#[test] +#[should_panic] +fn test_clamp_max_is_nan() { + let _ = 1.0f128.clamp(3.0, f128::NAN); +} + +#[test] +fn test_total_cmp() { + use core::cmp::Ordering; + + fn quiet_bit_mask() -> u128 { + 1 << (f128::MANTISSA_DIGITS - 2) + } + + // FIXME(f16_f128): test subnormals when powf is available + // fn min_subnorm() -> f128 { + // f128::MIN_POSITIVE / f128::powf(2.0, f128::MANTISSA_DIGITS as f128 - 1.0) + // } + + // fn max_subnorm() -> f128 { + // f128::MIN_POSITIVE - min_subnorm() + // } + + fn q_nan() -> f128 { + f128::from_bits(f128::NAN.to_bits() | quiet_bit_mask()) + } + + fn s_nan() -> f128 { + f128::from_bits((f128::NAN.to_bits() & !quiet_bit_mask()) + 42) + } + + assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan())); + assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan())); + assert_eq!(Ordering::Equal, (-f128::INFINITY).total_cmp(&-f128::INFINITY)); + assert_eq!(Ordering::Equal, (-f128::MAX).total_cmp(&-f128::MAX)); + assert_eq!(Ordering::Equal, (-2.5_f128).total_cmp(&-2.5)); + assert_eq!(Ordering::Equal, (-1.0_f128).total_cmp(&-1.0)); + assert_eq!(Ordering::Equal, (-1.5_f128).total_cmp(&-1.5)); + assert_eq!(Ordering::Equal, (-0.5_f128).total_cmp(&-0.5)); + assert_eq!(Ordering::Equal, (-f128::MIN_POSITIVE).total_cmp(&-f128::MIN_POSITIVE)); + // assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm())); + // assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Equal, (-0.0_f128).total_cmp(&-0.0)); + assert_eq!(Ordering::Equal, 0.0_f128.total_cmp(&0.0)); + // assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm())); + // assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm())); + assert_eq!(Ordering::Equal, f128::MIN_POSITIVE.total_cmp(&f128::MIN_POSITIVE)); + assert_eq!(Ordering::Equal, 0.5_f128.total_cmp(&0.5)); + assert_eq!(Ordering::Equal, 1.0_f128.total_cmp(&1.0)); + assert_eq!(Ordering::Equal, 1.5_f128.total_cmp(&1.5)); + assert_eq!(Ordering::Equal, 2.5_f128.total_cmp(&2.5)); + assert_eq!(Ordering::Equal, f128::MAX.total_cmp(&f128::MAX)); + assert_eq!(Ordering::Equal, f128::INFINITY.total_cmp(&f128::INFINITY)); + assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan())); + assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan())); + + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f128::INFINITY)); + assert_eq!(Ordering::Less, (-f128::INFINITY).total_cmp(&-f128::MAX)); + assert_eq!(Ordering::Less, (-f128::MAX).total_cmp(&-2.5)); + assert_eq!(Ordering::Less, (-2.5_f128).total_cmp(&-1.5)); + assert_eq!(Ordering::Less, (-1.5_f128).total_cmp(&-1.0)); + assert_eq!(Ordering::Less, (-1.0_f128).total_cmp(&-0.5)); + assert_eq!(Ordering::Less, (-0.5_f128).total_cmp(&-f128::MIN_POSITIVE)); + // assert_eq!(Ordering::Less, (-f128::MIN_POSITIVE).total_cmp(&-max_subnorm())); + // assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm())); + // assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0)); + assert_eq!(Ordering::Less, (-0.0_f128).total_cmp(&0.0)); + // assert_eq!(Ordering::Less, 0.0_f128.total_cmp(&min_subnorm())); + // assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm())); + // assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f128::MIN_POSITIVE)); + assert_eq!(Ordering::Less, f128::MIN_POSITIVE.total_cmp(&0.5)); + assert_eq!(Ordering::Less, 0.5_f128.total_cmp(&1.0)); + assert_eq!(Ordering::Less, 1.0_f128.total_cmp(&1.5)); + assert_eq!(Ordering::Less, 1.5_f128.total_cmp(&2.5)); + assert_eq!(Ordering::Less, 2.5_f128.total_cmp(&f128::MAX)); + assert_eq!(Ordering::Less, f128::MAX.total_cmp(&f128::INFINITY)); + assert_eq!(Ordering::Less, f128::INFINITY.total_cmp(&s_nan())); + assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan())); + + assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan())); + assert_eq!(Ordering::Greater, (-f128::INFINITY).total_cmp(&-s_nan())); + assert_eq!(Ordering::Greater, (-f128::MAX).total_cmp(&-f128::INFINITY)); + assert_eq!(Ordering::Greater, (-2.5_f128).total_cmp(&-f128::MAX)); + assert_eq!(Ordering::Greater, (-1.5_f128).total_cmp(&-2.5)); + assert_eq!(Ordering::Greater, (-1.0_f128).total_cmp(&-1.5)); + assert_eq!(Ordering::Greater, (-0.5_f128).total_cmp(&-1.0)); + assert_eq!(Ordering::Greater, (-f128::MIN_POSITIVE).total_cmp(&-0.5)); + // assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f128::MIN_POSITIVE)); + // assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm())); + // assert_eq!(Ordering::Greater, (-0.0_f128).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Greater, 0.0_f128.total_cmp(&-0.0)); + // assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0)); + // assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm())); + // assert_eq!(Ordering::Greater, f128::MIN_POSITIVE.total_cmp(&max_subnorm())); + assert_eq!(Ordering::Greater, 0.5_f128.total_cmp(&f128::MIN_POSITIVE)); + assert_eq!(Ordering::Greater, 1.0_f128.total_cmp(&0.5)); + assert_eq!(Ordering::Greater, 1.5_f128.total_cmp(&1.0)); + assert_eq!(Ordering::Greater, 2.5_f128.total_cmp(&1.5)); + assert_eq!(Ordering::Greater, f128::MAX.total_cmp(&2.5)); + assert_eq!(Ordering::Greater, f128::INFINITY.total_cmp(&f128::MAX)); + assert_eq!(Ordering::Greater, s_nan().total_cmp(&f128::INFINITY)); + assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan())); + + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f128::INFINITY)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f128::MAX)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f128::MIN_POSITIVE)); + // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm())); + // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0)); + // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm())); + // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f128::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f128::MAX)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f128::INFINITY)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan())); + + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f128::INFINITY)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f128::MAX)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f128::MIN_POSITIVE)); + // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm())); + // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0)); + // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm())); + // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f128::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f128::MAX)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f128::INFINITY)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan())); +} + +#[test] +fn test_algebraic() { + let a: f128 = 123.0; + let b: f128 = 456.0; + + // Check that individual operations match their primitive counterparts. + // + // This is a check of current implementations and does NOT imply any form of + // guarantee about future behavior. The compiler reserves the right to make + // these operations inexact matches in the future. + let eps = if cfg!(miri) { 1e-6 } else { 0.0 }; + + assert_approx_eq!(a.algebraic_add(b), a + b, eps); + assert_approx_eq!(a.algebraic_sub(b), a - b, eps); + assert_approx_eq!(a.algebraic_mul(b), a * b, eps); + assert_approx_eq!(a.algebraic_div(b), a / b, eps); + assert_approx_eq!(a.algebraic_rem(b), a % b, eps); +} + +#[test] +fn test_from() { + assert_eq!(f128::from(false), 0.0); + assert_eq!(f128::from(true), 1.0); + assert_eq!(f128::from(u8::MIN), 0.0); + assert_eq!(f128::from(42_u8), 42.0); + assert_eq!(f128::from(u8::MAX), 255.0); + assert_eq!(f128::from(i8::MIN), -128.0); + assert_eq!(f128::from(42_i8), 42.0); + assert_eq!(f128::from(i8::MAX), 127.0); + assert_eq!(f128::from(u16::MIN), 0.0); + assert_eq!(f128::from(42_u16), 42.0); + assert_eq!(f128::from(u16::MAX), 65535.0); + assert_eq!(f128::from(i16::MIN), -32768.0); + assert_eq!(f128::from(42_i16), 42.0); + assert_eq!(f128::from(i16::MAX), 32767.0); + assert_eq!(f128::from(u32::MIN), 0.0); + assert_eq!(f128::from(42_u32), 42.0); + assert_eq!(f128::from(u32::MAX), 4294967295.0); + assert_eq!(f128::from(i32::MIN), -2147483648.0); + assert_eq!(f128::from(42_i32), 42.0); + assert_eq!(f128::from(i32::MAX), 2147483647.0); + // FIXME(f16_f128): Uncomment these tests once the From<{u64,i64}> impls are added. + // assert_eq!(f128::from(u64::MIN), 0.0); + // assert_eq!(f128::from(42_u64), 42.0); + // assert_eq!(f128::from(u64::MAX), 18446744073709551615.0); + // assert_eq!(f128::from(i64::MIN), -9223372036854775808.0); + // assert_eq!(f128::from(42_i64), 42.0); + // assert_eq!(f128::from(i64::MAX), 9223372036854775807.0); +} diff --git a/library/coretests/tests/floats/f16.rs b/library/coretests/tests/floats/f16.rs new file mode 100644 index 00000000000..db98181226c --- /dev/null +++ b/library/coretests/tests/floats/f16.rs @@ -0,0 +1,753 @@ +// FIXME(f16_f128): only tested on platforms that have symbols and aren't buggy +#![cfg(target_has_reliable_f16)] + +use std::f16::consts; +use std::num::FpCategory as Fp; + +/// Tolerance for results on the order of 10.0e-2 +#[allow(unused)] +const TOL_N2: f16 = 0.0001; + +/// Tolerance for results on the order of 10.0e+0 +#[allow(unused)] +const TOL_0: f16 = 0.01; + +/// Tolerance for results on the order of 10.0e+2 +#[allow(unused)] +const TOL_P2: f16 = 0.5; + +/// Tolerance for results on the order of 10.0e+4 +#[allow(unused)] +const TOL_P4: f16 = 10.0; + +/// Smallest number +const TINY_BITS: u16 = 0x1; + +/// Next smallest number +const TINY_UP_BITS: u16 = 0x2; + +/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 +const MAX_DOWN_BITS: u16 = 0x7bfe; + +/// Zeroed exponent, full significant +const LARGEST_SUBNORMAL_BITS: u16 = 0x03ff; + +/// Exponent = 0b1, zeroed significand +const SMALLEST_NORMAL_BITS: u16 = 0x0400; + +/// First pattern over the mantissa +const NAN_MASK1: u16 = 0x02aa; + +/// Second pattern over the mantissa +const NAN_MASK2: u16 = 0x0155; + +/// Compare by representation +#[allow(unused_macros)] +macro_rules! assert_f16_biteq { + ($a:expr, $b:expr) => { + let (l, r): (&f16, &f16) = (&$a, &$b); + let lb = l.to_bits(); + let rb = r.to_bits(); + assert_eq!(lb, rb, "float {l:?} ({lb:#04x}) is not bitequal to {r:?} ({rb:#04x})"); + }; +} + +#[test] +fn test_num_f16() { + super::test_num(10f16, 2f16); +} + +// FIXME(f16_f128,miri): many of these have to be disabled since miri does not yet support +// the intrinsics. + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_min_nan() { + assert_eq!(f16::NAN.min(2.0), 2.0); + assert_eq!(2.0f16.min(f16::NAN), 2.0); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_max_nan() { + assert_eq!(f16::NAN.max(2.0), 2.0); + assert_eq!(2.0f16.max(f16::NAN), 2.0); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_minimum() { + assert!(f16::NAN.minimum(2.0).is_nan()); + assert!(2.0f16.minimum(f16::NAN).is_nan()); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_maximum() { + assert!(f16::NAN.maximum(2.0).is_nan()); + assert!(2.0f16.maximum(f16::NAN).is_nan()); +} + +#[test] +fn test_nan() { + let nan: f16 = f16::NAN; + assert!(nan.is_nan()); + assert!(!nan.is_infinite()); + assert!(!nan.is_finite()); + assert!(nan.is_sign_positive()); + assert!(!nan.is_sign_negative()); + assert!(!nan.is_normal()); + assert_eq!(Fp::Nan, nan.classify()); + // Ensure the quiet bit is set. + assert!(nan.to_bits() & (1 << (f16::MANTISSA_DIGITS - 2)) != 0); +} + +#[test] +fn test_infinity() { + let inf: f16 = f16::INFINITY; + assert!(inf.is_infinite()); + assert!(!inf.is_finite()); + assert!(inf.is_sign_positive()); + assert!(!inf.is_sign_negative()); + assert!(!inf.is_nan()); + assert!(!inf.is_normal()); + assert_eq!(Fp::Infinite, inf.classify()); +} + +#[test] +fn test_neg_infinity() { + let neg_inf: f16 = f16::NEG_INFINITY; + assert!(neg_inf.is_infinite()); + assert!(!neg_inf.is_finite()); + assert!(!neg_inf.is_sign_positive()); + assert!(neg_inf.is_sign_negative()); + assert!(!neg_inf.is_nan()); + assert!(!neg_inf.is_normal()); + assert_eq!(Fp::Infinite, neg_inf.classify()); +} + +#[test] +fn test_zero() { + let zero: f16 = 0.0f16; + assert_eq!(0.0, zero); + assert!(!zero.is_infinite()); + assert!(zero.is_finite()); + assert!(zero.is_sign_positive()); + assert!(!zero.is_sign_negative()); + assert!(!zero.is_nan()); + assert!(!zero.is_normal()); + assert_eq!(Fp::Zero, zero.classify()); +} + +#[test] +fn test_neg_zero() { + let neg_zero: f16 = -0.0; + assert_eq!(0.0, neg_zero); + assert!(!neg_zero.is_infinite()); + assert!(neg_zero.is_finite()); + assert!(!neg_zero.is_sign_positive()); + assert!(neg_zero.is_sign_negative()); + assert!(!neg_zero.is_nan()); + assert!(!neg_zero.is_normal()); + assert_eq!(Fp::Zero, neg_zero.classify()); +} + +#[test] +fn test_one() { + let one: f16 = 1.0f16; + assert_eq!(1.0, one); + assert!(!one.is_infinite()); + assert!(one.is_finite()); + assert!(one.is_sign_positive()); + assert!(!one.is_sign_negative()); + assert!(!one.is_nan()); + assert!(one.is_normal()); + assert_eq!(Fp::Normal, one.classify()); +} + +#[test] +fn test_is_nan() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert!(nan.is_nan()); + assert!(!0.0f16.is_nan()); + assert!(!5.3f16.is_nan()); + assert!(!(-10.732f16).is_nan()); + assert!(!inf.is_nan()); + assert!(!neg_inf.is_nan()); +} + +#[test] +fn test_is_infinite() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert!(!nan.is_infinite()); + assert!(inf.is_infinite()); + assert!(neg_inf.is_infinite()); + assert!(!0.0f16.is_infinite()); + assert!(!42.8f16.is_infinite()); + assert!(!(-109.2f16).is_infinite()); +} + +#[test] +fn test_is_finite() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert!(!nan.is_finite()); + assert!(!inf.is_finite()); + assert!(!neg_inf.is_finite()); + assert!(0.0f16.is_finite()); + assert!(42.8f16.is_finite()); + assert!((-109.2f16).is_finite()); +} + +#[test] +fn test_is_normal() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + let zero: f16 = 0.0f16; + let neg_zero: f16 = -0.0; + assert!(!nan.is_normal()); + assert!(!inf.is_normal()); + assert!(!neg_inf.is_normal()); + assert!(!zero.is_normal()); + assert!(!neg_zero.is_normal()); + assert!(1f16.is_normal()); + assert!(1e-4f16.is_normal()); + assert!(!1e-5f16.is_normal()); +} + +#[test] +fn test_classify() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + let zero: f16 = 0.0f16; + let neg_zero: f16 = -0.0; + assert_eq!(nan.classify(), Fp::Nan); + assert_eq!(inf.classify(), Fp::Infinite); + assert_eq!(neg_inf.classify(), Fp::Infinite); + assert_eq!(zero.classify(), Fp::Zero); + assert_eq!(neg_zero.classify(), Fp::Zero); + assert_eq!(1f16.classify(), Fp::Normal); + assert_eq!(1e-4f16.classify(), Fp::Normal); + assert_eq!(1e-5f16.classify(), Fp::Subnormal); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_floor() { + assert_approx_eq!(1.0f16.floor(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.floor(), 1.0f16, TOL_0); + assert_approx_eq!(1.5f16.floor(), 1.0f16, TOL_0); + assert_approx_eq!(1.7f16.floor(), 1.0f16, TOL_0); + assert_approx_eq!(0.0f16.floor(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).floor(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).floor(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).floor(), -2.0f16, TOL_0); + assert_approx_eq!((-1.5f16).floor(), -2.0f16, TOL_0); + assert_approx_eq!((-1.7f16).floor(), -2.0f16, TOL_0); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_ceil() { + assert_approx_eq!(1.0f16.ceil(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.ceil(), 2.0f16, TOL_0); + assert_approx_eq!(1.5f16.ceil(), 2.0f16, TOL_0); + assert_approx_eq!(1.7f16.ceil(), 2.0f16, TOL_0); + assert_approx_eq!(0.0f16.ceil(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).ceil(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).ceil(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).ceil(), -1.0f16, TOL_0); + assert_approx_eq!((-1.5f16).ceil(), -1.0f16, TOL_0); + assert_approx_eq!((-1.7f16).ceil(), -1.0f16, TOL_0); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_round() { + assert_approx_eq!(2.5f16.round(), 3.0f16, TOL_0); + assert_approx_eq!(1.0f16.round(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.round(), 1.0f16, TOL_0); + assert_approx_eq!(1.5f16.round(), 2.0f16, TOL_0); + assert_approx_eq!(1.7f16.round(), 2.0f16, TOL_0); + assert_approx_eq!(0.0f16.round(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).round(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).round(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).round(), -1.0f16, TOL_0); + assert_approx_eq!((-1.5f16).round(), -2.0f16, TOL_0); + assert_approx_eq!((-1.7f16).round(), -2.0f16, TOL_0); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_round_ties_even() { + assert_approx_eq!(2.5f16.round_ties_even(), 2.0f16, TOL_0); + assert_approx_eq!(1.0f16.round_ties_even(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.round_ties_even(), 1.0f16, TOL_0); + assert_approx_eq!(1.5f16.round_ties_even(), 2.0f16, TOL_0); + assert_approx_eq!(1.7f16.round_ties_even(), 2.0f16, TOL_0); + assert_approx_eq!(0.0f16.round_ties_even(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).round_ties_even(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).round_ties_even(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).round_ties_even(), -1.0f16, TOL_0); + assert_approx_eq!((-1.5f16).round_ties_even(), -2.0f16, TOL_0); + assert_approx_eq!((-1.7f16).round_ties_even(), -2.0f16, TOL_0); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_trunc() { + assert_approx_eq!(1.0f16.trunc(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.trunc(), 1.0f16, TOL_0); + assert_approx_eq!(1.5f16.trunc(), 1.0f16, TOL_0); + assert_approx_eq!(1.7f16.trunc(), 1.0f16, TOL_0); + assert_approx_eq!(0.0f16.trunc(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).trunc(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).trunc(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).trunc(), -1.0f16, TOL_0); + assert_approx_eq!((-1.5f16).trunc(), -1.0f16, TOL_0); + assert_approx_eq!((-1.7f16).trunc(), -1.0f16, TOL_0); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_fract() { + assert_approx_eq!(1.0f16.fract(), 0.0f16, TOL_0); + assert_approx_eq!(1.3f16.fract(), 0.3f16, TOL_0); + assert_approx_eq!(1.5f16.fract(), 0.5f16, TOL_0); + assert_approx_eq!(1.7f16.fract(), 0.7f16, TOL_0); + assert_approx_eq!(0.0f16.fract(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).fract(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).fract(), -0.0f16, TOL_0); + assert_approx_eq!((-1.3f16).fract(), -0.3f16, TOL_0); + assert_approx_eq!((-1.5f16).fract(), -0.5f16, TOL_0); + assert_approx_eq!((-1.7f16).fract(), -0.7f16, TOL_0); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_abs() { + assert_eq!(f16::INFINITY.abs(), f16::INFINITY); + assert_eq!(1f16.abs(), 1f16); + assert_eq!(0f16.abs(), 0f16); + assert_eq!((-0f16).abs(), 0f16); + assert_eq!((-1f16).abs(), 1f16); + assert_eq!(f16::NEG_INFINITY.abs(), f16::INFINITY); + assert_eq!((1f16 / f16::NEG_INFINITY).abs(), 0f16); + assert!(f16::NAN.abs().is_nan()); +} + +#[test] +fn test_is_sign_positive() { + assert!(f16::INFINITY.is_sign_positive()); + assert!(1f16.is_sign_positive()); + assert!(0f16.is_sign_positive()); + assert!(!(-0f16).is_sign_positive()); + assert!(!(-1f16).is_sign_positive()); + assert!(!f16::NEG_INFINITY.is_sign_positive()); + assert!(!(1f16 / f16::NEG_INFINITY).is_sign_positive()); + assert!(f16::NAN.is_sign_positive()); + assert!(!(-f16::NAN).is_sign_positive()); +} + +#[test] +fn test_is_sign_negative() { + assert!(!f16::INFINITY.is_sign_negative()); + assert!(!1f16.is_sign_negative()); + assert!(!0f16.is_sign_negative()); + assert!((-0f16).is_sign_negative()); + assert!((-1f16).is_sign_negative()); + assert!(f16::NEG_INFINITY.is_sign_negative()); + assert!((1f16 / f16::NEG_INFINITY).is_sign_negative()); + assert!(!f16::NAN.is_sign_negative()); + assert!((-f16::NAN).is_sign_negative()); +} + +#[test] +fn test_next_up() { + let tiny = f16::from_bits(TINY_BITS); + let tiny_up = f16::from_bits(TINY_UP_BITS); + let max_down = f16::from_bits(MAX_DOWN_BITS); + let largest_subnormal = f16::from_bits(LARGEST_SUBNORMAL_BITS); + let smallest_normal = f16::from_bits(SMALLEST_NORMAL_BITS); + assert_f16_biteq!(f16::NEG_INFINITY.next_up(), f16::MIN); + assert_f16_biteq!(f16::MIN.next_up(), -max_down); + assert_f16_biteq!((-1.0 - f16::EPSILON).next_up(), -1.0); + assert_f16_biteq!((-smallest_normal).next_up(), -largest_subnormal); + assert_f16_biteq!((-tiny_up).next_up(), -tiny); + assert_f16_biteq!((-tiny).next_up(), -0.0f16); + assert_f16_biteq!((-0.0f16).next_up(), tiny); + assert_f16_biteq!(0.0f16.next_up(), tiny); + assert_f16_biteq!(tiny.next_up(), tiny_up); + assert_f16_biteq!(largest_subnormal.next_up(), smallest_normal); + assert_f16_biteq!(1.0f16.next_up(), 1.0 + f16::EPSILON); + assert_f16_biteq!(f16::MAX.next_up(), f16::INFINITY); + assert_f16_biteq!(f16::INFINITY.next_up(), f16::INFINITY); + + // Check that NaNs roundtrip. + let nan0 = f16::NAN; + let nan1 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK1); + let nan2 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK2); + assert_f16_biteq!(nan0.next_up(), nan0); + assert_f16_biteq!(nan1.next_up(), nan1); + assert_f16_biteq!(nan2.next_up(), nan2); +} + +#[test] +fn test_next_down() { + let tiny = f16::from_bits(TINY_BITS); + let tiny_up = f16::from_bits(TINY_UP_BITS); + let max_down = f16::from_bits(MAX_DOWN_BITS); + let largest_subnormal = f16::from_bits(LARGEST_SUBNORMAL_BITS); + let smallest_normal = f16::from_bits(SMALLEST_NORMAL_BITS); + assert_f16_biteq!(f16::NEG_INFINITY.next_down(), f16::NEG_INFINITY); + assert_f16_biteq!(f16::MIN.next_down(), f16::NEG_INFINITY); + assert_f16_biteq!((-max_down).next_down(), f16::MIN); + assert_f16_biteq!((-1.0f16).next_down(), -1.0 - f16::EPSILON); + assert_f16_biteq!((-largest_subnormal).next_down(), -smallest_normal); + assert_f16_biteq!((-tiny).next_down(), -tiny_up); + assert_f16_biteq!((-0.0f16).next_down(), -tiny); + assert_f16_biteq!((0.0f16).next_down(), -tiny); + assert_f16_biteq!(tiny.next_down(), 0.0f16); + assert_f16_biteq!(tiny_up.next_down(), tiny); + assert_f16_biteq!(smallest_normal.next_down(), largest_subnormal); + assert_f16_biteq!((1.0 + f16::EPSILON).next_down(), 1.0f16); + assert_f16_biteq!(f16::MAX.next_down(), max_down); + assert_f16_biteq!(f16::INFINITY.next_down(), f16::MAX); + + // Check that NaNs roundtrip. + let nan0 = f16::NAN; + let nan1 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK1); + let nan2 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK2); + assert_f16_biteq!(nan0.next_down(), nan0); + assert_f16_biteq!(nan1.next_down(), nan1); + assert_f16_biteq!(nan2.next_down(), nan2); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_mul_add() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_approx_eq!(12.3f16.mul_add(4.5, 6.7), 62.05, TOL_P2); + assert_approx_eq!((-12.3f16).mul_add(-4.5, -6.7), 48.65, TOL_P2); + assert_approx_eq!(0.0f16.mul_add(8.9, 1.2), 1.2, TOL_0); + assert_approx_eq!(3.4f16.mul_add(-0.0, 5.6), 5.6, TOL_0); + assert!(nan.mul_add(7.8, 9.0).is_nan()); + assert_eq!(inf.mul_add(7.8, 9.0), inf); + assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf); + assert_eq!(8.9f16.mul_add(inf, 3.2), inf); + assert_eq!((-3.2f16).mul_add(2.4, neg_inf), neg_inf); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_recip() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_eq!(1.0f16.recip(), 1.0); + assert_eq!(2.0f16.recip(), 0.5); + assert_eq!((-0.4f16).recip(), -2.5); + assert_eq!(0.0f16.recip(), inf); + assert_approx_eq!(f16::MAX.recip(), 1.526624e-5f16, 1e-4); + assert!(nan.recip().is_nan()); + assert_eq!(inf.recip(), 0.0); + assert_eq!(neg_inf.recip(), 0.0); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_powi() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_eq!(1.0f16.powi(1), 1.0); + assert_approx_eq!((-3.1f16).powi(2), 9.61, TOL_0); + assert_approx_eq!(5.9f16.powi(-2), 0.028727, TOL_N2); + assert_eq!(8.3f16.powi(0), 1.0); + assert!(nan.powi(2).is_nan()); + assert_eq!(inf.powi(3), inf); + assert_eq!(neg_inf.powi(2), inf); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_sqrt_domain() { + assert!(f16::NAN.sqrt().is_nan()); + assert!(f16::NEG_INFINITY.sqrt().is_nan()); + assert!((-1.0f16).sqrt().is_nan()); + assert_eq!((-0.0f16).sqrt(), -0.0); + assert_eq!(0.0f16.sqrt(), 0.0); + assert_eq!(1.0f16.sqrt(), 1.0); + assert_eq!(f16::INFINITY.sqrt(), f16::INFINITY); +} + +#[test] +fn test_to_degrees() { + let pi: f16 = consts::PI; + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_eq!(0.0f16.to_degrees(), 0.0); + assert_approx_eq!((-5.8f16).to_degrees(), -332.315521, TOL_P2); + assert_approx_eq!(pi.to_degrees(), 180.0, TOL_P2); + assert!(nan.to_degrees().is_nan()); + assert_eq!(inf.to_degrees(), inf); + assert_eq!(neg_inf.to_degrees(), neg_inf); + assert_eq!(1_f16.to_degrees(), 57.2957795130823208767981548141051703); +} + +#[test] +fn test_to_radians() { + let pi: f16 = consts::PI; + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_eq!(0.0f16.to_radians(), 0.0); + assert_approx_eq!(154.6f16.to_radians(), 2.698279, TOL_0); + assert_approx_eq!((-332.31f16).to_radians(), -5.799903, TOL_0); + assert_approx_eq!(180.0f16.to_radians(), pi, TOL_0); + assert!(nan.to_radians().is_nan()); + assert_eq!(inf.to_radians(), inf); + assert_eq!(neg_inf.to_radians(), neg_inf); +} + +#[test] +fn test_float_bits_conv() { + assert_eq!((1f16).to_bits(), 0x3c00); + assert_eq!((12.5f16).to_bits(), 0x4a40); + assert_eq!((1337f16).to_bits(), 0x6539); + assert_eq!((-14.25f16).to_bits(), 0xcb20); + assert_approx_eq!(f16::from_bits(0x3c00), 1.0, TOL_0); + assert_approx_eq!(f16::from_bits(0x4a40), 12.5, TOL_0); + assert_approx_eq!(f16::from_bits(0x6539), 1337.0, TOL_P4); + assert_approx_eq!(f16::from_bits(0xcb20), -14.25, TOL_0); + + // Check that NaNs roundtrip their bits regardless of signaling-ness + let masked_nan1 = f16::NAN.to_bits() ^ NAN_MASK1; + let masked_nan2 = f16::NAN.to_bits() ^ NAN_MASK2; + assert!(f16::from_bits(masked_nan1).is_nan()); + assert!(f16::from_bits(masked_nan2).is_nan()); + + assert_eq!(f16::from_bits(masked_nan1).to_bits(), masked_nan1); + assert_eq!(f16::from_bits(masked_nan2).to_bits(), masked_nan2); +} + +#[test] +#[should_panic] +fn test_clamp_min_greater_than_max() { + let _ = 1.0f16.clamp(3.0, 1.0); +} + +#[test] +#[should_panic] +fn test_clamp_min_is_nan() { + let _ = 1.0f16.clamp(f16::NAN, 1.0); +} + +#[test] +#[should_panic] +fn test_clamp_max_is_nan() { + let _ = 1.0f16.clamp(3.0, f16::NAN); +} + +#[test] +#[cfg(not(miri))] +#[cfg(target_has_reliable_f16_math)] +fn test_total_cmp() { + use core::cmp::Ordering; + + fn quiet_bit_mask() -> u16 { + 1 << (f16::MANTISSA_DIGITS - 2) + } + + fn min_subnorm() -> f16 { + f16::MIN_POSITIVE / f16::powf(2.0, f16::MANTISSA_DIGITS as f16 - 1.0) + } + + fn max_subnorm() -> f16 { + f16::MIN_POSITIVE - min_subnorm() + } + + fn q_nan() -> f16 { + f16::from_bits(f16::NAN.to_bits() | quiet_bit_mask()) + } + + fn s_nan() -> f16 { + f16::from_bits((f16::NAN.to_bits() & !quiet_bit_mask()) + 42) + } + + assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan())); + assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan())); + assert_eq!(Ordering::Equal, (-f16::INFINITY).total_cmp(&-f16::INFINITY)); + assert_eq!(Ordering::Equal, (-f16::MAX).total_cmp(&-f16::MAX)); + assert_eq!(Ordering::Equal, (-2.5_f16).total_cmp(&-2.5)); + assert_eq!(Ordering::Equal, (-1.0_f16).total_cmp(&-1.0)); + assert_eq!(Ordering::Equal, (-1.5_f16).total_cmp(&-1.5)); + assert_eq!(Ordering::Equal, (-0.5_f16).total_cmp(&-0.5)); + assert_eq!(Ordering::Equal, (-f16::MIN_POSITIVE).total_cmp(&-f16::MIN_POSITIVE)); + assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Equal, (-0.0_f16).total_cmp(&-0.0)); + assert_eq!(Ordering::Equal, 0.0_f16.total_cmp(&0.0)); + assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm())); + assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm())); + assert_eq!(Ordering::Equal, f16::MIN_POSITIVE.total_cmp(&f16::MIN_POSITIVE)); + assert_eq!(Ordering::Equal, 0.5_f16.total_cmp(&0.5)); + assert_eq!(Ordering::Equal, 1.0_f16.total_cmp(&1.0)); + assert_eq!(Ordering::Equal, 1.5_f16.total_cmp(&1.5)); + assert_eq!(Ordering::Equal, 2.5_f16.total_cmp(&2.5)); + assert_eq!(Ordering::Equal, f16::MAX.total_cmp(&f16::MAX)); + assert_eq!(Ordering::Equal, f16::INFINITY.total_cmp(&f16::INFINITY)); + assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan())); + assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan())); + + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::INFINITY)); + assert_eq!(Ordering::Less, (-f16::INFINITY).total_cmp(&-f16::MAX)); + assert_eq!(Ordering::Less, (-f16::MAX).total_cmp(&-2.5)); + assert_eq!(Ordering::Less, (-2.5_f16).total_cmp(&-1.5)); + assert_eq!(Ordering::Less, (-1.5_f16).total_cmp(&-1.0)); + assert_eq!(Ordering::Less, (-1.0_f16).total_cmp(&-0.5)); + assert_eq!(Ordering::Less, (-0.5_f16).total_cmp(&-f16::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-f16::MIN_POSITIVE).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0)); + assert_eq!(Ordering::Less, (-0.0_f16).total_cmp(&0.0)); + assert_eq!(Ordering::Less, 0.0_f16.total_cmp(&min_subnorm())); + assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm())); + assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f16::MIN_POSITIVE)); + assert_eq!(Ordering::Less, f16::MIN_POSITIVE.total_cmp(&0.5)); + assert_eq!(Ordering::Less, 0.5_f16.total_cmp(&1.0)); + assert_eq!(Ordering::Less, 1.0_f16.total_cmp(&1.5)); + assert_eq!(Ordering::Less, 1.5_f16.total_cmp(&2.5)); + assert_eq!(Ordering::Less, 2.5_f16.total_cmp(&f16::MAX)); + assert_eq!(Ordering::Less, f16::MAX.total_cmp(&f16::INFINITY)); + assert_eq!(Ordering::Less, f16::INFINITY.total_cmp(&s_nan())); + assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan())); + + assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan())); + assert_eq!(Ordering::Greater, (-f16::INFINITY).total_cmp(&-s_nan())); + assert_eq!(Ordering::Greater, (-f16::MAX).total_cmp(&-f16::INFINITY)); + assert_eq!(Ordering::Greater, (-2.5_f16).total_cmp(&-f16::MAX)); + assert_eq!(Ordering::Greater, (-1.5_f16).total_cmp(&-2.5)); + assert_eq!(Ordering::Greater, (-1.0_f16).total_cmp(&-1.5)); + assert_eq!(Ordering::Greater, (-0.5_f16).total_cmp(&-1.0)); + assert_eq!(Ordering::Greater, (-f16::MIN_POSITIVE).total_cmp(&-0.5)); + assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f16::MIN_POSITIVE)); + assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Greater, (-0.0_f16).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Greater, 0.0_f16.total_cmp(&-0.0)); + assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0)); + assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm())); + assert_eq!(Ordering::Greater, f16::MIN_POSITIVE.total_cmp(&max_subnorm())); + assert_eq!(Ordering::Greater, 0.5_f16.total_cmp(&f16::MIN_POSITIVE)); + assert_eq!(Ordering::Greater, 1.0_f16.total_cmp(&0.5)); + assert_eq!(Ordering::Greater, 1.5_f16.total_cmp(&1.0)); + assert_eq!(Ordering::Greater, 2.5_f16.total_cmp(&1.5)); + assert_eq!(Ordering::Greater, f16::MAX.total_cmp(&2.5)); + assert_eq!(Ordering::Greater, f16::INFINITY.total_cmp(&f16::MAX)); + assert_eq!(Ordering::Greater, s_nan().total_cmp(&f16::INFINITY)); + assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan())); + + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::INFINITY)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::MAX)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::MAX)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::INFINITY)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan())); + + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::INFINITY)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::MAX)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::MAX)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::INFINITY)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan())); +} + +#[test] +fn test_algebraic() { + let a: f16 = 123.0; + let b: f16 = 456.0; + + // Check that individual operations match their primitive counterparts. + // + // This is a check of current implementations and does NOT imply any form of + // guarantee about future behavior. The compiler reserves the right to make + // these operations inexact matches in the future. + let eps_add = if cfg!(miri) { 1e1 } else { 0.0 }; + let eps_mul = if cfg!(miri) { 1e3 } else { 0.0 }; + let eps_div = if cfg!(miri) { 1e0 } else { 0.0 }; + + assert_approx_eq!(a.algebraic_add(b), a + b, eps_add); + assert_approx_eq!(a.algebraic_sub(b), a - b, eps_add); + assert_approx_eq!(a.algebraic_mul(b), a * b, eps_mul); + assert_approx_eq!(a.algebraic_div(b), a / b, eps_div); + assert_approx_eq!(a.algebraic_rem(b), a % b, eps_div); +} + +#[test] +fn test_from() { + assert_eq!(f16::from(false), 0.0); + assert_eq!(f16::from(true), 1.0); + assert_eq!(f16::from(u8::MIN), 0.0); + assert_eq!(f16::from(42_u8), 42.0); + assert_eq!(f16::from(u8::MAX), 255.0); + assert_eq!(f16::from(i8::MIN), -128.0); + assert_eq!(f16::from(42_i8), 42.0); + assert_eq!(f16::from(i8::MAX), 127.0); +} diff --git a/library/coretests/tests/floats/f32.rs b/library/coretests/tests/floats/f32.rs new file mode 100644 index 00000000000..9b551643bae --- /dev/null +++ b/library/coretests/tests/floats/f32.rs @@ -0,0 +1,702 @@ +use core::f32; +use core::f32::consts; +use core::num::FpCategory as Fp; + +/// Smallest number +const TINY_BITS: u32 = 0x1; + +/// Next smallest number +const TINY_UP_BITS: u32 = 0x2; + +/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 +const MAX_DOWN_BITS: u32 = 0x7f7f_fffe; + +/// Zeroed exponent, full significant +const LARGEST_SUBNORMAL_BITS: u32 = 0x007f_ffff; + +/// Exponent = 0b1, zeroed significand +const SMALLEST_NORMAL_BITS: u32 = 0x0080_0000; + +/// First pattern over the mantissa +const NAN_MASK1: u32 = 0x002a_aaaa; + +/// Second pattern over the mantissa +const NAN_MASK2: u32 = 0x0055_5555; + +#[allow(unused_macros)] +macro_rules! assert_f32_biteq { + ($left : expr, $right : expr) => { + let l: &f32 = &$left; + let r: &f32 = &$right; + let lb = l.to_bits(); + let rb = r.to_bits(); + assert_eq!(lb, rb, "float {l} ({lb:#010x}) is not bitequal to {r} ({rb:#010x})"); + }; +} + +#[test] +fn test_num_f32() { + super::test_num(10f32, 2f32); +} + +#[test] +fn test_min_nan() { + assert_eq!(f32::NAN.min(2.0), 2.0); + assert_eq!(2.0f32.min(f32::NAN), 2.0); +} + +#[test] +fn test_max_nan() { + assert_eq!(f32::NAN.max(2.0), 2.0); + assert_eq!(2.0f32.max(f32::NAN), 2.0); +} + +#[test] +fn test_minimum() { + assert!(f32::NAN.minimum(2.0).is_nan()); + assert!(2.0f32.minimum(f32::NAN).is_nan()); +} + +#[test] +fn test_maximum() { + assert!(f32::NAN.maximum(2.0).is_nan()); + assert!(2.0f32.maximum(f32::NAN).is_nan()); +} + +#[test] +fn test_nan() { + let nan: f32 = f32::NAN; + assert!(nan.is_nan()); + assert!(!nan.is_infinite()); + assert!(!nan.is_finite()); + assert!(!nan.is_normal()); + assert!(nan.is_sign_positive()); + assert!(!nan.is_sign_negative()); + assert_eq!(Fp::Nan, nan.classify()); + // Ensure the quiet bit is set. + assert!(nan.to_bits() & (1 << (f32::MANTISSA_DIGITS - 2)) != 0); +} + +#[test] +fn test_infinity() { + let inf: f32 = f32::INFINITY; + assert!(inf.is_infinite()); + assert!(!inf.is_finite()); + assert!(inf.is_sign_positive()); + assert!(!inf.is_sign_negative()); + assert!(!inf.is_nan()); + assert!(!inf.is_normal()); + assert_eq!(Fp::Infinite, inf.classify()); +} + +#[test] +fn test_neg_infinity() { + let neg_inf: f32 = f32::NEG_INFINITY; + assert!(neg_inf.is_infinite()); + assert!(!neg_inf.is_finite()); + assert!(!neg_inf.is_sign_positive()); + assert!(neg_inf.is_sign_negative()); + assert!(!neg_inf.is_nan()); + assert!(!neg_inf.is_normal()); + assert_eq!(Fp::Infinite, neg_inf.classify()); +} + +#[test] +fn test_zero() { + let zero: f32 = 0.0f32; + assert_eq!(0.0, zero); + assert!(!zero.is_infinite()); + assert!(zero.is_finite()); + assert!(zero.is_sign_positive()); + assert!(!zero.is_sign_negative()); + assert!(!zero.is_nan()); + assert!(!zero.is_normal()); + assert_eq!(Fp::Zero, zero.classify()); +} + +#[test] +fn test_neg_zero() { + let neg_zero: f32 = -0.0; + assert_eq!(0.0, neg_zero); + assert!(!neg_zero.is_infinite()); + assert!(neg_zero.is_finite()); + assert!(!neg_zero.is_sign_positive()); + assert!(neg_zero.is_sign_negative()); + assert!(!neg_zero.is_nan()); + assert!(!neg_zero.is_normal()); + assert_eq!(Fp::Zero, neg_zero.classify()); +} + +#[test] +fn test_one() { + let one: f32 = 1.0f32; + assert_eq!(1.0, one); + assert!(!one.is_infinite()); + assert!(one.is_finite()); + assert!(one.is_sign_positive()); + assert!(!one.is_sign_negative()); + assert!(!one.is_nan()); + assert!(one.is_normal()); + assert_eq!(Fp::Normal, one.classify()); +} + +#[test] +fn test_is_nan() { + let nan: f32 = f32::NAN; + let inf: f32 = f32::INFINITY; + let neg_inf: f32 = f32::NEG_INFINITY; + assert!(nan.is_nan()); + assert!(!0.0f32.is_nan()); + assert!(!5.3f32.is_nan()); + assert!(!(-10.732f32).is_nan()); + assert!(!inf.is_nan()); + assert!(!neg_inf.is_nan()); +} + +#[test] +fn test_is_infinite() { + let nan: f32 = f32::NAN; + let inf: f32 = f32::INFINITY; + let neg_inf: f32 = f32::NEG_INFINITY; + assert!(!nan.is_infinite()); + assert!(inf.is_infinite()); + assert!(neg_inf.is_infinite()); + assert!(!0.0f32.is_infinite()); + assert!(!42.8f32.is_infinite()); + assert!(!(-109.2f32).is_infinite()); +} + +#[test] +fn test_is_finite() { + let nan: f32 = f32::NAN; + let inf: f32 = f32::INFINITY; + let neg_inf: f32 = f32::NEG_INFINITY; + assert!(!nan.is_finite()); + assert!(!inf.is_finite()); + assert!(!neg_inf.is_finite()); + assert!(0.0f32.is_finite()); + assert!(42.8f32.is_finite()); + assert!((-109.2f32).is_finite()); +} + +#[test] +fn test_is_normal() { + let nan: f32 = f32::NAN; + let inf: f32 = f32::INFINITY; + let neg_inf: f32 = f32::NEG_INFINITY; + let zero: f32 = 0.0f32; + let neg_zero: f32 = -0.0; + assert!(!nan.is_normal()); + assert!(!inf.is_normal()); + assert!(!neg_inf.is_normal()); + assert!(!zero.is_normal()); + assert!(!neg_zero.is_normal()); + assert!(1f32.is_normal()); + assert!(1e-37f32.is_normal()); + assert!(!1e-38f32.is_normal()); +} + +#[test] +fn test_classify() { + let nan: f32 = f32::NAN; + let inf: f32 = f32::INFINITY; + let neg_inf: f32 = f32::NEG_INFINITY; + let zero: f32 = 0.0f32; + let neg_zero: f32 = -0.0; + assert_eq!(nan.classify(), Fp::Nan); + assert_eq!(inf.classify(), Fp::Infinite); + assert_eq!(neg_inf.classify(), Fp::Infinite); + assert_eq!(zero.classify(), Fp::Zero); + assert_eq!(neg_zero.classify(), Fp::Zero); + assert_eq!(1f32.classify(), Fp::Normal); + assert_eq!(1e-37f32.classify(), Fp::Normal); + assert_eq!(1e-38f32.classify(), Fp::Subnormal); +} + +#[test] +fn test_floor() { + assert_approx_eq!(f32::floor(1.0f32), 1.0f32); + assert_approx_eq!(f32::floor(1.3f32), 1.0f32); + assert_approx_eq!(f32::floor(1.5f32), 1.0f32); + assert_approx_eq!(f32::floor(1.7f32), 1.0f32); + assert_approx_eq!(f32::floor(0.0f32), 0.0f32); + assert_approx_eq!(f32::floor(-0.0f32), -0.0f32); + assert_approx_eq!(f32::floor(-1.0f32), -1.0f32); + assert_approx_eq!(f32::floor(-1.3f32), -2.0f32); + assert_approx_eq!(f32::floor(-1.5f32), -2.0f32); + assert_approx_eq!(f32::floor(-1.7f32), -2.0f32); +} + +#[test] +fn test_ceil() { + assert_approx_eq!(f32::ceil(1.0f32), 1.0f32); + assert_approx_eq!(f32::ceil(1.3f32), 2.0f32); + assert_approx_eq!(f32::ceil(1.5f32), 2.0f32); + assert_approx_eq!(f32::ceil(1.7f32), 2.0f32); + assert_approx_eq!(f32::ceil(0.0f32), 0.0f32); + assert_approx_eq!(f32::ceil(-0.0f32), -0.0f32); + assert_approx_eq!(f32::ceil(-1.0f32), -1.0f32); + assert_approx_eq!(f32::ceil(-1.3f32), -1.0f32); + assert_approx_eq!(f32::ceil(-1.5f32), -1.0f32); + assert_approx_eq!(f32::ceil(-1.7f32), -1.0f32); +} + +#[test] +fn test_round() { + assert_approx_eq!(f32::round(2.5f32), 3.0f32); + assert_approx_eq!(f32::round(1.0f32), 1.0f32); + assert_approx_eq!(f32::round(1.3f32), 1.0f32); + assert_approx_eq!(f32::round(1.5f32), 2.0f32); + assert_approx_eq!(f32::round(1.7f32), 2.0f32); + assert_approx_eq!(f32::round(0.0f32), 0.0f32); + assert_approx_eq!(f32::round(-0.0f32), -0.0f32); + assert_approx_eq!(f32::round(-1.0f32), -1.0f32); + assert_approx_eq!(f32::round(-1.3f32), -1.0f32); + assert_approx_eq!(f32::round(-1.5f32), -2.0f32); + assert_approx_eq!(f32::round(-1.7f32), -2.0f32); +} + +#[test] +fn test_round_ties_even() { + assert_approx_eq!(f32::round_ties_even(2.5f32), 2.0f32); + assert_approx_eq!(f32::round_ties_even(1.0f32), 1.0f32); + assert_approx_eq!(f32::round_ties_even(1.3f32), 1.0f32); + assert_approx_eq!(f32::round_ties_even(1.5f32), 2.0f32); + assert_approx_eq!(f32::round_ties_even(1.7f32), 2.0f32); + assert_approx_eq!(f32::round_ties_even(0.0f32), 0.0f32); + assert_approx_eq!(f32::round_ties_even(-0.0f32), -0.0f32); + assert_approx_eq!(f32::round_ties_even(-1.0f32), -1.0f32); + assert_approx_eq!(f32::round_ties_even(-1.3f32), -1.0f32); + assert_approx_eq!(f32::round_ties_even(-1.5f32), -2.0f32); + assert_approx_eq!(f32::round_ties_even(-1.7f32), -2.0f32); +} + +#[test] +fn test_trunc() { + assert_approx_eq!(f32::trunc(1.0f32), 1.0f32); + assert_approx_eq!(f32::trunc(1.3f32), 1.0f32); + assert_approx_eq!(f32::trunc(1.5f32), 1.0f32); + assert_approx_eq!(f32::trunc(1.7f32), 1.0f32); + assert_approx_eq!(f32::trunc(0.0f32), 0.0f32); + assert_approx_eq!(f32::trunc(-0.0f32), -0.0f32); + assert_approx_eq!(f32::trunc(-1.0f32), -1.0f32); + assert_approx_eq!(f32::trunc(-1.3f32), -1.0f32); + assert_approx_eq!(f32::trunc(-1.5f32), -1.0f32); + assert_approx_eq!(f32::trunc(-1.7f32), -1.0f32); +} + +#[test] +fn test_fract() { + assert_approx_eq!(f32::fract(1.0f32), 0.0f32); + assert_approx_eq!(f32::fract(1.3f32), 0.3f32); + assert_approx_eq!(f32::fract(1.5f32), 0.5f32); + assert_approx_eq!(f32::fract(1.7f32), 0.7f32); + assert_approx_eq!(f32::fract(0.0f32), 0.0f32); + assert_approx_eq!(f32::fract(-0.0f32), -0.0f32); + assert_approx_eq!(f32::fract(-1.0f32), -0.0f32); + assert_approx_eq!(f32::fract(-1.3f32), -0.3f32); + assert_approx_eq!(f32::fract(-1.5f32), -0.5f32); + assert_approx_eq!(f32::fract(-1.7f32), -0.7f32); +} + +#[test] +fn test_abs() { + assert_eq!(f32::INFINITY.abs(), f32::INFINITY); + assert_eq!(1f32.abs(), 1f32); + assert_eq!(0f32.abs(), 0f32); + assert_eq!((-0f32).abs(), 0f32); + assert_eq!((-1f32).abs(), 1f32); + assert_eq!(f32::NEG_INFINITY.abs(), f32::INFINITY); + assert_eq!((1f32 / f32::NEG_INFINITY).abs(), 0f32); + assert!(f32::NAN.abs().is_nan()); +} + +#[test] +fn test_signum() { + assert_eq!(f32::INFINITY.signum(), 1f32); + assert_eq!(1f32.signum(), 1f32); + assert_eq!(0f32.signum(), 1f32); + assert_eq!((-0f32).signum(), -1f32); + assert_eq!((-1f32).signum(), -1f32); + assert_eq!(f32::NEG_INFINITY.signum(), -1f32); + assert_eq!((1f32 / f32::NEG_INFINITY).signum(), -1f32); + assert!(f32::NAN.signum().is_nan()); +} + +#[test] +fn test_is_sign_positive() { + assert!(f32::INFINITY.is_sign_positive()); + assert!(1f32.is_sign_positive()); + assert!(0f32.is_sign_positive()); + assert!(!(-0f32).is_sign_positive()); + assert!(!(-1f32).is_sign_positive()); + assert!(!f32::NEG_INFINITY.is_sign_positive()); + assert!(!(1f32 / f32::NEG_INFINITY).is_sign_positive()); + assert!(f32::NAN.is_sign_positive()); + assert!(!(-f32::NAN).is_sign_positive()); +} + +#[test] +fn test_is_sign_negative() { + assert!(!f32::INFINITY.is_sign_negative()); + assert!(!1f32.is_sign_negative()); + assert!(!0f32.is_sign_negative()); + assert!((-0f32).is_sign_negative()); + assert!((-1f32).is_sign_negative()); + assert!(f32::NEG_INFINITY.is_sign_negative()); + assert!((1f32 / f32::NEG_INFINITY).is_sign_negative()); + assert!(!f32::NAN.is_sign_negative()); + assert!((-f32::NAN).is_sign_negative()); +} + +#[test] +fn test_next_up() { + let tiny = f32::from_bits(TINY_BITS); + let tiny_up = f32::from_bits(TINY_UP_BITS); + let max_down = f32::from_bits(MAX_DOWN_BITS); + let largest_subnormal = f32::from_bits(LARGEST_SUBNORMAL_BITS); + let smallest_normal = f32::from_bits(SMALLEST_NORMAL_BITS); + assert_f32_biteq!(f32::NEG_INFINITY.next_up(), f32::MIN); + assert_f32_biteq!(f32::MIN.next_up(), -max_down); + assert_f32_biteq!((-1.0 - f32::EPSILON).next_up(), -1.0); + assert_f32_biteq!((-smallest_normal).next_up(), -largest_subnormal); + assert_f32_biteq!((-tiny_up).next_up(), -tiny); + assert_f32_biteq!((-tiny).next_up(), -0.0f32); + assert_f32_biteq!((-0.0f32).next_up(), tiny); + assert_f32_biteq!(0.0f32.next_up(), tiny); + assert_f32_biteq!(tiny.next_up(), tiny_up); + assert_f32_biteq!(largest_subnormal.next_up(), smallest_normal); + assert_f32_biteq!(1.0f32.next_up(), 1.0 + f32::EPSILON); + assert_f32_biteq!(f32::MAX.next_up(), f32::INFINITY); + assert_f32_biteq!(f32::INFINITY.next_up(), f32::INFINITY); + + // Check that NaNs roundtrip. + let nan0 = f32::NAN; + let nan1 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK1); + let nan2 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK2); + assert_f32_biteq!(nan0.next_up(), nan0); + assert_f32_biteq!(nan1.next_up(), nan1); + assert_f32_biteq!(nan2.next_up(), nan2); +} + +#[test] +fn test_next_down() { + let tiny = f32::from_bits(TINY_BITS); + let tiny_up = f32::from_bits(TINY_UP_BITS); + let max_down = f32::from_bits(MAX_DOWN_BITS); + let largest_subnormal = f32::from_bits(LARGEST_SUBNORMAL_BITS); + let smallest_normal = f32::from_bits(SMALLEST_NORMAL_BITS); + assert_f32_biteq!(f32::NEG_INFINITY.next_down(), f32::NEG_INFINITY); + assert_f32_biteq!(f32::MIN.next_down(), f32::NEG_INFINITY); + assert_f32_biteq!((-max_down).next_down(), f32::MIN); + assert_f32_biteq!((-1.0f32).next_down(), -1.0 - f32::EPSILON); + assert_f32_biteq!((-largest_subnormal).next_down(), -smallest_normal); + assert_f32_biteq!((-tiny).next_down(), -tiny_up); + assert_f32_biteq!((-0.0f32).next_down(), -tiny); + assert_f32_biteq!((0.0f32).next_down(), -tiny); + assert_f32_biteq!(tiny.next_down(), 0.0f32); + assert_f32_biteq!(tiny_up.next_down(), tiny); + assert_f32_biteq!(smallest_normal.next_down(), largest_subnormal); + assert_f32_biteq!((1.0 + f32::EPSILON).next_down(), 1.0f32); + assert_f32_biteq!(f32::MAX.next_down(), max_down); + assert_f32_biteq!(f32::INFINITY.next_down(), f32::MAX); + + // Check that NaNs roundtrip. + let nan0 = f32::NAN; + let nan1 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK1); + let nan2 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK2); + assert_f32_biteq!(nan0.next_down(), nan0); + assert_f32_biteq!(nan1.next_down(), nan1); + assert_f32_biteq!(nan2.next_down(), nan2); +} + +// FIXME(#140515): mingw has an incorrect fma https://sourceforge.net/p/mingw-w64/bugs/848/ +#[cfg_attr(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")), ignore)] +#[test] +fn test_mul_add() { + let nan: f32 = f32::NAN; + let inf: f32 = f32::INFINITY; + let neg_inf: f32 = f32::NEG_INFINITY; + assert_approx_eq!(f32::mul_add(12.3f32, 4.5, 6.7), 62.05); + assert_approx_eq!(f32::mul_add(-12.3f32, -4.5, -6.7), 48.65); + assert_approx_eq!(f32::mul_add(0.0f32, 8.9, 1.2), 1.2); + assert_approx_eq!(f32::mul_add(3.4f32, -0.0, 5.6), 5.6); + assert!(f32::mul_add(nan, 7.8, 9.0).is_nan()); + assert_eq!(f32::mul_add(inf, 7.8, 9.0), inf); + assert_eq!(f32::mul_add(neg_inf, 7.8, 9.0), neg_inf); + assert_eq!(f32::mul_add(8.9f32, inf, 3.2), inf); + assert_eq!(f32::mul_add(-3.2f32, 2.4, neg_inf), neg_inf); +} + +#[test] +fn test_recip() { + let nan: f32 = f32::NAN; + let inf: f32 = f32::INFINITY; + let neg_inf: f32 = f32::NEG_INFINITY; + assert_eq!(1.0f32.recip(), 1.0); + assert_eq!(2.0f32.recip(), 0.5); + assert_eq!((-0.4f32).recip(), -2.5); + assert_eq!(0.0f32.recip(), inf); + assert!(nan.recip().is_nan()); + assert_eq!(inf.recip(), 0.0); + assert_eq!(neg_inf.recip(), 0.0); +} + +#[test] +fn test_powi() { + let nan: f32 = f32::NAN; + let inf: f32 = f32::INFINITY; + let neg_inf: f32 = f32::NEG_INFINITY; + assert_eq!(1.0f32.powi(1), 1.0); + assert_approx_eq!((-3.1f32).powi(2), 9.61); + assert_approx_eq!(5.9f32.powi(-2), 0.028727); + assert_eq!(8.3f32.powi(0), 1.0); + assert!(nan.powi(2).is_nan()); + assert_eq!(inf.powi(3), inf); + assert_eq!(neg_inf.powi(2), inf); +} + +#[test] +fn test_sqrt_domain() { + assert!(f32::NAN.sqrt().is_nan()); + assert!(f32::NEG_INFINITY.sqrt().is_nan()); + assert!((-1.0f32).sqrt().is_nan()); + assert_eq!((-0.0f32).sqrt(), -0.0); + assert_eq!(0.0f32.sqrt(), 0.0); + assert_eq!(1.0f32.sqrt(), 1.0); + assert_eq!(f32::INFINITY.sqrt(), f32::INFINITY); +} + +#[test] +fn test_to_degrees() { + let pi: f32 = consts::PI; + let nan: f32 = f32::NAN; + let inf: f32 = f32::INFINITY; + let neg_inf: f32 = f32::NEG_INFINITY; + assert_eq!(0.0f32.to_degrees(), 0.0); + assert_approx_eq!((-5.8f32).to_degrees(), -332.315521); + assert_eq!(pi.to_degrees(), 180.0); + assert!(nan.to_degrees().is_nan()); + assert_eq!(inf.to_degrees(), inf); + assert_eq!(neg_inf.to_degrees(), neg_inf); + assert_eq!(1_f32.to_degrees(), 57.2957795130823208767981548141051703); +} + +#[test] +fn test_to_radians() { + let pi: f32 = consts::PI; + let nan: f32 = f32::NAN; + let inf: f32 = f32::INFINITY; + let neg_inf: f32 = f32::NEG_INFINITY; + assert_eq!(0.0f32.to_radians(), 0.0); + assert_approx_eq!(154.6f32.to_radians(), 2.698279); + assert_approx_eq!((-332.31f32).to_radians(), -5.799903); + assert_eq!(180.0f32.to_radians(), pi); + assert!(nan.to_radians().is_nan()); + assert_eq!(inf.to_radians(), inf); + assert_eq!(neg_inf.to_radians(), neg_inf); +} + +#[test] +fn test_float_bits_conv() { + assert_eq!((1f32).to_bits(), 0x3f800000); + assert_eq!((12.5f32).to_bits(), 0x41480000); + assert_eq!((1337f32).to_bits(), 0x44a72000); + assert_eq!((-14.25f32).to_bits(), 0xc1640000); + assert_approx_eq!(f32::from_bits(0x3f800000), 1.0); + assert_approx_eq!(f32::from_bits(0x41480000), 12.5); + assert_approx_eq!(f32::from_bits(0x44a72000), 1337.0); + assert_approx_eq!(f32::from_bits(0xc1640000), -14.25); + + // Check that NaNs roundtrip their bits regardless of signaling-ness + // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits + let masked_nan1 = f32::NAN.to_bits() ^ NAN_MASK1; + let masked_nan2 = f32::NAN.to_bits() ^ NAN_MASK2; + assert!(f32::from_bits(masked_nan1).is_nan()); + assert!(f32::from_bits(masked_nan2).is_nan()); + + assert_eq!(f32::from_bits(masked_nan1).to_bits(), masked_nan1); + assert_eq!(f32::from_bits(masked_nan2).to_bits(), masked_nan2); +} + +#[test] +#[should_panic] +fn test_clamp_min_greater_than_max() { + let _ = 1.0f32.clamp(3.0, 1.0); +} + +#[test] +#[should_panic] +fn test_clamp_min_is_nan() { + let _ = 1.0f32.clamp(f32::NAN, 1.0); +} + +#[test] +#[should_panic] +fn test_clamp_max_is_nan() { + let _ = 1.0f32.clamp(3.0, f32::NAN); +} + +#[test] +fn test_total_cmp() { + use core::cmp::Ordering; + + fn quiet_bit_mask() -> u32 { + 1 << (f32::MANTISSA_DIGITS - 2) + } + + fn min_subnorm() -> f32 { + f32::MIN_POSITIVE / f32::powf(2.0, f32::MANTISSA_DIGITS as f32 - 1.0) + } + + fn max_subnorm() -> f32 { + f32::MIN_POSITIVE - min_subnorm() + } + + fn q_nan() -> f32 { + f32::from_bits(f32::NAN.to_bits() | quiet_bit_mask()) + } + + fn s_nan() -> f32 { + f32::from_bits((f32::NAN.to_bits() & !quiet_bit_mask()) + 42) + } + + assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan())); + assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan())); + assert_eq!(Ordering::Equal, (-f32::INFINITY).total_cmp(&-f32::INFINITY)); + assert_eq!(Ordering::Equal, (-f32::MAX).total_cmp(&-f32::MAX)); + assert_eq!(Ordering::Equal, (-2.5_f32).total_cmp(&-2.5)); + assert_eq!(Ordering::Equal, (-1.0_f32).total_cmp(&-1.0)); + assert_eq!(Ordering::Equal, (-1.5_f32).total_cmp(&-1.5)); + assert_eq!(Ordering::Equal, (-0.5_f32).total_cmp(&-0.5)); + assert_eq!(Ordering::Equal, (-f32::MIN_POSITIVE).total_cmp(&-f32::MIN_POSITIVE)); + assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Equal, (-0.0_f32).total_cmp(&-0.0)); + assert_eq!(Ordering::Equal, 0.0_f32.total_cmp(&0.0)); + assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm())); + assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm())); + assert_eq!(Ordering::Equal, f32::MIN_POSITIVE.total_cmp(&f32::MIN_POSITIVE)); + assert_eq!(Ordering::Equal, 0.5_f32.total_cmp(&0.5)); + assert_eq!(Ordering::Equal, 1.0_f32.total_cmp(&1.0)); + assert_eq!(Ordering::Equal, 1.5_f32.total_cmp(&1.5)); + assert_eq!(Ordering::Equal, 2.5_f32.total_cmp(&2.5)); + assert_eq!(Ordering::Equal, f32::MAX.total_cmp(&f32::MAX)); + assert_eq!(Ordering::Equal, f32::INFINITY.total_cmp(&f32::INFINITY)); + assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan())); + assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan())); + + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::INFINITY)); + assert_eq!(Ordering::Less, (-f32::INFINITY).total_cmp(&-f32::MAX)); + assert_eq!(Ordering::Less, (-f32::MAX).total_cmp(&-2.5)); + assert_eq!(Ordering::Less, (-2.5_f32).total_cmp(&-1.5)); + assert_eq!(Ordering::Less, (-1.5_f32).total_cmp(&-1.0)); + assert_eq!(Ordering::Less, (-1.0_f32).total_cmp(&-0.5)); + assert_eq!(Ordering::Less, (-0.5_f32).total_cmp(&-f32::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-f32::MIN_POSITIVE).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0)); + assert_eq!(Ordering::Less, (-0.0_f32).total_cmp(&0.0)); + assert_eq!(Ordering::Less, 0.0_f32.total_cmp(&min_subnorm())); + assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm())); + assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f32::MIN_POSITIVE)); + assert_eq!(Ordering::Less, f32::MIN_POSITIVE.total_cmp(&0.5)); + assert_eq!(Ordering::Less, 0.5_f32.total_cmp(&1.0)); + assert_eq!(Ordering::Less, 1.0_f32.total_cmp(&1.5)); + assert_eq!(Ordering::Less, 1.5_f32.total_cmp(&2.5)); + assert_eq!(Ordering::Less, 2.5_f32.total_cmp(&f32::MAX)); + assert_eq!(Ordering::Less, f32::MAX.total_cmp(&f32::INFINITY)); + assert_eq!(Ordering::Less, f32::INFINITY.total_cmp(&s_nan())); + assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan())); + + assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan())); + assert_eq!(Ordering::Greater, (-f32::INFINITY).total_cmp(&-s_nan())); + assert_eq!(Ordering::Greater, (-f32::MAX).total_cmp(&-f32::INFINITY)); + assert_eq!(Ordering::Greater, (-2.5_f32).total_cmp(&-f32::MAX)); + assert_eq!(Ordering::Greater, (-1.5_f32).total_cmp(&-2.5)); + assert_eq!(Ordering::Greater, (-1.0_f32).total_cmp(&-1.5)); + assert_eq!(Ordering::Greater, (-0.5_f32).total_cmp(&-1.0)); + assert_eq!(Ordering::Greater, (-f32::MIN_POSITIVE).total_cmp(&-0.5)); + assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f32::MIN_POSITIVE)); + assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Greater, (-0.0_f32).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Greater, 0.0_f32.total_cmp(&-0.0)); + assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0)); + assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm())); + assert_eq!(Ordering::Greater, f32::MIN_POSITIVE.total_cmp(&max_subnorm())); + assert_eq!(Ordering::Greater, 0.5_f32.total_cmp(&f32::MIN_POSITIVE)); + assert_eq!(Ordering::Greater, 1.0_f32.total_cmp(&0.5)); + assert_eq!(Ordering::Greater, 1.5_f32.total_cmp(&1.0)); + assert_eq!(Ordering::Greater, 2.5_f32.total_cmp(&1.5)); + assert_eq!(Ordering::Greater, f32::MAX.total_cmp(&2.5)); + assert_eq!(Ordering::Greater, f32::INFINITY.total_cmp(&f32::MAX)); + assert_eq!(Ordering::Greater, s_nan().total_cmp(&f32::INFINITY)); + assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan())); + + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f32::INFINITY)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f32::MAX)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f32::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f32::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f32::MAX)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f32::INFINITY)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan())); + + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::INFINITY)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::MAX)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::MAX)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::INFINITY)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan())); +} + +#[test] +fn test_algebraic() { + let a: f32 = 123.0; + let b: f32 = 456.0; + + // Check that individual operations match their primitive counterparts. + // + // This is a check of current implementations and does NOT imply any form of + // guarantee about future behavior. The compiler reserves the right to make + // these operations inexact matches in the future. + let eps_add = if cfg!(miri) { 1e-3 } else { 0.0 }; + let eps_mul = if cfg!(miri) { 1e-1 } else { 0.0 }; + let eps_div = if cfg!(miri) { 1e-4 } else { 0.0 }; + + assert_approx_eq!(a.algebraic_add(b), a + b, eps_add); + assert_approx_eq!(a.algebraic_sub(b), a - b, eps_add); + assert_approx_eq!(a.algebraic_mul(b), a * b, eps_mul); + assert_approx_eq!(a.algebraic_div(b), a / b, eps_div); + assert_approx_eq!(a.algebraic_rem(b), a % b, eps_div); +} diff --git a/library/coretests/tests/floats/f64.rs b/library/coretests/tests/floats/f64.rs new file mode 100644 index 00000000000..988108371d7 --- /dev/null +++ b/library/coretests/tests/floats/f64.rs @@ -0,0 +1,682 @@ +use std::f64::consts; +use std::num::FpCategory as Fp; + +/// Smallest number +const TINY_BITS: u64 = 0x1; + +/// Next smallest number +const TINY_UP_BITS: u64 = 0x2; + +/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 +const MAX_DOWN_BITS: u64 = 0x7fef_ffff_ffff_fffe; + +/// Zeroed exponent, full significant +const LARGEST_SUBNORMAL_BITS: u64 = 0x000f_ffff_ffff_ffff; + +/// Exponent = 0b1, zeroed significand +const SMALLEST_NORMAL_BITS: u64 = 0x0010_0000_0000_0000; + +/// First pattern over the mantissa +const NAN_MASK1: u64 = 0x000a_aaaa_aaaa_aaaa; + +/// Second pattern over the mantissa +const NAN_MASK2: u64 = 0x0005_5555_5555_5555; + +#[allow(unused_macros)] +macro_rules! assert_f64_biteq { + ($left : expr, $right : expr) => { + let l: &f64 = &$left; + let r: &f64 = &$right; + let lb = l.to_bits(); + let rb = r.to_bits(); + assert_eq!(lb, rb, "float {l} ({lb:#018x}) is not bitequal to {r} ({rb:#018x})"); + }; +} + +#[test] +fn test_num_f64() { + super::test_num(10f64, 2f64); +} + +#[test] +fn test_min_nan() { + assert_eq!(f64::NAN.min(2.0), 2.0); + assert_eq!(2.0f64.min(f64::NAN), 2.0); +} + +#[test] +fn test_max_nan() { + assert_eq!(f64::NAN.max(2.0), 2.0); + assert_eq!(2.0f64.max(f64::NAN), 2.0); +} + +#[test] +fn test_nan() { + let nan: f64 = f64::NAN; + assert!(nan.is_nan()); + assert!(!nan.is_infinite()); + assert!(!nan.is_finite()); + assert!(!nan.is_normal()); + assert!(nan.is_sign_positive()); + assert!(!nan.is_sign_negative()); + assert_eq!(Fp::Nan, nan.classify()); + // Ensure the quiet bit is set. + assert!(nan.to_bits() & (1 << (f64::MANTISSA_DIGITS - 2)) != 0); +} + +#[test] +fn test_infinity() { + let inf: f64 = f64::INFINITY; + assert!(inf.is_infinite()); + assert!(!inf.is_finite()); + assert!(inf.is_sign_positive()); + assert!(!inf.is_sign_negative()); + assert!(!inf.is_nan()); + assert!(!inf.is_normal()); + assert_eq!(Fp::Infinite, inf.classify()); +} + +#[test] +fn test_neg_infinity() { + let neg_inf: f64 = f64::NEG_INFINITY; + assert!(neg_inf.is_infinite()); + assert!(!neg_inf.is_finite()); + assert!(!neg_inf.is_sign_positive()); + assert!(neg_inf.is_sign_negative()); + assert!(!neg_inf.is_nan()); + assert!(!neg_inf.is_normal()); + assert_eq!(Fp::Infinite, neg_inf.classify()); +} + +#[test] +fn test_zero() { + let zero: f64 = 0.0f64; + assert_eq!(0.0, zero); + assert!(!zero.is_infinite()); + assert!(zero.is_finite()); + assert!(zero.is_sign_positive()); + assert!(!zero.is_sign_negative()); + assert!(!zero.is_nan()); + assert!(!zero.is_normal()); + assert_eq!(Fp::Zero, zero.classify()); +} + +#[test] +fn test_neg_zero() { + let neg_zero: f64 = -0.0; + assert_eq!(0.0, neg_zero); + assert!(!neg_zero.is_infinite()); + assert!(neg_zero.is_finite()); + assert!(!neg_zero.is_sign_positive()); + assert!(neg_zero.is_sign_negative()); + assert!(!neg_zero.is_nan()); + assert!(!neg_zero.is_normal()); + assert_eq!(Fp::Zero, neg_zero.classify()); +} + +#[test] +fn test_one() { + let one: f64 = 1.0f64; + assert_eq!(1.0, one); + assert!(!one.is_infinite()); + assert!(one.is_finite()); + assert!(one.is_sign_positive()); + assert!(!one.is_sign_negative()); + assert!(!one.is_nan()); + assert!(one.is_normal()); + assert_eq!(Fp::Normal, one.classify()); +} + +#[test] +fn test_is_nan() { + let nan: f64 = f64::NAN; + let inf: f64 = f64::INFINITY; + let neg_inf: f64 = f64::NEG_INFINITY; + assert!(nan.is_nan()); + assert!(!0.0f64.is_nan()); + assert!(!5.3f64.is_nan()); + assert!(!(-10.732f64).is_nan()); + assert!(!inf.is_nan()); + assert!(!neg_inf.is_nan()); +} + +#[test] +fn test_is_infinite() { + let nan: f64 = f64::NAN; + let inf: f64 = f64::INFINITY; + let neg_inf: f64 = f64::NEG_INFINITY; + assert!(!nan.is_infinite()); + assert!(inf.is_infinite()); + assert!(neg_inf.is_infinite()); + assert!(!0.0f64.is_infinite()); + assert!(!42.8f64.is_infinite()); + assert!(!(-109.2f64).is_infinite()); +} + +#[test] +fn test_is_finite() { + let nan: f64 = f64::NAN; + let inf: f64 = f64::INFINITY; + let neg_inf: f64 = f64::NEG_INFINITY; + assert!(!nan.is_finite()); + assert!(!inf.is_finite()); + assert!(!neg_inf.is_finite()); + assert!(0.0f64.is_finite()); + assert!(42.8f64.is_finite()); + assert!((-109.2f64).is_finite()); +} + +#[test] +fn test_is_normal() { + let nan: f64 = f64::NAN; + let inf: f64 = f64::INFINITY; + let neg_inf: f64 = f64::NEG_INFINITY; + let zero: f64 = 0.0f64; + let neg_zero: f64 = -0.0; + assert!(!nan.is_normal()); + assert!(!inf.is_normal()); + assert!(!neg_inf.is_normal()); + assert!(!zero.is_normal()); + assert!(!neg_zero.is_normal()); + assert!(1f64.is_normal()); + assert!(1e-307f64.is_normal()); + assert!(!1e-308f64.is_normal()); +} + +#[test] +fn test_classify() { + let nan: f64 = f64::NAN; + let inf: f64 = f64::INFINITY; + let neg_inf: f64 = f64::NEG_INFINITY; + let zero: f64 = 0.0f64; + let neg_zero: f64 = -0.0; + assert_eq!(nan.classify(), Fp::Nan); + assert_eq!(inf.classify(), Fp::Infinite); + assert_eq!(neg_inf.classify(), Fp::Infinite); + assert_eq!(zero.classify(), Fp::Zero); + assert_eq!(neg_zero.classify(), Fp::Zero); + assert_eq!(1e-307f64.classify(), Fp::Normal); + assert_eq!(1e-308f64.classify(), Fp::Subnormal); +} + +#[test] +fn test_floor() { + assert_approx_eq!(f64::floor(1.0f64), 1.0f64); + assert_approx_eq!(f64::floor(1.3f64), 1.0f64); + assert_approx_eq!(f64::floor(1.5f64), 1.0f64); + assert_approx_eq!(f64::floor(1.7f64), 1.0f64); + assert_approx_eq!(f64::floor(0.0f64), 0.0f64); + assert_approx_eq!(f64::floor(-0.0f64), -0.0f64); + assert_approx_eq!(f64::floor(-1.0f64), -1.0f64); + assert_approx_eq!(f64::floor(-1.3f64), -2.0f64); + assert_approx_eq!(f64::floor(-1.5f64), -2.0f64); + assert_approx_eq!(f64::floor(-1.7f64), -2.0f64); +} + +#[test] +fn test_ceil() { + assert_approx_eq!(f64::ceil(1.0f64), 1.0f64); + assert_approx_eq!(f64::ceil(1.3f64), 2.0f64); + assert_approx_eq!(f64::ceil(1.5f64), 2.0f64); + assert_approx_eq!(f64::ceil(1.7f64), 2.0f64); + assert_approx_eq!(f64::ceil(0.0f64), 0.0f64); + assert_approx_eq!(f64::ceil(-0.0f64), -0.0f64); + assert_approx_eq!(f64::ceil(-1.0f64), -1.0f64); + assert_approx_eq!(f64::ceil(-1.3f64), -1.0f64); + assert_approx_eq!(f64::ceil(-1.5f64), -1.0f64); + assert_approx_eq!(f64::ceil(-1.7f64), -1.0f64); +} + +#[test] +fn test_round() { + assert_approx_eq!(f64::round(2.5f64), 3.0f64); + assert_approx_eq!(f64::round(1.0f64), 1.0f64); + assert_approx_eq!(f64::round(1.3f64), 1.0f64); + assert_approx_eq!(f64::round(1.5f64), 2.0f64); + assert_approx_eq!(f64::round(1.7f64), 2.0f64); + assert_approx_eq!(f64::round(0.0f64), 0.0f64); + assert_approx_eq!(f64::round(-0.0f64), -0.0f64); + assert_approx_eq!(f64::round(-1.0f64), -1.0f64); + assert_approx_eq!(f64::round(-1.3f64), -1.0f64); + assert_approx_eq!(f64::round(-1.5f64), -2.0f64); + assert_approx_eq!(f64::round(-1.7f64), -2.0f64); +} + +#[test] +fn test_round_ties_even() { + assert_approx_eq!(f64::round_ties_even(2.5f64), 2.0f64); + assert_approx_eq!(f64::round_ties_even(1.0f64), 1.0f64); + assert_approx_eq!(f64::round_ties_even(1.3f64), 1.0f64); + assert_approx_eq!(f64::round_ties_even(1.5f64), 2.0f64); + assert_approx_eq!(f64::round_ties_even(1.7f64), 2.0f64); + assert_approx_eq!(f64::round_ties_even(0.0f64), 0.0f64); + assert_approx_eq!(f64::round_ties_even(-0.0f64), -0.0f64); + assert_approx_eq!(f64::round_ties_even(-1.0f64), -1.0f64); + assert_approx_eq!(f64::round_ties_even(-1.3f64), -1.0f64); + assert_approx_eq!(f64::round_ties_even(-1.5f64), -2.0f64); + assert_approx_eq!(f64::round_ties_even(-1.7f64), -2.0f64); +} + +#[test] +fn test_trunc() { + assert_approx_eq!(f64::trunc(1.0f64), 1.0f64); + assert_approx_eq!(f64::trunc(1.3f64), 1.0f64); + assert_approx_eq!(f64::trunc(1.5f64), 1.0f64); + assert_approx_eq!(f64::trunc(1.7f64), 1.0f64); + assert_approx_eq!(f64::trunc(0.0f64), 0.0f64); + assert_approx_eq!(f64::trunc(-0.0f64), -0.0f64); + assert_approx_eq!(f64::trunc(-1.0f64), -1.0f64); + assert_approx_eq!(f64::trunc(-1.3f64), -1.0f64); + assert_approx_eq!(f64::trunc(-1.5f64), -1.0f64); + assert_approx_eq!(f64::trunc(-1.7f64), -1.0f64); +} + +#[test] +fn test_fract() { + assert_approx_eq!(f64::fract(1.0f64), 0.0f64); + assert_approx_eq!(f64::fract(1.3f64), 0.3f64); + assert_approx_eq!(f64::fract(1.5f64), 0.5f64); + assert_approx_eq!(f64::fract(1.7f64), 0.7f64); + assert_approx_eq!(f64::fract(0.0f64), 0.0f64); + assert_approx_eq!(f64::fract(-0.0f64), -0.0f64); + assert_approx_eq!(f64::fract(-1.0f64), -0.0f64); + assert_approx_eq!(f64::fract(-1.3f64), -0.3f64); + assert_approx_eq!(f64::fract(-1.5f64), -0.5f64); + assert_approx_eq!(f64::fract(-1.7f64), -0.7f64); +} + +#[test] +fn test_abs() { + assert_eq!(f64::INFINITY.abs(), f64::INFINITY); + assert_eq!(1f64.abs(), 1f64); + assert_eq!(0f64.abs(), 0f64); + assert_eq!((-0f64).abs(), 0f64); + assert_eq!((-1f64).abs(), 1f64); + assert_eq!(f64::NEG_INFINITY.abs(), f64::INFINITY); + assert_eq!((1f64 / f64::NEG_INFINITY).abs(), 0f64); + assert!(f64::NAN.abs().is_nan()); +} + +#[test] +fn test_signum() { + assert_eq!(f64::INFINITY.signum(), 1f64); + assert_eq!(1f64.signum(), 1f64); + assert_eq!(0f64.signum(), 1f64); + assert_eq!((-0f64).signum(), -1f64); + assert_eq!((-1f64).signum(), -1f64); + assert_eq!(f64::NEG_INFINITY.signum(), -1f64); + assert_eq!((1f64 / f64::NEG_INFINITY).signum(), -1f64); + assert!(f64::NAN.signum().is_nan()); +} + +#[test] +fn test_is_sign_positive() { + assert!(f64::INFINITY.is_sign_positive()); + assert!(1f64.is_sign_positive()); + assert!(0f64.is_sign_positive()); + assert!(!(-0f64).is_sign_positive()); + assert!(!(-1f64).is_sign_positive()); + assert!(!f64::NEG_INFINITY.is_sign_positive()); + assert!(!(1f64 / f64::NEG_INFINITY).is_sign_positive()); + assert!(f64::NAN.is_sign_positive()); + assert!(!(-f64::NAN).is_sign_positive()); +} + +#[test] +fn test_is_sign_negative() { + assert!(!f64::INFINITY.is_sign_negative()); + assert!(!1f64.is_sign_negative()); + assert!(!0f64.is_sign_negative()); + assert!((-0f64).is_sign_negative()); + assert!((-1f64).is_sign_negative()); + assert!(f64::NEG_INFINITY.is_sign_negative()); + assert!((1f64 / f64::NEG_INFINITY).is_sign_negative()); + assert!(!f64::NAN.is_sign_negative()); + assert!((-f64::NAN).is_sign_negative()); +} + +#[test] +fn test_next_up() { + let tiny = f64::from_bits(TINY_BITS); + let tiny_up = f64::from_bits(TINY_UP_BITS); + let max_down = f64::from_bits(MAX_DOWN_BITS); + let largest_subnormal = f64::from_bits(LARGEST_SUBNORMAL_BITS); + let smallest_normal = f64::from_bits(SMALLEST_NORMAL_BITS); + assert_f64_biteq!(f64::NEG_INFINITY.next_up(), f64::MIN); + assert_f64_biteq!(f64::MIN.next_up(), -max_down); + assert_f64_biteq!((-1.0 - f64::EPSILON).next_up(), -1.0); + assert_f64_biteq!((-smallest_normal).next_up(), -largest_subnormal); + assert_f64_biteq!((-tiny_up).next_up(), -tiny); + assert_f64_biteq!((-tiny).next_up(), -0.0f64); + assert_f64_biteq!((-0.0f64).next_up(), tiny); + assert_f64_biteq!(0.0f64.next_up(), tiny); + assert_f64_biteq!(tiny.next_up(), tiny_up); + assert_f64_biteq!(largest_subnormal.next_up(), smallest_normal); + assert_f64_biteq!(1.0f64.next_up(), 1.0 + f64::EPSILON); + assert_f64_biteq!(f64::MAX.next_up(), f64::INFINITY); + assert_f64_biteq!(f64::INFINITY.next_up(), f64::INFINITY); + + let nan0 = f64::NAN; + let nan1 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK1); + let nan2 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK2); + assert_f64_biteq!(nan0.next_up(), nan0); + assert_f64_biteq!(nan1.next_up(), nan1); + assert_f64_biteq!(nan2.next_up(), nan2); +} + +#[test] +fn test_next_down() { + let tiny = f64::from_bits(TINY_BITS); + let tiny_up = f64::from_bits(TINY_UP_BITS); + let max_down = f64::from_bits(MAX_DOWN_BITS); + let largest_subnormal = f64::from_bits(LARGEST_SUBNORMAL_BITS); + let smallest_normal = f64::from_bits(SMALLEST_NORMAL_BITS); + assert_f64_biteq!(f64::NEG_INFINITY.next_down(), f64::NEG_INFINITY); + assert_f64_biteq!(f64::MIN.next_down(), f64::NEG_INFINITY); + assert_f64_biteq!((-max_down).next_down(), f64::MIN); + assert_f64_biteq!((-1.0f64).next_down(), -1.0 - f64::EPSILON); + assert_f64_biteq!((-largest_subnormal).next_down(), -smallest_normal); + assert_f64_biteq!((-tiny).next_down(), -tiny_up); + assert_f64_biteq!((-0.0f64).next_down(), -tiny); + assert_f64_biteq!((0.0f64).next_down(), -tiny); + assert_f64_biteq!(tiny.next_down(), 0.0f64); + assert_f64_biteq!(tiny_up.next_down(), tiny); + assert_f64_biteq!(smallest_normal.next_down(), largest_subnormal); + assert_f64_biteq!((1.0 + f64::EPSILON).next_down(), 1.0f64); + assert_f64_biteq!(f64::MAX.next_down(), max_down); + assert_f64_biteq!(f64::INFINITY.next_down(), f64::MAX); + + let nan0 = f64::NAN; + let nan1 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK1); + let nan2 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK2); + assert_f64_biteq!(nan0.next_down(), nan0); + assert_f64_biteq!(nan1.next_down(), nan1); + assert_f64_biteq!(nan2.next_down(), nan2); +} + +// FIXME(#140515): mingw has an incorrect fma https://sourceforge.net/p/mingw-w64/bugs/848/ +#[cfg_attr(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")), ignore)] +#[test] +fn test_mul_add() { + let nan: f64 = f64::NAN; + let inf: f64 = f64::INFINITY; + let neg_inf: f64 = f64::NEG_INFINITY; + assert_approx_eq!(12.3f64.mul_add(4.5, 6.7), 62.05); + assert_approx_eq!((-12.3f64).mul_add(-4.5, -6.7), 48.65); + assert_approx_eq!(0.0f64.mul_add(8.9, 1.2), 1.2); + assert_approx_eq!(3.4f64.mul_add(-0.0, 5.6), 5.6); + assert!(nan.mul_add(7.8, 9.0).is_nan()); + assert_eq!(inf.mul_add(7.8, 9.0), inf); + assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf); + assert_eq!(8.9f64.mul_add(inf, 3.2), inf); + assert_eq!((-3.2f64).mul_add(2.4, neg_inf), neg_inf); +} + +#[test] +fn test_recip() { + let nan: f64 = f64::NAN; + let inf: f64 = f64::INFINITY; + let neg_inf: f64 = f64::NEG_INFINITY; + assert_eq!(1.0f64.recip(), 1.0); + assert_eq!(2.0f64.recip(), 0.5); + assert_eq!((-0.4f64).recip(), -2.5); + assert_eq!(0.0f64.recip(), inf); + assert!(nan.recip().is_nan()); + assert_eq!(inf.recip(), 0.0); + assert_eq!(neg_inf.recip(), 0.0); +} + +#[test] +fn test_powi() { + let nan: f64 = f64::NAN; + let inf: f64 = f64::INFINITY; + let neg_inf: f64 = f64::NEG_INFINITY; + assert_eq!(1.0f64.powi(1), 1.0); + assert_approx_eq!((-3.1f64).powi(2), 9.61); + assert_approx_eq!(5.9f64.powi(-2), 0.028727); + assert_eq!(8.3f64.powi(0), 1.0); + assert!(nan.powi(2).is_nan()); + assert_eq!(inf.powi(3), inf); + assert_eq!(neg_inf.powi(2), inf); +} + +#[test] +fn test_sqrt_domain() { + assert!(f64::NAN.sqrt().is_nan()); + assert!(f64::NEG_INFINITY.sqrt().is_nan()); + assert!((-1.0f64).sqrt().is_nan()); + assert_eq!((-0.0f64).sqrt(), -0.0); + assert_eq!(0.0f64.sqrt(), 0.0); + assert_eq!(1.0f64.sqrt(), 1.0); + assert_eq!(f64::INFINITY.sqrt(), f64::INFINITY); +} + +#[test] +fn test_to_degrees() { + let pi: f64 = consts::PI; + let nan: f64 = f64::NAN; + let inf: f64 = f64::INFINITY; + let neg_inf: f64 = f64::NEG_INFINITY; + assert_eq!(0.0f64.to_degrees(), 0.0); + assert_approx_eq!((-5.8f64).to_degrees(), -332.315521); + assert_eq!(pi.to_degrees(), 180.0); + assert!(nan.to_degrees().is_nan()); + assert_eq!(inf.to_degrees(), inf); + assert_eq!(neg_inf.to_degrees(), neg_inf); +} + +#[test] +fn test_to_radians() { + let pi: f64 = consts::PI; + let nan: f64 = f64::NAN; + let inf: f64 = f64::INFINITY; + let neg_inf: f64 = f64::NEG_INFINITY; + assert_eq!(0.0f64.to_radians(), 0.0); + assert_approx_eq!(154.6f64.to_radians(), 2.698279); + assert_approx_eq!((-332.31f64).to_radians(), -5.799903); + assert_eq!(180.0f64.to_radians(), pi); + assert!(nan.to_radians().is_nan()); + assert_eq!(inf.to_radians(), inf); + assert_eq!(neg_inf.to_radians(), neg_inf); +} + +#[test] +fn test_float_bits_conv() { + assert_eq!((1f64).to_bits(), 0x3ff0000000000000); + assert_eq!((12.5f64).to_bits(), 0x4029000000000000); + assert_eq!((1337f64).to_bits(), 0x4094e40000000000); + assert_eq!((-14.25f64).to_bits(), 0xc02c800000000000); + assert_approx_eq!(f64::from_bits(0x3ff0000000000000), 1.0); + assert_approx_eq!(f64::from_bits(0x4029000000000000), 12.5); + assert_approx_eq!(f64::from_bits(0x4094e40000000000), 1337.0); + assert_approx_eq!(f64::from_bits(0xc02c800000000000), -14.25); + + // Check that NaNs roundtrip their bits regardless of signaling-ness + let masked_nan1 = f64::NAN.to_bits() ^ NAN_MASK1; + let masked_nan2 = f64::NAN.to_bits() ^ NAN_MASK2; + assert!(f64::from_bits(masked_nan1).is_nan()); + assert!(f64::from_bits(masked_nan2).is_nan()); + + assert_eq!(f64::from_bits(masked_nan1).to_bits(), masked_nan1); + assert_eq!(f64::from_bits(masked_nan2).to_bits(), masked_nan2); +} + +#[test] +#[should_panic] +fn test_clamp_min_greater_than_max() { + let _ = 1.0f64.clamp(3.0, 1.0); +} + +#[test] +#[should_panic] +fn test_clamp_min_is_nan() { + let _ = 1.0f64.clamp(f64::NAN, 1.0); +} + +#[test] +#[should_panic] +fn test_clamp_max_is_nan() { + let _ = 1.0f64.clamp(3.0, f64::NAN); +} + +#[test] +fn test_total_cmp() { + use core::cmp::Ordering; + + fn quiet_bit_mask() -> u64 { + 1 << (f64::MANTISSA_DIGITS - 2) + } + + fn min_subnorm() -> f64 { + f64::MIN_POSITIVE / f64::powf(2.0, f64::MANTISSA_DIGITS as f64 - 1.0) + } + + fn max_subnorm() -> f64 { + f64::MIN_POSITIVE - min_subnorm() + } + + fn q_nan() -> f64 { + f64::from_bits(f64::NAN.to_bits() | quiet_bit_mask()) + } + + fn s_nan() -> f64 { + f64::from_bits((f64::NAN.to_bits() & !quiet_bit_mask()) + 42) + } + + assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan())); + assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan())); + assert_eq!(Ordering::Equal, (-f64::INFINITY).total_cmp(&-f64::INFINITY)); + assert_eq!(Ordering::Equal, (-f64::MAX).total_cmp(&-f64::MAX)); + assert_eq!(Ordering::Equal, (-2.5_f64).total_cmp(&-2.5)); + assert_eq!(Ordering::Equal, (-1.0_f64).total_cmp(&-1.0)); + assert_eq!(Ordering::Equal, (-1.5_f64).total_cmp(&-1.5)); + assert_eq!(Ordering::Equal, (-0.5_f64).total_cmp(&-0.5)); + assert_eq!(Ordering::Equal, (-f64::MIN_POSITIVE).total_cmp(&-f64::MIN_POSITIVE)); + assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Equal, (-0.0_f64).total_cmp(&-0.0)); + assert_eq!(Ordering::Equal, 0.0_f64.total_cmp(&0.0)); + assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm())); + assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm())); + assert_eq!(Ordering::Equal, f64::MIN_POSITIVE.total_cmp(&f64::MIN_POSITIVE)); + assert_eq!(Ordering::Equal, 0.5_f64.total_cmp(&0.5)); + assert_eq!(Ordering::Equal, 1.0_f64.total_cmp(&1.0)); + assert_eq!(Ordering::Equal, 1.5_f64.total_cmp(&1.5)); + assert_eq!(Ordering::Equal, 2.5_f64.total_cmp(&2.5)); + assert_eq!(Ordering::Equal, f64::MAX.total_cmp(&f64::MAX)); + assert_eq!(Ordering::Equal, f64::INFINITY.total_cmp(&f64::INFINITY)); + assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan())); + assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan())); + + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::INFINITY)); + assert_eq!(Ordering::Less, (-f64::INFINITY).total_cmp(&-f64::MAX)); + assert_eq!(Ordering::Less, (-f64::MAX).total_cmp(&-2.5)); + assert_eq!(Ordering::Less, (-2.5_f64).total_cmp(&-1.5)); + assert_eq!(Ordering::Less, (-1.5_f64).total_cmp(&-1.0)); + assert_eq!(Ordering::Less, (-1.0_f64).total_cmp(&-0.5)); + assert_eq!(Ordering::Less, (-0.5_f64).total_cmp(&-f64::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-f64::MIN_POSITIVE).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0)); + assert_eq!(Ordering::Less, (-0.0_f64).total_cmp(&0.0)); + assert_eq!(Ordering::Less, 0.0_f64.total_cmp(&min_subnorm())); + assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm())); + assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f64::MIN_POSITIVE)); + assert_eq!(Ordering::Less, f64::MIN_POSITIVE.total_cmp(&0.5)); + assert_eq!(Ordering::Less, 0.5_f64.total_cmp(&1.0)); + assert_eq!(Ordering::Less, 1.0_f64.total_cmp(&1.5)); + assert_eq!(Ordering::Less, 1.5_f64.total_cmp(&2.5)); + assert_eq!(Ordering::Less, 2.5_f64.total_cmp(&f64::MAX)); + assert_eq!(Ordering::Less, f64::MAX.total_cmp(&f64::INFINITY)); + assert_eq!(Ordering::Less, f64::INFINITY.total_cmp(&s_nan())); + assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan())); + + assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan())); + assert_eq!(Ordering::Greater, (-f64::INFINITY).total_cmp(&-s_nan())); + assert_eq!(Ordering::Greater, (-f64::MAX).total_cmp(&-f64::INFINITY)); + assert_eq!(Ordering::Greater, (-2.5_f64).total_cmp(&-f64::MAX)); + assert_eq!(Ordering::Greater, (-1.5_f64).total_cmp(&-2.5)); + assert_eq!(Ordering::Greater, (-1.0_f64).total_cmp(&-1.5)); + assert_eq!(Ordering::Greater, (-0.5_f64).total_cmp(&-1.0)); + assert_eq!(Ordering::Greater, (-f64::MIN_POSITIVE).total_cmp(&-0.5)); + assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f64::MIN_POSITIVE)); + assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Greater, (-0.0_f64).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Greater, 0.0_f64.total_cmp(&-0.0)); + assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0)); + assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm())); + assert_eq!(Ordering::Greater, f64::MIN_POSITIVE.total_cmp(&max_subnorm())); + assert_eq!(Ordering::Greater, 0.5_f64.total_cmp(&f64::MIN_POSITIVE)); + assert_eq!(Ordering::Greater, 1.0_f64.total_cmp(&0.5)); + assert_eq!(Ordering::Greater, 1.5_f64.total_cmp(&1.0)); + assert_eq!(Ordering::Greater, 2.5_f64.total_cmp(&1.5)); + assert_eq!(Ordering::Greater, f64::MAX.total_cmp(&2.5)); + assert_eq!(Ordering::Greater, f64::INFINITY.total_cmp(&f64::MAX)); + assert_eq!(Ordering::Greater, s_nan().total_cmp(&f64::INFINITY)); + assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan())); + + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f64::INFINITY)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f64::MAX)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f64::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm())); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f64::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f64::MAX)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f64::INFINITY)); + assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan())); + + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::INFINITY)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::MAX)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm())); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::MIN_POSITIVE)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::MAX)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::INFINITY)); + assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan())); +} + +#[test] +fn test_algebraic() { + let a: f64 = 123.0; + let b: f64 = 456.0; + + // Check that individual operations match their primitive counterparts. + // + // This is a check of current implementations and does NOT imply any form of + // guarantee about future behavior. The compiler reserves the right to make + // these operations inexact matches in the future. + let eps = if cfg!(miri) { 1e-6 } else { 0.0 }; + + assert_approx_eq!(a.algebraic_add(b), a + b, eps); + assert_approx_eq!(a.algebraic_sub(b), a - b, eps); + assert_approx_eq!(a.algebraic_mul(b), a * b, eps); + assert_approx_eq!(a.algebraic_div(b), a / b, eps); + assert_approx_eq!(a.algebraic_rem(b), a % b, eps); +} diff --git a/library/coretests/tests/floats/mod.rs b/library/coretests/tests/floats/mod.rs new file mode 100644 index 00000000000..7de34271ad0 --- /dev/null +++ b/library/coretests/tests/floats/mod.rs @@ -0,0 +1,40 @@ +use std::fmt; +use std::ops::{Add, Div, Mul, Rem, Sub}; + +/// Verify that floats are within a tolerance of each other, 1.0e-6 by default. +macro_rules! assert_approx_eq { + ($a:expr, $b:expr) => {{ assert_approx_eq!($a, $b, 1.0e-6) }}; + ($a:expr, $b:expr, $lim:expr) => {{ + let (a, b) = (&$a, &$b); + let diff = (*a - *b).abs(); + assert!( + diff <= $lim, + "{a:?} is not approximately equal to {b:?} (threshold {lim:?}, difference {diff:?})", + lim = $lim + ); + }}; +} + +/// Helper function for testing numeric operations +pub fn test_num<T>(ten: T, two: T) +where + T: PartialEq + + Add<Output = T> + + Sub<Output = T> + + Mul<Output = T> + + Div<Output = T> + + Rem<Output = T> + + fmt::Debug + + Copy, +{ + assert_eq!(ten.add(two), ten + two); + assert_eq!(ten.sub(two), ten - two); + assert_eq!(ten.mul(two), ten * two); + assert_eq!(ten.div(two), ten / two); + assert_eq!(ten.rem(two), ten % two); +} + +mod f128; +mod f16; +mod f32; +mod f64; diff --git a/library/coretests/tests/lib.rs b/library/coretests/tests/lib.rs index 0575375cf4f..b98e52718f6 100644 --- a/library/coretests/tests/lib.rs +++ b/library/coretests/tests/lib.rs @@ -12,10 +12,12 @@ #![feature(async_iterator)] #![feature(bigint_helper_methods)] #![feature(bstr)] +#![feature(cfg_target_has_reliable_f16_f128)] #![feature(char_max_len)] #![feature(clone_to_uninit)] #![feature(const_eval_select)] #![feature(const_trait_impl)] +#![feature(core_float_math)] #![feature(core_intrinsics)] #![feature(core_intrinsics_fallbacks)] #![feature(core_io_borrowed_buf)] @@ -29,6 +31,10 @@ #![feature(exact_size_is_empty)] #![feature(extend_one)] #![feature(extern_types)] +#![feature(f128)] +#![feature(f16)] +#![feature(float_algebraic)] +#![feature(float_gamma)] #![feature(float_minimum_maximum)] #![feature(flt2dec)] #![feature(fmt_internals)] @@ -144,6 +150,7 @@ mod cmp; mod const_ptr; mod convert; mod ffi; +mod floats; mod fmt; mod future; mod hash; diff --git a/library/coretests/tests/num/dec2flt/decimal.rs b/library/coretests/tests/num/dec2flt/decimal.rs index 1fa06de692e..f759e1dbde6 100644 --- a/library/coretests/tests/num/dec2flt/decimal.rs +++ b/library/coretests/tests/num/dec2flt/decimal.rs @@ -7,6 +7,20 @@ const FPATHS_F32: &[FPath<f32>] = const FPATHS_F64: &[FPath<f64>] = &[((0, 0, false, false), Some(0.0)), ((0, 0, false, false), Some(0.0))]; +// FIXME(f16_f128): enable on all targets once possible. +#[test] +#[cfg(target_has_reliable_f16)] +fn check_fast_path_f16() { + const FPATHS_F16: &[FPath<f16>] = + &[((0, 0, false, false), Some(0.0)), ((0, 0, false, false), Some(0.0))]; + for ((exponent, mantissa, negative, many_digits), expected) in FPATHS_F16.iter().copied() { + let dec = Decimal { exponent, mantissa, negative, many_digits }; + let actual = dec.try_fast_path::<f16>(); + + assert_eq!(actual, expected); + } +} + #[test] fn check_fast_path_f32() { for ((exponent, mantissa, negative, many_digits), expected) in FPATHS_F32.iter().copied() { diff --git a/library/coretests/tests/num/dec2flt/float.rs b/library/coretests/tests/num/dec2flt/float.rs index b5afd3e3b24..264de061be9 100644 --- a/library/coretests/tests/num/dec2flt/float.rs +++ b/library/coretests/tests/num/dec2flt/float.rs @@ -1,5 +1,24 @@ use core::num::dec2flt::float::RawFloat; +// FIXME(f16_f128): enable on all targets once possible. +#[test] +#[cfg(target_has_reliable_f16)] +fn test_f16_integer_decode() { + assert_eq!(3.14159265359f16.integer_decode(), (1608, -9, 1)); + assert_eq!((-8573.5918555f16).integer_decode(), (1072, 3, -1)); + #[cfg(not(miri))] // miri doesn't have powf16 + assert_eq!(2f16.powf(14.0).integer_decode(), (1 << 10, 4, 1)); + assert_eq!(0f16.integer_decode(), (0, -25, 1)); + assert_eq!((-0f16).integer_decode(), (0, -25, -1)); + assert_eq!(f16::INFINITY.integer_decode(), (1 << 10, 6, 1)); + assert_eq!(f16::NEG_INFINITY.integer_decode(), (1 << 10, 6, -1)); + + // Ignore the "sign" (quiet / signalling flag) of NAN. + // It can vary between runtime operations and LLVM folding. + let (nan_m, nan_p, _nan_s) = f16::NAN.integer_decode(); + assert_eq!((nan_m, nan_p), (1536, 6)); +} + #[test] fn test_f32_integer_decode() { assert_eq!(3.14159265359f32.integer_decode(), (13176795, -22, 1)); @@ -34,6 +53,27 @@ fn test_f64_integer_decode() { /* Sanity checks of computed magic numbers */ +// FIXME(f16_f128): enable on all targets once possible. +#[test] +#[cfg(target_has_reliable_f16)] +fn test_f16_consts() { + assert_eq!(<f16 as RawFloat>::INFINITY, f16::INFINITY); + assert_eq!(<f16 as RawFloat>::NEG_INFINITY, -f16::INFINITY); + assert_eq!(<f16 as RawFloat>::NAN.to_bits(), f16::NAN.to_bits()); + assert_eq!(<f16 as RawFloat>::NEG_NAN.to_bits(), (-f16::NAN).to_bits()); + assert_eq!(<f16 as RawFloat>::SIG_BITS, 10); + assert_eq!(<f16 as RawFloat>::MIN_EXPONENT_ROUND_TO_EVEN, -22); + assert_eq!(<f16 as RawFloat>::MAX_EXPONENT_ROUND_TO_EVEN, 5); + assert_eq!(<f16 as RawFloat>::MIN_EXPONENT_FAST_PATH, -4); + assert_eq!(<f16 as RawFloat>::MAX_EXPONENT_FAST_PATH, 4); + assert_eq!(<f16 as RawFloat>::MAX_EXPONENT_DISGUISED_FAST_PATH, 7); + assert_eq!(<f16 as RawFloat>::EXP_MIN, -14); + assert_eq!(<f16 as RawFloat>::EXP_SAT, 0x1f); + assert_eq!(<f16 as RawFloat>::SMALLEST_POWER_OF_TEN, -27); + assert_eq!(<f16 as RawFloat>::LARGEST_POWER_OF_TEN, 4); + assert_eq!(<f16 as RawFloat>::MAX_MANTISSA_FAST_PATH, 2048); +} + #[test] fn test_f32_consts() { assert_eq!(<f32 as RawFloat>::INFINITY, f32::INFINITY); diff --git a/library/coretests/tests/num/dec2flt/lemire.rs b/library/coretests/tests/num/dec2flt/lemire.rs index 0db80fbd525..6d49d85170e 100644 --- a/library/coretests/tests/num/dec2flt/lemire.rs +++ b/library/coretests/tests/num/dec2flt/lemire.rs @@ -1,6 +1,12 @@ use core::num::dec2flt::float::RawFloat; use core::num::dec2flt::lemire::compute_float; +#[cfg(target_has_reliable_f16)] +fn compute_float16(q: i64, w: u64) -> (i32, u64) { + let fp = compute_float::<f16>(q, w); + (fp.p_biased, fp.m) +} + fn compute_float32(q: i64, w: u64) -> (i32, u64) { let fp = compute_float::<f32>(q, w); (fp.p_biased, fp.m) @@ -11,23 +17,73 @@ fn compute_float64(q: i64, w: u64) -> (i32, u64) { (fp.p_biased, fp.m) } +// FIXME(f16_f128): enable on all targets once possible. +#[test] +#[cfg(target_has_reliable_f16)] +fn compute_float_f16_rounding() { + // The maximum integer that cna be converted to a `f16` without lost precision. + let val = 1 << 11; + let scale = 10_u64.pow(10); + + // These test near-halfway cases for half-precision floats. + assert_eq!(compute_float16(0, val), (26, 0)); + assert_eq!(compute_float16(0, val + 1), (26, 0)); + assert_eq!(compute_float16(0, val + 2), (26, 1)); + assert_eq!(compute_float16(0, val + 3), (26, 2)); + assert_eq!(compute_float16(0, val + 4), (26, 2)); + + // For the next power up, the two nearest representable numbers are twice as far apart. + let val2 = 1 << 12; + assert_eq!(compute_float16(0, val2), (27, 0)); + assert_eq!(compute_float16(0, val2 + 2), (27, 0)); + assert_eq!(compute_float16(0, val2 + 4), (27, 1)); + assert_eq!(compute_float16(0, val2 + 6), (27, 2)); + assert_eq!(compute_float16(0, val2 + 8), (27, 2)); + + // These are examples of the above tests, with digits from the exponent shifted + // to the mantissa. + assert_eq!(compute_float16(-10, val * scale), (26, 0)); + assert_eq!(compute_float16(-10, (val + 1) * scale), (26, 0)); + assert_eq!(compute_float16(-10, (val + 2) * scale), (26, 1)); + // Let's check the lines to see if anything is different in table... + assert_eq!(compute_float16(-10, (val + 3) * scale), (26, 2)); + assert_eq!(compute_float16(-10, (val + 4) * scale), (26, 2)); + + // Check the rounding point between infinity and the next representable number down + assert_eq!(compute_float16(4, 6), (f16::INFINITE_POWER - 1, 851)); + assert_eq!(compute_float16(4, 7), (f16::INFINITE_POWER, 0)); // infinity + assert_eq!(compute_float16(2, 655), (f16::INFINITE_POWER - 1, 1023)); +} + #[test] fn compute_float_f32_rounding() { + // the maximum integer that cna be converted to a `f32` without lost precision. + let val = 1 << 24; + let scale = 10_u64.pow(10); + // These test near-halfway cases for single-precision floats. - assert_eq!(compute_float32(0, 16777216), (151, 0)); - assert_eq!(compute_float32(0, 16777217), (151, 0)); - assert_eq!(compute_float32(0, 16777218), (151, 1)); - assert_eq!(compute_float32(0, 16777219), (151, 2)); - assert_eq!(compute_float32(0, 16777220), (151, 2)); - - // These are examples of the above tests, with - // digits from the exponent shifted to the mantissa. - assert_eq!(compute_float32(-10, 167772160000000000), (151, 0)); - assert_eq!(compute_float32(-10, 167772170000000000), (151, 0)); - assert_eq!(compute_float32(-10, 167772180000000000), (151, 1)); + assert_eq!(compute_float32(0, val), (151, 0)); + assert_eq!(compute_float32(0, val + 1), (151, 0)); + assert_eq!(compute_float32(0, val + 2), (151, 1)); + assert_eq!(compute_float32(0, val + 3), (151, 2)); + assert_eq!(compute_float32(0, val + 4), (151, 2)); + + // For the next power up, the two nearest representable numbers are twice as far apart. + let val2 = 1 << 25; + assert_eq!(compute_float32(0, val2), (152, 0)); + assert_eq!(compute_float32(0, val2 + 2), (152, 0)); + assert_eq!(compute_float32(0, val2 + 4), (152, 1)); + assert_eq!(compute_float32(0, val2 + 6), (152, 2)); + assert_eq!(compute_float32(0, val2 + 8), (152, 2)); + + // These are examples of the above tests, with digits from the exponent shifted + // to the mantissa. + assert_eq!(compute_float32(-10, val * scale), (151, 0)); + assert_eq!(compute_float32(-10, (val + 1) * scale), (151, 0)); + assert_eq!(compute_float32(-10, (val + 2) * scale), (151, 1)); // Let's check the lines to see if anything is different in table... - assert_eq!(compute_float32(-10, 167772190000000000), (151, 2)); - assert_eq!(compute_float32(-10, 167772200000000000), (151, 2)); + assert_eq!(compute_float32(-10, (val + 3) * scale), (151, 2)); + assert_eq!(compute_float32(-10, (val + 4) * scale), (151, 2)); // Check the rounding point between infinity and the next representable number down assert_eq!(compute_float32(38, 3), (f32::INFINITE_POWER - 1, 6402534)); @@ -37,23 +93,38 @@ fn compute_float_f32_rounding() { #[test] fn compute_float_f64_rounding() { + // The maximum integer that cna be converted to a `f64` without lost precision. + let val = 1 << 53; + let scale = 1000; + // These test near-halfway cases for double-precision floats. - assert_eq!(compute_float64(0, 9007199254740992), (1076, 0)); - assert_eq!(compute_float64(0, 9007199254740993), (1076, 0)); - assert_eq!(compute_float64(0, 9007199254740994), (1076, 1)); - assert_eq!(compute_float64(0, 9007199254740995), (1076, 2)); - assert_eq!(compute_float64(0, 9007199254740996), (1076, 2)); - assert_eq!(compute_float64(0, 18014398509481984), (1077, 0)); - assert_eq!(compute_float64(0, 18014398509481986), (1077, 0)); - assert_eq!(compute_float64(0, 18014398509481988), (1077, 1)); - assert_eq!(compute_float64(0, 18014398509481990), (1077, 2)); - assert_eq!(compute_float64(0, 18014398509481992), (1077, 2)); - - // These are examples of the above tests, with - // digits from the exponent shifted to the mantissa. - assert_eq!(compute_float64(-3, 9007199254740992000), (1076, 0)); - assert_eq!(compute_float64(-3, 9007199254740993000), (1076, 0)); - assert_eq!(compute_float64(-3, 9007199254740994000), (1076, 1)); - assert_eq!(compute_float64(-3, 9007199254740995000), (1076, 2)); - assert_eq!(compute_float64(-3, 9007199254740996000), (1076, 2)); + assert_eq!(compute_float64(0, val), (1076, 0)); + assert_eq!(compute_float64(0, val + 1), (1076, 0)); + assert_eq!(compute_float64(0, val + 2), (1076, 1)); + assert_eq!(compute_float64(0, val + 3), (1076, 2)); + assert_eq!(compute_float64(0, val + 4), (1076, 2)); + + // For the next power up, the two nearest representable numbers are twice as far apart. + let val2 = 1 << 54; + assert_eq!(compute_float64(0, val2), (1077, 0)); + assert_eq!(compute_float64(0, val2 + 2), (1077, 0)); + assert_eq!(compute_float64(0, val2 + 4), (1077, 1)); + assert_eq!(compute_float64(0, val2 + 6), (1077, 2)); + assert_eq!(compute_float64(0, val2 + 8), (1077, 2)); + + // These are examples of the above tests, with digits from the exponent shifted + // to the mantissa. + assert_eq!(compute_float64(-3, val * scale), (1076, 0)); + assert_eq!(compute_float64(-3, (val + 1) * scale), (1076, 0)); + assert_eq!(compute_float64(-3, (val + 2) * scale), (1076, 1)); + assert_eq!(compute_float64(-3, (val + 3) * scale), (1076, 2)); + assert_eq!(compute_float64(-3, (val + 4) * scale), (1076, 2)); + + // Check the rounding point between infinity and the next representable number down + assert_eq!(compute_float64(308, 1), (f64::INFINITE_POWER - 1, 506821272651936)); + assert_eq!(compute_float64(308, 2), (f64::INFINITE_POWER, 0)); // infinity + assert_eq!( + compute_float64(292, 17976931348623157), + (f64::INFINITE_POWER - 1, 4503599627370495) + ); } diff --git a/library/coretests/tests/num/dec2flt/mod.rs b/library/coretests/tests/num/dec2flt/mod.rs index a9025be5ca7..b8ca220847c 100644 --- a/library/coretests/tests/num/dec2flt/mod.rs +++ b/library/coretests/tests/num/dec2flt/mod.rs @@ -11,15 +11,23 @@ mod parse; // Requires a *polymorphic literal*, i.e., one that can serve as f64 as well as f32. macro_rules! test_literal { ($x: expr) => {{ + #[cfg(target_has_reliable_f16)] + let x16: f16 = $x; let x32: f32 = $x; let x64: f64 = $x; let inputs = &[stringify!($x).into(), format!("{:?}", x64), format!("{:e}", x64)]; + for input in inputs { - assert_eq!(input.parse(), Ok(x64)); - assert_eq!(input.parse(), Ok(x32)); + assert_eq!(input.parse(), Ok(x64), "failed f64 {input}"); + assert_eq!(input.parse(), Ok(x32), "failed f32 {input}"); + #[cfg(target_has_reliable_f16)] + assert_eq!(input.parse(), Ok(x16), "failed f16 {input}"); + let neg_input = format!("-{input}"); - assert_eq!(neg_input.parse(), Ok(-x64)); - assert_eq!(neg_input.parse(), Ok(-x32)); + assert_eq!(neg_input.parse(), Ok(-x64), "failed f64 {neg_input}"); + assert_eq!(neg_input.parse(), Ok(-x32), "failed f32 {neg_input}"); + #[cfg(target_has_reliable_f16)] + assert_eq!(neg_input.parse(), Ok(-x16), "failed f16 {neg_input}"); } }}; } @@ -84,48 +92,87 @@ fn fast_path_correct() { test_literal!(1.448997445238699); } +// FIXME(f16_f128): remove gates once tests work on all targets + #[test] fn lonely_dot() { + #[cfg(target_has_reliable_f16)] + assert!(".".parse::<f16>().is_err()); assert!(".".parse::<f32>().is_err()); assert!(".".parse::<f64>().is_err()); } #[test] fn exponentiated_dot() { + #[cfg(target_has_reliable_f16)] + assert!(".e0".parse::<f16>().is_err()); assert!(".e0".parse::<f32>().is_err()); assert!(".e0".parse::<f64>().is_err()); } #[test] fn lonely_sign() { - assert!("+".parse::<f32>().is_err()); - assert!("-".parse::<f64>().is_err()); + #[cfg(target_has_reliable_f16)] + assert!("+".parse::<f16>().is_err()); + assert!("-".parse::<f32>().is_err()); + assert!("+".parse::<f64>().is_err()); } #[test] fn whitespace() { + #[cfg(target_has_reliable_f16)] + assert!("1.0 ".parse::<f16>().is_err()); assert!(" 1.0".parse::<f32>().is_err()); assert!("1.0 ".parse::<f64>().is_err()); } #[test] fn nan() { + #[cfg(target_has_reliable_f16)] + { + assert!("NaN".parse::<f16>().unwrap().is_nan()); + assert!("-NaN".parse::<f16>().unwrap().is_nan()); + } + assert!("NaN".parse::<f32>().unwrap().is_nan()); + assert!("-NaN".parse::<f32>().unwrap().is_nan()); + assert!("NaN".parse::<f64>().unwrap().is_nan()); + assert!("-NaN".parse::<f64>().unwrap().is_nan()); } #[test] fn inf() { - assert_eq!("inf".parse(), Ok(f64::INFINITY)); - assert_eq!("-inf".parse(), Ok(f64::NEG_INFINITY)); + #[cfg(target_has_reliable_f16)] + { + assert_eq!("inf".parse(), Ok(f16::INFINITY)); + assert_eq!("-inf".parse(), Ok(f16::NEG_INFINITY)); + } + assert_eq!("inf".parse(), Ok(f32::INFINITY)); assert_eq!("-inf".parse(), Ok(f32::NEG_INFINITY)); + + assert_eq!("inf".parse(), Ok(f64::INFINITY)); + assert_eq!("-inf".parse(), Ok(f64::NEG_INFINITY)); } #[test] fn massive_exponent() { + #[cfg(target_has_reliable_f16)] + { + let max = i16::MAX; + assert_eq!(format!("1e{max}000").parse(), Ok(f16::INFINITY)); + assert_eq!(format!("1e-{max}000").parse(), Ok(0.0f16)); + assert_eq!(format!("1e{max}000").parse(), Ok(f16::INFINITY)); + } + + let max = i32::MAX; + assert_eq!(format!("1e{max}000").parse(), Ok(f32::INFINITY)); + assert_eq!(format!("1e-{max}000").parse(), Ok(0.0f32)); + assert_eq!(format!("1e{max}000").parse(), Ok(f32::INFINITY)); + let max = i64::MAX; assert_eq!(format!("1e{max}000").parse(), Ok(f64::INFINITY)); - assert_eq!(format!("1e-{max}000").parse(), Ok(0.0)); + assert_eq!(format!("1e-{max}000").parse(), Ok(0.0f64)); assert_eq!(format!("1e{max}000").parse(), Ok(f64::INFINITY)); } diff --git a/library/coretests/tests/num/dec2flt/parse.rs b/library/coretests/tests/num/dec2flt/parse.rs index 59be3915052..dccb6b5528d 100644 --- a/library/coretests/tests/num/dec2flt/parse.rs +++ b/library/coretests/tests/num/dec2flt/parse.rs @@ -10,6 +10,9 @@ fn new_dec(e: i64, m: u64) -> Decimal { fn missing_pieces() { let permutations = &[".e", "1e", "e4", "e", ".12e", "321.e", "32.12e+", "12.32e-"]; for &s in permutations { + #[cfg(target_has_reliable_f16)] + assert_eq!(dec2flt::<f16>(s), Err(pfe_invalid())); + assert_eq!(dec2flt::<f32>(s), Err(pfe_invalid())); assert_eq!(dec2flt::<f64>(s), Err(pfe_invalid())); } } @@ -17,15 +20,31 @@ fn missing_pieces() { #[test] fn invalid_chars() { let invalid = "r,?<j"; - let error = Err(pfe_invalid()); let valid_strings = &["123", "666.", ".1", "5e1", "7e-3", "0.0e+1"]; + for c in invalid.chars() { for s in valid_strings { for i in 0..s.len() { let mut input = String::new(); input.push_str(s); input.insert(i, c); - assert!(dec2flt::<f64>(&input) == error, "did not reject invalid {:?}", input); + + #[cfg(target_has_reliable_f16)] + assert_eq!( + dec2flt::<f16>(&input), + Err(pfe_invalid()), + "f16 did not reject invalid {input:?}", + ); + assert_eq!( + dec2flt::<f32>(&input), + Err(pfe_invalid()), + "f32 did not reject invalid {input:?}", + ); + assert_eq!( + dec2flt::<f64>(&input), + Err(pfe_invalid()), + "f64 did not reject invalid {input:?}", + ); } } } diff --git a/library/coretests/tests/num/flt2dec/mod.rs b/library/coretests/tests/num/flt2dec/mod.rs index c64bb0a3072..ce36db33d05 100644 --- a/library/coretests/tests/num/flt2dec/mod.rs +++ b/library/coretests/tests/num/flt2dec/mod.rs @@ -16,7 +16,7 @@ mod random; pub fn decode_finite<T: DecodableFloat>(v: T) -> Decoded { match decode(v).1 { FullDecoded::Finite(decoded) => decoded, - full_decoded => panic!("expected finite, got {full_decoded:?} instead"), + full_decoded => panic!("expected finite, got {full_decoded:?} instead for {v:?}"), } } @@ -75,6 +75,11 @@ macro_rules! try_fixed { }) } +#[cfg(target_has_reliable_f16)] +fn ldexp_f16(a: f16, b: i32) -> f16 { + ldexp_f64(a as f64, b) as f16 +} + fn ldexp_f32(a: f32, b: i32) -> f32 { ldexp_f64(a as f64, b) as f32 } @@ -176,6 +181,13 @@ trait TestableFloat: DecodableFloat + fmt::Display { fn ldexpi(f: i64, exp: isize) -> Self; } +#[cfg(target_has_reliable_f16)] +impl TestableFloat for f16 { + fn ldexpi(f: i64, exp: isize) -> Self { + f as Self * (exp as Self).exp2() + } +} + impl TestableFloat for f32 { fn ldexpi(f: i64, exp: isize) -> Self { f as Self * (exp as Self).exp2() @@ -225,6 +237,76 @@ macro_rules! check_exact_one { // // [1] Vern Paxson, A Program for Testing IEEE Decimal-Binary Conversion // ftp://ftp.ee.lbl.gov/testbase-report.ps.Z +// or https://www.icir.org/vern/papers/testbase-report.pdf + +#[cfg(target_has_reliable_f16)] +pub fn f16_shortest_sanity_test<F>(mut f: F) +where + F: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> (&'a [u8], i16), +{ + // 0.0999145507813 + // 0.0999755859375 + // 0.100036621094 + check_shortest!(f(0.1f16) => b"1", 0); + + // 0.3330078125 + // 0.333251953125 (1/3 in the default rounding) + // 0.33349609375 + check_shortest!(f(1.0f16/3.0) => b"3333", 0); + + // 10^1 * 0.3138671875 + // 10^1 * 0.3140625 + // 10^1 * 0.3142578125 + check_shortest!(f(3.14f16) => b"314", 1); + + // 10^18 * 0.31415916243714048 + // 10^18 * 0.314159196796878848 + // 10^18 * 0.314159231156617216 + check_shortest!(f(3.1415e4f16) => b"3141", 5); + + // regression test for decoders + // 10^2 * 0.31984375 + // 10^2 * 0.32 + // 10^2 * 0.3203125 + check_shortest!(f(ldexp_f16(1.0, 5)) => b"32", 2); + + // 10^5 * 0.65472 + // 10^5 * 0.65504 + // 10^5 * 0.65536 + check_shortest!(f(f16::MAX) => b"655", 5); + + // 10^-4 * 0.60975551605224609375 + // 10^-4 * 0.6103515625 + // 10^-4 * 0.61094760894775390625 + check_shortest!(f(f16::MIN_POSITIVE) => b"6104", -4); + + // 10^-9 * 0 + // 10^-9 * 0.59604644775390625 + // 10^-8 * 0.11920928955078125 + let minf16 = ldexp_f16(1.0, -24); + check_shortest!(f(minf16) => b"6", -7); +} + +#[cfg(target_has_reliable_f16)] +pub fn f16_exact_sanity_test<F>(mut f: F) +where + F: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>], i16) -> (&'a [u8], i16), +{ + let minf16 = ldexp_f16(1.0, -24); + + check_exact!(f(0.1f16) => b"999755859375 ", -1); + check_exact!(f(0.5f16) => b"5 ", 0); + check_exact!(f(1.0f16/3.0) => b"333251953125 ", 0); + check_exact!(f(3.141f16) => b"3140625 ", 1); + check_exact!(f(3.141e4f16) => b"31408 ", 5); + check_exact!(f(f16::MAX) => b"65504 ", 5); + check_exact!(f(f16::MIN_POSITIVE) => b"6103515625 ", -4); + check_exact!(f(minf16) => b"59604644775390625", -7); + + // FIXME(f16_f128): these should gain the check_exact_one tests like `f32` and `f64` have, + // but these values are not easy to generate. The algorithm from the Paxon paper [1] needs + // to be adapted to binary16. +} pub fn f32_shortest_sanity_test<F>(mut f: F) where @@ -553,23 +635,45 @@ where assert_eq!(to_string(f, 1.9971e20, Minus, 1), "199710000000000000000.0"); assert_eq!(to_string(f, 1.9971e20, Minus, 8), "199710000000000000000.00000000"); - assert_eq!(to_string(f, f32::MAX, Minus, 0), format!("34028235{:0>31}", "")); - assert_eq!(to_string(f, f32::MAX, Minus, 1), format!("34028235{:0>31}.0", "")); - assert_eq!(to_string(f, f32::MAX, Minus, 8), format!("34028235{:0>31}.00000000", "")); - - let minf32 = ldexp_f32(1.0, -149); - assert_eq!(to_string(f, minf32, Minus, 0), format!("0.{:0>44}1", "")); - assert_eq!(to_string(f, minf32, Minus, 45), format!("0.{:0>44}1", "")); - assert_eq!(to_string(f, minf32, Minus, 46), format!("0.{:0>44}10", "")); + #[cfg(target_has_reliable_f16)] + { + // f16 + assert_eq!(to_string(f, f16::MAX, Minus, 0), "65500"); + assert_eq!(to_string(f, f16::MAX, Minus, 1), "65500.0"); + assert_eq!(to_string(f, f16::MAX, Minus, 8), "65500.00000000"); + + let minf16 = ldexp_f16(1.0, -24); + assert_eq!(to_string(f, minf16, Minus, 0), "0.00000006"); + assert_eq!(to_string(f, minf16, Minus, 8), "0.00000006"); + assert_eq!(to_string(f, minf16, Minus, 9), "0.000000060"); + } - assert_eq!(to_string(f, f64::MAX, Minus, 0), format!("17976931348623157{:0>292}", "")); - assert_eq!(to_string(f, f64::MAX, Minus, 1), format!("17976931348623157{:0>292}.0", "")); - assert_eq!(to_string(f, f64::MAX, Minus, 8), format!("17976931348623157{:0>292}.00000000", "")); + { + // f32 + assert_eq!(to_string(f, f32::MAX, Minus, 0), format!("34028235{:0>31}", "")); + assert_eq!(to_string(f, f32::MAX, Minus, 1), format!("34028235{:0>31}.0", "")); + assert_eq!(to_string(f, f32::MAX, Minus, 8), format!("34028235{:0>31}.00000000", "")); + + let minf32 = ldexp_f32(1.0, -149); + assert_eq!(to_string(f, minf32, Minus, 0), format!("0.{:0>44}1", "")); + assert_eq!(to_string(f, minf32, Minus, 45), format!("0.{:0>44}1", "")); + assert_eq!(to_string(f, minf32, Minus, 46), format!("0.{:0>44}10", "")); + } - let minf64 = ldexp_f64(1.0, -1074); - assert_eq!(to_string(f, minf64, Minus, 0), format!("0.{:0>323}5", "")); - assert_eq!(to_string(f, minf64, Minus, 324), format!("0.{:0>323}5", "")); - assert_eq!(to_string(f, minf64, Minus, 325), format!("0.{:0>323}50", "")); + { + // f64 + assert_eq!(to_string(f, f64::MAX, Minus, 0), format!("17976931348623157{:0>292}", "")); + assert_eq!(to_string(f, f64::MAX, Minus, 1), format!("17976931348623157{:0>292}.0", "")); + assert_eq!( + to_string(f, f64::MAX, Minus, 8), + format!("17976931348623157{:0>292}.00000000", "") + ); + + let minf64 = ldexp_f64(1.0, -1074); + assert_eq!(to_string(f, minf64, Minus, 0), format!("0.{:0>323}5", "")); + assert_eq!(to_string(f, minf64, Minus, 324), format!("0.{:0>323}5", "")); + assert_eq!(to_string(f, minf64, Minus, 325), format!("0.{:0>323}50", "")); + } if cfg!(miri) { // Miri is too slow @@ -655,27 +759,45 @@ where assert_eq!(to_string(f, 1.0e23, Minus, (23, 24), false), "100000000000000000000000"); assert_eq!(to_string(f, 1.0e23, Minus, (24, 25), false), "1e23"); - assert_eq!(to_string(f, f32::MAX, Minus, (-4, 16), false), "3.4028235e38"); - assert_eq!(to_string(f, f32::MAX, Minus, (-39, 38), false), "3.4028235e38"); - assert_eq!(to_string(f, f32::MAX, Minus, (-38, 39), false), format!("34028235{:0>31}", "")); - - let minf32 = ldexp_f32(1.0, -149); - assert_eq!(to_string(f, minf32, Minus, (-4, 16), false), "1e-45"); - assert_eq!(to_string(f, minf32, Minus, (-44, 45), false), "1e-45"); - assert_eq!(to_string(f, minf32, Minus, (-45, 44), false), format!("0.{:0>44}1", "")); - - assert_eq!(to_string(f, f64::MAX, Minus, (-4, 16), false), "1.7976931348623157e308"); - assert_eq!( - to_string(f, f64::MAX, Minus, (-308, 309), false), - format!("17976931348623157{:0>292}", "") - ); - assert_eq!(to_string(f, f64::MAX, Minus, (-309, 308), false), "1.7976931348623157e308"); + #[cfg(target_has_reliable_f16)] + { + // f16 + assert_eq!(to_string(f, f16::MAX, Minus, (-2, 2), false), "6.55e4"); + assert_eq!(to_string(f, f16::MAX, Minus, (-4, 4), false), "6.55e4"); + assert_eq!(to_string(f, f16::MAX, Minus, (-5, 5), false), "65500"); + + let minf16 = ldexp_f16(1.0, -24); + assert_eq!(to_string(f, minf16, Minus, (-2, 2), false), "6e-8"); + assert_eq!(to_string(f, minf16, Minus, (-7, 7), false), "6e-8"); + assert_eq!(to_string(f, minf16, Minus, (-8, 8), false), "0.00000006"); + } - let minf64 = ldexp_f64(1.0, -1074); - assert_eq!(to_string(f, minf64, Minus, (-4, 16), false), "5e-324"); - assert_eq!(to_string(f, minf64, Minus, (-324, 323), false), format!("0.{:0>323}5", "")); - assert_eq!(to_string(f, minf64, Minus, (-323, 324), false), "5e-324"); + { + // f32 + assert_eq!(to_string(f, f32::MAX, Minus, (-4, 16), false), "3.4028235e38"); + assert_eq!(to_string(f, f32::MAX, Minus, (-39, 38), false), "3.4028235e38"); + assert_eq!(to_string(f, f32::MAX, Minus, (-38, 39), false), format!("34028235{:0>31}", "")); + + let minf32 = ldexp_f32(1.0, -149); + assert_eq!(to_string(f, minf32, Minus, (-4, 16), false), "1e-45"); + assert_eq!(to_string(f, minf32, Minus, (-44, 45), false), "1e-45"); + assert_eq!(to_string(f, minf32, Minus, (-45, 44), false), format!("0.{:0>44}1", "")); + } + { + // f64 + assert_eq!(to_string(f, f64::MAX, Minus, (-4, 16), false), "1.7976931348623157e308"); + assert_eq!( + to_string(f, f64::MAX, Minus, (-308, 309), false), + format!("17976931348623157{:0>292}", "") + ); + assert_eq!(to_string(f, f64::MAX, Minus, (-309, 308), false), "1.7976931348623157e308"); + + let minf64 = ldexp_f64(1.0, -1074); + assert_eq!(to_string(f, minf64, Minus, (-4, 16), false), "5e-324"); + assert_eq!(to_string(f, minf64, Minus, (-324, 323), false), format!("0.{:0>323}5", "")); + assert_eq!(to_string(f, minf64, Minus, (-323, 324), false), "5e-324"); + } assert_eq!(to_string(f, 1.1, Minus, (i16::MIN, i16::MAX), false), "1.1"); } @@ -791,6 +913,26 @@ where "9.999999999999999547481118258862586856139387236908078193664550781250000e-7" ); + #[cfg(target_has_reliable_f16)] + { + assert_eq!(to_string(f, f16::MAX, Minus, 1, false), "7e4"); + assert_eq!(to_string(f, f16::MAX, Minus, 2, false), "6.6e4"); + assert_eq!(to_string(f, f16::MAX, Minus, 4, false), "6.550e4"); + assert_eq!(to_string(f, f16::MAX, Minus, 5, false), "6.5504e4"); + assert_eq!(to_string(f, f16::MAX, Minus, 6, false), "6.55040e4"); + assert_eq!(to_string(f, f16::MAX, Minus, 16, false), "6.550400000000000e4"); + + let minf16 = ldexp_f16(1.0, -24); + assert_eq!(to_string(f, minf16, Minus, 1, false), "6e-8"); + assert_eq!(to_string(f, minf16, Minus, 2, false), "6.0e-8"); + assert_eq!(to_string(f, minf16, Minus, 4, false), "5.960e-8"); + assert_eq!(to_string(f, minf16, Minus, 8, false), "5.9604645e-8"); + assert_eq!(to_string(f, minf16, Minus, 16, false), "5.960464477539062e-8"); + assert_eq!(to_string(f, minf16, Minus, 17, false), "5.9604644775390625e-8"); + assert_eq!(to_string(f, minf16, Minus, 18, false), "5.96046447753906250e-8"); + assert_eq!(to_string(f, minf16, Minus, 24, false), "5.96046447753906250000000e-8"); + } + assert_eq!(to_string(f, f32::MAX, Minus, 1, false), "3e38"); assert_eq!(to_string(f, f32::MAX, Minus, 2, false), "3.4e38"); assert_eq!(to_string(f, f32::MAX, Minus, 4, false), "3.403e38"); @@ -1069,6 +1211,13 @@ where "0.000000999999999999999954748111825886258685613938723690807819366455078125000" ); + #[cfg(target_has_reliable_f16)] + { + assert_eq!(to_string(f, f16::MAX, Minus, 0), "65504"); + assert_eq!(to_string(f, f16::MAX, Minus, 1), "65504.0"); + assert_eq!(to_string(f, f16::MAX, Minus, 2), "65504.00"); + } + assert_eq!(to_string(f, f32::MAX, Minus, 0), "340282346638528859811704183484516925440"); assert_eq!(to_string(f, f32::MAX, Minus, 1), "340282346638528859811704183484516925440.0"); assert_eq!(to_string(f, f32::MAX, Minus, 2), "340282346638528859811704183484516925440.00"); @@ -1078,6 +1227,21 @@ where return; } + #[cfg(target_has_reliable_f16)] + { + let minf16 = ldexp_f16(1.0, -24); + assert_eq!(to_string(f, minf16, Minus, 0), "0"); + assert_eq!(to_string(f, minf16, Minus, 1), "0.0"); + assert_eq!(to_string(f, minf16, Minus, 2), "0.00"); + assert_eq!(to_string(f, minf16, Minus, 4), "0.0000"); + assert_eq!(to_string(f, minf16, Minus, 8), "0.00000006"); + assert_eq!(to_string(f, minf16, Minus, 10), "0.0000000596"); + assert_eq!(to_string(f, minf16, Minus, 15), "0.000000059604645"); + assert_eq!(to_string(f, minf16, Minus, 20), "0.00000005960464477539"); + assert_eq!(to_string(f, minf16, Minus, 24), "0.000000059604644775390625"); + assert_eq!(to_string(f, minf16, Minus, 32), "0.00000005960464477539062500000000"); + } + let minf32 = ldexp_f32(1.0, -149); assert_eq!(to_string(f, minf32, Minus, 0), "0"); assert_eq!(to_string(f, minf32, Minus, 1), "0.0"); diff --git a/library/coretests/tests/num/flt2dec/random.rs b/library/coretests/tests/num/flt2dec/random.rs index 586b49df7d9..7386139aace 100644 --- a/library/coretests/tests/num/flt2dec/random.rs +++ b/library/coretests/tests/num/flt2dec/random.rs @@ -79,6 +79,20 @@ where (npassed, nignored) } +#[cfg(target_has_reliable_f16)] +pub fn f16_random_equivalence_test<F, G>(f: F, g: G, k: usize, n: usize) +where + F: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> Option<(&'a [u8], i16)>, + G: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> (&'a [u8], i16), +{ + let mut rng = crate::test_rng(); + let f16_range = Uniform::new(0x0001u16, 0x7c00).unwrap(); + iterate("f16_random_equivalence_test", k, n, f, g, |_| { + let x = f16::from_bits(f16_range.sample(&mut rng)); + decode_finite(x) + }); +} + pub fn f32_random_equivalence_test<F, G>(f: F, g: G, k: usize, n: usize) where F: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> Option<(&'a [u8], i16)>, @@ -105,6 +119,24 @@ where }); } +#[cfg(target_has_reliable_f16)] +pub fn f16_exhaustive_equivalence_test<F, G>(f: F, g: G, k: usize) +where + F: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> Option<(&'a [u8], i16)>, + G: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> (&'a [u8], i16), +{ + // Unlike the other float types, `f16` is small enough that these exhaustive tests + // can run in less than a second so we don't need to ignore it. + + // iterate from 0x0001 to 0x7bff, i.e., all finite ranges + let (npassed, nignored) = + iterate("f16_exhaustive_equivalence_test", k, 0x7bff, f, g, |i: usize| { + let x = f16::from_bits(i as u16 + 1); + decode_finite(x) + }); + assert_eq!((npassed, nignored), (29735, 2008)); +} + pub fn f32_exhaustive_equivalence_test<F, G>(f: F, g: G, k: usize) where F: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> Option<(&'a [u8], i16)>, @@ -133,6 +165,17 @@ fn shortest_random_equivalence_test() { f64_random_equivalence_test(format_shortest_opt, fallback, MAX_SIG_DIGITS, n); f32_random_equivalence_test(format_shortest_opt, fallback, MAX_SIG_DIGITS, n); + #[cfg(target_has_reliable_f16)] + f16_random_equivalence_test(format_shortest_opt, fallback, MAX_SIG_DIGITS, n); +} + +#[test] +#[cfg_attr(miri, ignore)] // Miri is to slow +#[cfg(target_has_reliable_f16)] +fn shortest_f16_exhaustive_equivalence_test() { + // see the f32 version + use core::num::flt2dec::strategy::dragon::format_shortest as fallback; + f16_exhaustive_equivalence_test(format_shortest_opt, fallback, MAX_SIG_DIGITS); } #[test] @@ -159,6 +202,23 @@ fn shortest_f64_hard_random_equivalence_test() { } #[test] +#[cfg(target_has_reliable_f16)] +fn exact_f16_random_equivalence_test() { + use core::num::flt2dec::strategy::dragon::format_exact as fallback; + // Miri is too slow + let n = if cfg!(miri) { 3 } else { 1_000 }; + + for k in 1..21 { + f16_random_equivalence_test( + |d, buf| format_exact_opt(d, buf, i16::MIN), + |d, buf| fallback(d, buf, i16::MIN), + k, + n, + ); + } +} + +#[test] fn exact_f32_random_equivalence_test() { use core::num::flt2dec::strategy::dragon::format_exact as fallback; // Miri is too slow diff --git a/library/coretests/tests/num/flt2dec/strategy/dragon.rs b/library/coretests/tests/num/flt2dec/strategy/dragon.rs index be25fee3f6c..43bb6024f9c 100644 --- a/library/coretests/tests/num/flt2dec/strategy/dragon.rs +++ b/library/coretests/tests/num/flt2dec/strategy/dragon.rs @@ -18,6 +18,8 @@ fn test_mul_pow10() { fn shortest_sanity_test() { f64_shortest_sanity_test(format_shortest); f32_shortest_sanity_test(format_shortest); + #[cfg(target_has_reliable_f16)] + f16_shortest_sanity_test(format_shortest); more_shortest_sanity_test(format_shortest); } @@ -41,6 +43,9 @@ fn exact_sanity_test() { f64_exact_sanity_test(format_exact); } f32_exact_sanity_test(format_exact); + + #[cfg(target_has_reliable_f16)] + f16_exact_sanity_test(format_exact); } #[test] diff --git a/library/coretests/tests/num/flt2dec/strategy/grisu.rs b/library/coretests/tests/num/flt2dec/strategy/grisu.rs index 9b2f0453de7..117191e0c8f 100644 --- a/library/coretests/tests/num/flt2dec/strategy/grisu.rs +++ b/library/coretests/tests/num/flt2dec/strategy/grisu.rs @@ -38,6 +38,8 @@ fn test_max_pow10_no_more_than() { fn shortest_sanity_test() { f64_shortest_sanity_test(format_shortest); f32_shortest_sanity_test(format_shortest); + #[cfg(target_has_reliable_f16)] + f16_shortest_sanity_test(format_shortest); more_shortest_sanity_test(format_shortest); } @@ -50,6 +52,8 @@ fn exact_sanity_test() { f64_exact_sanity_test(format_exact); } f32_exact_sanity_test(format_exact); + #[cfg(target_has_reliable_f16)] + f16_exact_sanity_test(format_exact); } #[test] diff --git a/library/coretests/tests/num/mod.rs b/library/coretests/tests/num/mod.rs index 0add9a01e68..a6b75f70266 100644 --- a/library/coretests/tests/num/mod.rs +++ b/library/coretests/tests/num/mod.rs @@ -732,157 +732,157 @@ assume_usize_width! { } macro_rules! test_float { - ($modname: ident, $fty: ty, $inf: expr, $neginf: expr, $nan: expr, $min: expr, $max: expr, $min_pos: expr, $max_exp:expr) => { + ($modname: ident, $fassert: ident, $fty: ty, $inf: expr, $neginf: expr, $nan: expr, $min: expr, $max: expr, $min_pos: expr, $max_exp:expr) => { mod $modname { #[test] fn min() { - assert_eq!((0.0 as $fty).min(0.0), 0.0); - assert!((0.0 as $fty).min(0.0).is_sign_positive()); - assert_eq!((-0.0 as $fty).min(-0.0), -0.0); - assert!((-0.0 as $fty).min(-0.0).is_sign_negative()); - assert_eq!((9.0 as $fty).min(9.0), 9.0); - assert_eq!((-9.0 as $fty).min(0.0), -9.0); - assert_eq!((0.0 as $fty).min(9.0), 0.0); - assert!((0.0 as $fty).min(9.0).is_sign_positive()); - assert_eq!((-0.0 as $fty).min(9.0), -0.0); - assert!((-0.0 as $fty).min(9.0).is_sign_negative()); - assert_eq!((-0.0 as $fty).min(-9.0), -9.0); - assert_eq!(($inf as $fty).min(9.0), 9.0); - assert_eq!((9.0 as $fty).min($inf), 9.0); - assert_eq!(($inf as $fty).min(-9.0), -9.0); - assert_eq!((-9.0 as $fty).min($inf), -9.0); - assert_eq!(($neginf as $fty).min(9.0), $neginf); - assert_eq!((9.0 as $fty).min($neginf), $neginf); - assert_eq!(($neginf as $fty).min(-9.0), $neginf); - assert_eq!((-9.0 as $fty).min($neginf), $neginf); - assert_eq!(($nan as $fty).min(9.0), 9.0); - assert_eq!(($nan as $fty).min(-9.0), -9.0); - assert_eq!((9.0 as $fty).min($nan), 9.0); - assert_eq!((-9.0 as $fty).min($nan), -9.0); - assert!(($nan as $fty).min($nan).is_nan()); + $fassert!((0.0 as $fty).min(0.0), 0.0); + $fassert!((0.0 as $fty).min(0.0).is_sign_positive()); + $fassert!((-0.0 as $fty).min(-0.0), -0.0); + $fassert!((-0.0 as $fty).min(-0.0).is_sign_negative()); + $fassert!((9.0 as $fty).min(9.0), 9.0); + $fassert!((-9.0 as $fty).min(0.0), -9.0); + $fassert!((0.0 as $fty).min(9.0), 0.0); + $fassert!((0.0 as $fty).min(9.0).is_sign_positive()); + $fassert!((-0.0 as $fty).min(9.0), -0.0); + $fassert!((-0.0 as $fty).min(9.0).is_sign_negative()); + $fassert!((-0.0 as $fty).min(-9.0), -9.0); + $fassert!(($inf as $fty).min(9.0), 9.0); + $fassert!((9.0 as $fty).min($inf), 9.0); + $fassert!(($inf as $fty).min(-9.0), -9.0); + $fassert!((-9.0 as $fty).min($inf), -9.0); + $fassert!(($neginf as $fty).min(9.0), $neginf); + $fassert!((9.0 as $fty).min($neginf), $neginf); + $fassert!(($neginf as $fty).min(-9.0), $neginf); + $fassert!((-9.0 as $fty).min($neginf), $neginf); + $fassert!(($nan as $fty).min(9.0), 9.0); + $fassert!(($nan as $fty).min(-9.0), -9.0); + $fassert!((9.0 as $fty).min($nan), 9.0); + $fassert!((-9.0 as $fty).min($nan), -9.0); + $fassert!(($nan as $fty).min($nan).is_nan()); } #[test] fn max() { - assert_eq!((0.0 as $fty).max(0.0), 0.0); - assert!((0.0 as $fty).max(0.0).is_sign_positive()); - assert_eq!((-0.0 as $fty).max(-0.0), -0.0); - assert!((-0.0 as $fty).max(-0.0).is_sign_negative()); - assert_eq!((9.0 as $fty).max(9.0), 9.0); - assert_eq!((-9.0 as $fty).max(0.0), 0.0); - assert!((-9.0 as $fty).max(0.0).is_sign_positive()); - assert_eq!((-9.0 as $fty).max(-0.0), -0.0); - assert!((-9.0 as $fty).max(-0.0).is_sign_negative()); - assert_eq!((0.0 as $fty).max(9.0), 9.0); - assert_eq!((0.0 as $fty).max(-9.0), 0.0); - assert!((0.0 as $fty).max(-9.0).is_sign_positive()); - assert_eq!((-0.0 as $fty).max(-9.0), -0.0); - assert!((-0.0 as $fty).max(-9.0).is_sign_negative()); - assert_eq!(($inf as $fty).max(9.0), $inf); - assert_eq!((9.0 as $fty).max($inf), $inf); - assert_eq!(($inf as $fty).max(-9.0), $inf); - assert_eq!((-9.0 as $fty).max($inf), $inf); - assert_eq!(($neginf as $fty).max(9.0), 9.0); - assert_eq!((9.0 as $fty).max($neginf), 9.0); - assert_eq!(($neginf as $fty).max(-9.0), -9.0); - assert_eq!((-9.0 as $fty).max($neginf), -9.0); - assert_eq!(($nan as $fty).max(9.0), 9.0); - assert_eq!(($nan as $fty).max(-9.0), -9.0); - assert_eq!((9.0 as $fty).max($nan), 9.0); - assert_eq!((-9.0 as $fty).max($nan), -9.0); - assert!(($nan as $fty).max($nan).is_nan()); + $fassert!((0.0 as $fty).max(0.0), 0.0); + $fassert!((0.0 as $fty).max(0.0).is_sign_positive()); + $fassert!((-0.0 as $fty).max(-0.0), -0.0); + $fassert!((-0.0 as $fty).max(-0.0).is_sign_negative()); + $fassert!((9.0 as $fty).max(9.0), 9.0); + $fassert!((-9.0 as $fty).max(0.0), 0.0); + $fassert!((-9.0 as $fty).max(0.0).is_sign_positive()); + $fassert!((-9.0 as $fty).max(-0.0), -0.0); + $fassert!((-9.0 as $fty).max(-0.0).is_sign_negative()); + $fassert!((0.0 as $fty).max(9.0), 9.0); + $fassert!((0.0 as $fty).max(-9.0), 0.0); + $fassert!((0.0 as $fty).max(-9.0).is_sign_positive()); + $fassert!((-0.0 as $fty).max(-9.0), -0.0); + $fassert!((-0.0 as $fty).max(-9.0).is_sign_negative()); + $fassert!(($inf as $fty).max(9.0), $inf); + $fassert!((9.0 as $fty).max($inf), $inf); + $fassert!(($inf as $fty).max(-9.0), $inf); + $fassert!((-9.0 as $fty).max($inf), $inf); + $fassert!(($neginf as $fty).max(9.0), 9.0); + $fassert!((9.0 as $fty).max($neginf), 9.0); + $fassert!(($neginf as $fty).max(-9.0), -9.0); + $fassert!((-9.0 as $fty).max($neginf), -9.0); + $fassert!(($nan as $fty).max(9.0), 9.0); + $fassert!(($nan as $fty).max(-9.0), -9.0); + $fassert!((9.0 as $fty).max($nan), 9.0); + $fassert!((-9.0 as $fty).max($nan), -9.0); + $fassert!(($nan as $fty).max($nan).is_nan()); } #[test] fn minimum() { - assert_eq!((0.0 as $fty).minimum(0.0), 0.0); - assert!((0.0 as $fty).minimum(0.0).is_sign_positive()); - assert_eq!((-0.0 as $fty).minimum(0.0), -0.0); - assert!((-0.0 as $fty).minimum(0.0).is_sign_negative()); - assert_eq!((-0.0 as $fty).minimum(-0.0), -0.0); - assert!((-0.0 as $fty).minimum(-0.0).is_sign_negative()); - assert_eq!((9.0 as $fty).minimum(9.0), 9.0); - assert_eq!((-9.0 as $fty).minimum(0.0), -9.0); - assert_eq!((0.0 as $fty).minimum(9.0), 0.0); - assert!((0.0 as $fty).minimum(9.0).is_sign_positive()); - assert_eq!((-0.0 as $fty).minimum(9.0), -0.0); - assert!((-0.0 as $fty).minimum(9.0).is_sign_negative()); - assert_eq!((-0.0 as $fty).minimum(-9.0), -9.0); - assert_eq!(($inf as $fty).minimum(9.0), 9.0); - assert_eq!((9.0 as $fty).minimum($inf), 9.0); - assert_eq!(($inf as $fty).minimum(-9.0), -9.0); - assert_eq!((-9.0 as $fty).minimum($inf), -9.0); - assert_eq!(($neginf as $fty).minimum(9.0), $neginf); - assert_eq!((9.0 as $fty).minimum($neginf), $neginf); - assert_eq!(($neginf as $fty).minimum(-9.0), $neginf); - assert_eq!((-9.0 as $fty).minimum($neginf), $neginf); - assert!(($nan as $fty).minimum(9.0).is_nan()); - assert!(($nan as $fty).minimum(-9.0).is_nan()); - assert!((9.0 as $fty).minimum($nan).is_nan()); - assert!((-9.0 as $fty).minimum($nan).is_nan()); - assert!(($nan as $fty).minimum($nan).is_nan()); + $fassert!((0.0 as $fty).minimum(0.0), 0.0); + $fassert!((0.0 as $fty).minimum(0.0).is_sign_positive()); + $fassert!((-0.0 as $fty).minimum(0.0), -0.0); + $fassert!((-0.0 as $fty).minimum(0.0).is_sign_negative()); + $fassert!((-0.0 as $fty).minimum(-0.0), -0.0); + $fassert!((-0.0 as $fty).minimum(-0.0).is_sign_negative()); + $fassert!((9.0 as $fty).minimum(9.0), 9.0); + $fassert!((-9.0 as $fty).minimum(0.0), -9.0); + $fassert!((0.0 as $fty).minimum(9.0), 0.0); + $fassert!((0.0 as $fty).minimum(9.0).is_sign_positive()); + $fassert!((-0.0 as $fty).minimum(9.0), -0.0); + $fassert!((-0.0 as $fty).minimum(9.0).is_sign_negative()); + $fassert!((-0.0 as $fty).minimum(-9.0), -9.0); + $fassert!(($inf as $fty).minimum(9.0), 9.0); + $fassert!((9.0 as $fty).minimum($inf), 9.0); + $fassert!(($inf as $fty).minimum(-9.0), -9.0); + $fassert!((-9.0 as $fty).minimum($inf), -9.0); + $fassert!(($neginf as $fty).minimum(9.0), $neginf); + $fassert!((9.0 as $fty).minimum($neginf), $neginf); + $fassert!(($neginf as $fty).minimum(-9.0), $neginf); + $fassert!((-9.0 as $fty).minimum($neginf), $neginf); + $fassert!(($nan as $fty).minimum(9.0).is_nan()); + $fassert!(($nan as $fty).minimum(-9.0).is_nan()); + $fassert!((9.0 as $fty).minimum($nan).is_nan()); + $fassert!((-9.0 as $fty).minimum($nan).is_nan()); + $fassert!(($nan as $fty).minimum($nan).is_nan()); } #[test] fn maximum() { - assert_eq!((0.0 as $fty).maximum(0.0), 0.0); - assert!((0.0 as $fty).maximum(0.0).is_sign_positive()); - assert_eq!((-0.0 as $fty).maximum(0.0), 0.0); - assert!((-0.0 as $fty).maximum(0.0).is_sign_positive()); - assert_eq!((-0.0 as $fty).maximum(-0.0), -0.0); - assert!((-0.0 as $fty).maximum(-0.0).is_sign_negative()); - assert_eq!((9.0 as $fty).maximum(9.0), 9.0); - assert_eq!((-9.0 as $fty).maximum(0.0), 0.0); - assert!((-9.0 as $fty).maximum(0.0).is_sign_positive()); - assert_eq!((-9.0 as $fty).maximum(-0.0), -0.0); - assert!((-9.0 as $fty).maximum(-0.0).is_sign_negative()); - assert_eq!((0.0 as $fty).maximum(9.0), 9.0); - assert_eq!((0.0 as $fty).maximum(-9.0), 0.0); - assert!((0.0 as $fty).maximum(-9.0).is_sign_positive()); - assert_eq!((-0.0 as $fty).maximum(-9.0), -0.0); - assert!((-0.0 as $fty).maximum(-9.0).is_sign_negative()); - assert_eq!(($inf as $fty).maximum(9.0), $inf); - assert_eq!((9.0 as $fty).maximum($inf), $inf); - assert_eq!(($inf as $fty).maximum(-9.0), $inf); - assert_eq!((-9.0 as $fty).maximum($inf), $inf); - assert_eq!(($neginf as $fty).maximum(9.0), 9.0); - assert_eq!((9.0 as $fty).maximum($neginf), 9.0); - assert_eq!(($neginf as $fty).maximum(-9.0), -9.0); - assert_eq!((-9.0 as $fty).maximum($neginf), -9.0); - assert!(($nan as $fty).maximum(9.0).is_nan()); - assert!(($nan as $fty).maximum(-9.0).is_nan()); - assert!((9.0 as $fty).maximum($nan).is_nan()); - assert!((-9.0 as $fty).maximum($nan).is_nan()); - assert!(($nan as $fty).maximum($nan).is_nan()); + $fassert!((0.0 as $fty).maximum(0.0), 0.0); + $fassert!((0.0 as $fty).maximum(0.0).is_sign_positive()); + $fassert!((-0.0 as $fty).maximum(0.0), 0.0); + $fassert!((-0.0 as $fty).maximum(0.0).is_sign_positive()); + $fassert!((-0.0 as $fty).maximum(-0.0), -0.0); + $fassert!((-0.0 as $fty).maximum(-0.0).is_sign_negative()); + $fassert!((9.0 as $fty).maximum(9.0), 9.0); + $fassert!((-9.0 as $fty).maximum(0.0), 0.0); + $fassert!((-9.0 as $fty).maximum(0.0).is_sign_positive()); + $fassert!((-9.0 as $fty).maximum(-0.0), -0.0); + $fassert!((-9.0 as $fty).maximum(-0.0).is_sign_negative()); + $fassert!((0.0 as $fty).maximum(9.0), 9.0); + $fassert!((0.0 as $fty).maximum(-9.0), 0.0); + $fassert!((0.0 as $fty).maximum(-9.0).is_sign_positive()); + $fassert!((-0.0 as $fty).maximum(-9.0), -0.0); + $fassert!((-0.0 as $fty).maximum(-9.0).is_sign_negative()); + $fassert!(($inf as $fty).maximum(9.0), $inf); + $fassert!((9.0 as $fty).maximum($inf), $inf); + $fassert!(($inf as $fty).maximum(-9.0), $inf); + $fassert!((-9.0 as $fty).maximum($inf), $inf); + $fassert!(($neginf as $fty).maximum(9.0), 9.0); + $fassert!((9.0 as $fty).maximum($neginf), 9.0); + $fassert!(($neginf as $fty).maximum(-9.0), -9.0); + $fassert!((-9.0 as $fty).maximum($neginf), -9.0); + $fassert!(($nan as $fty).maximum(9.0).is_nan()); + $fassert!(($nan as $fty).maximum(-9.0).is_nan()); + $fassert!((9.0 as $fty).maximum($nan).is_nan()); + $fassert!((-9.0 as $fty).maximum($nan).is_nan()); + $fassert!(($nan as $fty).maximum($nan).is_nan()); } #[test] fn midpoint() { - assert_eq!((0.5 as $fty).midpoint(0.5), 0.5); - assert_eq!((0.5 as $fty).midpoint(2.5), 1.5); - assert_eq!((3.0 as $fty).midpoint(4.0), 3.5); - assert_eq!((-3.0 as $fty).midpoint(4.0), 0.5); - assert_eq!((3.0 as $fty).midpoint(-4.0), -0.5); - assert_eq!((-3.0 as $fty).midpoint(-4.0), -3.5); - assert_eq!((0.0 as $fty).midpoint(0.0), 0.0); - assert_eq!((-0.0 as $fty).midpoint(-0.0), -0.0); - assert_eq!((-5.0 as $fty).midpoint(5.0), 0.0); - assert_eq!(($max as $fty).midpoint($min), 0.0); - assert_eq!(($min as $fty).midpoint($max), -0.0); - assert_eq!(($max as $fty).midpoint($min_pos), $max / 2.); - assert_eq!((-$max as $fty).midpoint($min_pos), -$max / 2.); - assert_eq!(($max as $fty).midpoint(-$min_pos), $max / 2.); - assert_eq!((-$max as $fty).midpoint(-$min_pos), -$max / 2.); - assert_eq!(($min_pos as $fty).midpoint($max), $max / 2.); - assert_eq!(($min_pos as $fty).midpoint(-$max), -$max / 2.); - assert_eq!((-$min_pos as $fty).midpoint($max), $max / 2.); - assert_eq!((-$min_pos as $fty).midpoint(-$max), -$max / 2.); - assert_eq!(($max as $fty).midpoint($max), $max); - assert_eq!(($min_pos as $fty).midpoint($min_pos), $min_pos); - assert_eq!((-$min_pos as $fty).midpoint(-$min_pos), -$min_pos); - assert_eq!(($max as $fty).midpoint(5.0), $max / 2.0 + 2.5); - assert_eq!(($max as $fty).midpoint(-5.0), $max / 2.0 - 2.5); - assert_eq!(($inf as $fty).midpoint($inf), $inf); - assert_eq!(($neginf as $fty).midpoint($neginf), $neginf); - assert!(($nan as $fty).midpoint(1.0).is_nan()); - assert!((1.0 as $fty).midpoint($nan).is_nan()); - assert!(($nan as $fty).midpoint($nan).is_nan()); + $fassert!((0.5 as $fty).midpoint(0.5), 0.5); + $fassert!((0.5 as $fty).midpoint(2.5), 1.5); + $fassert!((3.0 as $fty).midpoint(4.0), 3.5); + $fassert!((-3.0 as $fty).midpoint(4.0), 0.5); + $fassert!((3.0 as $fty).midpoint(-4.0), -0.5); + $fassert!((-3.0 as $fty).midpoint(-4.0), -3.5); + $fassert!((0.0 as $fty).midpoint(0.0), 0.0); + $fassert!((-0.0 as $fty).midpoint(-0.0), -0.0); + $fassert!((-5.0 as $fty).midpoint(5.0), 0.0); + $fassert!(($max as $fty).midpoint($min), 0.0); + $fassert!(($min as $fty).midpoint($max), -0.0); + $fassert!(($max as $fty).midpoint($min_pos), $max / 2.); + $fassert!((-$max as $fty).midpoint($min_pos), -$max / 2.); + $fassert!(($max as $fty).midpoint(-$min_pos), $max / 2.); + $fassert!((-$max as $fty).midpoint(-$min_pos), -$max / 2.); + $fassert!(($min_pos as $fty).midpoint($max), $max / 2.); + $fassert!(($min_pos as $fty).midpoint(-$max), -$max / 2.); + $fassert!((-$min_pos as $fty).midpoint($max), $max / 2.); + $fassert!((-$min_pos as $fty).midpoint(-$max), -$max / 2.); + $fassert!(($max as $fty).midpoint($max), $max); + $fassert!(($min_pos as $fty).midpoint($min_pos), $min_pos); + $fassert!((-$min_pos as $fty).midpoint(-$min_pos), -$min_pos); + $fassert!(($max as $fty).midpoint(5.0), $max / 2.0 + 2.5); + $fassert!(($max as $fty).midpoint(-5.0), $max / 2.0 - 2.5); + $fassert!(($inf as $fty).midpoint($inf), $inf); + $fassert!(($neginf as $fty).midpoint($neginf), $neginf); + $fassert!(($nan as $fty).midpoint(1.0).is_nan()); + $fassert!((1.0 as $fty).midpoint($nan).is_nan()); + $fassert!(($nan as $fty).midpoint($nan).is_nan()); // test if large differences in magnitude are still correctly computed. // NOTE: that because of how small x and y are, x + y can never overflow @@ -907,19 +907,19 @@ macro_rules! test_float { } #[test] fn rem_euclid() { - let a: $fty = 42.0; - assert!($inf.rem_euclid(a).is_nan()); - assert_eq!(a.rem_euclid($inf), a); - assert!(a.rem_euclid($nan).is_nan()); + // FIXME: Use $fassert when rem_euclid becomes const + assert!($inf.rem_euclid((42.0 as $fty)).is_nan()); + assert_eq!((42.0 as $fty).rem_euclid($inf), (42.0 as $fty)); + assert!((42.0 as $fty).rem_euclid($nan).is_nan()); assert!($inf.rem_euclid($inf).is_nan()); assert!($inf.rem_euclid($nan).is_nan()); assert!($nan.rem_euclid($inf).is_nan()); } #[test] fn div_euclid() { - let a: $fty = 42.0; - assert_eq!(a.div_euclid($inf), 0.0); - assert!(a.div_euclid($nan).is_nan()); + // FIXME: Use $fassert when div_euclid becomes const + assert_eq!((42.0 as $fty).div_euclid($inf), 0.0); + assert!((42.0 as $fty).div_euclid($nan).is_nan()); assert!($inf.div_euclid($inf).is_nan()); assert!($inf.div_euclid($nan).is_nan()); assert!($nan.div_euclid($inf).is_nan()); @@ -928,8 +928,41 @@ macro_rules! test_float { }; } +// Custom assert macro that distribute between assert! and assert_eq! in a non-const context +macro_rules! float_assert { + ($b:expr) => { + assert!($b); + }; + ($left:expr, $right:expr) => { + assert_eq!($left, $right); + }; +} + +// Custom assert macro that only uses assert! in a const context +macro_rules! float_const_assert { + ($b:expr) => { + assert!(const { $b }); + }; + ($left:expr, $right:expr) => { + assert!(const { $left == $right }); + }; +} + test_float!( f32, + float_assert, + f32, + f32::INFINITY, + f32::NEG_INFINITY, + f32::NAN, + f32::MIN, + f32::MAX, + f32::MIN_POSITIVE, + f32::MAX_EXP +); +test_float!( + f32_const, + float_const_assert, f32, f32::INFINITY, f32::NEG_INFINITY, @@ -941,6 +974,19 @@ test_float!( ); test_float!( f64, + float_assert, + f64, + f64::INFINITY, + f64::NEG_INFINITY, + f64::NAN, + f64::MIN, + f64::MAX, + f64::MIN_POSITIVE, + f64::MAX_EXP +); +test_float!( + f64_const, + float_const_assert, f64, f64::INFINITY, f64::NEG_INFINITY, diff --git a/library/panic_abort/Cargo.toml b/library/panic_abort/Cargo.toml index 6f43ac4809a..d7d169671f0 100644 --- a/library/panic_abort/Cargo.toml +++ b/library/panic_abort/Cargo.toml @@ -12,10 +12,11 @@ bench = false doc = false [dependencies] -alloc = { path = "../alloc" } -cfg-if = { version = "1.0", features = ['rustc-dep-of-std'] } core = { path = "../core" } compiler_builtins = "0.1.0" -[target.'cfg(not(all(windows, target_env = "msvc")))'.dependencies] +[target.'cfg(target_os = "android")'.dependencies] libc = { version = "0.2", default-features = false } + +[target.'cfg(any(target_os = "android", target_os = "zkvm"))'.dependencies] +alloc = { path = "../alloc" } diff --git a/library/panic_abort/src/lib.rs b/library/panic_abort/src/lib.rs index b2ad0f4ac3d..d1706b65252 100644 --- a/library/panic_abort/src/lib.rs +++ b/library/panic_abort/src/lib.rs @@ -7,15 +7,11 @@ #![unstable(feature = "panic_abort", issue = "32837")] #![doc(issue_tracker_base_url = "https://github.com/rust-lang/rust/issues/")] #![panic_runtime] -#![allow(unused_features)] -#![feature(asm_experimental_arch)] -#![feature(core_intrinsics)] #![feature(panic_runtime)] #![feature(std_internals)] #![feature(staged_api)] #![feature(rustc_attrs)] #![allow(internal_features)] -#![deny(unsafe_op_in_unsafe_fn)] #[cfg(target_os = "android")] mod android; @@ -45,75 +41,13 @@ pub unsafe fn __rust_start_panic(_payload: &mut dyn PanicPayload) -> u32 { zkvm::zkvm_set_abort_message(_payload); } - unsafe { - abort(); + unsafe extern "Rust" { + // This is defined in std::rt. + #[rustc_std_internal_symbol] + safe fn __rust_abort() -> !; } - cfg_if::cfg_if! { - if #[cfg(any(unix, target_os = "solid_asp3"))] { - unsafe fn abort() -> ! { - unsafe { libc::abort(); } - } - } else if #[cfg(any(target_os = "hermit", - all(target_vendor = "fortanix", target_env = "sgx"), - target_os = "xous", - target_os = "uefi", - ))] { - unsafe fn abort() -> ! { - // call std::sys::abort_internal - unsafe extern "C" { - pub fn __rust_abort() -> !; - } - unsafe { __rust_abort(); } - } - } else if #[cfg(all(windows, not(miri)))] { - // On Windows, use the processor-specific __fastfail mechanism. In Windows 8 - // and later, this will terminate the process immediately without running any - // in-process exception handlers. In earlier versions of Windows, this - // sequence of instructions will be treated as an access violation, - // terminating the process but without necessarily bypassing all exception - // handlers. - // - // https://docs.microsoft.com/en-us/cpp/intrinsics/fastfail - // - // Note: this is the same implementation as in std's `abort_internal` - unsafe fn abort() -> ! { - #[allow(unused)] - const FAST_FAIL_FATAL_APP_EXIT: usize = 7; - cfg_if::cfg_if! { - if #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] { - unsafe { - core::arch::asm!("int $$0x29", in("ecx") FAST_FAIL_FATAL_APP_EXIT, options(noreturn, nostack)); - } - } else if #[cfg(all(target_arch = "arm", target_feature = "thumb-mode"))] { - unsafe { - core::arch::asm!(".inst 0xDEFB", in("r0") FAST_FAIL_FATAL_APP_EXIT, options(noreturn, nostack)); - } - } else if #[cfg(any(target_arch = "aarch64", target_arch = "arm64ec"))] { - unsafe { - core::arch::asm!("brk 0xF003", in("x0") FAST_FAIL_FATAL_APP_EXIT, options(noreturn, nostack)); - } - } else { - core::intrinsics::abort(); - } - } - } - } else if #[cfg(target_os = "teeos")] { - mod teeos { - unsafe extern "C" { - pub fn TEE_Panic(code: u32) -> !; - } - } - - unsafe fn abort() -> ! { - unsafe { teeos::TEE_Panic(1); } - } - } else { - unsafe fn abort() -> ! { - core::intrinsics::abort(); - } - } - } + __rust_abort() } // This... is a bit of an oddity. The tl;dr; is that this is required to link diff --git a/library/panic_unwind/src/hermit.rs b/library/panic_unwind/src/hermit.rs index 8f4562d07fc..b36d1a019fd 100644 --- a/library/panic_unwind/src/hermit.rs +++ b/library/panic_unwind/src/hermit.rs @@ -5,20 +5,16 @@ use alloc::boxed::Box; use core::any::Any; +unsafe extern "Rust" { + // This is defined in std::rt + #[rustc_std_internal_symbol] + safe fn __rust_abort() -> !; +} + pub(crate) unsafe fn cleanup(_ptr: *mut u8) -> Box<dyn Any + Send> { - unsafe extern "C" { - fn __rust_abort() -> !; - } - unsafe { - __rust_abort(); - } + __rust_abort() } pub(crate) unsafe fn panic(_data: Box<dyn Any + Send>) -> u32 { - unsafe extern "C" { - fn __rust_abort() -> !; - } - unsafe { - __rust_abort(); - } + __rust_abort() } diff --git a/library/std/src/f128.rs b/library/std/src/f128.rs index 6b2ba2e714c..bb4acde4822 100644 --- a/library/std/src/f128.rs +++ b/library/std/src/f128.rs @@ -14,365 +14,6 @@ use crate::sys::cmath; #[cfg(not(test))] impl f128 { - /// Returns the largest integer less than or equal to `self`. - /// - /// This function always returns the precise result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f128)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f128_math)] { - /// - /// let f = 3.7_f128; - /// let g = 3.0_f128; - /// let h = -3.7_f128; - /// - /// assert_eq!(f.floor(), 3.0); - /// assert_eq!(g.floor(), 3.0); - /// assert_eq!(h.floor(), -4.0); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f128", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn floor(self) -> f128 { - unsafe { intrinsics::floorf128(self) } - } - - /// Returns the smallest integer greater than or equal to `self`. - /// - /// This function always returns the precise result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f128)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f128_math)] { - /// - /// let f = 3.01_f128; - /// let g = 4.0_f128; - /// - /// assert_eq!(f.ceil(), 4.0); - /// assert_eq!(g.ceil(), 4.0); - /// # } - /// ``` - #[inline] - #[doc(alias = "ceiling")] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f128", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn ceil(self) -> f128 { - unsafe { intrinsics::ceilf128(self) } - } - - /// Returns the nearest integer to `self`. If a value is half-way between two - /// integers, round away from `0.0`. - /// - /// This function always returns the precise result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f128)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f128_math)] { - /// - /// let f = 3.3_f128; - /// let g = -3.3_f128; - /// let h = -3.7_f128; - /// let i = 3.5_f128; - /// let j = 4.5_f128; - /// - /// assert_eq!(f.round(), 3.0); - /// assert_eq!(g.round(), -3.0); - /// assert_eq!(h.round(), -4.0); - /// assert_eq!(i.round(), 4.0); - /// assert_eq!(j.round(), 5.0); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f128", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn round(self) -> f128 { - unsafe { intrinsics::roundf128(self) } - } - - /// Returns the nearest integer to a number. Rounds half-way cases to the number - /// with an even least significant digit. - /// - /// This function always returns the precise result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f128)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f128_math)] { - /// - /// let f = 3.3_f128; - /// let g = -3.3_f128; - /// let h = 3.5_f128; - /// let i = 4.5_f128; - /// - /// assert_eq!(f.round_ties_even(), 3.0); - /// assert_eq!(g.round_ties_even(), -3.0); - /// assert_eq!(h.round_ties_even(), 4.0); - /// assert_eq!(i.round_ties_even(), 4.0); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f128", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn round_ties_even(self) -> f128 { - intrinsics::round_ties_even_f128(self) - } - - /// Returns the integer part of `self`. - /// This means that non-integer numbers are always truncated towards zero. - /// - /// This function always returns the precise result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f128)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f128_math)] { - /// - /// let f = 3.7_f128; - /// let g = 3.0_f128; - /// let h = -3.7_f128; - /// - /// assert_eq!(f.trunc(), 3.0); - /// assert_eq!(g.trunc(), 3.0); - /// assert_eq!(h.trunc(), -3.0); - /// # } - /// ``` - #[inline] - #[doc(alias = "truncate")] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f128", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn trunc(self) -> f128 { - unsafe { intrinsics::truncf128(self) } - } - - /// Returns the fractional part of `self`. - /// - /// This function always returns the precise result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f128)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f128_math)] { - /// - /// let x = 3.6_f128; - /// let y = -3.6_f128; - /// let abs_difference_x = (x.fract() - 0.6).abs(); - /// let abs_difference_y = (y.fract() - (-0.6)).abs(); - /// - /// assert!(abs_difference_x <= f128::EPSILON); - /// assert!(abs_difference_y <= f128::EPSILON); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f128", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn fract(self) -> f128 { - self - self.trunc() - } - - /// Fused multiply-add. Computes `(self * a) + b` with only one rounding - /// error, yielding a more accurate result than an unfused multiply-add. - /// - /// Using `mul_add` *may* be more performant than an unfused multiply-add if - /// the target architecture has a dedicated `fma` CPU instruction. However, - /// this is not always true, and will be heavily dependant on designing - /// algorithms with specific target hardware in mind. - /// - /// # Precision - /// - /// The result of this operation is guaranteed to be the rounded - /// infinite-precision result. It is specified by IEEE 754 as - /// `fusedMultiplyAdd` and guaranteed not to change. - /// - /// # Examples - /// - /// ``` - /// #![feature(f128)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f128_math)] { - /// - /// let m = 10.0_f128; - /// let x = 4.0_f128; - /// let b = 60.0_f128; - /// - /// assert_eq!(m.mul_add(x, b), 100.0); - /// assert_eq!(m * x + b, 100.0); - /// - /// let one_plus_eps = 1.0_f128 + f128::EPSILON; - /// let one_minus_eps = 1.0_f128 - f128::EPSILON; - /// let minus_one = -1.0_f128; - /// - /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. - /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON); - /// // Different rounding with the non-fused multiply and add. - /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[doc(alias = "fmaf128", alias = "fusedMultiplyAdd")] - #[unstable(feature = "f128", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn mul_add(self, a: f128, b: f128) -> f128 { - unsafe { intrinsics::fmaf128(self, a, b) } - } - - /// Calculates Euclidean division, the matching method for `rem_euclid`. - /// - /// This computes the integer `n` such that - /// `self = n * rhs + self.rem_euclid(rhs)`. - /// In other words, the result is `self / rhs` rounded to the integer `n` - /// such that `self >= n * rhs`. - /// - /// # Precision - /// - /// The result of this operation is guaranteed to be the rounded - /// infinite-precision result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f128)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f128_math)] { - /// - /// let a: f128 = 7.0; - /// let b = 4.0; - /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 - /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 - /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 - /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0 - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f128", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn div_euclid(self, rhs: f128) -> f128 { - let q = (self / rhs).trunc(); - if self % rhs < 0.0 { - return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; - } - q - } - - /// Calculates the least nonnegative remainder of `self (mod rhs)`. - /// - /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in - /// most cases. However, due to a floating point round-off error it can - /// result in `r == rhs.abs()`, violating the mathematical definition, if - /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`. - /// This result is not an element of the function's codomain, but it is the - /// closest floating point number in the real numbers and thus fulfills the - /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)` - /// approximately. - /// - /// # Precision - /// - /// The result of this operation is guaranteed to be the rounded - /// infinite-precision result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f128)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f128_math)] { - /// - /// let a: f128 = 7.0; - /// let b = 4.0; - /// assert_eq!(a.rem_euclid(b), 3.0); - /// assert_eq!((-a).rem_euclid(b), 1.0); - /// assert_eq!(a.rem_euclid(-b), 3.0); - /// assert_eq!((-a).rem_euclid(-b), 1.0); - /// // limitation due to round-off error - /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[doc(alias = "modulo", alias = "mod")] - #[unstable(feature = "f128", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn rem_euclid(self, rhs: f128) -> f128 { - let r = self % rhs; - if r < 0.0 { r + rhs.abs() } else { r } - } - - /// Raises a number to an integer power. - /// - /// Using this function is generally faster than using `powf`. - /// It might have a different sequence of rounding operations than `powf`, - /// so the results are not guaranteed to agree. - /// - /// # Unspecified precision - /// - /// The precision of this function is non-deterministic. This means it varies by platform, - /// Rust version, and can even differ within the same execution from one invocation to the next. - /// - /// # Examples - /// - /// ``` - /// #![feature(f128)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f128_math)] { - /// - /// let x = 2.0_f128; - /// let abs_difference = (x.powi(2) - (x * x)).abs(); - /// assert!(abs_difference <= f128::EPSILON); - /// - /// assert_eq!(f128::powi(f128::NAN, 0), 1.0); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f128", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn powi(self, n: i32) -> f128 { - unsafe { intrinsics::powif128(self, n) } - } - /// Raises a number to a floating point power. /// /// # Unspecified precision @@ -405,43 +46,6 @@ impl f128 { unsafe { intrinsics::powf128(self, n) } } - /// Returns the square root of a number. - /// - /// Returns NaN if `self` is a negative number other than `-0.0`. - /// - /// # Precision - /// - /// The result of this operation is guaranteed to be the rounded - /// infinite-precision result. It is specified by IEEE 754 as `squareRoot` - /// and guaranteed not to change. - /// - /// # Examples - /// - /// ``` - /// #![feature(f128)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f128_math)] { - /// - /// let positive = 4.0_f128; - /// let negative = -4.0_f128; - /// let negative_zero = -0.0_f128; - /// - /// assert_eq!(positive.sqrt(), 2.0); - /// assert!(negative.sqrt().is_nan()); - /// assert!(negative_zero.sqrt() == negative_zero); - /// # } - /// ``` - #[inline] - #[doc(alias = "squareRoot")] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f128", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn sqrt(self) -> f128 { - unsafe { intrinsics::sqrtf128(self) } - } - /// Returns `e^(self)`, (the exponential function). /// /// # Unspecified precision diff --git a/library/std/src/f16.rs b/library/std/src/f16.rs index d6bc1d3118a..4792eac1f9e 100644 --- a/library/std/src/f16.rs +++ b/library/std/src/f16.rs @@ -14,365 +14,6 @@ use crate::sys::cmath; #[cfg(not(test))] impl f16 { - /// Returns the largest integer less than or equal to `self`. - /// - /// This function always returns the precise result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f16)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f16_math)] { - /// - /// let f = 3.7_f16; - /// let g = 3.0_f16; - /// let h = -3.7_f16; - /// - /// assert_eq!(f.floor(), 3.0); - /// assert_eq!(g.floor(), 3.0); - /// assert_eq!(h.floor(), -4.0); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f16", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn floor(self) -> f16 { - unsafe { intrinsics::floorf16(self) } - } - - /// Returns the smallest integer greater than or equal to `self`. - /// - /// This function always returns the precise result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f16)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f16_math)] { - /// - /// let f = 3.01_f16; - /// let g = 4.0_f16; - /// - /// assert_eq!(f.ceil(), 4.0); - /// assert_eq!(g.ceil(), 4.0); - /// # } - /// ``` - #[inline] - #[doc(alias = "ceiling")] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f16", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn ceil(self) -> f16 { - unsafe { intrinsics::ceilf16(self) } - } - - /// Returns the nearest integer to `self`. If a value is half-way between two - /// integers, round away from `0.0`. - /// - /// This function always returns the precise result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f16)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f16_math)] { - /// - /// let f = 3.3_f16; - /// let g = -3.3_f16; - /// let h = -3.7_f16; - /// let i = 3.5_f16; - /// let j = 4.5_f16; - /// - /// assert_eq!(f.round(), 3.0); - /// assert_eq!(g.round(), -3.0); - /// assert_eq!(h.round(), -4.0); - /// assert_eq!(i.round(), 4.0); - /// assert_eq!(j.round(), 5.0); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f16", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn round(self) -> f16 { - unsafe { intrinsics::roundf16(self) } - } - - /// Returns the nearest integer to a number. Rounds half-way cases to the number - /// with an even least significant digit. - /// - /// This function always returns the precise result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f16)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f16_math)] { - /// - /// let f = 3.3_f16; - /// let g = -3.3_f16; - /// let h = 3.5_f16; - /// let i = 4.5_f16; - /// - /// assert_eq!(f.round_ties_even(), 3.0); - /// assert_eq!(g.round_ties_even(), -3.0); - /// assert_eq!(h.round_ties_even(), 4.0); - /// assert_eq!(i.round_ties_even(), 4.0); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f16", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn round_ties_even(self) -> f16 { - intrinsics::round_ties_even_f16(self) - } - - /// Returns the integer part of `self`. - /// This means that non-integer numbers are always truncated towards zero. - /// - /// This function always returns the precise result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f16)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f16_math)] { - /// - /// let f = 3.7_f16; - /// let g = 3.0_f16; - /// let h = -3.7_f16; - /// - /// assert_eq!(f.trunc(), 3.0); - /// assert_eq!(g.trunc(), 3.0); - /// assert_eq!(h.trunc(), -3.0); - /// # } - /// ``` - #[inline] - #[doc(alias = "truncate")] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f16", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn trunc(self) -> f16 { - unsafe { intrinsics::truncf16(self) } - } - - /// Returns the fractional part of `self`. - /// - /// This function always returns the precise result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f16)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f16_math)] { - /// - /// let x = 3.6_f16; - /// let y = -3.6_f16; - /// let abs_difference_x = (x.fract() - 0.6).abs(); - /// let abs_difference_y = (y.fract() - (-0.6)).abs(); - /// - /// assert!(abs_difference_x <= f16::EPSILON); - /// assert!(abs_difference_y <= f16::EPSILON); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f16", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn fract(self) -> f16 { - self - self.trunc() - } - - /// Fused multiply-add. Computes `(self * a) + b` with only one rounding - /// error, yielding a more accurate result than an unfused multiply-add. - /// - /// Using `mul_add` *may* be more performant than an unfused multiply-add if - /// the target architecture has a dedicated `fma` CPU instruction. However, - /// this is not always true, and will be heavily dependant on designing - /// algorithms with specific target hardware in mind. - /// - /// # Precision - /// - /// The result of this operation is guaranteed to be the rounded - /// infinite-precision result. It is specified by IEEE 754 as - /// `fusedMultiplyAdd` and guaranteed not to change. - /// - /// # Examples - /// - /// ``` - /// #![feature(f16)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f16_math)] { - /// - /// let m = 10.0_f16; - /// let x = 4.0_f16; - /// let b = 60.0_f16; - /// - /// assert_eq!(m.mul_add(x, b), 100.0); - /// assert_eq!(m * x + b, 100.0); - /// - /// let one_plus_eps = 1.0_f16 + f16::EPSILON; - /// let one_minus_eps = 1.0_f16 - f16::EPSILON; - /// let minus_one = -1.0_f16; - /// - /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. - /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f16::EPSILON * f16::EPSILON); - /// // Different rounding with the non-fused multiply and add. - /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f16", issue = "116909")] - #[doc(alias = "fmaf16", alias = "fusedMultiplyAdd")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn mul_add(self, a: f16, b: f16) -> f16 { - unsafe { intrinsics::fmaf16(self, a, b) } - } - - /// Calculates Euclidean division, the matching method for `rem_euclid`. - /// - /// This computes the integer `n` such that - /// `self = n * rhs + self.rem_euclid(rhs)`. - /// In other words, the result is `self / rhs` rounded to the integer `n` - /// such that `self >= n * rhs`. - /// - /// # Precision - /// - /// The result of this operation is guaranteed to be the rounded - /// infinite-precision result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f16)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f16_math)] { - /// - /// let a: f16 = 7.0; - /// let b = 4.0; - /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 - /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 - /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 - /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0 - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f16", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn div_euclid(self, rhs: f16) -> f16 { - let q = (self / rhs).trunc(); - if self % rhs < 0.0 { - return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; - } - q - } - - /// Calculates the least nonnegative remainder of `self (mod rhs)`. - /// - /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in - /// most cases. However, due to a floating point round-off error it can - /// result in `r == rhs.abs()`, violating the mathematical definition, if - /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`. - /// This result is not an element of the function's codomain, but it is the - /// closest floating point number in the real numbers and thus fulfills the - /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)` - /// approximately. - /// - /// # Precision - /// - /// The result of this operation is guaranteed to be the rounded - /// infinite-precision result. - /// - /// # Examples - /// - /// ``` - /// #![feature(f16)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f16_math)] { - /// - /// let a: f16 = 7.0; - /// let b = 4.0; - /// assert_eq!(a.rem_euclid(b), 3.0); - /// assert_eq!((-a).rem_euclid(b), 1.0); - /// assert_eq!(a.rem_euclid(-b), 3.0); - /// assert_eq!((-a).rem_euclid(-b), 1.0); - /// // limitation due to round-off error - /// assert!((-f16::EPSILON).rem_euclid(3.0) != 0.0); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[doc(alias = "modulo", alias = "mod")] - #[unstable(feature = "f16", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn rem_euclid(self, rhs: f16) -> f16 { - let r = self % rhs; - if r < 0.0 { r + rhs.abs() } else { r } - } - - /// Raises a number to an integer power. - /// - /// Using this function is generally faster than using `powf`. - /// It might have a different sequence of rounding operations than `powf`, - /// so the results are not guaranteed to agree. - /// - /// # Unspecified precision - /// - /// The precision of this function is non-deterministic. This means it varies by platform, - /// Rust version, and can even differ within the same execution from one invocation to the next. - /// - /// # Examples - /// - /// ``` - /// #![feature(f16)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f16_math)] { - /// - /// let x = 2.0_f16; - /// let abs_difference = (x.powi(2) - (x * x)).abs(); - /// assert!(abs_difference <= f16::EPSILON); - /// - /// assert_eq!(f16::powi(f16::NAN, 0), 1.0); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f16", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn powi(self, n: i32) -> f16 { - unsafe { intrinsics::powif16(self, n) } - } - /// Raises a number to a floating point power. /// /// # Unspecified precision @@ -405,43 +46,6 @@ impl f16 { unsafe { intrinsics::powf16(self, n) } } - /// Returns the square root of a number. - /// - /// Returns NaN if `self` is a negative number other than `-0.0`. - /// - /// # Precision - /// - /// The result of this operation is guaranteed to be the rounded - /// infinite-precision result. It is specified by IEEE 754 as `squareRoot` - /// and guaranteed not to change. - /// - /// # Examples - /// - /// ``` - /// #![feature(f16)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f16_math)] { - /// - /// let positive = 4.0_f16; - /// let negative = -4.0_f16; - /// let negative_zero = -0.0_f16; - /// - /// assert_eq!(positive.sqrt(), 2.0); - /// assert!(negative.sqrt().is_nan()); - /// assert!(negative_zero.sqrt() == negative_zero); - /// # } - /// ``` - #[inline] - #[doc(alias = "squareRoot")] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f16", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn sqrt(self) -> f16 { - unsafe { intrinsics::sqrtf16(self) } - } - /// Returns `e^(self)`, (the exponential function). /// /// # Unspecified precision @@ -702,41 +306,6 @@ impl f16 { unsafe { intrinsics::log10f16(self) } } - /// Returns the cube root of a number. - /// - /// # Unspecified precision - /// - /// The precision of this function is non-deterministic. This means it varies by platform, - /// Rust version, and can even differ within the same execution from one invocation to the next. - /// - /// This function currently corresponds to the `cbrtf` from libc on Unix - /// and Windows. Note that this might change in the future. - /// - /// # Examples - /// - /// ``` - /// #![feature(f16)] - /// # #![feature(cfg_target_has_reliable_f16_f128)] - /// # #![expect(internal_features)] - /// # #[cfg(not(miri))] - /// # #[cfg(target_has_reliable_f16_math)] { - /// - /// let x = 8.0f16; - /// - /// // x^(1/3) - 2 == 0 - /// let abs_difference = (x.cbrt() - 2.0).abs(); - /// - /// assert!(abs_difference <= f16::EPSILON); - /// # } - /// ``` - #[inline] - #[rustc_allow_incoherent_impl] - #[unstable(feature = "f16", issue = "116909")] - #[must_use = "method returns a new number and does not mutate the original value"] - pub fn cbrt(self) -> f16 { - cmath::cbrtf(self as f32) as f16 - } - /// Compute the distance between the origin and a point (`x`, `y`) on the /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a /// right-angle triangle with other sides having length `x.abs()` and diff --git a/library/std/src/f32.rs b/library/std/src/f32.rs index baf7002f380..94140d01d8b 100644 --- a/library/std/src/f32.rs +++ b/library/std/src/f32.rs @@ -46,7 +46,7 @@ impl f32 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn floor(self) -> f32 { - unsafe { intrinsics::floorf32(self) } + core::f32::floor(self) } /// Returns the smallest integer greater than or equal to `self`. @@ -68,7 +68,7 @@ impl f32 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn ceil(self) -> f32 { - unsafe { intrinsics::ceilf32(self) } + core::f32::ceil(self) } /// Returns the nearest integer to `self`. If a value is half-way between two @@ -96,7 +96,7 @@ impl f32 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn round(self) -> f32 { - unsafe { intrinsics::roundf32(self) } + core::f32::round(self) } /// Returns the nearest integer to a number. Rounds half-way cases to the number @@ -122,7 +122,7 @@ impl f32 { #[stable(feature = "round_ties_even", since = "1.77.0")] #[inline] pub fn round_ties_even(self) -> f32 { - intrinsics::round_ties_even_f32(self) + core::f32::round_ties_even(self) } /// Returns the integer part of `self`. @@ -147,7 +147,7 @@ impl f32 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn trunc(self) -> f32 { - unsafe { intrinsics::truncf32(self) } + core::f32::trunc(self) } /// Returns the fractional part of `self`. @@ -170,7 +170,7 @@ impl f32 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn fract(self) -> f32 { - self - self.trunc() + core::f32::fract(self) } /// Fused multiply-add. Computes `(self * a) + b` with only one rounding @@ -212,7 +212,7 @@ impl f32 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn mul_add(self, a: f32, b: f32) -> f32 { - unsafe { intrinsics::fmaf32(self, a, b) } + core::f32::mul_add(self, a, b) } /// Calculates Euclidean division, the matching method for `rem_euclid`. @@ -242,11 +242,7 @@ impl f32 { #[inline] #[stable(feature = "euclidean_division", since = "1.38.0")] pub fn div_euclid(self, rhs: f32) -> f32 { - let q = (self / rhs).trunc(); - if self % rhs < 0.0 { - return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; - } - q + core::f32::div_euclid(self, rhs) } /// Calculates the least nonnegative remainder of `self (mod rhs)`. @@ -283,8 +279,7 @@ impl f32 { #[inline] #[stable(feature = "euclidean_division", since = "1.38.0")] pub fn rem_euclid(self, rhs: f32) -> f32 { - let r = self % rhs; - if r < 0.0 { r + rhs.abs() } else { r } + core::f32::rem_euclid(self, rhs) } /// Raises a number to an integer power. @@ -312,7 +307,7 @@ impl f32 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn powi(self, n: i32) -> f32 { - unsafe { intrinsics::powif32(self, n) } + core::f32::powi(self, n) } /// Raises a number to a floating point power. @@ -367,7 +362,7 @@ impl f32 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sqrt(self) -> f32 { - unsafe { intrinsics::sqrtf32(self) } + core::f32::sqrt(self) } /// Returns `e^(self)`, (the exponential function). @@ -599,7 +594,8 @@ impl f32 { filing an issue describing your use-case too)." )] pub fn abs_sub(self, other: f32) -> f32 { - cmath::fdimf(self, other) + #[allow(deprecated)] + core::f32::abs_sub(self, other) } /// Returns the cube root of a number. @@ -626,7 +622,7 @@ impl f32 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn cbrt(self) -> f32 { - cmath::cbrtf(self) + core::f32::cbrt(self) } /// Compute the distance between the origin and a point (`x`, `y`) on the diff --git a/library/std/src/f64.rs b/library/std/src/f64.rs index 84fd9bfb7b6..051061ae605 100644 --- a/library/std/src/f64.rs +++ b/library/std/src/f64.rs @@ -46,7 +46,7 @@ impl f64 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn floor(self) -> f64 { - unsafe { intrinsics::floorf64(self) } + core::f64::floor(self) } /// Returns the smallest integer greater than or equal to `self`. @@ -68,7 +68,7 @@ impl f64 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn ceil(self) -> f64 { - unsafe { intrinsics::ceilf64(self) } + core::f64::ceil(self) } /// Returns the nearest integer to `self`. If a value is half-way between two @@ -96,7 +96,7 @@ impl f64 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn round(self) -> f64 { - unsafe { intrinsics::roundf64(self) } + core::f64::round(self) } /// Returns the nearest integer to a number. Rounds half-way cases to the number @@ -122,7 +122,7 @@ impl f64 { #[stable(feature = "round_ties_even", since = "1.77.0")] #[inline] pub fn round_ties_even(self) -> f64 { - intrinsics::round_ties_even_f64(self) + core::f64::round_ties_even(self) } /// Returns the integer part of `self`. @@ -147,7 +147,7 @@ impl f64 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn trunc(self) -> f64 { - unsafe { intrinsics::truncf64(self) } + core::f64::trunc(self) } /// Returns the fractional part of `self`. @@ -170,7 +170,7 @@ impl f64 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn fract(self) -> f64 { - self - self.trunc() + core::f64::fract(self) } /// Fused multiply-add. Computes `(self * a) + b` with only one rounding @@ -212,7 +212,7 @@ impl f64 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn mul_add(self, a: f64, b: f64) -> f64 { - unsafe { intrinsics::fmaf64(self, a, b) } + core::f64::mul_add(self, a, b) } /// Calculates Euclidean division, the matching method for `rem_euclid`. @@ -242,11 +242,7 @@ impl f64 { #[inline] #[stable(feature = "euclidean_division", since = "1.38.0")] pub fn div_euclid(self, rhs: f64) -> f64 { - let q = (self / rhs).trunc(); - if self % rhs < 0.0 { - return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; - } - q + core::f64::div_euclid(self, rhs) } /// Calculates the least nonnegative remainder of `self (mod rhs)`. @@ -283,8 +279,7 @@ impl f64 { #[inline] #[stable(feature = "euclidean_division", since = "1.38.0")] pub fn rem_euclid(self, rhs: f64) -> f64 { - let r = self % rhs; - if r < 0.0 { r + rhs.abs() } else { r } + core::f64::rem_euclid(self, rhs) } /// Raises a number to an integer power. @@ -312,7 +307,7 @@ impl f64 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn powi(self, n: i32) -> f64 { - unsafe { intrinsics::powif64(self, n) } + core::f64::powi(self, n) } /// Raises a number to a floating point power. @@ -367,7 +362,7 @@ impl f64 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sqrt(self) -> f64 { - unsafe { intrinsics::sqrtf64(self) } + core::f64::sqrt(self) } /// Returns `e^(self)`, (the exponential function). @@ -599,7 +594,8 @@ impl f64 { filing an issue describing your use-case too)." )] pub fn abs_sub(self, other: f64) -> f64 { - cmath::fdim(self, other) + #[allow(deprecated)] + core::f64::abs_sub(self, other) } /// Returns the cube root of a number. @@ -626,7 +622,7 @@ impl f64 { #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn cbrt(self) -> f64 { - cmath::cbrt(self) + core::f64::cbrt(self) } /// Compute the distance between the origin and a point (`x`, `y`) on the diff --git a/library/std/src/lib.rs b/library/std/src/lib.rs index 0bb40ee4b31..ca04a381271 100644 --- a/library/std/src/lib.rs +++ b/library/std/src/lib.rs @@ -287,6 +287,7 @@ #![feature(cfi_encoding)] #![feature(char_max_len)] #![feature(concat_idents)] +#![feature(core_float_math)] #![feature(decl_macro)] #![feature(deprecated_suggestion)] #![feature(doc_cfg)] @@ -304,7 +305,6 @@ #![feature(iter_advance_by)] #![feature(iter_next_chunk)] #![feature(lang_items)] -#![feature(let_chains)] #![feature(link_cfg)] #![feature(linkage)] #![feature(macro_metavar_expr_concat)] diff --git a/library/std/src/os/unix/net/stream.rs b/library/std/src/os/unix/net/stream.rs index 1cab04a454d..1bd3bab5e37 100644 --- a/library/std/src/os/unix/net/stream.rs +++ b/library/std/src/os/unix/net/stream.rs @@ -307,11 +307,11 @@ impl UnixStream { /// /// ```no_run /// use std::io; - /// use std::net::UdpSocket; + /// use std::os::unix::net::UnixStream; /// use std::time::Duration; /// /// fn main() -> std::io::Result<()> { - /// let socket = UdpSocket::bind("127.0.0.1:34254")?; + /// let socket = UnixStream::connect("/tmp/sock")?; /// let result = socket.set_write_timeout(Some(Duration::new(0, 0))); /// let err = result.unwrap_err(); /// assert_eq!(err.kind(), io::ErrorKind::InvalidInput); diff --git a/library/std/src/os/wasi/fs.rs b/library/std/src/os/wasi/fs.rs index 34f0e89f2f1..5ea91dd6521 100644 --- a/library/std/src/os/wasi/fs.rs +++ b/library/std/src/os/wasi/fs.rs @@ -72,7 +72,6 @@ pub trait FileExt { /// If this function returns an error, it is unspecified how many bytes it /// has read, but it will never read more than would be necessary to /// completely fill the buffer. - #[stable(feature = "rw_exact_all_at", since = "1.33.0")] fn read_exact_at(&self, mut buf: &mut [u8], mut offset: u64) -> io::Result<()> { while !buf.is_empty() { match self.read_at(buf, offset) { @@ -144,7 +143,6 @@ pub trait FileExt { /// non-[`io::ErrorKind::Interrupted`] kind that [`write_at`] returns. /// /// [`write_at`]: FileExt::write_at - #[stable(feature = "rw_exact_all_at", since = "1.33.0")] fn write_all_at(&self, mut buf: &[u8], mut offset: u64) -> io::Result<()> { while !buf.is_empty() { match self.write_at(buf, offset) { diff --git a/library/std/src/os/windows/process.rs b/library/std/src/os/windows/process.rs index a084f452e55..c223eee95b5 100644 --- a/library/std/src/os/windows/process.rs +++ b/library/std/src/os/windows/process.rs @@ -344,6 +344,27 @@ pub trait CommandExt: Sealed { &mut self, attribute_list: &ProcThreadAttributeList<'_>, ) -> io::Result<process::Child>; + + /// When true, sets the `STARTF_RUNFULLSCREEN` flag on the [STARTUPINFO][1] struct before passing it to `CreateProcess`. + /// + /// [1]: https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/ns-processthreadsapi-startupinfoa + #[unstable(feature = "windows_process_extensions_startupinfo", issue = "141010")] + fn startupinfo_fullscreen(&mut self, enabled: bool) -> &mut process::Command; + + /// When true, sets the `STARTF_UNTRUSTEDSOURCE` flag on the [STARTUPINFO][1] struct before passing it to `CreateProcess`. + /// + /// [1]: https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/ns-processthreadsapi-startupinfoa + #[unstable(feature = "windows_process_extensions_startupinfo", issue = "141010")] + fn startupinfo_untrusted_source(&mut self, enabled: bool) -> &mut process::Command; + + /// When specified, sets the following flags on the [STARTUPINFO][1] struct before passing it to `CreateProcess`: + /// - If `Some(true)`, sets `STARTF_FORCEONFEEDBACK` + /// - If `Some(false)`, sets `STARTF_FORCEOFFFEEDBACK` + /// - If `None`, does not set any flags + /// + /// [1]: https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/ns-processthreadsapi-startupinfoa + #[unstable(feature = "windows_process_extensions_startupinfo", issue = "141010")] + fn startupinfo_force_feedback(&mut self, enabled: Option<bool>) -> &mut process::Command; } #[stable(feature = "windows_process_extensions", since = "1.16.0")] @@ -385,6 +406,21 @@ impl CommandExt for process::Command { .spawn_with_attributes(sys::process::Stdio::Inherit, true, Some(attribute_list)) .map(process::Child::from_inner) } + + fn startupinfo_fullscreen(&mut self, enabled: bool) -> &mut process::Command { + self.as_inner_mut().startupinfo_fullscreen(enabled); + self + } + + fn startupinfo_untrusted_source(&mut self, enabled: bool) -> &mut process::Command { + self.as_inner_mut().startupinfo_untrusted_source(enabled); + self + } + + fn startupinfo_force_feedback(&mut self, enabled: Option<bool>) -> &mut process::Command { + self.as_inner_mut().startupinfo_force_feedback(enabled); + self + } } #[unstable(feature = "windows_process_extensions_main_thread_handle", issue = "96723")] diff --git a/library/std/src/rt.rs b/library/std/src/rt.rs index 9737b2f5bfe..b3f3b301e3d 100644 --- a/library/std/src/rt.rs +++ b/library/std/src/rt.rs @@ -26,6 +26,13 @@ use crate::sync::Once; use crate::thread::{self, main_thread}; use crate::{mem, panic, sys}; +// This function is needed by the panic runtime. +#[cfg(not(test))] +#[rustc_std_internal_symbol] +fn __rust_abort() { + crate::process::abort(); +} + // Prints to the "panic output", depending on the platform this may be: // - the standard error output // - some dedicated platform specific output @@ -47,7 +54,7 @@ macro_rules! rtabort { ($($t:tt)*) => { { rtprintpanic!("fatal runtime error: {}, aborting\n", format_args!($($t)*)); - crate::sys::abort_internal(); + crate::process::abort(); } } } diff --git a/library/std/src/sys/cmath.rs b/library/std/src/sys/cmath.rs index 668fd928534..299ce1a6ff0 100644 --- a/library/std/src/sys/cmath.rs +++ b/library/std/src/sys/cmath.rs @@ -7,13 +7,9 @@ unsafe extern "C" { pub safe fn asin(n: f64) -> f64; pub safe fn atan(n: f64) -> f64; pub safe fn atan2(a: f64, b: f64) -> f64; - pub safe fn cbrt(n: f64) -> f64; - pub safe fn cbrtf(n: f32) -> f32; pub safe fn cosh(n: f64) -> f64; pub safe fn expm1(n: f64) -> f64; pub safe fn expm1f(n: f32) -> f32; - pub safe fn fdim(a: f64, b: f64) -> f64; - pub safe fn fdimf(a: f32, b: f32) -> f32; #[cfg_attr(target_env = "msvc", link_name = "_hypot")] pub safe fn hypot(x: f64, y: f64) -> f64; #[cfg_attr(target_env = "msvc", link_name = "_hypotf")] diff --git a/library/std/src/sys/fs/unix.rs b/library/std/src/sys/fs/unix.rs index 863358596c1..a3e520fdeef 100644 --- a/library/std/src/sys/fs/unix.rs +++ b/library/std/src/sys/fs/unix.rs @@ -1498,11 +1498,10 @@ impl File { None => Ok(libc::timespec { tv_sec: 0, tv_nsec: libc::UTIME_OMIT as _ }), }; cfg_if::cfg_if! { - if #[cfg(any(target_os = "redox", target_os = "espidf", target_os = "horizon", target_os = "vxworks", target_os = "nuttx"))] { + if #[cfg(any(target_os = "redox", target_os = "espidf", target_os = "horizon", target_os = "nuttx"))] { // Redox doesn't appear to support `UTIME_OMIT`. // ESP-IDF and HorizonOS do not support `futimens` at all and the behavior for those OS is therefore // the same as for Redox. - // `futimens` and `UTIME_OMIT` are a work in progress for vxworks. let _ = times; Err(io::const_error!( io::ErrorKind::Unsupported, diff --git a/library/std/src/sys/pal/hermit/mod.rs b/library/std/src/sys/pal/hermit/mod.rs index ea636938d70..fb8d69b7375 100644 --- a/library/std/src/sys/pal/hermit/mod.rs +++ b/library/std/src/sys/pal/hermit/mod.rs @@ -43,15 +43,6 @@ pub fn abort_internal() -> ! { unsafe { hermit_abi::abort() } } -// This function is needed by the panic runtime. The symbol is named in -// pre-link args for the target specification, so keep that in sync. -#[cfg(not(test))] -#[unsafe(no_mangle)] -// NB. used by both libunwind and libpanic_abort -pub extern "C" fn __rust_abort() { - abort_internal(); -} - // SAFETY: must be called only once during runtime initialization. // NOTE: this is not guaranteed to run, for example when Rust code is called externally. pub unsafe fn init(argc: isize, argv: *const *const u8, _sigpipe: u8) { diff --git a/library/std/src/sys/pal/sgx/mod.rs b/library/std/src/sys/pal/sgx/mod.rs index 3932f64c0ef..6e43a79ddec 100644 --- a/library/std/src/sys/pal/sgx/mod.rs +++ b/library/std/src/sys/pal/sgx/mod.rs @@ -112,11 +112,14 @@ pub fn abort_internal() -> ! { abi::usercalls::exit(true) } -// This function is needed by the panic runtime. The symbol is named in +// This function is needed by libunwind. The symbol is named in // pre-link args for the target specification, so keep that in sync. +// Note: contrary to the `__rust_abort` in `crate::rt`, this uses `no_mangle` +// because it is actually used from C code. Because symbols annotated with +// #[rustc_std_internal_symbol] get mangled, this will not lead to linker +// conflicts. #[cfg(not(test))] #[unsafe(no_mangle)] -// NB. used by both libunwind and libpanic_abort pub extern "C" fn __rust_abort() { abort_internal(); } diff --git a/library/std/src/sys/pal/uefi/mod.rs b/library/std/src/sys/pal/uefi/mod.rs index 78fcfcb3b77..8911a2ee519 100644 --- a/library/std/src/sys/pal/uefi/mod.rs +++ b/library/std/src/sys/pal/uefi/mod.rs @@ -161,14 +161,6 @@ pub fn abort_internal() -> ! { core::intrinsics::abort(); } -// This function is needed by the panic runtime. The symbol is named in -// pre-link args for the target specification, so keep that in sync. -#[cfg(not(test))] -#[unsafe(no_mangle)] -pub extern "C" fn __rust_abort() { - abort_internal(); -} - /// Disable access to BootServices if `EVT_SIGNAL_EXIT_BOOT_SERVICES` is signaled extern "efiapi" fn exit_boot_service_handler(_e: r_efi::efi::Event, _ctx: *mut crate::ffi::c_void) { uefi::env::disable_boot_services(); diff --git a/library/std/src/sys/pal/unix/stack_overflow.rs b/library/std/src/sys/pal/unix/stack_overflow.rs index 8bf6d833515..a3be2cdf738 100644 --- a/library/std/src/sys/pal/unix/stack_overflow.rs +++ b/library/std/src/sys/pal/unix/stack_overflow.rs @@ -25,15 +25,36 @@ impl Drop for Handler { } } -#[cfg(any( - target_os = "linux", - target_os = "freebsd", - target_os = "hurd", - target_os = "macos", - target_os = "netbsd", - target_os = "openbsd", - target_os = "solaris", - target_os = "illumos", +#[cfg(all( + not(miri), + any( + target_os = "linux", + target_os = "freebsd", + target_os = "hurd", + target_os = "macos", + target_os = "netbsd", + target_os = "openbsd", + target_os = "solaris", + target_os = "illumos", + ), +))] +mod thread_info; + +// miri doesn't model signals nor stack overflows and this code has some +// synchronization properties that we don't want to expose to user code, +// hence we disable it on miri. +#[cfg(all( + not(miri), + any( + target_os = "linux", + target_os = "freebsd", + target_os = "hurd", + target_os = "macos", + target_os = "netbsd", + target_os = "openbsd", + target_os = "solaris", + target_os = "illumos", + ) ))] mod imp { use libc::{ @@ -46,22 +67,13 @@ mod imp { use libc::{mmap64, mprotect, munmap}; use super::Handler; - use crate::cell::Cell; + use super::thread_info::{delete_current_info, set_current_info, with_current_info}; use crate::ops::Range; use crate::sync::OnceLock; use crate::sync::atomic::{Atomic, AtomicBool, AtomicPtr, AtomicUsize, Ordering}; use crate::sys::pal::unix::os; - use crate::{io, mem, ptr, thread}; - - // We use a TLS variable to store the address of the guard page. While TLS - // variables are not guaranteed to be signal-safe, this works out in practice - // since we make sure to write to the variable before the signal stack is - // installed, thereby ensuring that the variable is always allocated when - // the signal handler is called. - thread_local! { - // FIXME: use `Range` once that implements `Copy`. - static GUARD: Cell<(usize, usize)> = const { Cell::new((0, 0)) }; - } + use crate::thread::with_current_name; + use crate::{io, mem, panic, ptr}; // Signal handler for the SIGSEGV and SIGBUS handlers. We've got guard pages // (unmapped pages) at the end of every thread's stack, so if a thread ends @@ -93,29 +105,35 @@ mod imp { info: *mut libc::siginfo_t, _data: *mut libc::c_void, ) { - let (start, end) = GUARD.get(); // SAFETY: this pointer is provided by the system and will always point to a valid `siginfo_t`. - let addr = unsafe { (*info).si_addr().addr() }; + let fault_addr = unsafe { (*info).si_addr().addr() }; + + // `with_current_info` expects that the process aborts after it is + // called. If the signal was not caused by a memory access, this might + // not be true. We detect this by noticing that the `si_addr` field is + // zero if the signal is synthetic. + if fault_addr != 0 { + with_current_info(|thread_info| { + // If the faulting address is within the guard page, then we print a + // message saying so and abort. + if let Some(thread_info) = thread_info + && thread_info.guard_page_range.contains(&fault_addr) + { + let name = thread_info.thread_name.as_deref().unwrap_or("<unknown>"); + rtprintpanic!("\nthread '{name}' has overflowed its stack\n"); + rtabort!("stack overflow"); + } + }) + } - // If the faulting address is within the guard page, then we print a - // message saying so and abort. - if start <= addr && addr < end { - thread::with_current_name(|name| { - let name = name.unwrap_or("<unknown>"); - rtprintpanic!("\nthread '{name}' has overflowed its stack\n"); - }); + // Unregister ourselves by reverting back to the default behavior. + // SAFETY: assuming all platforms define struct sigaction as "zero-initializable" + let mut action: sigaction = unsafe { mem::zeroed() }; + action.sa_sigaction = SIG_DFL; + // SAFETY: pray this is a well-behaved POSIX implementation of fn sigaction + unsafe { sigaction(signum, &action, ptr::null_mut()) }; - rtabort!("stack overflow"); - } else { - // Unregister ourselves by reverting back to the default behavior. - // SAFETY: assuming all platforms define struct sigaction as "zero-initializable" - let mut action: sigaction = unsafe { mem::zeroed() }; - action.sa_sigaction = SIG_DFL; - // SAFETY: pray this is a well-behaved POSIX implementation of fn sigaction - unsafe { sigaction(signum, &action, ptr::null_mut()) }; - - // See comment above for why this function returns. - } + // See comment above for why this function returns. } static PAGE_SIZE: Atomic<usize> = AtomicUsize::new(0); @@ -128,9 +146,7 @@ mod imp { pub unsafe fn init() { PAGE_SIZE.store(os::page_size(), Ordering::Relaxed); - // Always write to GUARD to ensure the TLS variable is allocated. - let guard = unsafe { install_main_guard().unwrap_or(0..0) }; - GUARD.set((guard.start, guard.end)); + let mut guard_page_range = unsafe { install_main_guard() }; // SAFETY: assuming all platforms define struct sigaction as "zero-initializable" let mut action: sigaction = unsafe { mem::zeroed() }; @@ -145,7 +161,13 @@ mod imp { let handler = unsafe { make_handler(true) }; MAIN_ALTSTACK.store(handler.data, Ordering::Relaxed); mem::forget(handler); + + if let Some(guard_page_range) = guard_page_range.take() { + let thread_name = with_current_name(|name| name.map(Box::from)); + set_current_info(guard_page_range, thread_name); + } } + action.sa_flags = SA_SIGINFO | SA_ONSTACK; action.sa_sigaction = signal_handler as sighandler_t; // SAFETY: only overriding signals if the default is set @@ -214,9 +236,10 @@ mod imp { } if !main_thread { - // Always write to GUARD to ensure the TLS variable is allocated. - let guard = unsafe { current_guard() }.unwrap_or(0..0); - GUARD.set((guard.start, guard.end)); + if let Some(guard_page_range) = unsafe { current_guard() } { + let thread_name = with_current_name(|name| name.map(Box::from)); + set_current_info(guard_page_range, thread_name); + } } // SAFETY: assuming stack_t is zero-initializable @@ -261,6 +284,8 @@ mod imp { // a mapping that started one page earlier, so walk back a page and unmap from there. unsafe { munmap(data.sub(page_size), sigstack_size + page_size) }; } + + delete_current_info(); } /// Modern kernels on modern hardware can have dynamic signal stack sizes. @@ -590,17 +615,20 @@ mod imp { // usually have fewer qualms about forwards compatibility, since the runtime // is shipped with the OS): // <https://github.com/apple/swift/blob/swift-5.10-RELEASE/stdlib/public/runtime/CrashHandlerMacOS.cpp> -#[cfg(not(any( - target_os = "linux", - target_os = "freebsd", - target_os = "hurd", - target_os = "macos", - target_os = "netbsd", - target_os = "openbsd", - target_os = "solaris", - target_os = "illumos", - target_os = "cygwin", -)))] +#[cfg(any( + miri, + not(any( + target_os = "linux", + target_os = "freebsd", + target_os = "hurd", + target_os = "macos", + target_os = "netbsd", + target_os = "openbsd", + target_os = "solaris", + target_os = "illumos", + target_os = "cygwin", + )) +))] mod imp { pub unsafe fn init() {} diff --git a/library/std/src/sys/pal/unix/stack_overflow/thread_info.rs b/library/std/src/sys/pal/unix/stack_overflow/thread_info.rs new file mode 100644 index 00000000000..e81429b98a6 --- /dev/null +++ b/library/std/src/sys/pal/unix/stack_overflow/thread_info.rs @@ -0,0 +1,129 @@ +//! TLS, but async-signal-safe. +//! +//! Unfortunately, because thread local storage isn't async-signal-safe, we +//! cannot soundly use it in our stack overflow handler. While this works +//! without problems on most platforms, it can lead to undefined behaviour +//! on others (such as GNU/Linux). Luckily, the POSIX specification documents +//! two thread-specific values that can be accessed in asynchronous signal +//! handlers: the value of `pthread_self()` and the address of `errno`. As +//! `pthread_t` is an opaque platform-specific type, we use the address of +//! `errno` here. As it is thread-specific and does not change over the +//! lifetime of a thread, we can use `&errno` as a key for a `BTreeMap` +//! that stores thread-specific data. +//! +//! Concurrent access to this map is synchronized by two locks – an outer +//! [`Mutex`] and an inner spin lock that also remembers the identity of +//! the lock owner: +//! * The spin lock is the primary means of synchronization: since it only +//! uses native atomics, it can be soundly used inside the signal handle +//! as opposed to [`Mutex`], which might not be async-signal-safe. +//! * The [`Mutex`] prevents busy-waiting in the setup logic, as all accesses +//! there are performed with the [`Mutex`] held, which makes the spin-lock +//! redundant in the common case. +//! * Finally, by using the `errno` address as the locked value of the spin +//! lock, we can detect cases where a SIGSEGV occurred while the thread +//! info is being modified. + +use crate::collections::BTreeMap; +use crate::hint::spin_loop; +use crate::ops::Range; +use crate::sync::Mutex; +use crate::sync::atomic::{AtomicUsize, Ordering}; +use crate::sys::os::errno_location; + +pub struct ThreadInfo { + pub guard_page_range: Range<usize>, + pub thread_name: Option<Box<str>>, +} + +static LOCK: Mutex<()> = Mutex::new(()); +static SPIN_LOCK: AtomicUsize = AtomicUsize::new(0); +// This uses a `BTreeMap` instead of a hashmap since it supports constant +// initialization and automatically reduces the amount of memory used when +// items are removed. +static mut THREAD_INFO: BTreeMap<usize, ThreadInfo> = BTreeMap::new(); + +struct UnlockOnDrop; + +impl Drop for UnlockOnDrop { + fn drop(&mut self) { + SPIN_LOCK.store(0, Ordering::Release); + } +} + +/// Get the current thread's information, if available. +/// +/// Calling this function might freeze other threads if they attempt to modify +/// their thread information. Thus, the caller should ensure that the process +/// is aborted shortly after this function is called. +/// +/// This function is guaranteed to be async-signal-safe if `f` is too. +pub fn with_current_info<R>(f: impl FnOnce(Option<&ThreadInfo>) -> R) -> R { + let this = errno_location().addr(); + let mut attempt = 0; + let _guard = loop { + // If we are just spinning endlessly, it's very likely that the thread + // modifying the thread info map has a lower priority than us and will + // not continue until we stop running. Just give up in that case. + if attempt == 10_000_000 { + rtprintpanic!("deadlock in SIGSEGV handler"); + return f(None); + } + + match SPIN_LOCK.compare_exchange(0, this, Ordering::Acquire, Ordering::Relaxed) { + Ok(_) => break UnlockOnDrop, + Err(owner) if owner == this => { + rtabort!("a thread received SIGSEGV while modifying its stack overflow information") + } + // Spin until the lock can be acquired – there is nothing better to + // do. This is unfortunately a priority hole, but a stack overflow + // is a fatal error anyway. + Err(_) => { + spin_loop(); + attempt += 1; + } + } + }; + + // SAFETY: we own the spin lock, so `THREAD_INFO` cannot not be aliased. + let thread_info = unsafe { &*(&raw const THREAD_INFO) }; + f(thread_info.get(&this)) +} + +fn spin_lock_in_setup(this: usize) -> UnlockOnDrop { + loop { + match SPIN_LOCK.compare_exchange(0, this, Ordering::Acquire, Ordering::Relaxed) { + Ok(_) => return UnlockOnDrop, + Err(owner) if owner == this => { + unreachable!("the thread info setup logic isn't recursive") + } + // This function is always called with the outer lock held, + // meaning the only time locking can fail is if another thread has + // encountered a stack overflow. Since that will abort the process, + // we just stop the current thread until that time. We use `pause` + // instead of spinning to avoid priority inversion. + // SAFETY: this doesn't have any safety preconditions. + Err(_) => drop(unsafe { libc::pause() }), + } + } +} + +pub fn set_current_info(guard_page_range: Range<usize>, thread_name: Option<Box<str>>) { + let this = errno_location().addr(); + let _lock_guard = LOCK.lock(); + let _spin_guard = spin_lock_in_setup(this); + + // SAFETY: we own the spin lock, so `THREAD_INFO` cannot be aliased. + let thread_info = unsafe { &mut *(&raw mut THREAD_INFO) }; + thread_info.insert(this, ThreadInfo { guard_page_range, thread_name }); +} + +pub fn delete_current_info() { + let this = errno_location().addr(); + let _lock_guard = LOCK.lock(); + let _spin_guard = spin_lock_in_setup(this); + + // SAFETY: we own the spin lock, so `THREAD_INFO` cannot not be aliased. + let thread_info = unsafe { &mut *(&raw mut THREAD_INFO) }; + thread_info.remove(&this); +} diff --git a/library/std/src/sys/pal/unix/thread.rs b/library/std/src/sys/pal/unix/thread.rs index afda7c65e10..d8b189413f4 100644 --- a/library/std/src/sys/pal/unix/thread.rs +++ b/library/std/src/sys/pal/unix/thread.rs @@ -222,16 +222,8 @@ impl Thread { #[cfg(target_os = "vxworks")] pub fn set_name(name: &CStr) { - // FIXME(libc): adding real STATUS, ERROR type eventually. - unsafe extern "C" { - fn taskNameSet(task_id: libc::TASK_ID, task_name: *mut libc::c_char) -> libc::c_int; - } - - // VX_TASK_NAME_LEN is 31 in VxWorks 7. - const VX_TASK_NAME_LEN: usize = 31; - - let mut name = truncate_cstr::<{ VX_TASK_NAME_LEN }>(name); - let res = unsafe { taskNameSet(libc::taskIdSelf(), name.as_mut_ptr()) }; + let mut name = truncate_cstr::<{ libc::VX_TASK_RENAME_LENGTH - 1 }>(name); + let res = unsafe { libc::taskNameSet(libc::taskIdSelf(), name.as_mut_ptr()) }; debug_assert_eq!(res, libc::OK); } diff --git a/library/std/src/sys/pal/windows/mod.rs b/library/std/src/sys/pal/windows/mod.rs index 4f18c4009ab..8f54e2376eb 100644 --- a/library/std/src/sys/pal/windows/mod.rs +++ b/library/std/src/sys/pal/windows/mod.rs @@ -328,8 +328,12 @@ pub fn dur2timeout(dur: Duration) -> u32 { /// Use `__fastfail` to abort the process /// -/// This is the same implementation as in libpanic_abort's `__rust_start_panic`. See -/// that function for more information on `__fastfail` +/// In Windows 8 and later, this will terminate the process immediately without +/// running any in-process exception handlers. In earlier versions of Windows, +/// this sequence of instructions will be treated as an access violation, which +/// will still terminate the process but might run some exception handlers. +/// +/// https://docs.microsoft.com/en-us/cpp/intrinsics/fastfail #[cfg(not(miri))] // inline assembly does not work in Miri pub fn abort_internal() -> ! { unsafe { diff --git a/library/std/src/sys/pal/xous/mod.rs b/library/std/src/sys/pal/xous/mod.rs index 383d031ed43..042c4ff862f 100644 --- a/library/std/src/sys/pal/xous/mod.rs +++ b/library/std/src/sys/pal/xous/mod.rs @@ -1,5 +1,7 @@ #![forbid(unsafe_op_in_unsafe_fn)] +use crate::os::xous::ffi::exit; + pub mod os; #[path = "../unsupported/pipe.rs"] pub mod pipe; @@ -9,3 +11,7 @@ pub mod time; #[path = "../unsupported/common.rs"] mod common; pub use common::*; + +pub fn abort_internal() -> ! { + exit(101); +} diff --git a/library/std/src/sys/pal/xous/os.rs b/library/std/src/sys/pal/xous/os.rs index 2230dabe096..d612a27d2bd 100644 --- a/library/std/src/sys/pal/xous/os.rs +++ b/library/std/src/sys/pal/xous/os.rs @@ -62,14 +62,6 @@ mod c_compat { } exit(unsafe { main() }); } - - // This function is needed by the panic runtime. The symbol is named in - // pre-link args for the target specification, so keep that in sync. - #[unsafe(no_mangle)] - // NB. used by both libunwind and libpanic_abort - pub extern "C" fn __rust_abort() -> ! { - exit(101); - } } pub fn errno() -> i32 { diff --git a/library/std/src/sys/process/windows.rs b/library/std/src/sys/process/windows.rs index 4acd753eec9..1ee3fbd285f 100644 --- a/library/std/src/sys/process/windows.rs +++ b/library/std/src/sys/process/windows.rs @@ -155,6 +155,9 @@ pub struct Command { stdout: Option<Stdio>, stderr: Option<Stdio>, force_quotes_enabled: bool, + startupinfo_fullscreen: bool, + startupinfo_untrusted_source: bool, + startupinfo_force_feedback: Option<bool>, } pub enum Stdio { @@ -186,6 +189,9 @@ impl Command { stdout: None, stderr: None, force_quotes_enabled: false, + startupinfo_fullscreen: false, + startupinfo_untrusted_source: false, + startupinfo_force_feedback: None, } } @@ -222,6 +228,18 @@ impl Command { self.args.push(Arg::Raw(command_str_to_append.to_os_string())) } + pub fn startupinfo_fullscreen(&mut self, enabled: bool) { + self.startupinfo_fullscreen = enabled; + } + + pub fn startupinfo_untrusted_source(&mut self, enabled: bool) { + self.startupinfo_untrusted_source = enabled; + } + + pub fn startupinfo_force_feedback(&mut self, enabled: Option<bool>) { + self.startupinfo_force_feedback = enabled; + } + pub fn get_program(&self) -> &OsStr { &self.program } @@ -343,6 +361,24 @@ impl Command { si.wShowWindow = cmd_show; } + if self.startupinfo_fullscreen { + si.dwFlags |= c::STARTF_RUNFULLSCREEN; + } + + if self.startupinfo_untrusted_source { + si.dwFlags |= c::STARTF_UNTRUSTEDSOURCE; + } + + match self.startupinfo_force_feedback { + Some(true) => { + si.dwFlags |= c::STARTF_FORCEONFEEDBACK; + } + Some(false) => { + si.dwFlags |= c::STARTF_FORCEOFFFEEDBACK; + } + None => {} + } + let si_ptr: *mut c::STARTUPINFOW; let mut si_ex; diff --git a/library/std/tests/floats/f128.rs b/library/std/tests/floats/f128.rs index c2618f3b315..e7c90faa05c 100644 --- a/library/std/tests/floats/f128.rs +++ b/library/std/tests/floats/f128.rs @@ -2,49 +2,26 @@ #![cfg(target_has_reliable_f128)] use std::f128::consts; -use std::num::FpCategory as Fp; -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -use std::ops::Rem; use std::ops::{Add, Div, Mul, Sub}; // Note these tolerances make sense around zero, but not for more extreme exponents. -/// For operations that are near exact, usually not involving math of different -/// signs. -const TOL_PRECISE: f128 = 1e-28; - /// Default tolerances. Works for values that should be near precise but not exact. Roughly /// the precision carried by `100 * 100`. +#[cfg(not(miri))] +#[cfg(target_has_reliable_f128_math)] const TOL: f128 = 1e-12; +/// For operations that are near exact, usually not involving math of different +/// signs. +const TOL_PRECISE: f128 = 1e-28; + /// Tolerances for math that is allowed to be imprecise, usually due to multiple chained /// operations. #[cfg(not(miri))] #[cfg(target_has_reliable_f128_math)] const TOL_IMPR: f128 = 1e-10; -/// Smallest number -const TINY_BITS: u128 = 0x1; - -/// Next smallest number -const TINY_UP_BITS: u128 = 0x2; - -/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 -const MAX_DOWN_BITS: u128 = 0x7ffefffffffffffffffffffffffffffe; - -/// Zeroed exponent, full significant -const LARGEST_SUBNORMAL_BITS: u128 = 0x0000ffffffffffffffffffffffffffff; - -/// Exponent = 0b1, zeroed significand -const SMALLEST_NORMAL_BITS: u128 = 0x00010000000000000000000000000000; - -/// First pattern over the mantissa -const NAN_MASK1: u128 = 0x0000aaaaaaaaaaaaaaaaaaaaaaaaaaaa; - -/// Second pattern over the mantissa -const NAN_MASK2: u128 = 0x00005555555555555555555555555555; - /// Compare by representation #[allow(unused_macros)] macro_rules! assert_f128_biteq { @@ -68,459 +45,11 @@ fn test_num_f128() { assert_eq!(ten.div(two), ten / two); } -// FIXME(f16_f128,miri): many of these have to be disabled since miri does not yet support -// the intrinsics. - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_num_f128_rem() { - let ten = 10f128; - let two = 2f128; - assert_eq!(ten.rem(two), ten % two); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_min_nan() { - assert_eq!(f128::NAN.min(2.0), 2.0); - assert_eq!(2.0f128.min(f128::NAN), 2.0); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_max_nan() { - assert_eq!(f128::NAN.max(2.0), 2.0); - assert_eq!(2.0f128.max(f128::NAN), 2.0); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_minimum() { - assert!(f128::NAN.minimum(2.0).is_nan()); - assert!(2.0f128.minimum(f128::NAN).is_nan()); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_maximum() { - assert!(f128::NAN.maximum(2.0).is_nan()); - assert!(2.0f128.maximum(f128::NAN).is_nan()); -} - -#[test] -fn test_nan() { - let nan: f128 = f128::NAN; - assert!(nan.is_nan()); - assert!(!nan.is_infinite()); - assert!(!nan.is_finite()); - assert!(nan.is_sign_positive()); - assert!(!nan.is_sign_negative()); - assert!(!nan.is_normal()); - assert_eq!(Fp::Nan, nan.classify()); - // Ensure the quiet bit is set. - assert!(nan.to_bits() & (1 << (f128::MANTISSA_DIGITS - 2)) != 0); -} - -#[test] -fn test_infinity() { - let inf: f128 = f128::INFINITY; - assert!(inf.is_infinite()); - assert!(!inf.is_finite()); - assert!(inf.is_sign_positive()); - assert!(!inf.is_sign_negative()); - assert!(!inf.is_nan()); - assert!(!inf.is_normal()); - assert_eq!(Fp::Infinite, inf.classify()); -} - -#[test] -fn test_neg_infinity() { - let neg_inf: f128 = f128::NEG_INFINITY; - assert!(neg_inf.is_infinite()); - assert!(!neg_inf.is_finite()); - assert!(!neg_inf.is_sign_positive()); - assert!(neg_inf.is_sign_negative()); - assert!(!neg_inf.is_nan()); - assert!(!neg_inf.is_normal()); - assert_eq!(Fp::Infinite, neg_inf.classify()); -} - -#[test] -fn test_zero() { - let zero: f128 = 0.0f128; - assert_eq!(0.0, zero); - assert!(!zero.is_infinite()); - assert!(zero.is_finite()); - assert!(zero.is_sign_positive()); - assert!(!zero.is_sign_negative()); - assert!(!zero.is_nan()); - assert!(!zero.is_normal()); - assert_eq!(Fp::Zero, zero.classify()); -} - -#[test] -fn test_neg_zero() { - let neg_zero: f128 = -0.0; - assert_eq!(0.0, neg_zero); - assert!(!neg_zero.is_infinite()); - assert!(neg_zero.is_finite()); - assert!(!neg_zero.is_sign_positive()); - assert!(neg_zero.is_sign_negative()); - assert!(!neg_zero.is_nan()); - assert!(!neg_zero.is_normal()); - assert_eq!(Fp::Zero, neg_zero.classify()); -} - -#[test] -fn test_one() { - let one: f128 = 1.0f128; - assert_eq!(1.0, one); - assert!(!one.is_infinite()); - assert!(one.is_finite()); - assert!(one.is_sign_positive()); - assert!(!one.is_sign_negative()); - assert!(!one.is_nan()); - assert!(one.is_normal()); - assert_eq!(Fp::Normal, one.classify()); -} - -#[test] -fn test_is_nan() { - let nan: f128 = f128::NAN; - let inf: f128 = f128::INFINITY; - let neg_inf: f128 = f128::NEG_INFINITY; - assert!(nan.is_nan()); - assert!(!0.0f128.is_nan()); - assert!(!5.3f128.is_nan()); - assert!(!(-10.732f128).is_nan()); - assert!(!inf.is_nan()); - assert!(!neg_inf.is_nan()); -} - -#[test] -fn test_is_infinite() { - let nan: f128 = f128::NAN; - let inf: f128 = f128::INFINITY; - let neg_inf: f128 = f128::NEG_INFINITY; - assert!(!nan.is_infinite()); - assert!(inf.is_infinite()); - assert!(neg_inf.is_infinite()); - assert!(!0.0f128.is_infinite()); - assert!(!42.8f128.is_infinite()); - assert!(!(-109.2f128).is_infinite()); -} - -#[test] -fn test_is_finite() { - let nan: f128 = f128::NAN; - let inf: f128 = f128::INFINITY; - let neg_inf: f128 = f128::NEG_INFINITY; - assert!(!nan.is_finite()); - assert!(!inf.is_finite()); - assert!(!neg_inf.is_finite()); - assert!(0.0f128.is_finite()); - assert!(42.8f128.is_finite()); - assert!((-109.2f128).is_finite()); -} - -#[test] -fn test_is_normal() { - let nan: f128 = f128::NAN; - let inf: f128 = f128::INFINITY; - let neg_inf: f128 = f128::NEG_INFINITY; - let zero: f128 = 0.0f128; - let neg_zero: f128 = -0.0; - assert!(!nan.is_normal()); - assert!(!inf.is_normal()); - assert!(!neg_inf.is_normal()); - assert!(!zero.is_normal()); - assert!(!neg_zero.is_normal()); - assert!(1f128.is_normal()); - assert!(1e-4931f128.is_normal()); - assert!(!1e-4932f128.is_normal()); -} - -#[test] -fn test_classify() { - let nan: f128 = f128::NAN; - let inf: f128 = f128::INFINITY; - let neg_inf: f128 = f128::NEG_INFINITY; - let zero: f128 = 0.0f128; - let neg_zero: f128 = -0.0; - assert_eq!(nan.classify(), Fp::Nan); - assert_eq!(inf.classify(), Fp::Infinite); - assert_eq!(neg_inf.classify(), Fp::Infinite); - assert_eq!(zero.classify(), Fp::Zero); - assert_eq!(neg_zero.classify(), Fp::Zero); - assert_eq!(1f128.classify(), Fp::Normal); - assert_eq!(1e-4931f128.classify(), Fp::Normal); - assert_eq!(1e-4932f128.classify(), Fp::Subnormal); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_floor() { - assert_approx_eq!(1.0f128.floor(), 1.0f128, TOL_PRECISE); - assert_approx_eq!(1.3f128.floor(), 1.0f128, TOL_PRECISE); - assert_approx_eq!(1.5f128.floor(), 1.0f128, TOL_PRECISE); - assert_approx_eq!(1.7f128.floor(), 1.0f128, TOL_PRECISE); - assert_approx_eq!(0.0f128.floor(), 0.0f128, TOL_PRECISE); - assert_approx_eq!((-0.0f128).floor(), -0.0f128, TOL_PRECISE); - assert_approx_eq!((-1.0f128).floor(), -1.0f128, TOL_PRECISE); - assert_approx_eq!((-1.3f128).floor(), -2.0f128, TOL_PRECISE); - assert_approx_eq!((-1.5f128).floor(), -2.0f128, TOL_PRECISE); - assert_approx_eq!((-1.7f128).floor(), -2.0f128, TOL_PRECISE); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_ceil() { - assert_approx_eq!(1.0f128.ceil(), 1.0f128, TOL_PRECISE); - assert_approx_eq!(1.3f128.ceil(), 2.0f128, TOL_PRECISE); - assert_approx_eq!(1.5f128.ceil(), 2.0f128, TOL_PRECISE); - assert_approx_eq!(1.7f128.ceil(), 2.0f128, TOL_PRECISE); - assert_approx_eq!(0.0f128.ceil(), 0.0f128, TOL_PRECISE); - assert_approx_eq!((-0.0f128).ceil(), -0.0f128, TOL_PRECISE); - assert_approx_eq!((-1.0f128).ceil(), -1.0f128, TOL_PRECISE); - assert_approx_eq!((-1.3f128).ceil(), -1.0f128, TOL_PRECISE); - assert_approx_eq!((-1.5f128).ceil(), -1.0f128, TOL_PRECISE); - assert_approx_eq!((-1.7f128).ceil(), -1.0f128, TOL_PRECISE); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_round() { - assert_approx_eq!(2.5f128.round(), 3.0f128, TOL_PRECISE); - assert_approx_eq!(1.0f128.round(), 1.0f128, TOL_PRECISE); - assert_approx_eq!(1.3f128.round(), 1.0f128, TOL_PRECISE); - assert_approx_eq!(1.5f128.round(), 2.0f128, TOL_PRECISE); - assert_approx_eq!(1.7f128.round(), 2.0f128, TOL_PRECISE); - assert_approx_eq!(0.0f128.round(), 0.0f128, TOL_PRECISE); - assert_approx_eq!((-0.0f128).round(), -0.0f128, TOL_PRECISE); - assert_approx_eq!((-1.0f128).round(), -1.0f128, TOL_PRECISE); - assert_approx_eq!((-1.3f128).round(), -1.0f128, TOL_PRECISE); - assert_approx_eq!((-1.5f128).round(), -2.0f128, TOL_PRECISE); - assert_approx_eq!((-1.7f128).round(), -2.0f128, TOL_PRECISE); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_round_ties_even() { - assert_approx_eq!(2.5f128.round_ties_even(), 2.0f128, TOL_PRECISE); - assert_approx_eq!(1.0f128.round_ties_even(), 1.0f128, TOL_PRECISE); - assert_approx_eq!(1.3f128.round_ties_even(), 1.0f128, TOL_PRECISE); - assert_approx_eq!(1.5f128.round_ties_even(), 2.0f128, TOL_PRECISE); - assert_approx_eq!(1.7f128.round_ties_even(), 2.0f128, TOL_PRECISE); - assert_approx_eq!(0.0f128.round_ties_even(), 0.0f128, TOL_PRECISE); - assert_approx_eq!((-0.0f128).round_ties_even(), -0.0f128, TOL_PRECISE); - assert_approx_eq!((-1.0f128).round_ties_even(), -1.0f128, TOL_PRECISE); - assert_approx_eq!((-1.3f128).round_ties_even(), -1.0f128, TOL_PRECISE); - assert_approx_eq!((-1.5f128).round_ties_even(), -2.0f128, TOL_PRECISE); - assert_approx_eq!((-1.7f128).round_ties_even(), -2.0f128, TOL_PRECISE); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_trunc() { - assert_approx_eq!(1.0f128.trunc(), 1.0f128, TOL_PRECISE); - assert_approx_eq!(1.3f128.trunc(), 1.0f128, TOL_PRECISE); - assert_approx_eq!(1.5f128.trunc(), 1.0f128, TOL_PRECISE); - assert_approx_eq!(1.7f128.trunc(), 1.0f128, TOL_PRECISE); - assert_approx_eq!(0.0f128.trunc(), 0.0f128, TOL_PRECISE); - assert_approx_eq!((-0.0f128).trunc(), -0.0f128, TOL_PRECISE); - assert_approx_eq!((-1.0f128).trunc(), -1.0f128, TOL_PRECISE); - assert_approx_eq!((-1.3f128).trunc(), -1.0f128, TOL_PRECISE); - assert_approx_eq!((-1.5f128).trunc(), -1.0f128, TOL_PRECISE); - assert_approx_eq!((-1.7f128).trunc(), -1.0f128, TOL_PRECISE); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_fract() { - assert_approx_eq!(1.0f128.fract(), 0.0f128, TOL_PRECISE); - assert_approx_eq!(1.3f128.fract(), 0.3f128, TOL_PRECISE); - assert_approx_eq!(1.5f128.fract(), 0.5f128, TOL_PRECISE); - assert_approx_eq!(1.7f128.fract(), 0.7f128, TOL_PRECISE); - assert_approx_eq!(0.0f128.fract(), 0.0f128, TOL_PRECISE); - assert_approx_eq!((-0.0f128).fract(), -0.0f128, TOL_PRECISE); - assert_approx_eq!((-1.0f128).fract(), -0.0f128, TOL_PRECISE); - assert_approx_eq!((-1.3f128).fract(), -0.3f128, TOL_PRECISE); - assert_approx_eq!((-1.5f128).fract(), -0.5f128, TOL_PRECISE); - assert_approx_eq!((-1.7f128).fract(), -0.7f128, TOL_PRECISE); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_abs() { - assert_eq!(f128::INFINITY.abs(), f128::INFINITY); - assert_eq!(1f128.abs(), 1f128); - assert_eq!(0f128.abs(), 0f128); - assert_eq!((-0f128).abs(), 0f128); - assert_eq!((-1f128).abs(), 1f128); - assert_eq!(f128::NEG_INFINITY.abs(), f128::INFINITY); - assert_eq!((1f128 / f128::NEG_INFINITY).abs(), 0f128); - assert!(f128::NAN.abs().is_nan()); -} - -#[test] -fn test_is_sign_positive() { - assert!(f128::INFINITY.is_sign_positive()); - assert!(1f128.is_sign_positive()); - assert!(0f128.is_sign_positive()); - assert!(!(-0f128).is_sign_positive()); - assert!(!(-1f128).is_sign_positive()); - assert!(!f128::NEG_INFINITY.is_sign_positive()); - assert!(!(1f128 / f128::NEG_INFINITY).is_sign_positive()); - assert!(f128::NAN.is_sign_positive()); - assert!(!(-f128::NAN).is_sign_positive()); -} - -#[test] -fn test_is_sign_negative() { - assert!(!f128::INFINITY.is_sign_negative()); - assert!(!1f128.is_sign_negative()); - assert!(!0f128.is_sign_negative()); - assert!((-0f128).is_sign_negative()); - assert!((-1f128).is_sign_negative()); - assert!(f128::NEG_INFINITY.is_sign_negative()); - assert!((1f128 / f128::NEG_INFINITY).is_sign_negative()); - assert!(!f128::NAN.is_sign_negative()); - assert!((-f128::NAN).is_sign_negative()); -} - -#[test] -fn test_next_up() { - let tiny = f128::from_bits(TINY_BITS); - let tiny_up = f128::from_bits(TINY_UP_BITS); - let max_down = f128::from_bits(MAX_DOWN_BITS); - let largest_subnormal = f128::from_bits(LARGEST_SUBNORMAL_BITS); - let smallest_normal = f128::from_bits(SMALLEST_NORMAL_BITS); - assert_f128_biteq!(f128::NEG_INFINITY.next_up(), f128::MIN); - assert_f128_biteq!(f128::MIN.next_up(), -max_down); - assert_f128_biteq!((-1.0 - f128::EPSILON).next_up(), -1.0); - assert_f128_biteq!((-smallest_normal).next_up(), -largest_subnormal); - assert_f128_biteq!((-tiny_up).next_up(), -tiny); - assert_f128_biteq!((-tiny).next_up(), -0.0f128); - assert_f128_biteq!((-0.0f128).next_up(), tiny); - assert_f128_biteq!(0.0f128.next_up(), tiny); - assert_f128_biteq!(tiny.next_up(), tiny_up); - assert_f128_biteq!(largest_subnormal.next_up(), smallest_normal); - assert_f128_biteq!(1.0f128.next_up(), 1.0 + f128::EPSILON); - assert_f128_biteq!(f128::MAX.next_up(), f128::INFINITY); - assert_f128_biteq!(f128::INFINITY.next_up(), f128::INFINITY); - - // Check that NaNs roundtrip. - let nan0 = f128::NAN; - let nan1 = f128::from_bits(f128::NAN.to_bits() ^ 0x002a_aaaa); - let nan2 = f128::from_bits(f128::NAN.to_bits() ^ 0x0055_5555); - assert_f128_biteq!(nan0.next_up(), nan0); - assert_f128_biteq!(nan1.next_up(), nan1); - assert_f128_biteq!(nan2.next_up(), nan2); -} - -#[test] -fn test_next_down() { - let tiny = f128::from_bits(TINY_BITS); - let tiny_up = f128::from_bits(TINY_UP_BITS); - let max_down = f128::from_bits(MAX_DOWN_BITS); - let largest_subnormal = f128::from_bits(LARGEST_SUBNORMAL_BITS); - let smallest_normal = f128::from_bits(SMALLEST_NORMAL_BITS); - assert_f128_biteq!(f128::NEG_INFINITY.next_down(), f128::NEG_INFINITY); - assert_f128_biteq!(f128::MIN.next_down(), f128::NEG_INFINITY); - assert_f128_biteq!((-max_down).next_down(), f128::MIN); - assert_f128_biteq!((-1.0f128).next_down(), -1.0 - f128::EPSILON); - assert_f128_biteq!((-largest_subnormal).next_down(), -smallest_normal); - assert_f128_biteq!((-tiny).next_down(), -tiny_up); - assert_f128_biteq!((-0.0f128).next_down(), -tiny); - assert_f128_biteq!((0.0f128).next_down(), -tiny); - assert_f128_biteq!(tiny.next_down(), 0.0f128); - assert_f128_biteq!(tiny_up.next_down(), tiny); - assert_f128_biteq!(smallest_normal.next_down(), largest_subnormal); - assert_f128_biteq!((1.0 + f128::EPSILON).next_down(), 1.0f128); - assert_f128_biteq!(f128::MAX.next_down(), max_down); - assert_f128_biteq!(f128::INFINITY.next_down(), f128::MAX); - - // Check that NaNs roundtrip. - let nan0 = f128::NAN; - let nan1 = f128::from_bits(f128::NAN.to_bits() ^ 0x002a_aaaa); - let nan2 = f128::from_bits(f128::NAN.to_bits() ^ 0x0055_5555); - assert_f128_biteq!(nan0.next_down(), nan0); - assert_f128_biteq!(nan1.next_down(), nan1); - assert_f128_biteq!(nan2.next_down(), nan2); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_mul_add() { - let nan: f128 = f128::NAN; - let inf: f128 = f128::INFINITY; - let neg_inf: f128 = f128::NEG_INFINITY; - assert_approx_eq!(12.3f128.mul_add(4.5, 6.7), 62.05, TOL_PRECISE); - assert_approx_eq!((-12.3f128).mul_add(-4.5, -6.7), 48.65, TOL_PRECISE); - assert_approx_eq!(0.0f128.mul_add(8.9, 1.2), 1.2, TOL_PRECISE); - assert_approx_eq!(3.4f128.mul_add(-0.0, 5.6), 5.6, TOL_PRECISE); - assert!(nan.mul_add(7.8, 9.0).is_nan()); - assert_eq!(inf.mul_add(7.8, 9.0), inf); - assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf); - assert_eq!(8.9f128.mul_add(inf, 3.2), inf); - assert_eq!((-3.2f128).mul_add(2.4, neg_inf), neg_inf); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] -fn test_recip() { - let nan: f128 = f128::NAN; - let inf: f128 = f128::INFINITY; - let neg_inf: f128 = f128::NEG_INFINITY; - assert_eq!(1.0f128.recip(), 1.0); - assert_eq!(2.0f128.recip(), 0.5); - assert_eq!((-0.4f128).recip(), -2.5); - assert_eq!(0.0f128.recip(), inf); - assert_approx_eq!( - f128::MAX.recip(), - 8.40525785778023376565669454330438228902076605e-4933, - 1e-4900 - ); - assert!(nan.recip().is_nan()); - assert_eq!(inf.recip(), 0.0); - assert_eq!(neg_inf.recip(), 0.0); -} - // Many math functions allow for less accurate results, so the next tolerance up is used #[test] #[cfg(not(miri))] #[cfg(target_has_reliable_f128_math)] -fn test_powi() { - let nan: f128 = f128::NAN; - let inf: f128 = f128::INFINITY; - let neg_inf: f128 = f128::NEG_INFINITY; - assert_eq!(1.0f128.powi(1), 1.0); - assert_approx_eq!((-3.1f128).powi(2), 9.6100000000000005506706202140776519387, TOL); - assert_approx_eq!(5.9f128.powi(-2), 0.028727377190462507313100483690639638451, TOL); - assert_eq!(8.3f128.powi(0), 1.0); - assert!(nan.powi(2).is_nan()); - assert_eq!(inf.powi(3), inf); - assert_eq!(neg_inf.powi(2), inf); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] fn test_powf() { let nan: f128 = f128::NAN; let inf: f128 = f128::INFINITY; @@ -539,19 +68,6 @@ fn test_powf() { #[test] #[cfg(not(miri))] #[cfg(target_has_reliable_f128_math)] -fn test_sqrt_domain() { - assert!(f128::NAN.sqrt().is_nan()); - assert!(f128::NEG_INFINITY.sqrt().is_nan()); - assert!((-1.0f128).sqrt().is_nan()); - assert_eq!((-0.0f128).sqrt(), -0.0); - assert_eq!(0.0f128.sqrt(), 0.0); - assert_eq!(1.0f128.sqrt(), 1.0); - assert_eq!(f128::INFINITY.sqrt(), f128::INFINITY); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f128_math)] fn test_exp() { assert_eq!(1.0, 0.0f128.exp()); assert_approx_eq!(consts::E, 1.0f128.exp(), TOL); @@ -655,38 +171,6 @@ fn test_log10() { } #[test] -fn test_to_degrees() { - let pi: f128 = consts::PI; - let nan: f128 = f128::NAN; - let inf: f128 = f128::INFINITY; - let neg_inf: f128 = f128::NEG_INFINITY; - assert_eq!(0.0f128.to_degrees(), 0.0); - assert_approx_eq!((-5.8f128).to_degrees(), -332.31552117587745090765431723855668471, TOL); - assert_approx_eq!(pi.to_degrees(), 180.0, TOL); - assert!(nan.to_degrees().is_nan()); - assert_eq!(inf.to_degrees(), inf); - assert_eq!(neg_inf.to_degrees(), neg_inf); - assert_eq!(1_f128.to_degrees(), 57.2957795130823208767981548141051703); -} - -#[test] -fn test_to_radians() { - let pi: f128 = consts::PI; - let nan: f128 = f128::NAN; - let inf: f128 = f128::INFINITY; - let neg_inf: f128 = f128::NEG_INFINITY; - assert_eq!(0.0f128.to_radians(), 0.0); - assert_approx_eq!(154.6f128.to_radians(), 2.6982790235832334267135442069489767804, TOL); - assert_approx_eq!((-332.31f128).to_radians(), -5.7999036373023566567593094812182763013, TOL); - // check approx rather than exact because round trip for pi doesn't fall on an exactly - // representable value (unlike `f32` and `f64`). - assert_approx_eq!(180.0f128.to_radians(), pi, TOL_PRECISE); - assert!(nan.to_radians().is_nan()); - assert_eq!(inf.to_radians(), inf); - assert_eq!(neg_inf.to_radians(), neg_inf); -} - -#[test] #[cfg(not(miri))] #[cfg(target_has_reliable_f128_math)] fn test_asinh() { @@ -835,237 +319,3 @@ fn test_real_consts() { assert_approx_eq!(ln_10, 10f128.ln(), TOL_PRECISE); } } - -#[test] -fn test_float_bits_conv() { - assert_eq!((1f128).to_bits(), 0x3fff0000000000000000000000000000); - assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000); - assert_eq!((1337f128).to_bits(), 0x40094e40000000000000000000000000); - assert_eq!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000); - assert_approx_eq!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0, TOL_PRECISE); - assert_approx_eq!(f128::from_bits(0x40029000000000000000000000000000), 12.5, TOL_PRECISE); - assert_approx_eq!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0, TOL_PRECISE); - assert_approx_eq!(f128::from_bits(0xc002c800000000000000000000000000), -14.25, TOL_PRECISE); - - // Check that NaNs roundtrip their bits regardless of signaling-ness - // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits - let masked_nan1 = f128::NAN.to_bits() ^ NAN_MASK1; - let masked_nan2 = f128::NAN.to_bits() ^ NAN_MASK2; - assert!(f128::from_bits(masked_nan1).is_nan()); - assert!(f128::from_bits(masked_nan2).is_nan()); - - assert_eq!(f128::from_bits(masked_nan1).to_bits(), masked_nan1); - assert_eq!(f128::from_bits(masked_nan2).to_bits(), masked_nan2); -} - -#[test] -#[should_panic] -fn test_clamp_min_greater_than_max() { - let _ = 1.0f128.clamp(3.0, 1.0); -} - -#[test] -#[should_panic] -fn test_clamp_min_is_nan() { - let _ = 1.0f128.clamp(f128::NAN, 1.0); -} - -#[test] -#[should_panic] -fn test_clamp_max_is_nan() { - let _ = 1.0f128.clamp(3.0, f128::NAN); -} - -#[test] -fn test_total_cmp() { - use core::cmp::Ordering; - - fn quiet_bit_mask() -> u128 { - 1 << (f128::MANTISSA_DIGITS - 2) - } - - // FIXME(f16_f128): test subnormals when powf is available - // fn min_subnorm() -> f128 { - // f128::MIN_POSITIVE / f128::powf(2.0, f128::MANTISSA_DIGITS as f128 - 1.0) - // } - - // fn max_subnorm() -> f128 { - // f128::MIN_POSITIVE - min_subnorm() - // } - - fn q_nan() -> f128 { - f128::from_bits(f128::NAN.to_bits() | quiet_bit_mask()) - } - - fn s_nan() -> f128 { - f128::from_bits((f128::NAN.to_bits() & !quiet_bit_mask()) + 42) - } - - assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan())); - assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan())); - assert_eq!(Ordering::Equal, (-f128::INFINITY).total_cmp(&-f128::INFINITY)); - assert_eq!(Ordering::Equal, (-f128::MAX).total_cmp(&-f128::MAX)); - assert_eq!(Ordering::Equal, (-2.5_f128).total_cmp(&-2.5)); - assert_eq!(Ordering::Equal, (-1.0_f128).total_cmp(&-1.0)); - assert_eq!(Ordering::Equal, (-1.5_f128).total_cmp(&-1.5)); - assert_eq!(Ordering::Equal, (-0.5_f128).total_cmp(&-0.5)); - assert_eq!(Ordering::Equal, (-f128::MIN_POSITIVE).total_cmp(&-f128::MIN_POSITIVE)); - // assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm())); - // assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Equal, (-0.0_f128).total_cmp(&-0.0)); - assert_eq!(Ordering::Equal, 0.0_f128.total_cmp(&0.0)); - // assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm())); - // assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm())); - assert_eq!(Ordering::Equal, f128::MIN_POSITIVE.total_cmp(&f128::MIN_POSITIVE)); - assert_eq!(Ordering::Equal, 0.5_f128.total_cmp(&0.5)); - assert_eq!(Ordering::Equal, 1.0_f128.total_cmp(&1.0)); - assert_eq!(Ordering::Equal, 1.5_f128.total_cmp(&1.5)); - assert_eq!(Ordering::Equal, 2.5_f128.total_cmp(&2.5)); - assert_eq!(Ordering::Equal, f128::MAX.total_cmp(&f128::MAX)); - assert_eq!(Ordering::Equal, f128::INFINITY.total_cmp(&f128::INFINITY)); - assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan())); - assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan())); - - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f128::INFINITY)); - assert_eq!(Ordering::Less, (-f128::INFINITY).total_cmp(&-f128::MAX)); - assert_eq!(Ordering::Less, (-f128::MAX).total_cmp(&-2.5)); - assert_eq!(Ordering::Less, (-2.5_f128).total_cmp(&-1.5)); - assert_eq!(Ordering::Less, (-1.5_f128).total_cmp(&-1.0)); - assert_eq!(Ordering::Less, (-1.0_f128).total_cmp(&-0.5)); - assert_eq!(Ordering::Less, (-0.5_f128).total_cmp(&-f128::MIN_POSITIVE)); - // assert_eq!(Ordering::Less, (-f128::MIN_POSITIVE).total_cmp(&-max_subnorm())); - // assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm())); - // assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0)); - assert_eq!(Ordering::Less, (-0.0_f128).total_cmp(&0.0)); - // assert_eq!(Ordering::Less, 0.0_f128.total_cmp(&min_subnorm())); - // assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm())); - // assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f128::MIN_POSITIVE)); - assert_eq!(Ordering::Less, f128::MIN_POSITIVE.total_cmp(&0.5)); - assert_eq!(Ordering::Less, 0.5_f128.total_cmp(&1.0)); - assert_eq!(Ordering::Less, 1.0_f128.total_cmp(&1.5)); - assert_eq!(Ordering::Less, 1.5_f128.total_cmp(&2.5)); - assert_eq!(Ordering::Less, 2.5_f128.total_cmp(&f128::MAX)); - assert_eq!(Ordering::Less, f128::MAX.total_cmp(&f128::INFINITY)); - assert_eq!(Ordering::Less, f128::INFINITY.total_cmp(&s_nan())); - assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan())); - - assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan())); - assert_eq!(Ordering::Greater, (-f128::INFINITY).total_cmp(&-s_nan())); - assert_eq!(Ordering::Greater, (-f128::MAX).total_cmp(&-f128::INFINITY)); - assert_eq!(Ordering::Greater, (-2.5_f128).total_cmp(&-f128::MAX)); - assert_eq!(Ordering::Greater, (-1.5_f128).total_cmp(&-2.5)); - assert_eq!(Ordering::Greater, (-1.0_f128).total_cmp(&-1.5)); - assert_eq!(Ordering::Greater, (-0.5_f128).total_cmp(&-1.0)); - assert_eq!(Ordering::Greater, (-f128::MIN_POSITIVE).total_cmp(&-0.5)); - // assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f128::MIN_POSITIVE)); - // assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm())); - // assert_eq!(Ordering::Greater, (-0.0_f128).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Greater, 0.0_f128.total_cmp(&-0.0)); - // assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0)); - // assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm())); - // assert_eq!(Ordering::Greater, f128::MIN_POSITIVE.total_cmp(&max_subnorm())); - assert_eq!(Ordering::Greater, 0.5_f128.total_cmp(&f128::MIN_POSITIVE)); - assert_eq!(Ordering::Greater, 1.0_f128.total_cmp(&0.5)); - assert_eq!(Ordering::Greater, 1.5_f128.total_cmp(&1.0)); - assert_eq!(Ordering::Greater, 2.5_f128.total_cmp(&1.5)); - assert_eq!(Ordering::Greater, f128::MAX.total_cmp(&2.5)); - assert_eq!(Ordering::Greater, f128::INFINITY.total_cmp(&f128::MAX)); - assert_eq!(Ordering::Greater, s_nan().total_cmp(&f128::INFINITY)); - assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan())); - - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f128::INFINITY)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f128::MAX)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f128::MIN_POSITIVE)); - // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm())); - // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0)); - // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm())); - // assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f128::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f128::MAX)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f128::INFINITY)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan())); - - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f128::INFINITY)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f128::MAX)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f128::MIN_POSITIVE)); - // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm())); - // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0)); - // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm())); - // assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f128::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f128::MAX)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f128::INFINITY)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan())); -} - -#[test] -fn test_algebraic() { - let a: f128 = 123.0; - let b: f128 = 456.0; - - // Check that individual operations match their primitive counterparts. - // - // This is a check of current implementations and does NOT imply any form of - // guarantee about future behavior. The compiler reserves the right to make - // these operations inexact matches in the future. - let eps = if cfg!(miri) { 1e-6 } else { 0.0 }; - - assert_approx_eq!(a.algebraic_add(b), a + b, eps); - assert_approx_eq!(a.algebraic_sub(b), a - b, eps); - assert_approx_eq!(a.algebraic_mul(b), a * b, eps); - assert_approx_eq!(a.algebraic_div(b), a / b, eps); - assert_approx_eq!(a.algebraic_rem(b), a % b, eps); -} - -#[test] -fn test_from() { - assert_eq!(f128::from(false), 0.0); - assert_eq!(f128::from(true), 1.0); - assert_eq!(f128::from(u8::MIN), 0.0); - assert_eq!(f128::from(42_u8), 42.0); - assert_eq!(f128::from(u8::MAX), 255.0); - assert_eq!(f128::from(i8::MIN), -128.0); - assert_eq!(f128::from(42_i8), 42.0); - assert_eq!(f128::from(i8::MAX), 127.0); - assert_eq!(f128::from(u16::MIN), 0.0); - assert_eq!(f128::from(42_u16), 42.0); - assert_eq!(f128::from(u16::MAX), 65535.0); - assert_eq!(f128::from(i16::MIN), -32768.0); - assert_eq!(f128::from(42_i16), 42.0); - assert_eq!(f128::from(i16::MAX), 32767.0); - assert_eq!(f128::from(u32::MIN), 0.0); - assert_eq!(f128::from(42_u32), 42.0); - assert_eq!(f128::from(u32::MAX), 4294967295.0); - assert_eq!(f128::from(i32::MIN), -2147483648.0); - assert_eq!(f128::from(42_i32), 42.0); - assert_eq!(f128::from(i32::MAX), 2147483647.0); - // FIXME(f16_f128): Uncomment these tests once the From<{u64,i64}> impls are added. - // assert_eq!(f128::from(u64::MIN), 0.0); - // assert_eq!(f128::from(42_u64), 42.0); - // assert_eq!(f128::from(u64::MAX), 18446744073709551615.0); - // assert_eq!(f128::from(i64::MIN), -9223372036854775808.0); - // assert_eq!(f128::from(42_i64), 42.0); - // assert_eq!(f128::from(i64::MAX), 9223372036854775807.0); -} diff --git a/library/std/tests/floats/f16.rs b/library/std/tests/floats/f16.rs index 70bbcd07160..0f8b4138d22 100644 --- a/library/std/tests/floats/f16.rs +++ b/library/std/tests/floats/f16.rs @@ -2,7 +2,6 @@ #![cfg(target_has_reliable_f16)] use std::f16::consts; -use std::num::FpCategory as Fp; /// Tolerance for results on the order of 10.0e-2 #[allow(unused)] @@ -20,27 +19,6 @@ const TOL_P2: f16 = 0.5; #[allow(unused)] const TOL_P4: f16 = 10.0; -/// Smallest number -const TINY_BITS: u16 = 0x1; - -/// Next smallest number -const TINY_UP_BITS: u16 = 0x2; - -/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 -const MAX_DOWN_BITS: u16 = 0x7bfe; - -/// Zeroed exponent, full significant -const LARGEST_SUBNORMAL_BITS: u16 = 0x03ff; - -/// Exponent = 0b1, zeroed significand -const SMALLEST_NORMAL_BITS: u16 = 0x0400; - -/// First pattern over the mantissa -const NAN_MASK1: u16 = 0x02aa; - -/// Second pattern over the mantissa -const NAN_MASK2: u16 = 0x0155; - /// Compare by representation #[allow(unused_macros)] macro_rules! assert_f16_biteq { @@ -53,446 +31,6 @@ macro_rules! assert_f16_biteq { } #[test] -fn test_num_f16() { - crate::test_num(10f16, 2f16); -} - -// FIXME(f16_f128,miri): many of these have to be disabled since miri does not yet support -// the intrinsics. - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_min_nan() { - assert_eq!(f16::NAN.min(2.0), 2.0); - assert_eq!(2.0f16.min(f16::NAN), 2.0); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_max_nan() { - assert_eq!(f16::NAN.max(2.0), 2.0); - assert_eq!(2.0f16.max(f16::NAN), 2.0); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_minimum() { - assert!(f16::NAN.minimum(2.0).is_nan()); - assert!(2.0f16.minimum(f16::NAN).is_nan()); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_maximum() { - assert!(f16::NAN.maximum(2.0).is_nan()); - assert!(2.0f16.maximum(f16::NAN).is_nan()); -} - -#[test] -fn test_nan() { - let nan: f16 = f16::NAN; - assert!(nan.is_nan()); - assert!(!nan.is_infinite()); - assert!(!nan.is_finite()); - assert!(nan.is_sign_positive()); - assert!(!nan.is_sign_negative()); - assert!(!nan.is_normal()); - assert_eq!(Fp::Nan, nan.classify()); - // Ensure the quiet bit is set. - assert!(nan.to_bits() & (1 << (f16::MANTISSA_DIGITS - 2)) != 0); -} - -#[test] -fn test_infinity() { - let inf: f16 = f16::INFINITY; - assert!(inf.is_infinite()); - assert!(!inf.is_finite()); - assert!(inf.is_sign_positive()); - assert!(!inf.is_sign_negative()); - assert!(!inf.is_nan()); - assert!(!inf.is_normal()); - assert_eq!(Fp::Infinite, inf.classify()); -} - -#[test] -fn test_neg_infinity() { - let neg_inf: f16 = f16::NEG_INFINITY; - assert!(neg_inf.is_infinite()); - assert!(!neg_inf.is_finite()); - assert!(!neg_inf.is_sign_positive()); - assert!(neg_inf.is_sign_negative()); - assert!(!neg_inf.is_nan()); - assert!(!neg_inf.is_normal()); - assert_eq!(Fp::Infinite, neg_inf.classify()); -} - -#[test] -fn test_zero() { - let zero: f16 = 0.0f16; - assert_eq!(0.0, zero); - assert!(!zero.is_infinite()); - assert!(zero.is_finite()); - assert!(zero.is_sign_positive()); - assert!(!zero.is_sign_negative()); - assert!(!zero.is_nan()); - assert!(!zero.is_normal()); - assert_eq!(Fp::Zero, zero.classify()); -} - -#[test] -fn test_neg_zero() { - let neg_zero: f16 = -0.0; - assert_eq!(0.0, neg_zero); - assert!(!neg_zero.is_infinite()); - assert!(neg_zero.is_finite()); - assert!(!neg_zero.is_sign_positive()); - assert!(neg_zero.is_sign_negative()); - assert!(!neg_zero.is_nan()); - assert!(!neg_zero.is_normal()); - assert_eq!(Fp::Zero, neg_zero.classify()); -} - -#[test] -fn test_one() { - let one: f16 = 1.0f16; - assert_eq!(1.0, one); - assert!(!one.is_infinite()); - assert!(one.is_finite()); - assert!(one.is_sign_positive()); - assert!(!one.is_sign_negative()); - assert!(!one.is_nan()); - assert!(one.is_normal()); - assert_eq!(Fp::Normal, one.classify()); -} - -#[test] -fn test_is_nan() { - let nan: f16 = f16::NAN; - let inf: f16 = f16::INFINITY; - let neg_inf: f16 = f16::NEG_INFINITY; - assert!(nan.is_nan()); - assert!(!0.0f16.is_nan()); - assert!(!5.3f16.is_nan()); - assert!(!(-10.732f16).is_nan()); - assert!(!inf.is_nan()); - assert!(!neg_inf.is_nan()); -} - -#[test] -fn test_is_infinite() { - let nan: f16 = f16::NAN; - let inf: f16 = f16::INFINITY; - let neg_inf: f16 = f16::NEG_INFINITY; - assert!(!nan.is_infinite()); - assert!(inf.is_infinite()); - assert!(neg_inf.is_infinite()); - assert!(!0.0f16.is_infinite()); - assert!(!42.8f16.is_infinite()); - assert!(!(-109.2f16).is_infinite()); -} - -#[test] -fn test_is_finite() { - let nan: f16 = f16::NAN; - let inf: f16 = f16::INFINITY; - let neg_inf: f16 = f16::NEG_INFINITY; - assert!(!nan.is_finite()); - assert!(!inf.is_finite()); - assert!(!neg_inf.is_finite()); - assert!(0.0f16.is_finite()); - assert!(42.8f16.is_finite()); - assert!((-109.2f16).is_finite()); -} - -#[test] -fn test_is_normal() { - let nan: f16 = f16::NAN; - let inf: f16 = f16::INFINITY; - let neg_inf: f16 = f16::NEG_INFINITY; - let zero: f16 = 0.0f16; - let neg_zero: f16 = -0.0; - assert!(!nan.is_normal()); - assert!(!inf.is_normal()); - assert!(!neg_inf.is_normal()); - assert!(!zero.is_normal()); - assert!(!neg_zero.is_normal()); - assert!(1f16.is_normal()); - assert!(1e-4f16.is_normal()); - assert!(!1e-5f16.is_normal()); -} - -#[test] -fn test_classify() { - let nan: f16 = f16::NAN; - let inf: f16 = f16::INFINITY; - let neg_inf: f16 = f16::NEG_INFINITY; - let zero: f16 = 0.0f16; - let neg_zero: f16 = -0.0; - assert_eq!(nan.classify(), Fp::Nan); - assert_eq!(inf.classify(), Fp::Infinite); - assert_eq!(neg_inf.classify(), Fp::Infinite); - assert_eq!(zero.classify(), Fp::Zero); - assert_eq!(neg_zero.classify(), Fp::Zero); - assert_eq!(1f16.classify(), Fp::Normal); - assert_eq!(1e-4f16.classify(), Fp::Normal); - assert_eq!(1e-5f16.classify(), Fp::Subnormal); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_floor() { - assert_approx_eq!(1.0f16.floor(), 1.0f16, TOL_0); - assert_approx_eq!(1.3f16.floor(), 1.0f16, TOL_0); - assert_approx_eq!(1.5f16.floor(), 1.0f16, TOL_0); - assert_approx_eq!(1.7f16.floor(), 1.0f16, TOL_0); - assert_approx_eq!(0.0f16.floor(), 0.0f16, TOL_0); - assert_approx_eq!((-0.0f16).floor(), -0.0f16, TOL_0); - assert_approx_eq!((-1.0f16).floor(), -1.0f16, TOL_0); - assert_approx_eq!((-1.3f16).floor(), -2.0f16, TOL_0); - assert_approx_eq!((-1.5f16).floor(), -2.0f16, TOL_0); - assert_approx_eq!((-1.7f16).floor(), -2.0f16, TOL_0); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_ceil() { - assert_approx_eq!(1.0f16.ceil(), 1.0f16, TOL_0); - assert_approx_eq!(1.3f16.ceil(), 2.0f16, TOL_0); - assert_approx_eq!(1.5f16.ceil(), 2.0f16, TOL_0); - assert_approx_eq!(1.7f16.ceil(), 2.0f16, TOL_0); - assert_approx_eq!(0.0f16.ceil(), 0.0f16, TOL_0); - assert_approx_eq!((-0.0f16).ceil(), -0.0f16, TOL_0); - assert_approx_eq!((-1.0f16).ceil(), -1.0f16, TOL_0); - assert_approx_eq!((-1.3f16).ceil(), -1.0f16, TOL_0); - assert_approx_eq!((-1.5f16).ceil(), -1.0f16, TOL_0); - assert_approx_eq!((-1.7f16).ceil(), -1.0f16, TOL_0); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_round() { - assert_approx_eq!(2.5f16.round(), 3.0f16, TOL_0); - assert_approx_eq!(1.0f16.round(), 1.0f16, TOL_0); - assert_approx_eq!(1.3f16.round(), 1.0f16, TOL_0); - assert_approx_eq!(1.5f16.round(), 2.0f16, TOL_0); - assert_approx_eq!(1.7f16.round(), 2.0f16, TOL_0); - assert_approx_eq!(0.0f16.round(), 0.0f16, TOL_0); - assert_approx_eq!((-0.0f16).round(), -0.0f16, TOL_0); - assert_approx_eq!((-1.0f16).round(), -1.0f16, TOL_0); - assert_approx_eq!((-1.3f16).round(), -1.0f16, TOL_0); - assert_approx_eq!((-1.5f16).round(), -2.0f16, TOL_0); - assert_approx_eq!((-1.7f16).round(), -2.0f16, TOL_0); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_round_ties_even() { - assert_approx_eq!(2.5f16.round_ties_even(), 2.0f16, TOL_0); - assert_approx_eq!(1.0f16.round_ties_even(), 1.0f16, TOL_0); - assert_approx_eq!(1.3f16.round_ties_even(), 1.0f16, TOL_0); - assert_approx_eq!(1.5f16.round_ties_even(), 2.0f16, TOL_0); - assert_approx_eq!(1.7f16.round_ties_even(), 2.0f16, TOL_0); - assert_approx_eq!(0.0f16.round_ties_even(), 0.0f16, TOL_0); - assert_approx_eq!((-0.0f16).round_ties_even(), -0.0f16, TOL_0); - assert_approx_eq!((-1.0f16).round_ties_even(), -1.0f16, TOL_0); - assert_approx_eq!((-1.3f16).round_ties_even(), -1.0f16, TOL_0); - assert_approx_eq!((-1.5f16).round_ties_even(), -2.0f16, TOL_0); - assert_approx_eq!((-1.7f16).round_ties_even(), -2.0f16, TOL_0); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_trunc() { - assert_approx_eq!(1.0f16.trunc(), 1.0f16, TOL_0); - assert_approx_eq!(1.3f16.trunc(), 1.0f16, TOL_0); - assert_approx_eq!(1.5f16.trunc(), 1.0f16, TOL_0); - assert_approx_eq!(1.7f16.trunc(), 1.0f16, TOL_0); - assert_approx_eq!(0.0f16.trunc(), 0.0f16, TOL_0); - assert_approx_eq!((-0.0f16).trunc(), -0.0f16, TOL_0); - assert_approx_eq!((-1.0f16).trunc(), -1.0f16, TOL_0); - assert_approx_eq!((-1.3f16).trunc(), -1.0f16, TOL_0); - assert_approx_eq!((-1.5f16).trunc(), -1.0f16, TOL_0); - assert_approx_eq!((-1.7f16).trunc(), -1.0f16, TOL_0); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_fract() { - assert_approx_eq!(1.0f16.fract(), 0.0f16, TOL_0); - assert_approx_eq!(1.3f16.fract(), 0.3f16, TOL_0); - assert_approx_eq!(1.5f16.fract(), 0.5f16, TOL_0); - assert_approx_eq!(1.7f16.fract(), 0.7f16, TOL_0); - assert_approx_eq!(0.0f16.fract(), 0.0f16, TOL_0); - assert_approx_eq!((-0.0f16).fract(), -0.0f16, TOL_0); - assert_approx_eq!((-1.0f16).fract(), -0.0f16, TOL_0); - assert_approx_eq!((-1.3f16).fract(), -0.3f16, TOL_0); - assert_approx_eq!((-1.5f16).fract(), -0.5f16, TOL_0); - assert_approx_eq!((-1.7f16).fract(), -0.7f16, TOL_0); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_abs() { - assert_eq!(f16::INFINITY.abs(), f16::INFINITY); - assert_eq!(1f16.abs(), 1f16); - assert_eq!(0f16.abs(), 0f16); - assert_eq!((-0f16).abs(), 0f16); - assert_eq!((-1f16).abs(), 1f16); - assert_eq!(f16::NEG_INFINITY.abs(), f16::INFINITY); - assert_eq!((1f16 / f16::NEG_INFINITY).abs(), 0f16); - assert!(f16::NAN.abs().is_nan()); -} - -#[test] -fn test_is_sign_positive() { - assert!(f16::INFINITY.is_sign_positive()); - assert!(1f16.is_sign_positive()); - assert!(0f16.is_sign_positive()); - assert!(!(-0f16).is_sign_positive()); - assert!(!(-1f16).is_sign_positive()); - assert!(!f16::NEG_INFINITY.is_sign_positive()); - assert!(!(1f16 / f16::NEG_INFINITY).is_sign_positive()); - assert!(f16::NAN.is_sign_positive()); - assert!(!(-f16::NAN).is_sign_positive()); -} - -#[test] -fn test_is_sign_negative() { - assert!(!f16::INFINITY.is_sign_negative()); - assert!(!1f16.is_sign_negative()); - assert!(!0f16.is_sign_negative()); - assert!((-0f16).is_sign_negative()); - assert!((-1f16).is_sign_negative()); - assert!(f16::NEG_INFINITY.is_sign_negative()); - assert!((1f16 / f16::NEG_INFINITY).is_sign_negative()); - assert!(!f16::NAN.is_sign_negative()); - assert!((-f16::NAN).is_sign_negative()); -} - -#[test] -fn test_next_up() { - let tiny = f16::from_bits(TINY_BITS); - let tiny_up = f16::from_bits(TINY_UP_BITS); - let max_down = f16::from_bits(MAX_DOWN_BITS); - let largest_subnormal = f16::from_bits(LARGEST_SUBNORMAL_BITS); - let smallest_normal = f16::from_bits(SMALLEST_NORMAL_BITS); - assert_f16_biteq!(f16::NEG_INFINITY.next_up(), f16::MIN); - assert_f16_biteq!(f16::MIN.next_up(), -max_down); - assert_f16_biteq!((-1.0 - f16::EPSILON).next_up(), -1.0); - assert_f16_biteq!((-smallest_normal).next_up(), -largest_subnormal); - assert_f16_biteq!((-tiny_up).next_up(), -tiny); - assert_f16_biteq!((-tiny).next_up(), -0.0f16); - assert_f16_biteq!((-0.0f16).next_up(), tiny); - assert_f16_biteq!(0.0f16.next_up(), tiny); - assert_f16_biteq!(tiny.next_up(), tiny_up); - assert_f16_biteq!(largest_subnormal.next_up(), smallest_normal); - assert_f16_biteq!(1.0f16.next_up(), 1.0 + f16::EPSILON); - assert_f16_biteq!(f16::MAX.next_up(), f16::INFINITY); - assert_f16_biteq!(f16::INFINITY.next_up(), f16::INFINITY); - - // Check that NaNs roundtrip. - let nan0 = f16::NAN; - let nan1 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK1); - let nan2 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK2); - assert_f16_biteq!(nan0.next_up(), nan0); - assert_f16_biteq!(nan1.next_up(), nan1); - assert_f16_biteq!(nan2.next_up(), nan2); -} - -#[test] -fn test_next_down() { - let tiny = f16::from_bits(TINY_BITS); - let tiny_up = f16::from_bits(TINY_UP_BITS); - let max_down = f16::from_bits(MAX_DOWN_BITS); - let largest_subnormal = f16::from_bits(LARGEST_SUBNORMAL_BITS); - let smallest_normal = f16::from_bits(SMALLEST_NORMAL_BITS); - assert_f16_biteq!(f16::NEG_INFINITY.next_down(), f16::NEG_INFINITY); - assert_f16_biteq!(f16::MIN.next_down(), f16::NEG_INFINITY); - assert_f16_biteq!((-max_down).next_down(), f16::MIN); - assert_f16_biteq!((-1.0f16).next_down(), -1.0 - f16::EPSILON); - assert_f16_biteq!((-largest_subnormal).next_down(), -smallest_normal); - assert_f16_biteq!((-tiny).next_down(), -tiny_up); - assert_f16_biteq!((-0.0f16).next_down(), -tiny); - assert_f16_biteq!((0.0f16).next_down(), -tiny); - assert_f16_biteq!(tiny.next_down(), 0.0f16); - assert_f16_biteq!(tiny_up.next_down(), tiny); - assert_f16_biteq!(smallest_normal.next_down(), largest_subnormal); - assert_f16_biteq!((1.0 + f16::EPSILON).next_down(), 1.0f16); - assert_f16_biteq!(f16::MAX.next_down(), max_down); - assert_f16_biteq!(f16::INFINITY.next_down(), f16::MAX); - - // Check that NaNs roundtrip. - let nan0 = f16::NAN; - let nan1 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK1); - let nan2 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK2); - assert_f16_biteq!(nan0.next_down(), nan0); - assert_f16_biteq!(nan1.next_down(), nan1); - assert_f16_biteq!(nan2.next_down(), nan2); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_mul_add() { - let nan: f16 = f16::NAN; - let inf: f16 = f16::INFINITY; - let neg_inf: f16 = f16::NEG_INFINITY; - assert_approx_eq!(12.3f16.mul_add(4.5, 6.7), 62.05, TOL_P2); - assert_approx_eq!((-12.3f16).mul_add(-4.5, -6.7), 48.65, TOL_P2); - assert_approx_eq!(0.0f16.mul_add(8.9, 1.2), 1.2, TOL_0); - assert_approx_eq!(3.4f16.mul_add(-0.0, 5.6), 5.6, TOL_0); - assert!(nan.mul_add(7.8, 9.0).is_nan()); - assert_eq!(inf.mul_add(7.8, 9.0), inf); - assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf); - assert_eq!(8.9f16.mul_add(inf, 3.2), inf); - assert_eq!((-3.2f16).mul_add(2.4, neg_inf), neg_inf); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_recip() { - let nan: f16 = f16::NAN; - let inf: f16 = f16::INFINITY; - let neg_inf: f16 = f16::NEG_INFINITY; - assert_eq!(1.0f16.recip(), 1.0); - assert_eq!(2.0f16.recip(), 0.5); - assert_eq!((-0.4f16).recip(), -2.5); - assert_eq!(0.0f16.recip(), inf); - assert_approx_eq!(f16::MAX.recip(), 1.526624e-5f16, 1e-4); - assert!(nan.recip().is_nan()); - assert_eq!(inf.recip(), 0.0); - assert_eq!(neg_inf.recip(), 0.0); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_powi() { - let nan: f16 = f16::NAN; - let inf: f16 = f16::INFINITY; - let neg_inf: f16 = f16::NEG_INFINITY; - assert_eq!(1.0f16.powi(1), 1.0); - assert_approx_eq!((-3.1f16).powi(2), 9.61, TOL_0); - assert_approx_eq!(5.9f16.powi(-2), 0.028727, TOL_N2); - assert_eq!(8.3f16.powi(0), 1.0); - assert!(nan.powi(2).is_nan()); - assert_eq!(inf.powi(3), inf); - assert_eq!(neg_inf.powi(2), inf); -} - -#[test] #[cfg(not(miri))] #[cfg(target_has_reliable_f16_math)] fn test_powf() { @@ -513,19 +51,6 @@ fn test_powf() { #[test] #[cfg(not(miri))] #[cfg(target_has_reliable_f16_math)] -fn test_sqrt_domain() { - assert!(f16::NAN.sqrt().is_nan()); - assert!(f16::NEG_INFINITY.sqrt().is_nan()); - assert!((-1.0f16).sqrt().is_nan()); - assert_eq!((-0.0f16).sqrt(), -0.0); - assert_eq!(0.0f16.sqrt(), 0.0); - assert_eq!(1.0f16.sqrt(), 1.0); - assert_eq!(f16::INFINITY.sqrt(), f16::INFINITY); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] fn test_exp() { assert_eq!(1.0, 0.0f16.exp()); assert_approx_eq!(2.718282, 1.0f16.exp(), TOL_0); @@ -629,36 +154,6 @@ fn test_log10() { } #[test] -fn test_to_degrees() { - let pi: f16 = consts::PI; - let nan: f16 = f16::NAN; - let inf: f16 = f16::INFINITY; - let neg_inf: f16 = f16::NEG_INFINITY; - assert_eq!(0.0f16.to_degrees(), 0.0); - assert_approx_eq!((-5.8f16).to_degrees(), -332.315521, TOL_P2); - assert_approx_eq!(pi.to_degrees(), 180.0, TOL_P2); - assert!(nan.to_degrees().is_nan()); - assert_eq!(inf.to_degrees(), inf); - assert_eq!(neg_inf.to_degrees(), neg_inf); - assert_eq!(1_f16.to_degrees(), 57.2957795130823208767981548141051703); -} - -#[test] -fn test_to_radians() { - let pi: f16 = consts::PI; - let nan: f16 = f16::NAN; - let inf: f16 = f16::INFINITY; - let neg_inf: f16 = f16::NEG_INFINITY; - assert_eq!(0.0f16.to_radians(), 0.0); - assert_approx_eq!(154.6f16.to_radians(), 2.698279, TOL_0); - assert_approx_eq!((-332.31f16).to_radians(), -5.799903, TOL_0); - assert_approx_eq!(180.0f16.to_radians(), pi, TOL_0); - assert!(nan.to_radians().is_nan()); - assert_eq!(inf.to_radians(), inf); - assert_eq!(neg_inf.to_radians(), neg_inf); -} - -#[test] #[cfg(not(miri))] #[cfg(target_has_reliable_f16_math)] fn test_asinh() { @@ -803,220 +298,3 @@ fn test_real_consts() { assert_approx_eq!(ln_10, 10f16.ln(), TOL_0); } } - -#[test] -fn test_float_bits_conv() { - assert_eq!((1f16).to_bits(), 0x3c00); - assert_eq!((12.5f16).to_bits(), 0x4a40); - assert_eq!((1337f16).to_bits(), 0x6539); - assert_eq!((-14.25f16).to_bits(), 0xcb20); - assert_approx_eq!(f16::from_bits(0x3c00), 1.0, TOL_0); - assert_approx_eq!(f16::from_bits(0x4a40), 12.5, TOL_0); - assert_approx_eq!(f16::from_bits(0x6539), 1337.0, TOL_P4); - assert_approx_eq!(f16::from_bits(0xcb20), -14.25, TOL_0); - - // Check that NaNs roundtrip their bits regardless of signaling-ness - let masked_nan1 = f16::NAN.to_bits() ^ NAN_MASK1; - let masked_nan2 = f16::NAN.to_bits() ^ NAN_MASK2; - assert!(f16::from_bits(masked_nan1).is_nan()); - assert!(f16::from_bits(masked_nan2).is_nan()); - - assert_eq!(f16::from_bits(masked_nan1).to_bits(), masked_nan1); - assert_eq!(f16::from_bits(masked_nan2).to_bits(), masked_nan2); -} - -#[test] -#[should_panic] -fn test_clamp_min_greater_than_max() { - let _ = 1.0f16.clamp(3.0, 1.0); -} - -#[test] -#[should_panic] -fn test_clamp_min_is_nan() { - let _ = 1.0f16.clamp(f16::NAN, 1.0); -} - -#[test] -#[should_panic] -fn test_clamp_max_is_nan() { - let _ = 1.0f16.clamp(3.0, f16::NAN); -} - -#[test] -#[cfg(not(miri))] -#[cfg(target_has_reliable_f16_math)] -fn test_total_cmp() { - use core::cmp::Ordering; - - fn quiet_bit_mask() -> u16 { - 1 << (f16::MANTISSA_DIGITS - 2) - } - - fn min_subnorm() -> f16 { - f16::MIN_POSITIVE / f16::powf(2.0, f16::MANTISSA_DIGITS as f16 - 1.0) - } - - fn max_subnorm() -> f16 { - f16::MIN_POSITIVE - min_subnorm() - } - - fn q_nan() -> f16 { - f16::from_bits(f16::NAN.to_bits() | quiet_bit_mask()) - } - - fn s_nan() -> f16 { - f16::from_bits((f16::NAN.to_bits() & !quiet_bit_mask()) + 42) - } - - assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan())); - assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan())); - assert_eq!(Ordering::Equal, (-f16::INFINITY).total_cmp(&-f16::INFINITY)); - assert_eq!(Ordering::Equal, (-f16::MAX).total_cmp(&-f16::MAX)); - assert_eq!(Ordering::Equal, (-2.5_f16).total_cmp(&-2.5)); - assert_eq!(Ordering::Equal, (-1.0_f16).total_cmp(&-1.0)); - assert_eq!(Ordering::Equal, (-1.5_f16).total_cmp(&-1.5)); - assert_eq!(Ordering::Equal, (-0.5_f16).total_cmp(&-0.5)); - assert_eq!(Ordering::Equal, (-f16::MIN_POSITIVE).total_cmp(&-f16::MIN_POSITIVE)); - assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Equal, (-0.0_f16).total_cmp(&-0.0)); - assert_eq!(Ordering::Equal, 0.0_f16.total_cmp(&0.0)); - assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm())); - assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm())); - assert_eq!(Ordering::Equal, f16::MIN_POSITIVE.total_cmp(&f16::MIN_POSITIVE)); - assert_eq!(Ordering::Equal, 0.5_f16.total_cmp(&0.5)); - assert_eq!(Ordering::Equal, 1.0_f16.total_cmp(&1.0)); - assert_eq!(Ordering::Equal, 1.5_f16.total_cmp(&1.5)); - assert_eq!(Ordering::Equal, 2.5_f16.total_cmp(&2.5)); - assert_eq!(Ordering::Equal, f16::MAX.total_cmp(&f16::MAX)); - assert_eq!(Ordering::Equal, f16::INFINITY.total_cmp(&f16::INFINITY)); - assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan())); - assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan())); - - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::INFINITY)); - assert_eq!(Ordering::Less, (-f16::INFINITY).total_cmp(&-f16::MAX)); - assert_eq!(Ordering::Less, (-f16::MAX).total_cmp(&-2.5)); - assert_eq!(Ordering::Less, (-2.5_f16).total_cmp(&-1.5)); - assert_eq!(Ordering::Less, (-1.5_f16).total_cmp(&-1.0)); - assert_eq!(Ordering::Less, (-1.0_f16).total_cmp(&-0.5)); - assert_eq!(Ordering::Less, (-0.5_f16).total_cmp(&-f16::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-f16::MIN_POSITIVE).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0)); - assert_eq!(Ordering::Less, (-0.0_f16).total_cmp(&0.0)); - assert_eq!(Ordering::Less, 0.0_f16.total_cmp(&min_subnorm())); - assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm())); - assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f16::MIN_POSITIVE)); - assert_eq!(Ordering::Less, f16::MIN_POSITIVE.total_cmp(&0.5)); - assert_eq!(Ordering::Less, 0.5_f16.total_cmp(&1.0)); - assert_eq!(Ordering::Less, 1.0_f16.total_cmp(&1.5)); - assert_eq!(Ordering::Less, 1.5_f16.total_cmp(&2.5)); - assert_eq!(Ordering::Less, 2.5_f16.total_cmp(&f16::MAX)); - assert_eq!(Ordering::Less, f16::MAX.total_cmp(&f16::INFINITY)); - assert_eq!(Ordering::Less, f16::INFINITY.total_cmp(&s_nan())); - assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan())); - - assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan())); - assert_eq!(Ordering::Greater, (-f16::INFINITY).total_cmp(&-s_nan())); - assert_eq!(Ordering::Greater, (-f16::MAX).total_cmp(&-f16::INFINITY)); - assert_eq!(Ordering::Greater, (-2.5_f16).total_cmp(&-f16::MAX)); - assert_eq!(Ordering::Greater, (-1.5_f16).total_cmp(&-2.5)); - assert_eq!(Ordering::Greater, (-1.0_f16).total_cmp(&-1.5)); - assert_eq!(Ordering::Greater, (-0.5_f16).total_cmp(&-1.0)); - assert_eq!(Ordering::Greater, (-f16::MIN_POSITIVE).total_cmp(&-0.5)); - assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f16::MIN_POSITIVE)); - assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Greater, (-0.0_f16).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Greater, 0.0_f16.total_cmp(&-0.0)); - assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0)); - assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm())); - assert_eq!(Ordering::Greater, f16::MIN_POSITIVE.total_cmp(&max_subnorm())); - assert_eq!(Ordering::Greater, 0.5_f16.total_cmp(&f16::MIN_POSITIVE)); - assert_eq!(Ordering::Greater, 1.0_f16.total_cmp(&0.5)); - assert_eq!(Ordering::Greater, 1.5_f16.total_cmp(&1.0)); - assert_eq!(Ordering::Greater, 2.5_f16.total_cmp(&1.5)); - assert_eq!(Ordering::Greater, f16::MAX.total_cmp(&2.5)); - assert_eq!(Ordering::Greater, f16::INFINITY.total_cmp(&f16::MAX)); - assert_eq!(Ordering::Greater, s_nan().total_cmp(&f16::INFINITY)); - assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan())); - - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::INFINITY)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::MAX)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::MAX)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::INFINITY)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan())); - - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::INFINITY)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::MAX)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::MAX)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::INFINITY)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan())); -} - -#[test] -fn test_algebraic() { - let a: f16 = 123.0; - let b: f16 = 456.0; - - // Check that individual operations match their primitive counterparts. - // - // This is a check of current implementations and does NOT imply any form of - // guarantee about future behavior. The compiler reserves the right to make - // these operations inexact matches in the future. - let eps_add = if cfg!(miri) { 1e1 } else { 0.0 }; - let eps_mul = if cfg!(miri) { 1e3 } else { 0.0 }; - let eps_div = if cfg!(miri) { 1e0 } else { 0.0 }; - - assert_approx_eq!(a.algebraic_add(b), a + b, eps_add); - assert_approx_eq!(a.algebraic_sub(b), a - b, eps_add); - assert_approx_eq!(a.algebraic_mul(b), a * b, eps_mul); - assert_approx_eq!(a.algebraic_div(b), a / b, eps_div); - assert_approx_eq!(a.algebraic_rem(b), a % b, eps_div); -} - -#[test] -fn test_from() { - assert_eq!(f16::from(false), 0.0); - assert_eq!(f16::from(true), 1.0); - assert_eq!(f16::from(u8::MIN), 0.0); - assert_eq!(f16::from(42_u8), 42.0); - assert_eq!(f16::from(u8::MAX), 255.0); - assert_eq!(f16::from(i8::MIN), -128.0); - assert_eq!(f16::from(42_i8), 42.0); - assert_eq!(f16::from(i8::MAX), 127.0); -} diff --git a/library/std/tests/floats/f32.rs b/library/std/tests/floats/f32.rs index 9af23afc5bb..e54f227bb77 100644 --- a/library/std/tests/floats/f32.rs +++ b/library/std/tests/floats/f32.rs @@ -1,26 +1,4 @@ use std::f32::consts; -use std::num::FpCategory as Fp; - -/// Smallest number -const TINY_BITS: u32 = 0x1; - -/// Next smallest number -const TINY_UP_BITS: u32 = 0x2; - -/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 -const MAX_DOWN_BITS: u32 = 0x7f7f_fffe; - -/// Zeroed exponent, full significant -const LARGEST_SUBNORMAL_BITS: u32 = 0x007f_ffff; - -/// Exponent = 0b1, zeroed significand -const SMALLEST_NORMAL_BITS: u32 = 0x0080_0000; - -/// First pattern over the mantissa -const NAN_MASK1: u32 = 0x002a_aaaa; - -/// Second pattern over the mantissa -const NAN_MASK2: u32 = 0x0055_5555; #[allow(unused_macros)] macro_rules! assert_f32_biteq { @@ -34,426 +12,6 @@ macro_rules! assert_f32_biteq { } #[test] -fn test_num_f32() { - crate::test_num(10f32, 2f32); -} - -#[test] -fn test_min_nan() { - assert_eq!(f32::NAN.min(2.0), 2.0); - assert_eq!(2.0f32.min(f32::NAN), 2.0); -} - -#[test] -fn test_max_nan() { - assert_eq!(f32::NAN.max(2.0), 2.0); - assert_eq!(2.0f32.max(f32::NAN), 2.0); -} - -#[test] -fn test_minimum() { - assert!(f32::NAN.minimum(2.0).is_nan()); - assert!(2.0f32.minimum(f32::NAN).is_nan()); -} - -#[test] -fn test_maximum() { - assert!(f32::NAN.maximum(2.0).is_nan()); - assert!(2.0f32.maximum(f32::NAN).is_nan()); -} - -#[test] -fn test_nan() { - let nan: f32 = f32::NAN; - assert!(nan.is_nan()); - assert!(!nan.is_infinite()); - assert!(!nan.is_finite()); - assert!(!nan.is_normal()); - assert!(nan.is_sign_positive()); - assert!(!nan.is_sign_negative()); - assert_eq!(Fp::Nan, nan.classify()); - // Ensure the quiet bit is set. - assert!(nan.to_bits() & (1 << (f32::MANTISSA_DIGITS - 2)) != 0); -} - -#[test] -fn test_infinity() { - let inf: f32 = f32::INFINITY; - assert!(inf.is_infinite()); - assert!(!inf.is_finite()); - assert!(inf.is_sign_positive()); - assert!(!inf.is_sign_negative()); - assert!(!inf.is_nan()); - assert!(!inf.is_normal()); - assert_eq!(Fp::Infinite, inf.classify()); -} - -#[test] -fn test_neg_infinity() { - let neg_inf: f32 = f32::NEG_INFINITY; - assert!(neg_inf.is_infinite()); - assert!(!neg_inf.is_finite()); - assert!(!neg_inf.is_sign_positive()); - assert!(neg_inf.is_sign_negative()); - assert!(!neg_inf.is_nan()); - assert!(!neg_inf.is_normal()); - assert_eq!(Fp::Infinite, neg_inf.classify()); -} - -#[test] -fn test_zero() { - let zero: f32 = 0.0f32; - assert_eq!(0.0, zero); - assert!(!zero.is_infinite()); - assert!(zero.is_finite()); - assert!(zero.is_sign_positive()); - assert!(!zero.is_sign_negative()); - assert!(!zero.is_nan()); - assert!(!zero.is_normal()); - assert_eq!(Fp::Zero, zero.classify()); -} - -#[test] -fn test_neg_zero() { - let neg_zero: f32 = -0.0; - assert_eq!(0.0, neg_zero); - assert!(!neg_zero.is_infinite()); - assert!(neg_zero.is_finite()); - assert!(!neg_zero.is_sign_positive()); - assert!(neg_zero.is_sign_negative()); - assert!(!neg_zero.is_nan()); - assert!(!neg_zero.is_normal()); - assert_eq!(Fp::Zero, neg_zero.classify()); -} - -#[test] -fn test_one() { - let one: f32 = 1.0f32; - assert_eq!(1.0, one); - assert!(!one.is_infinite()); - assert!(one.is_finite()); - assert!(one.is_sign_positive()); - assert!(!one.is_sign_negative()); - assert!(!one.is_nan()); - assert!(one.is_normal()); - assert_eq!(Fp::Normal, one.classify()); -} - -#[test] -fn test_is_nan() { - let nan: f32 = f32::NAN; - let inf: f32 = f32::INFINITY; - let neg_inf: f32 = f32::NEG_INFINITY; - assert!(nan.is_nan()); - assert!(!0.0f32.is_nan()); - assert!(!5.3f32.is_nan()); - assert!(!(-10.732f32).is_nan()); - assert!(!inf.is_nan()); - assert!(!neg_inf.is_nan()); -} - -#[test] -fn test_is_infinite() { - let nan: f32 = f32::NAN; - let inf: f32 = f32::INFINITY; - let neg_inf: f32 = f32::NEG_INFINITY; - assert!(!nan.is_infinite()); - assert!(inf.is_infinite()); - assert!(neg_inf.is_infinite()); - assert!(!0.0f32.is_infinite()); - assert!(!42.8f32.is_infinite()); - assert!(!(-109.2f32).is_infinite()); -} - -#[test] -fn test_is_finite() { - let nan: f32 = f32::NAN; - let inf: f32 = f32::INFINITY; - let neg_inf: f32 = f32::NEG_INFINITY; - assert!(!nan.is_finite()); - assert!(!inf.is_finite()); - assert!(!neg_inf.is_finite()); - assert!(0.0f32.is_finite()); - assert!(42.8f32.is_finite()); - assert!((-109.2f32).is_finite()); -} - -#[test] -fn test_is_normal() { - let nan: f32 = f32::NAN; - let inf: f32 = f32::INFINITY; - let neg_inf: f32 = f32::NEG_INFINITY; - let zero: f32 = 0.0f32; - let neg_zero: f32 = -0.0; - assert!(!nan.is_normal()); - assert!(!inf.is_normal()); - assert!(!neg_inf.is_normal()); - assert!(!zero.is_normal()); - assert!(!neg_zero.is_normal()); - assert!(1f32.is_normal()); - assert!(1e-37f32.is_normal()); - assert!(!1e-38f32.is_normal()); -} - -#[test] -fn test_classify() { - let nan: f32 = f32::NAN; - let inf: f32 = f32::INFINITY; - let neg_inf: f32 = f32::NEG_INFINITY; - let zero: f32 = 0.0f32; - let neg_zero: f32 = -0.0; - assert_eq!(nan.classify(), Fp::Nan); - assert_eq!(inf.classify(), Fp::Infinite); - assert_eq!(neg_inf.classify(), Fp::Infinite); - assert_eq!(zero.classify(), Fp::Zero); - assert_eq!(neg_zero.classify(), Fp::Zero); - assert_eq!(1f32.classify(), Fp::Normal); - assert_eq!(1e-37f32.classify(), Fp::Normal); - assert_eq!(1e-38f32.classify(), Fp::Subnormal); -} - -#[test] -fn test_floor() { - assert_approx_eq!(1.0f32.floor(), 1.0f32); - assert_approx_eq!(1.3f32.floor(), 1.0f32); - assert_approx_eq!(1.5f32.floor(), 1.0f32); - assert_approx_eq!(1.7f32.floor(), 1.0f32); - assert_approx_eq!(0.0f32.floor(), 0.0f32); - assert_approx_eq!((-0.0f32).floor(), -0.0f32); - assert_approx_eq!((-1.0f32).floor(), -1.0f32); - assert_approx_eq!((-1.3f32).floor(), -2.0f32); - assert_approx_eq!((-1.5f32).floor(), -2.0f32); - assert_approx_eq!((-1.7f32).floor(), -2.0f32); -} - -#[test] -fn test_ceil() { - assert_approx_eq!(1.0f32.ceil(), 1.0f32); - assert_approx_eq!(1.3f32.ceil(), 2.0f32); - assert_approx_eq!(1.5f32.ceil(), 2.0f32); - assert_approx_eq!(1.7f32.ceil(), 2.0f32); - assert_approx_eq!(0.0f32.ceil(), 0.0f32); - assert_approx_eq!((-0.0f32).ceil(), -0.0f32); - assert_approx_eq!((-1.0f32).ceil(), -1.0f32); - assert_approx_eq!((-1.3f32).ceil(), -1.0f32); - assert_approx_eq!((-1.5f32).ceil(), -1.0f32); - assert_approx_eq!((-1.7f32).ceil(), -1.0f32); -} - -#[test] -fn test_round() { - assert_approx_eq!(2.5f32.round(), 3.0f32); - assert_approx_eq!(1.0f32.round(), 1.0f32); - assert_approx_eq!(1.3f32.round(), 1.0f32); - assert_approx_eq!(1.5f32.round(), 2.0f32); - assert_approx_eq!(1.7f32.round(), 2.0f32); - assert_approx_eq!(0.0f32.round(), 0.0f32); - assert_approx_eq!((-0.0f32).round(), -0.0f32); - assert_approx_eq!((-1.0f32).round(), -1.0f32); - assert_approx_eq!((-1.3f32).round(), -1.0f32); - assert_approx_eq!((-1.5f32).round(), -2.0f32); - assert_approx_eq!((-1.7f32).round(), -2.0f32); -} - -#[test] -fn test_round_ties_even() { - assert_approx_eq!(2.5f32.round_ties_even(), 2.0f32); - assert_approx_eq!(1.0f32.round_ties_even(), 1.0f32); - assert_approx_eq!(1.3f32.round_ties_even(), 1.0f32); - assert_approx_eq!(1.5f32.round_ties_even(), 2.0f32); - assert_approx_eq!(1.7f32.round_ties_even(), 2.0f32); - assert_approx_eq!(0.0f32.round_ties_even(), 0.0f32); - assert_approx_eq!((-0.0f32).round_ties_even(), -0.0f32); - assert_approx_eq!((-1.0f32).round_ties_even(), -1.0f32); - assert_approx_eq!((-1.3f32).round_ties_even(), -1.0f32); - assert_approx_eq!((-1.5f32).round_ties_even(), -2.0f32); - assert_approx_eq!((-1.7f32).round_ties_even(), -2.0f32); -} - -#[test] -fn test_trunc() { - assert_approx_eq!(1.0f32.trunc(), 1.0f32); - assert_approx_eq!(1.3f32.trunc(), 1.0f32); - assert_approx_eq!(1.5f32.trunc(), 1.0f32); - assert_approx_eq!(1.7f32.trunc(), 1.0f32); - assert_approx_eq!(0.0f32.trunc(), 0.0f32); - assert_approx_eq!((-0.0f32).trunc(), -0.0f32); - assert_approx_eq!((-1.0f32).trunc(), -1.0f32); - assert_approx_eq!((-1.3f32).trunc(), -1.0f32); - assert_approx_eq!((-1.5f32).trunc(), -1.0f32); - assert_approx_eq!((-1.7f32).trunc(), -1.0f32); -} - -#[test] -fn test_fract() { - assert_approx_eq!(1.0f32.fract(), 0.0f32); - assert_approx_eq!(1.3f32.fract(), 0.3f32); - assert_approx_eq!(1.5f32.fract(), 0.5f32); - assert_approx_eq!(1.7f32.fract(), 0.7f32); - assert_approx_eq!(0.0f32.fract(), 0.0f32); - assert_approx_eq!((-0.0f32).fract(), -0.0f32); - assert_approx_eq!((-1.0f32).fract(), -0.0f32); - assert_approx_eq!((-1.3f32).fract(), -0.3f32); - assert_approx_eq!((-1.5f32).fract(), -0.5f32); - assert_approx_eq!((-1.7f32).fract(), -0.7f32); -} - -#[test] -fn test_abs() { - assert_eq!(f32::INFINITY.abs(), f32::INFINITY); - assert_eq!(1f32.abs(), 1f32); - assert_eq!(0f32.abs(), 0f32); - assert_eq!((-0f32).abs(), 0f32); - assert_eq!((-1f32).abs(), 1f32); - assert_eq!(f32::NEG_INFINITY.abs(), f32::INFINITY); - assert_eq!((1f32 / f32::NEG_INFINITY).abs(), 0f32); - assert!(f32::NAN.abs().is_nan()); -} - -#[test] -fn test_signum() { - assert_eq!(f32::INFINITY.signum(), 1f32); - assert_eq!(1f32.signum(), 1f32); - assert_eq!(0f32.signum(), 1f32); - assert_eq!((-0f32).signum(), -1f32); - assert_eq!((-1f32).signum(), -1f32); - assert_eq!(f32::NEG_INFINITY.signum(), -1f32); - assert_eq!((1f32 / f32::NEG_INFINITY).signum(), -1f32); - assert!(f32::NAN.signum().is_nan()); -} - -#[test] -fn test_is_sign_positive() { - assert!(f32::INFINITY.is_sign_positive()); - assert!(1f32.is_sign_positive()); - assert!(0f32.is_sign_positive()); - assert!(!(-0f32).is_sign_positive()); - assert!(!(-1f32).is_sign_positive()); - assert!(!f32::NEG_INFINITY.is_sign_positive()); - assert!(!(1f32 / f32::NEG_INFINITY).is_sign_positive()); - assert!(f32::NAN.is_sign_positive()); - assert!(!(-f32::NAN).is_sign_positive()); -} - -#[test] -fn test_is_sign_negative() { - assert!(!f32::INFINITY.is_sign_negative()); - assert!(!1f32.is_sign_negative()); - assert!(!0f32.is_sign_negative()); - assert!((-0f32).is_sign_negative()); - assert!((-1f32).is_sign_negative()); - assert!(f32::NEG_INFINITY.is_sign_negative()); - assert!((1f32 / f32::NEG_INFINITY).is_sign_negative()); - assert!(!f32::NAN.is_sign_negative()); - assert!((-f32::NAN).is_sign_negative()); -} - -#[test] -fn test_next_up() { - let tiny = f32::from_bits(TINY_BITS); - let tiny_up = f32::from_bits(TINY_UP_BITS); - let max_down = f32::from_bits(MAX_DOWN_BITS); - let largest_subnormal = f32::from_bits(LARGEST_SUBNORMAL_BITS); - let smallest_normal = f32::from_bits(SMALLEST_NORMAL_BITS); - assert_f32_biteq!(f32::NEG_INFINITY.next_up(), f32::MIN); - assert_f32_biteq!(f32::MIN.next_up(), -max_down); - assert_f32_biteq!((-1.0 - f32::EPSILON).next_up(), -1.0); - assert_f32_biteq!((-smallest_normal).next_up(), -largest_subnormal); - assert_f32_biteq!((-tiny_up).next_up(), -tiny); - assert_f32_biteq!((-tiny).next_up(), -0.0f32); - assert_f32_biteq!((-0.0f32).next_up(), tiny); - assert_f32_biteq!(0.0f32.next_up(), tiny); - assert_f32_biteq!(tiny.next_up(), tiny_up); - assert_f32_biteq!(largest_subnormal.next_up(), smallest_normal); - assert_f32_biteq!(1.0f32.next_up(), 1.0 + f32::EPSILON); - assert_f32_biteq!(f32::MAX.next_up(), f32::INFINITY); - assert_f32_biteq!(f32::INFINITY.next_up(), f32::INFINITY); - - // Check that NaNs roundtrip. - let nan0 = f32::NAN; - let nan1 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK1); - let nan2 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK2); - assert_f32_biteq!(nan0.next_up(), nan0); - assert_f32_biteq!(nan1.next_up(), nan1); - assert_f32_biteq!(nan2.next_up(), nan2); -} - -#[test] -fn test_next_down() { - let tiny = f32::from_bits(TINY_BITS); - let tiny_up = f32::from_bits(TINY_UP_BITS); - let max_down = f32::from_bits(MAX_DOWN_BITS); - let largest_subnormal = f32::from_bits(LARGEST_SUBNORMAL_BITS); - let smallest_normal = f32::from_bits(SMALLEST_NORMAL_BITS); - assert_f32_biteq!(f32::NEG_INFINITY.next_down(), f32::NEG_INFINITY); - assert_f32_biteq!(f32::MIN.next_down(), f32::NEG_INFINITY); - assert_f32_biteq!((-max_down).next_down(), f32::MIN); - assert_f32_biteq!((-1.0f32).next_down(), -1.0 - f32::EPSILON); - assert_f32_biteq!((-largest_subnormal).next_down(), -smallest_normal); - assert_f32_biteq!((-tiny).next_down(), -tiny_up); - assert_f32_biteq!((-0.0f32).next_down(), -tiny); - assert_f32_biteq!((0.0f32).next_down(), -tiny); - assert_f32_biteq!(tiny.next_down(), 0.0f32); - assert_f32_biteq!(tiny_up.next_down(), tiny); - assert_f32_biteq!(smallest_normal.next_down(), largest_subnormal); - assert_f32_biteq!((1.0 + f32::EPSILON).next_down(), 1.0f32); - assert_f32_biteq!(f32::MAX.next_down(), max_down); - assert_f32_biteq!(f32::INFINITY.next_down(), f32::MAX); - - // Check that NaNs roundtrip. - let nan0 = f32::NAN; - let nan1 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK1); - let nan2 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK2); - assert_f32_biteq!(nan0.next_down(), nan0); - assert_f32_biteq!(nan1.next_down(), nan1); - assert_f32_biteq!(nan2.next_down(), nan2); -} - -#[test] -fn test_mul_add() { - let nan: f32 = f32::NAN; - let inf: f32 = f32::INFINITY; - let neg_inf: f32 = f32::NEG_INFINITY; - assert_approx_eq!(12.3f32.mul_add(4.5, 6.7), 62.05); - assert_approx_eq!((-12.3f32).mul_add(-4.5, -6.7), 48.65); - assert_approx_eq!(0.0f32.mul_add(8.9, 1.2), 1.2); - assert_approx_eq!(3.4f32.mul_add(-0.0, 5.6), 5.6); - assert!(nan.mul_add(7.8, 9.0).is_nan()); - assert_eq!(inf.mul_add(7.8, 9.0), inf); - assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf); - assert_eq!(8.9f32.mul_add(inf, 3.2), inf); - assert_eq!((-3.2f32).mul_add(2.4, neg_inf), neg_inf); -} - -#[test] -fn test_recip() { - let nan: f32 = f32::NAN; - let inf: f32 = f32::INFINITY; - let neg_inf: f32 = f32::NEG_INFINITY; - assert_eq!(1.0f32.recip(), 1.0); - assert_eq!(2.0f32.recip(), 0.5); - assert_eq!((-0.4f32).recip(), -2.5); - assert_eq!(0.0f32.recip(), inf); - assert!(nan.recip().is_nan()); - assert_eq!(inf.recip(), 0.0); - assert_eq!(neg_inf.recip(), 0.0); -} - -#[test] -fn test_powi() { - let nan: f32 = f32::NAN; - let inf: f32 = f32::INFINITY; - let neg_inf: f32 = f32::NEG_INFINITY; - assert_eq!(1.0f32.powi(1), 1.0); - assert_approx_eq!((-3.1f32).powi(2), 9.61); - assert_approx_eq!(5.9f32.powi(-2), 0.028727); - assert_eq!(8.3f32.powi(0), 1.0); - assert!(nan.powi(2).is_nan()); - assert_eq!(inf.powi(3), inf); - assert_eq!(neg_inf.powi(2), inf); -} - -#[test] fn test_powf() { let nan: f32 = f32::NAN; let inf: f32 = f32::INFINITY; @@ -470,17 +28,6 @@ fn test_powf() { } #[test] -fn test_sqrt_domain() { - assert!(f32::NAN.sqrt().is_nan()); - assert!(f32::NEG_INFINITY.sqrt().is_nan()); - assert!((-1.0f32).sqrt().is_nan()); - assert_eq!((-0.0f32).sqrt(), -0.0); - assert_eq!(0.0f32.sqrt(), 0.0); - assert_eq!(1.0f32.sqrt(), 1.0); - assert_eq!(f32::INFINITY.sqrt(), f32::INFINITY); -} - -#[test] fn test_exp() { assert_eq!(1.0, 0.0f32.exp()); assert_approx_eq!(2.718282, 1.0f32.exp()); @@ -574,36 +121,6 @@ fn test_log10() { } #[test] -fn test_to_degrees() { - let pi: f32 = consts::PI; - let nan: f32 = f32::NAN; - let inf: f32 = f32::INFINITY; - let neg_inf: f32 = f32::NEG_INFINITY; - assert_eq!(0.0f32.to_degrees(), 0.0); - assert_approx_eq!((-5.8f32).to_degrees(), -332.315521); - assert_eq!(pi.to_degrees(), 180.0); - assert!(nan.to_degrees().is_nan()); - assert_eq!(inf.to_degrees(), inf); - assert_eq!(neg_inf.to_degrees(), neg_inf); - assert_eq!(1_f32.to_degrees(), 57.2957795130823208767981548141051703); -} - -#[test] -fn test_to_radians() { - let pi: f32 = consts::PI; - let nan: f32 = f32::NAN; - let inf: f32 = f32::INFINITY; - let neg_inf: f32 = f32::NEG_INFINITY; - assert_eq!(0.0f32.to_radians(), 0.0); - assert_approx_eq!(154.6f32.to_radians(), 2.698279); - assert_approx_eq!((-332.31f32).to_radians(), -5.799903); - assert_eq!(180.0f32.to_radians(), pi); - assert!(nan.to_radians().is_nan()); - assert_eq!(inf.to_radians(), inf); - assert_eq!(neg_inf.to_radians(), neg_inf); -} - -#[test] fn test_asinh() { assert_eq!(0.0f32.asinh(), 0.0f32); assert_eq!((-0.0f32).asinh(), -0.0f32); @@ -734,207 +251,3 @@ fn test_real_consts() { assert_approx_eq!(ln_2, 2f32.ln()); assert_approx_eq!(ln_10, 10f32.ln()); } - -#[test] -fn test_float_bits_conv() { - assert_eq!((1f32).to_bits(), 0x3f800000); - assert_eq!((12.5f32).to_bits(), 0x41480000); - assert_eq!((1337f32).to_bits(), 0x44a72000); - assert_eq!((-14.25f32).to_bits(), 0xc1640000); - assert_approx_eq!(f32::from_bits(0x3f800000), 1.0); - assert_approx_eq!(f32::from_bits(0x41480000), 12.5); - assert_approx_eq!(f32::from_bits(0x44a72000), 1337.0); - assert_approx_eq!(f32::from_bits(0xc1640000), -14.25); - - // Check that NaNs roundtrip their bits regardless of signaling-ness - // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits - let masked_nan1 = f32::NAN.to_bits() ^ NAN_MASK1; - let masked_nan2 = f32::NAN.to_bits() ^ NAN_MASK2; - assert!(f32::from_bits(masked_nan1).is_nan()); - assert!(f32::from_bits(masked_nan2).is_nan()); - - assert_eq!(f32::from_bits(masked_nan1).to_bits(), masked_nan1); - assert_eq!(f32::from_bits(masked_nan2).to_bits(), masked_nan2); -} - -#[test] -#[should_panic] -fn test_clamp_min_greater_than_max() { - let _ = 1.0f32.clamp(3.0, 1.0); -} - -#[test] -#[should_panic] -fn test_clamp_min_is_nan() { - let _ = 1.0f32.clamp(f32::NAN, 1.0); -} - -#[test] -#[should_panic] -fn test_clamp_max_is_nan() { - let _ = 1.0f32.clamp(3.0, f32::NAN); -} - -#[test] -fn test_total_cmp() { - use core::cmp::Ordering; - - fn quiet_bit_mask() -> u32 { - 1 << (f32::MANTISSA_DIGITS - 2) - } - - fn min_subnorm() -> f32 { - f32::MIN_POSITIVE / f32::powf(2.0, f32::MANTISSA_DIGITS as f32 - 1.0) - } - - fn max_subnorm() -> f32 { - f32::MIN_POSITIVE - min_subnorm() - } - - fn q_nan() -> f32 { - f32::from_bits(f32::NAN.to_bits() | quiet_bit_mask()) - } - - fn s_nan() -> f32 { - f32::from_bits((f32::NAN.to_bits() & !quiet_bit_mask()) + 42) - } - - assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan())); - assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan())); - assert_eq!(Ordering::Equal, (-f32::INFINITY).total_cmp(&-f32::INFINITY)); - assert_eq!(Ordering::Equal, (-f32::MAX).total_cmp(&-f32::MAX)); - assert_eq!(Ordering::Equal, (-2.5_f32).total_cmp(&-2.5)); - assert_eq!(Ordering::Equal, (-1.0_f32).total_cmp(&-1.0)); - assert_eq!(Ordering::Equal, (-1.5_f32).total_cmp(&-1.5)); - assert_eq!(Ordering::Equal, (-0.5_f32).total_cmp(&-0.5)); - assert_eq!(Ordering::Equal, (-f32::MIN_POSITIVE).total_cmp(&-f32::MIN_POSITIVE)); - assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Equal, (-0.0_f32).total_cmp(&-0.0)); - assert_eq!(Ordering::Equal, 0.0_f32.total_cmp(&0.0)); - assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm())); - assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm())); - assert_eq!(Ordering::Equal, f32::MIN_POSITIVE.total_cmp(&f32::MIN_POSITIVE)); - assert_eq!(Ordering::Equal, 0.5_f32.total_cmp(&0.5)); - assert_eq!(Ordering::Equal, 1.0_f32.total_cmp(&1.0)); - assert_eq!(Ordering::Equal, 1.5_f32.total_cmp(&1.5)); - assert_eq!(Ordering::Equal, 2.5_f32.total_cmp(&2.5)); - assert_eq!(Ordering::Equal, f32::MAX.total_cmp(&f32::MAX)); - assert_eq!(Ordering::Equal, f32::INFINITY.total_cmp(&f32::INFINITY)); - assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan())); - assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan())); - - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::INFINITY)); - assert_eq!(Ordering::Less, (-f32::INFINITY).total_cmp(&-f32::MAX)); - assert_eq!(Ordering::Less, (-f32::MAX).total_cmp(&-2.5)); - assert_eq!(Ordering::Less, (-2.5_f32).total_cmp(&-1.5)); - assert_eq!(Ordering::Less, (-1.5_f32).total_cmp(&-1.0)); - assert_eq!(Ordering::Less, (-1.0_f32).total_cmp(&-0.5)); - assert_eq!(Ordering::Less, (-0.5_f32).total_cmp(&-f32::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-f32::MIN_POSITIVE).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0)); - assert_eq!(Ordering::Less, (-0.0_f32).total_cmp(&0.0)); - assert_eq!(Ordering::Less, 0.0_f32.total_cmp(&min_subnorm())); - assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm())); - assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f32::MIN_POSITIVE)); - assert_eq!(Ordering::Less, f32::MIN_POSITIVE.total_cmp(&0.5)); - assert_eq!(Ordering::Less, 0.5_f32.total_cmp(&1.0)); - assert_eq!(Ordering::Less, 1.0_f32.total_cmp(&1.5)); - assert_eq!(Ordering::Less, 1.5_f32.total_cmp(&2.5)); - assert_eq!(Ordering::Less, 2.5_f32.total_cmp(&f32::MAX)); - assert_eq!(Ordering::Less, f32::MAX.total_cmp(&f32::INFINITY)); - assert_eq!(Ordering::Less, f32::INFINITY.total_cmp(&s_nan())); - assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan())); - - assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan())); - assert_eq!(Ordering::Greater, (-f32::INFINITY).total_cmp(&-s_nan())); - assert_eq!(Ordering::Greater, (-f32::MAX).total_cmp(&-f32::INFINITY)); - assert_eq!(Ordering::Greater, (-2.5_f32).total_cmp(&-f32::MAX)); - assert_eq!(Ordering::Greater, (-1.5_f32).total_cmp(&-2.5)); - assert_eq!(Ordering::Greater, (-1.0_f32).total_cmp(&-1.5)); - assert_eq!(Ordering::Greater, (-0.5_f32).total_cmp(&-1.0)); - assert_eq!(Ordering::Greater, (-f32::MIN_POSITIVE).total_cmp(&-0.5)); - assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f32::MIN_POSITIVE)); - assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Greater, (-0.0_f32).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Greater, 0.0_f32.total_cmp(&-0.0)); - assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0)); - assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm())); - assert_eq!(Ordering::Greater, f32::MIN_POSITIVE.total_cmp(&max_subnorm())); - assert_eq!(Ordering::Greater, 0.5_f32.total_cmp(&f32::MIN_POSITIVE)); - assert_eq!(Ordering::Greater, 1.0_f32.total_cmp(&0.5)); - assert_eq!(Ordering::Greater, 1.5_f32.total_cmp(&1.0)); - assert_eq!(Ordering::Greater, 2.5_f32.total_cmp(&1.5)); - assert_eq!(Ordering::Greater, f32::MAX.total_cmp(&2.5)); - assert_eq!(Ordering::Greater, f32::INFINITY.total_cmp(&f32::MAX)); - assert_eq!(Ordering::Greater, s_nan().total_cmp(&f32::INFINITY)); - assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan())); - - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f32::INFINITY)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f32::MAX)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f32::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f32::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f32::MAX)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f32::INFINITY)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan())); - - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::INFINITY)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::MAX)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::MAX)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::INFINITY)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan())); -} - -#[test] -fn test_algebraic() { - let a: f32 = 123.0; - let b: f32 = 456.0; - - // Check that individual operations match their primitive counterparts. - // - // This is a check of current implementations and does NOT imply any form of - // guarantee about future behavior. The compiler reserves the right to make - // these operations inexact matches in the future. - let eps_add = if cfg!(miri) { 1e-3 } else { 0.0 }; - let eps_mul = if cfg!(miri) { 1e-1 } else { 0.0 }; - let eps_div = if cfg!(miri) { 1e-4 } else { 0.0 }; - - assert_approx_eq!(a.algebraic_add(b), a + b, eps_add); - assert_approx_eq!(a.algebraic_sub(b), a - b, eps_add); - assert_approx_eq!(a.algebraic_mul(b), a * b, eps_mul); - assert_approx_eq!(a.algebraic_div(b), a / b, eps_div); - assert_approx_eq!(a.algebraic_rem(b), a % b, eps_div); -} diff --git a/library/std/tests/floats/f64.rs b/library/std/tests/floats/f64.rs index de9c27eb33d..2d8dd1cf091 100644 --- a/library/std/tests/floats/f64.rs +++ b/library/std/tests/floats/f64.rs @@ -1,26 +1,4 @@ use std::f64::consts; -use std::num::FpCategory as Fp; - -/// Smallest number -const TINY_BITS: u64 = 0x1; - -/// Next smallest number -const TINY_UP_BITS: u64 = 0x2; - -/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 -const MAX_DOWN_BITS: u64 = 0x7fef_ffff_ffff_fffe; - -/// Zeroed exponent, full significant -const LARGEST_SUBNORMAL_BITS: u64 = 0x000f_ffff_ffff_ffff; - -/// Exponent = 0b1, zeroed significand -const SMALLEST_NORMAL_BITS: u64 = 0x0010_0000_0000_0000; - -/// First pattern over the mantissa -const NAN_MASK1: u64 = 0x000a_aaaa_aaaa_aaaa; - -/// Second pattern over the mantissa -const NAN_MASK2: u64 = 0x0005_5555_5555_5555; #[allow(unused_macros)] macro_rules! assert_f64_biteq { @@ -34,411 +12,6 @@ macro_rules! assert_f64_biteq { } #[test] -fn test_num_f64() { - crate::test_num(10f64, 2f64); -} - -#[test] -fn test_min_nan() { - assert_eq!(f64::NAN.min(2.0), 2.0); - assert_eq!(2.0f64.min(f64::NAN), 2.0); -} - -#[test] -fn test_max_nan() { - assert_eq!(f64::NAN.max(2.0), 2.0); - assert_eq!(2.0f64.max(f64::NAN), 2.0); -} - -#[test] -fn test_nan() { - let nan: f64 = f64::NAN; - assert!(nan.is_nan()); - assert!(!nan.is_infinite()); - assert!(!nan.is_finite()); - assert!(!nan.is_normal()); - assert!(nan.is_sign_positive()); - assert!(!nan.is_sign_negative()); - assert_eq!(Fp::Nan, nan.classify()); - // Ensure the quiet bit is set. - assert!(nan.to_bits() & (1 << (f64::MANTISSA_DIGITS - 2)) != 0); -} - -#[test] -fn test_infinity() { - let inf: f64 = f64::INFINITY; - assert!(inf.is_infinite()); - assert!(!inf.is_finite()); - assert!(inf.is_sign_positive()); - assert!(!inf.is_sign_negative()); - assert!(!inf.is_nan()); - assert!(!inf.is_normal()); - assert_eq!(Fp::Infinite, inf.classify()); -} - -#[test] -fn test_neg_infinity() { - let neg_inf: f64 = f64::NEG_INFINITY; - assert!(neg_inf.is_infinite()); - assert!(!neg_inf.is_finite()); - assert!(!neg_inf.is_sign_positive()); - assert!(neg_inf.is_sign_negative()); - assert!(!neg_inf.is_nan()); - assert!(!neg_inf.is_normal()); - assert_eq!(Fp::Infinite, neg_inf.classify()); -} - -#[test] -fn test_zero() { - let zero: f64 = 0.0f64; - assert_eq!(0.0, zero); - assert!(!zero.is_infinite()); - assert!(zero.is_finite()); - assert!(zero.is_sign_positive()); - assert!(!zero.is_sign_negative()); - assert!(!zero.is_nan()); - assert!(!zero.is_normal()); - assert_eq!(Fp::Zero, zero.classify()); -} - -#[test] -fn test_neg_zero() { - let neg_zero: f64 = -0.0; - assert_eq!(0.0, neg_zero); - assert!(!neg_zero.is_infinite()); - assert!(neg_zero.is_finite()); - assert!(!neg_zero.is_sign_positive()); - assert!(neg_zero.is_sign_negative()); - assert!(!neg_zero.is_nan()); - assert!(!neg_zero.is_normal()); - assert_eq!(Fp::Zero, neg_zero.classify()); -} - -#[test] -fn test_one() { - let one: f64 = 1.0f64; - assert_eq!(1.0, one); - assert!(!one.is_infinite()); - assert!(one.is_finite()); - assert!(one.is_sign_positive()); - assert!(!one.is_sign_negative()); - assert!(!one.is_nan()); - assert!(one.is_normal()); - assert_eq!(Fp::Normal, one.classify()); -} - -#[test] -fn test_is_nan() { - let nan: f64 = f64::NAN; - let inf: f64 = f64::INFINITY; - let neg_inf: f64 = f64::NEG_INFINITY; - assert!(nan.is_nan()); - assert!(!0.0f64.is_nan()); - assert!(!5.3f64.is_nan()); - assert!(!(-10.732f64).is_nan()); - assert!(!inf.is_nan()); - assert!(!neg_inf.is_nan()); -} - -#[test] -fn test_is_infinite() { - let nan: f64 = f64::NAN; - let inf: f64 = f64::INFINITY; - let neg_inf: f64 = f64::NEG_INFINITY; - assert!(!nan.is_infinite()); - assert!(inf.is_infinite()); - assert!(neg_inf.is_infinite()); - assert!(!0.0f64.is_infinite()); - assert!(!42.8f64.is_infinite()); - assert!(!(-109.2f64).is_infinite()); -} - -#[test] -fn test_is_finite() { - let nan: f64 = f64::NAN; - let inf: f64 = f64::INFINITY; - let neg_inf: f64 = f64::NEG_INFINITY; - assert!(!nan.is_finite()); - assert!(!inf.is_finite()); - assert!(!neg_inf.is_finite()); - assert!(0.0f64.is_finite()); - assert!(42.8f64.is_finite()); - assert!((-109.2f64).is_finite()); -} - -#[test] -fn test_is_normal() { - let nan: f64 = f64::NAN; - let inf: f64 = f64::INFINITY; - let neg_inf: f64 = f64::NEG_INFINITY; - let zero: f64 = 0.0f64; - let neg_zero: f64 = -0.0; - assert!(!nan.is_normal()); - assert!(!inf.is_normal()); - assert!(!neg_inf.is_normal()); - assert!(!zero.is_normal()); - assert!(!neg_zero.is_normal()); - assert!(1f64.is_normal()); - assert!(1e-307f64.is_normal()); - assert!(!1e-308f64.is_normal()); -} - -#[test] -fn test_classify() { - let nan: f64 = f64::NAN; - let inf: f64 = f64::INFINITY; - let neg_inf: f64 = f64::NEG_INFINITY; - let zero: f64 = 0.0f64; - let neg_zero: f64 = -0.0; - assert_eq!(nan.classify(), Fp::Nan); - assert_eq!(inf.classify(), Fp::Infinite); - assert_eq!(neg_inf.classify(), Fp::Infinite); - assert_eq!(zero.classify(), Fp::Zero); - assert_eq!(neg_zero.classify(), Fp::Zero); - assert_eq!(1e-307f64.classify(), Fp::Normal); - assert_eq!(1e-308f64.classify(), Fp::Subnormal); -} - -#[test] -fn test_floor() { - assert_approx_eq!(1.0f64.floor(), 1.0f64); - assert_approx_eq!(1.3f64.floor(), 1.0f64); - assert_approx_eq!(1.5f64.floor(), 1.0f64); - assert_approx_eq!(1.7f64.floor(), 1.0f64); - assert_approx_eq!(0.0f64.floor(), 0.0f64); - assert_approx_eq!((-0.0f64).floor(), -0.0f64); - assert_approx_eq!((-1.0f64).floor(), -1.0f64); - assert_approx_eq!((-1.3f64).floor(), -2.0f64); - assert_approx_eq!((-1.5f64).floor(), -2.0f64); - assert_approx_eq!((-1.7f64).floor(), -2.0f64); -} - -#[test] -fn test_ceil() { - assert_approx_eq!(1.0f64.ceil(), 1.0f64); - assert_approx_eq!(1.3f64.ceil(), 2.0f64); - assert_approx_eq!(1.5f64.ceil(), 2.0f64); - assert_approx_eq!(1.7f64.ceil(), 2.0f64); - assert_approx_eq!(0.0f64.ceil(), 0.0f64); - assert_approx_eq!((-0.0f64).ceil(), -0.0f64); - assert_approx_eq!((-1.0f64).ceil(), -1.0f64); - assert_approx_eq!((-1.3f64).ceil(), -1.0f64); - assert_approx_eq!((-1.5f64).ceil(), -1.0f64); - assert_approx_eq!((-1.7f64).ceil(), -1.0f64); -} - -#[test] -fn test_round() { - assert_approx_eq!(2.5f64.round(), 3.0f64); - assert_approx_eq!(1.0f64.round(), 1.0f64); - assert_approx_eq!(1.3f64.round(), 1.0f64); - assert_approx_eq!(1.5f64.round(), 2.0f64); - assert_approx_eq!(1.7f64.round(), 2.0f64); - assert_approx_eq!(0.0f64.round(), 0.0f64); - assert_approx_eq!((-0.0f64).round(), -0.0f64); - assert_approx_eq!((-1.0f64).round(), -1.0f64); - assert_approx_eq!((-1.3f64).round(), -1.0f64); - assert_approx_eq!((-1.5f64).round(), -2.0f64); - assert_approx_eq!((-1.7f64).round(), -2.0f64); -} - -#[test] -fn test_round_ties_even() { - assert_approx_eq!(2.5f64.round_ties_even(), 2.0f64); - assert_approx_eq!(1.0f64.round_ties_even(), 1.0f64); - assert_approx_eq!(1.3f64.round_ties_even(), 1.0f64); - assert_approx_eq!(1.5f64.round_ties_even(), 2.0f64); - assert_approx_eq!(1.7f64.round_ties_even(), 2.0f64); - assert_approx_eq!(0.0f64.round_ties_even(), 0.0f64); - assert_approx_eq!((-0.0f64).round_ties_even(), -0.0f64); - assert_approx_eq!((-1.0f64).round_ties_even(), -1.0f64); - assert_approx_eq!((-1.3f64).round_ties_even(), -1.0f64); - assert_approx_eq!((-1.5f64).round_ties_even(), -2.0f64); - assert_approx_eq!((-1.7f64).round_ties_even(), -2.0f64); -} - -#[test] -fn test_trunc() { - assert_approx_eq!(1.0f64.trunc(), 1.0f64); - assert_approx_eq!(1.3f64.trunc(), 1.0f64); - assert_approx_eq!(1.5f64.trunc(), 1.0f64); - assert_approx_eq!(1.7f64.trunc(), 1.0f64); - assert_approx_eq!(0.0f64.trunc(), 0.0f64); - assert_approx_eq!((-0.0f64).trunc(), -0.0f64); - assert_approx_eq!((-1.0f64).trunc(), -1.0f64); - assert_approx_eq!((-1.3f64).trunc(), -1.0f64); - assert_approx_eq!((-1.5f64).trunc(), -1.0f64); - assert_approx_eq!((-1.7f64).trunc(), -1.0f64); -} - -#[test] -fn test_fract() { - assert_approx_eq!(1.0f64.fract(), 0.0f64); - assert_approx_eq!(1.3f64.fract(), 0.3f64); - assert_approx_eq!(1.5f64.fract(), 0.5f64); - assert_approx_eq!(1.7f64.fract(), 0.7f64); - assert_approx_eq!(0.0f64.fract(), 0.0f64); - assert_approx_eq!((-0.0f64).fract(), -0.0f64); - assert_approx_eq!((-1.0f64).fract(), -0.0f64); - assert_approx_eq!((-1.3f64).fract(), -0.3f64); - assert_approx_eq!((-1.5f64).fract(), -0.5f64); - assert_approx_eq!((-1.7f64).fract(), -0.7f64); -} - -#[test] -fn test_abs() { - assert_eq!(f64::INFINITY.abs(), f64::INFINITY); - assert_eq!(1f64.abs(), 1f64); - assert_eq!(0f64.abs(), 0f64); - assert_eq!((-0f64).abs(), 0f64); - assert_eq!((-1f64).abs(), 1f64); - assert_eq!(f64::NEG_INFINITY.abs(), f64::INFINITY); - assert_eq!((1f64 / f64::NEG_INFINITY).abs(), 0f64); - assert!(f64::NAN.abs().is_nan()); -} - -#[test] -fn test_signum() { - assert_eq!(f64::INFINITY.signum(), 1f64); - assert_eq!(1f64.signum(), 1f64); - assert_eq!(0f64.signum(), 1f64); - assert_eq!((-0f64).signum(), -1f64); - assert_eq!((-1f64).signum(), -1f64); - assert_eq!(f64::NEG_INFINITY.signum(), -1f64); - assert_eq!((1f64 / f64::NEG_INFINITY).signum(), -1f64); - assert!(f64::NAN.signum().is_nan()); -} - -#[test] -fn test_is_sign_positive() { - assert!(f64::INFINITY.is_sign_positive()); - assert!(1f64.is_sign_positive()); - assert!(0f64.is_sign_positive()); - assert!(!(-0f64).is_sign_positive()); - assert!(!(-1f64).is_sign_positive()); - assert!(!f64::NEG_INFINITY.is_sign_positive()); - assert!(!(1f64 / f64::NEG_INFINITY).is_sign_positive()); - assert!(f64::NAN.is_sign_positive()); - assert!(!(-f64::NAN).is_sign_positive()); -} - -#[test] -fn test_is_sign_negative() { - assert!(!f64::INFINITY.is_sign_negative()); - assert!(!1f64.is_sign_negative()); - assert!(!0f64.is_sign_negative()); - assert!((-0f64).is_sign_negative()); - assert!((-1f64).is_sign_negative()); - assert!(f64::NEG_INFINITY.is_sign_negative()); - assert!((1f64 / f64::NEG_INFINITY).is_sign_negative()); - assert!(!f64::NAN.is_sign_negative()); - assert!((-f64::NAN).is_sign_negative()); -} - -#[test] -fn test_next_up() { - let tiny = f64::from_bits(TINY_BITS); - let tiny_up = f64::from_bits(TINY_UP_BITS); - let max_down = f64::from_bits(MAX_DOWN_BITS); - let largest_subnormal = f64::from_bits(LARGEST_SUBNORMAL_BITS); - let smallest_normal = f64::from_bits(SMALLEST_NORMAL_BITS); - assert_f64_biteq!(f64::NEG_INFINITY.next_up(), f64::MIN); - assert_f64_biteq!(f64::MIN.next_up(), -max_down); - assert_f64_biteq!((-1.0 - f64::EPSILON).next_up(), -1.0); - assert_f64_biteq!((-smallest_normal).next_up(), -largest_subnormal); - assert_f64_biteq!((-tiny_up).next_up(), -tiny); - assert_f64_biteq!((-tiny).next_up(), -0.0f64); - assert_f64_biteq!((-0.0f64).next_up(), tiny); - assert_f64_biteq!(0.0f64.next_up(), tiny); - assert_f64_biteq!(tiny.next_up(), tiny_up); - assert_f64_biteq!(largest_subnormal.next_up(), smallest_normal); - assert_f64_biteq!(1.0f64.next_up(), 1.0 + f64::EPSILON); - assert_f64_biteq!(f64::MAX.next_up(), f64::INFINITY); - assert_f64_biteq!(f64::INFINITY.next_up(), f64::INFINITY); - - let nan0 = f64::NAN; - let nan1 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK1); - let nan2 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK2); - assert_f64_biteq!(nan0.next_up(), nan0); - assert_f64_biteq!(nan1.next_up(), nan1); - assert_f64_biteq!(nan2.next_up(), nan2); -} - -#[test] -fn test_next_down() { - let tiny = f64::from_bits(TINY_BITS); - let tiny_up = f64::from_bits(TINY_UP_BITS); - let max_down = f64::from_bits(MAX_DOWN_BITS); - let largest_subnormal = f64::from_bits(LARGEST_SUBNORMAL_BITS); - let smallest_normal = f64::from_bits(SMALLEST_NORMAL_BITS); - assert_f64_biteq!(f64::NEG_INFINITY.next_down(), f64::NEG_INFINITY); - assert_f64_biteq!(f64::MIN.next_down(), f64::NEG_INFINITY); - assert_f64_biteq!((-max_down).next_down(), f64::MIN); - assert_f64_biteq!((-1.0f64).next_down(), -1.0 - f64::EPSILON); - assert_f64_biteq!((-largest_subnormal).next_down(), -smallest_normal); - assert_f64_biteq!((-tiny).next_down(), -tiny_up); - assert_f64_biteq!((-0.0f64).next_down(), -tiny); - assert_f64_biteq!((0.0f64).next_down(), -tiny); - assert_f64_biteq!(tiny.next_down(), 0.0f64); - assert_f64_biteq!(tiny_up.next_down(), tiny); - assert_f64_biteq!(smallest_normal.next_down(), largest_subnormal); - assert_f64_biteq!((1.0 + f64::EPSILON).next_down(), 1.0f64); - assert_f64_biteq!(f64::MAX.next_down(), max_down); - assert_f64_biteq!(f64::INFINITY.next_down(), f64::MAX); - - let nan0 = f64::NAN; - let nan1 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK1); - let nan2 = f64::from_bits(f64::NAN.to_bits() ^ NAN_MASK2); - assert_f64_biteq!(nan0.next_down(), nan0); - assert_f64_biteq!(nan1.next_down(), nan1); - assert_f64_biteq!(nan2.next_down(), nan2); -} - -#[test] -fn test_mul_add() { - let nan: f64 = f64::NAN; - let inf: f64 = f64::INFINITY; - let neg_inf: f64 = f64::NEG_INFINITY; - assert_approx_eq!(12.3f64.mul_add(4.5, 6.7), 62.05); - assert_approx_eq!((-12.3f64).mul_add(-4.5, -6.7), 48.65); - assert_approx_eq!(0.0f64.mul_add(8.9, 1.2), 1.2); - assert_approx_eq!(3.4f64.mul_add(-0.0, 5.6), 5.6); - assert!(nan.mul_add(7.8, 9.0).is_nan()); - assert_eq!(inf.mul_add(7.8, 9.0), inf); - assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf); - assert_eq!(8.9f64.mul_add(inf, 3.2), inf); - assert_eq!((-3.2f64).mul_add(2.4, neg_inf), neg_inf); -} - -#[test] -fn test_recip() { - let nan: f64 = f64::NAN; - let inf: f64 = f64::INFINITY; - let neg_inf: f64 = f64::NEG_INFINITY; - assert_eq!(1.0f64.recip(), 1.0); - assert_eq!(2.0f64.recip(), 0.5); - assert_eq!((-0.4f64).recip(), -2.5); - assert_eq!(0.0f64.recip(), inf); - assert!(nan.recip().is_nan()); - assert_eq!(inf.recip(), 0.0); - assert_eq!(neg_inf.recip(), 0.0); -} - -#[test] -fn test_powi() { - let nan: f64 = f64::NAN; - let inf: f64 = f64::INFINITY; - let neg_inf: f64 = f64::NEG_INFINITY; - assert_eq!(1.0f64.powi(1), 1.0); - assert_approx_eq!((-3.1f64).powi(2), 9.61); - assert_approx_eq!(5.9f64.powi(-2), 0.028727); - assert_eq!(8.3f64.powi(0), 1.0); - assert!(nan.powi(2).is_nan()); - assert_eq!(inf.powi(3), inf); - assert_eq!(neg_inf.powi(2), inf); -} - -#[test] fn test_powf() { let nan: f64 = f64::NAN; let inf: f64 = f64::INFINITY; @@ -455,17 +28,6 @@ fn test_powf() { } #[test] -fn test_sqrt_domain() { - assert!(f64::NAN.sqrt().is_nan()); - assert!(f64::NEG_INFINITY.sqrt().is_nan()); - assert!((-1.0f64).sqrt().is_nan()); - assert_eq!((-0.0f64).sqrt(), -0.0); - assert_eq!(0.0f64.sqrt(), 0.0); - assert_eq!(1.0f64.sqrt(), 1.0); - assert_eq!(f64::INFINITY.sqrt(), f64::INFINITY); -} - -#[test] fn test_exp() { assert_eq!(1.0, 0.0f64.exp()); assert_approx_eq!(2.718282, 1.0f64.exp()); @@ -559,35 +121,6 @@ fn test_log10() { } #[test] -fn test_to_degrees() { - let pi: f64 = consts::PI; - let nan: f64 = f64::NAN; - let inf: f64 = f64::INFINITY; - let neg_inf: f64 = f64::NEG_INFINITY; - assert_eq!(0.0f64.to_degrees(), 0.0); - assert_approx_eq!((-5.8f64).to_degrees(), -332.315521); - assert_eq!(pi.to_degrees(), 180.0); - assert!(nan.to_degrees().is_nan()); - assert_eq!(inf.to_degrees(), inf); - assert_eq!(neg_inf.to_degrees(), neg_inf); -} - -#[test] -fn test_to_radians() { - let pi: f64 = consts::PI; - let nan: f64 = f64::NAN; - let inf: f64 = f64::INFINITY; - let neg_inf: f64 = f64::NEG_INFINITY; - assert_eq!(0.0f64.to_radians(), 0.0); - assert_approx_eq!(154.6f64.to_radians(), 2.698279); - assert_approx_eq!((-332.31f64).to_radians(), -5.799903); - assert_eq!(180.0f64.to_radians(), pi); - assert!(nan.to_radians().is_nan()); - assert_eq!(inf.to_radians(), inf); - assert_eq!(neg_inf.to_radians(), neg_inf); -} - -#[test] fn test_asinh() { assert_eq!(0.0f64.asinh(), 0.0f64); assert_eq!((-0.0f64).asinh(), -0.0f64); @@ -714,204 +247,3 @@ fn test_real_consts() { assert_approx_eq!(ln_2, 2f64.ln()); assert_approx_eq!(ln_10, 10f64.ln()); } - -#[test] -fn test_float_bits_conv() { - assert_eq!((1f64).to_bits(), 0x3ff0000000000000); - assert_eq!((12.5f64).to_bits(), 0x4029000000000000); - assert_eq!((1337f64).to_bits(), 0x4094e40000000000); - assert_eq!((-14.25f64).to_bits(), 0xc02c800000000000); - assert_approx_eq!(f64::from_bits(0x3ff0000000000000), 1.0); - assert_approx_eq!(f64::from_bits(0x4029000000000000), 12.5); - assert_approx_eq!(f64::from_bits(0x4094e40000000000), 1337.0); - assert_approx_eq!(f64::from_bits(0xc02c800000000000), -14.25); - - // Check that NaNs roundtrip their bits regardless of signaling-ness - let masked_nan1 = f64::NAN.to_bits() ^ NAN_MASK1; - let masked_nan2 = f64::NAN.to_bits() ^ NAN_MASK2; - assert!(f64::from_bits(masked_nan1).is_nan()); - assert!(f64::from_bits(masked_nan2).is_nan()); - - assert_eq!(f64::from_bits(masked_nan1).to_bits(), masked_nan1); - assert_eq!(f64::from_bits(masked_nan2).to_bits(), masked_nan2); -} - -#[test] -#[should_panic] -fn test_clamp_min_greater_than_max() { - let _ = 1.0f64.clamp(3.0, 1.0); -} - -#[test] -#[should_panic] -fn test_clamp_min_is_nan() { - let _ = 1.0f64.clamp(f64::NAN, 1.0); -} - -#[test] -#[should_panic] -fn test_clamp_max_is_nan() { - let _ = 1.0f64.clamp(3.0, f64::NAN); -} - -#[test] -fn test_total_cmp() { - use core::cmp::Ordering; - - fn quiet_bit_mask() -> u64 { - 1 << (f64::MANTISSA_DIGITS - 2) - } - - fn min_subnorm() -> f64 { - f64::MIN_POSITIVE / f64::powf(2.0, f64::MANTISSA_DIGITS as f64 - 1.0) - } - - fn max_subnorm() -> f64 { - f64::MIN_POSITIVE - min_subnorm() - } - - fn q_nan() -> f64 { - f64::from_bits(f64::NAN.to_bits() | quiet_bit_mask()) - } - - fn s_nan() -> f64 { - f64::from_bits((f64::NAN.to_bits() & !quiet_bit_mask()) + 42) - } - - assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan())); - assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan())); - assert_eq!(Ordering::Equal, (-f64::INFINITY).total_cmp(&-f64::INFINITY)); - assert_eq!(Ordering::Equal, (-f64::MAX).total_cmp(&-f64::MAX)); - assert_eq!(Ordering::Equal, (-2.5_f64).total_cmp(&-2.5)); - assert_eq!(Ordering::Equal, (-1.0_f64).total_cmp(&-1.0)); - assert_eq!(Ordering::Equal, (-1.5_f64).total_cmp(&-1.5)); - assert_eq!(Ordering::Equal, (-0.5_f64).total_cmp(&-0.5)); - assert_eq!(Ordering::Equal, (-f64::MIN_POSITIVE).total_cmp(&-f64::MIN_POSITIVE)); - assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Equal, (-0.0_f64).total_cmp(&-0.0)); - assert_eq!(Ordering::Equal, 0.0_f64.total_cmp(&0.0)); - assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm())); - assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm())); - assert_eq!(Ordering::Equal, f64::MIN_POSITIVE.total_cmp(&f64::MIN_POSITIVE)); - assert_eq!(Ordering::Equal, 0.5_f64.total_cmp(&0.5)); - assert_eq!(Ordering::Equal, 1.0_f64.total_cmp(&1.0)); - assert_eq!(Ordering::Equal, 1.5_f64.total_cmp(&1.5)); - assert_eq!(Ordering::Equal, 2.5_f64.total_cmp(&2.5)); - assert_eq!(Ordering::Equal, f64::MAX.total_cmp(&f64::MAX)); - assert_eq!(Ordering::Equal, f64::INFINITY.total_cmp(&f64::INFINITY)); - assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan())); - assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan())); - - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::INFINITY)); - assert_eq!(Ordering::Less, (-f64::INFINITY).total_cmp(&-f64::MAX)); - assert_eq!(Ordering::Less, (-f64::MAX).total_cmp(&-2.5)); - assert_eq!(Ordering::Less, (-2.5_f64).total_cmp(&-1.5)); - assert_eq!(Ordering::Less, (-1.5_f64).total_cmp(&-1.0)); - assert_eq!(Ordering::Less, (-1.0_f64).total_cmp(&-0.5)); - assert_eq!(Ordering::Less, (-0.5_f64).total_cmp(&-f64::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-f64::MIN_POSITIVE).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0)); - assert_eq!(Ordering::Less, (-0.0_f64).total_cmp(&0.0)); - assert_eq!(Ordering::Less, 0.0_f64.total_cmp(&min_subnorm())); - assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm())); - assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f64::MIN_POSITIVE)); - assert_eq!(Ordering::Less, f64::MIN_POSITIVE.total_cmp(&0.5)); - assert_eq!(Ordering::Less, 0.5_f64.total_cmp(&1.0)); - assert_eq!(Ordering::Less, 1.0_f64.total_cmp(&1.5)); - assert_eq!(Ordering::Less, 1.5_f64.total_cmp(&2.5)); - assert_eq!(Ordering::Less, 2.5_f64.total_cmp(&f64::MAX)); - assert_eq!(Ordering::Less, f64::MAX.total_cmp(&f64::INFINITY)); - assert_eq!(Ordering::Less, f64::INFINITY.total_cmp(&s_nan())); - assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan())); - - assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan())); - assert_eq!(Ordering::Greater, (-f64::INFINITY).total_cmp(&-s_nan())); - assert_eq!(Ordering::Greater, (-f64::MAX).total_cmp(&-f64::INFINITY)); - assert_eq!(Ordering::Greater, (-2.5_f64).total_cmp(&-f64::MAX)); - assert_eq!(Ordering::Greater, (-1.5_f64).total_cmp(&-2.5)); - assert_eq!(Ordering::Greater, (-1.0_f64).total_cmp(&-1.5)); - assert_eq!(Ordering::Greater, (-0.5_f64).total_cmp(&-1.0)); - assert_eq!(Ordering::Greater, (-f64::MIN_POSITIVE).total_cmp(&-0.5)); - assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f64::MIN_POSITIVE)); - assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Greater, (-0.0_f64).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Greater, 0.0_f64.total_cmp(&-0.0)); - assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0)); - assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm())); - assert_eq!(Ordering::Greater, f64::MIN_POSITIVE.total_cmp(&max_subnorm())); - assert_eq!(Ordering::Greater, 0.5_f64.total_cmp(&f64::MIN_POSITIVE)); - assert_eq!(Ordering::Greater, 1.0_f64.total_cmp(&0.5)); - assert_eq!(Ordering::Greater, 1.5_f64.total_cmp(&1.0)); - assert_eq!(Ordering::Greater, 2.5_f64.total_cmp(&1.5)); - assert_eq!(Ordering::Greater, f64::MAX.total_cmp(&2.5)); - assert_eq!(Ordering::Greater, f64::INFINITY.total_cmp(&f64::MAX)); - assert_eq!(Ordering::Greater, s_nan().total_cmp(&f64::INFINITY)); - assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan())); - - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f64::INFINITY)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f64::MAX)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f64::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm())); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f64::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f64::MAX)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f64::INFINITY)); - assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan())); - - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::INFINITY)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::MAX)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f64::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm())); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::MIN_POSITIVE)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::MAX)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::INFINITY)); - assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan())); -} - -#[test] -fn test_algebraic() { - let a: f64 = 123.0; - let b: f64 = 456.0; - - // Check that individual operations match their primitive counterparts. - // - // This is a check of current implementations and does NOT imply any form of - // guarantee about future behavior. The compiler reserves the right to make - // these operations inexact matches in the future. - let eps = if cfg!(miri) { 1e-6 } else { 0.0 }; - - assert_approx_eq!(a.algebraic_add(b), a + b, eps); - assert_approx_eq!(a.algebraic_sub(b), a - b, eps); - assert_approx_eq!(a.algebraic_mul(b), a * b, eps); - assert_approx_eq!(a.algebraic_div(b), a / b, eps); - assert_approx_eq!(a.algebraic_rem(b), a % b, eps); -} diff --git a/library/std/tests/floats/lib.rs b/library/std/tests/floats/lib.rs index 453a2d533ab..8bb8eb4bfc1 100644 --- a/library/std/tests/floats/lib.rs +++ b/library/std/tests/floats/lib.rs @@ -1,5 +1,4 @@ -#![feature(f16, f128, float_algebraic, float_gamma, float_minimum_maximum)] -#![feature(cfg_target_has_reliable_f16_f128)] +#![feature(f16, f128, float_gamma, float_minimum_maximum, cfg_target_has_reliable_f16_f128)] #![expect(internal_features)] // for reliable_f16_f128 use std::fmt; diff --git a/library/stdarch b/library/stdarch -Subproject f1c1839c0deb985a9f98cbd6b38a6d43f2df615 +Subproject 1dfaa4db2479753a46a3e90f2c3c89d89d0b21f |
