diff options
Diffstat (limited to 'src/libcore')
36 files changed, 4100 insertions, 238 deletions
diff --git a/src/libcore/alloc.rs b/src/libcore/alloc.rs index f08baa3dd71..674c4fb57c7 100644 --- a/src/libcore/alloc.rs +++ b/src/libcore/alloc.rs @@ -63,7 +63,7 @@ fn size_align<T>() -> (usize, usize) { /// requests have positive size. A caller to the `Alloc::alloc` /// method must either ensure that conditions like this are met, or /// use specific allocators with looser requirements.) -#[derive(Clone, Debug, PartialEq, Eq)] +#[derive(Copy, Clone, Debug, PartialEq, Eq)] pub struct Layout { // size of the requested block of memory, measured in bytes. size: usize, @@ -451,17 +451,6 @@ pub unsafe trait GlobalAlloc { } new_ptr } - - /// Aborts the thread or process, optionally performing - /// cleanup or logging diagnostic information before panicking or - /// aborting. - /// - /// `oom` is meant to be used by clients unable to cope with an - /// unsatisfied allocation request, and wish to abandon - /// computation rather than attempt to recover locally. - fn oom(&self) -> ! { - unsafe { ::intrinsics::abort() } - } } /// An implementation of `Alloc` can allocate, reallocate, and @@ -614,32 +603,6 @@ pub unsafe trait Alloc { /// to allocate that block of memory. unsafe fn dealloc(&mut self, ptr: NonNull<Opaque>, layout: Layout); - /// Allocator-specific method for signaling an out-of-memory - /// condition. - /// - /// `oom` aborts the thread or process, optionally performing - /// cleanup or logging diagnostic information before panicking or - /// aborting. - /// - /// `oom` is meant to be used by clients unable to cope with an - /// unsatisfied allocation request, and wish to abandon - /// computation rather than attempt to recover locally. - /// - /// Implementations of the `oom` method are discouraged from - /// infinitely regressing in nested calls to `oom`. In - /// practice this means implementors should eschew allocating, - /// especially from `self` (directly or indirectly). - /// - /// Implementations of the allocation and reallocation methods - /// (e.g. `alloc`, `alloc_one`, `realloc`) are discouraged from - /// panicking (or aborting) in the event of memory exhaustion; - /// instead they should return an appropriate error from the - /// invoked method, and let the client decide whether to invoke - /// this `oom` method in response. - fn oom(&mut self) -> ! { - unsafe { ::intrinsics::abort() } - } - // == ALLOCATOR-SPECIFIC QUANTITIES AND LIMITS == // usable_size diff --git a/src/libcore/array.rs b/src/libcore/array.rs index 87144c27c9e..3d24f8902bd 100644 --- a/src/libcore/array.rs +++ b/src/libcore/array.rs @@ -59,7 +59,7 @@ unsafe impl<T, A: Unsize<[T]>> FixedSizeArray<T> for A { } /// The error type returned when a conversion from a slice to an array fails. -#[stable(feature = "try_from", since = "1.26.0")] +#[unstable(feature = "try_from", issue = "33417")] #[derive(Debug, Copy, Clone)] pub struct TryFromSliceError(()); @@ -148,7 +148,7 @@ macro_rules! array_impls { } } - #[stable(feature = "try_from", since = "1.26.0")] + #[unstable(feature = "try_from", issue = "33417")] impl<'a, T> TryFrom<&'a [T]> for &'a [T; $N] { type Error = TryFromSliceError; @@ -162,7 +162,7 @@ macro_rules! array_impls { } } - #[stable(feature = "try_from", since = "1.26.0")] + #[unstable(feature = "try_from", issue = "33417")] impl<'a, T> TryFrom<&'a mut [T]> for &'a mut [T; $N] { type Error = TryFromSliceError; diff --git a/src/libcore/cell.rs b/src/libcore/cell.rs index c8ee166fee3..1ff187ed3f1 100644 --- a/src/libcore/cell.rs +++ b/src/libcore/cell.rs @@ -256,6 +256,33 @@ impl<T:Copy> Cell<T> { pub fn get(&self) -> T { unsafe{ *self.value.get() } } + + /// Updates the contained value using a function and returns the new value. + /// + /// # Examples + /// + /// ``` + /// #![feature(cell_update)] + /// + /// use std::cell::Cell; + /// + /// let c = Cell::new(5); + /// let new = c.update(|x| x + 1); + /// + /// assert_eq!(new, 6); + /// assert_eq!(c.get(), 6); + /// ``` + #[inline] + #[unstable(feature = "cell_update", issue = "50186")] + pub fn update<F>(&self, f: F) -> T + where + F: FnOnce(T) -> T, + { + let old = self.get(); + let new = f(old); + self.set(new); + new + } } #[stable(feature = "rust1", since = "1.0.0")] diff --git a/src/libcore/char/convert.rs b/src/libcore/char/convert.rs index 150562a4a9b..803a924eb3a 100644 --- a/src/libcore/char/convert.rs +++ b/src/libcore/char/convert.rs @@ -204,7 +204,7 @@ impl FromStr for char { } -#[stable(feature = "try_from", since = "1.26.0")] +#[unstable(feature = "try_from", issue = "33417")] impl TryFrom<u32> for char { type Error = CharTryFromError; @@ -219,11 +219,11 @@ impl TryFrom<u32> for char { } /// The error type returned when a conversion from u32 to char fails. -#[stable(feature = "try_from", since = "1.26.0")] +#[unstable(feature = "try_from", issue = "33417")] #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub struct CharTryFromError(()); -#[stable(feature = "try_from", since = "1.26.0")] +#[unstable(feature = "try_from", issue = "33417")] impl fmt::Display for CharTryFromError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { "converted integer out of range for `char`".fmt(f) diff --git a/src/libcore/char/decode.rs b/src/libcore/char/decode.rs index 48b531104f8..45a73191db2 100644 --- a/src/libcore/char/decode.rs +++ b/src/libcore/char/decode.rs @@ -17,11 +17,17 @@ use super::from_u32_unchecked; /// An iterator over an iterator of bytes of the characters the bytes represent /// as UTF-8 #[unstable(feature = "decode_utf8", issue = "33906")] +#[rustc_deprecated(since = "1.27.0", reason = "Use str::from_utf8 instead: + https://doc.rust-lang.org/nightly/std/str/struct.Utf8Error.html#examples")] #[derive(Clone, Debug)] +#[allow(deprecated)] pub struct DecodeUtf8<I: Iterator<Item = u8>>(::iter::Peekable<I>); /// Decodes an `Iterator` of bytes as UTF-8. #[unstable(feature = "decode_utf8", issue = "33906")] +#[rustc_deprecated(since = "1.27.0", reason = "Use str::from_utf8 instead: + https://doc.rust-lang.org/nightly/std/str/struct.Utf8Error.html#examples")] +#[allow(deprecated)] #[inline] pub fn decode_utf8<I: IntoIterator<Item = u8>>(i: I) -> DecodeUtf8<I::IntoIter> { DecodeUtf8(i.into_iter().peekable()) @@ -29,10 +35,14 @@ pub fn decode_utf8<I: IntoIterator<Item = u8>>(i: I) -> DecodeUtf8<I::IntoIter> /// `<DecodeUtf8 as Iterator>::next` returns this for an invalid input sequence. #[unstable(feature = "decode_utf8", issue = "33906")] +#[rustc_deprecated(since = "1.27.0", reason = "Use str::from_utf8 instead: + https://doc.rust-lang.org/nightly/std/str/struct.Utf8Error.html#examples")] #[derive(PartialEq, Eq, Debug)] +#[allow(deprecated)] pub struct InvalidSequence(()); #[unstable(feature = "decode_utf8", issue = "33906")] +#[allow(deprecated)] impl<I: Iterator<Item = u8>> Iterator for DecodeUtf8<I> { type Item = Result<char, InvalidSequence>; #[inline] @@ -127,6 +137,7 @@ impl<I: Iterator<Item = u8>> Iterator for DecodeUtf8<I> { } #[unstable(feature = "decode_utf8", issue = "33906")] +#[allow(deprecated)] impl<I: FusedIterator<Item = u8>> FusedIterator for DecodeUtf8<I> {} /// An iterator that decodes UTF-16 encoded code points from an iterator of `u16`s. diff --git a/src/libcore/char/mod.rs b/src/libcore/char/mod.rs index 9edc0c88756..4f6c302247d 100644 --- a/src/libcore/char/mod.rs +++ b/src/libcore/char/mod.rs @@ -40,7 +40,7 @@ pub use self::convert::{from_u32, from_digit}; pub use self::convert::from_u32_unchecked; #[stable(feature = "char_from_str", since = "1.20.0")] pub use self::convert::ParseCharError; -#[stable(feature = "try_from", since = "1.26.0")] +#[unstable(feature = "try_from", issue = "33417")] pub use self::convert::CharTryFromError; #[stable(feature = "decode_utf16", since = "1.9.0")] pub use self::decode::{decode_utf16, DecodeUtf16, DecodeUtf16Error}; @@ -51,6 +51,9 @@ pub use unicode::tables::UNICODE_VERSION; #[unstable(feature = "unicode_version", issue = "49726")] pub use unicode::version::UnicodeVersion; #[unstable(feature = "decode_utf8", issue = "33906")] +#[rustc_deprecated(since = "1.27.0", reason = "Use str::from_utf8 instead: + https://doc.rust-lang.org/nightly/std/str/struct.Utf8Error.html#examples")] +#[allow(deprecated)] pub use self::decode::{decode_utf8, DecodeUtf8, InvalidSequence}; use fmt::{self, Write}; diff --git a/src/libcore/clone.rs b/src/libcore/clone.rs index 58a8439162c..f79f7351698 100644 --- a/src/libcore/clone.rs +++ b/src/libcore/clone.rs @@ -179,7 +179,7 @@ mod impls { bool char } - #[stable(feature = "never_type", since = "1.26.0")] + #[unstable(feature = "never_type", issue = "35121")] impl Clone for ! { #[inline] fn clone(&self) -> Self { diff --git a/src/libcore/cmp.rs b/src/libcore/cmp.rs index 3ae9b05b865..13e838773a5 100644 --- a/src/libcore/cmp.rs +++ b/src/libcore/cmp.rs @@ -106,6 +106,8 @@ use self::Ordering::*; /// ``` #[lang = "eq"] #[stable(feature = "rust1", since = "1.0.0")] +#[doc(alias = "==")] +#[doc(alias = "!=")] #[rustc_on_unimplemented = "can't compare `{Self}` with `{Rhs}`"] pub trait PartialEq<Rhs: ?Sized = Self> { /// This method tests for `self` and `other` values to be equal, and is used @@ -160,6 +162,8 @@ pub trait PartialEq<Rhs: ?Sized = Self> { /// } /// impl Eq for Book {} /// ``` +#[doc(alias = "==")] +#[doc(alias = "!=")] #[stable(feature = "rust1", since = "1.0.0")] pub trait Eq: PartialEq<Self> { // this method is used solely by #[deriving] to assert @@ -428,6 +432,10 @@ impl<T: Ord> Ord for Reverse<T> { /// } /// ``` #[lang = "ord"] +#[doc(alias = "<")] +#[doc(alias = ">")] +#[doc(alias = "<=")] +#[doc(alias = ">=")] #[stable(feature = "rust1", since = "1.0.0")] pub trait Ord: Eq + PartialOrd<Self> { /// This method returns an `Ordering` between `self` and `other`. @@ -599,6 +607,10 @@ impl PartialOrd for Ordering { /// ``` #[lang = "partial_ord"] #[stable(feature = "rust1", since = "1.0.0")] +#[doc(alias = ">")] +#[doc(alias = "<")] +#[doc(alias = "<=")] +#[doc(alias = ">=")] #[rustc_on_unimplemented = "can't compare `{Self}` with `{Rhs}`"] pub trait PartialOrd<Rhs: ?Sized = Self>: PartialEq<Rhs> { /// This method returns an ordering between `self` and `other` values if one exists. @@ -881,24 +893,24 @@ mod impls { ord_impl! { char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 } - #[stable(feature = "never_type", since = "1.26.0")] + #[unstable(feature = "never_type", issue = "35121")] impl PartialEq for ! { fn eq(&self, _: &!) -> bool { *self } } - #[stable(feature = "never_type", since = "1.26.0")] + #[unstable(feature = "never_type", issue = "35121")] impl Eq for ! {} - #[stable(feature = "never_type", since = "1.26.0")] + #[unstable(feature = "never_type", issue = "35121")] impl PartialOrd for ! { fn partial_cmp(&self, _: &!) -> Option<Ordering> { *self } } - #[stable(feature = "never_type", since = "1.26.0")] + #[unstable(feature = "never_type", issue = "35121")] impl Ord for ! { fn cmp(&self, _: &!) -> Ordering { *self diff --git a/src/libcore/convert.rs b/src/libcore/convert.rs index 63721395784..7324df95bc5 100644 --- a/src/libcore/convert.rs +++ b/src/libcore/convert.rs @@ -322,26 +322,22 @@ pub trait From<T>: Sized { /// /// [`TryFrom`]: trait.TryFrom.html /// [`Into`]: trait.Into.html -#[stable(feature = "try_from", since = "1.26.0")] +#[unstable(feature = "try_from", issue = "33417")] pub trait TryInto<T>: Sized { /// The type returned in the event of a conversion error. - #[stable(feature = "try_from", since = "1.26.0")] type Error; /// Performs the conversion. - #[stable(feature = "try_from", since = "1.26.0")] fn try_into(self) -> Result<T, Self::Error>; } /// Attempt to construct `Self` via a conversion. -#[stable(feature = "try_from", since = "1.26.0")] +#[unstable(feature = "try_from", issue = "33417")] pub trait TryFrom<T>: Sized { /// The type returned in the event of a conversion error. - #[stable(feature = "try_from", since = "1.26.0")] type Error; /// Performs the conversion. - #[stable(feature = "try_from", since = "1.26.0")] fn try_from(value: T) -> Result<Self, Self::Error>; } @@ -409,7 +405,7 @@ impl<T> From<T> for T { // TryFrom implies TryInto -#[stable(feature = "try_from", since = "1.26.0")] +#[unstable(feature = "try_from", issue = "33417")] impl<T, U> TryInto<U> for T where U: TryFrom<T> { type Error = U::Error; @@ -421,7 +417,7 @@ impl<T, U> TryInto<U> for T where U: TryFrom<T> // Infallible conversions are semantically equivalent to fallible conversions // with an uninhabited error type. -#[stable(feature = "try_from", since = "1.26.0")] +#[unstable(feature = "try_from", issue = "33417")] impl<T, U> TryFrom<U> for T where T: From<U> { type Error = !; diff --git a/src/libcore/fmt/mod.rs b/src/libcore/fmt/mod.rs index 277bef2bf66..99e3012c9bf 100644 --- a/src/libcore/fmt/mod.rs +++ b/src/libcore/fmt/mod.rs @@ -547,6 +547,7 @@ impl<'a> Display for Arguments<'a> { message="`{Self}` doesn't implement `{Debug}`", label="`{Self}` cannot be formatted using `:?` because it doesn't implement `{Debug}`", )] +#[doc(alias = "{:?}")] #[lang = "debug_trait"] pub trait Debug { /// Formats the value using the given formatter. @@ -612,6 +613,7 @@ pub trait Debug { label="`{Self}` cannot be formatted with the default formatter; \ try using `:?` instead if you are using a format string", )] +#[doc(alias = "{}")] #[stable(feature = "rust1", since = "1.0.0")] pub trait Display { /// Formats the value using the given formatter. @@ -1780,14 +1782,14 @@ macro_rules! fmt_refs { fmt_refs! { Debug, Display, Octal, Binary, LowerHex, UpperHex, LowerExp, UpperExp } -#[stable(feature = "never_type", since = "1.26.0")] +#[unstable(feature = "never_type", issue = "35121")] impl Debug for ! { fn fmt(&self, _: &mut Formatter) -> Result { *self } } -#[stable(feature = "never_type", since = "1.26.0")] +#[unstable(feature = "never_type", issue = "35121")] impl Display for ! { fn fmt(&self, _: &mut Formatter) -> Result { *self diff --git a/src/libcore/hint.rs b/src/libcore/hint.rs new file mode 100644 index 00000000000..f4e96e67b2c --- /dev/null +++ b/src/libcore/hint.rs @@ -0,0 +1,61 @@ +// Copyright 2018 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +#![stable(feature = "core_hint", since = "1.27.0")] + +//! Hints to compiler that affects how code should be emitted or optimized. + +use intrinsics; + +/// Informs the compiler that this point in the code is not reachable, enabling +/// further optimizations. +/// +/// # Safety +/// +/// Reaching this function is completely *undefined behavior* (UB). In +/// particular, the compiler assumes that all UB must never happen, and +/// therefore will eliminate all branches that reach to a call to +/// `unreachable_unchecked()`. +/// +/// Like all instances of UB, if this assumption turns out to be wrong, i.e. the +/// `unreachable_unchecked()` call is actually reachable among all possible +/// control flow, the compiler will apply the wrong optimization strategy, and +/// may sometimes even corrupt seemingly unrelated code, causing +/// difficult-to-debug problems. +/// +/// Use this function only when you can prove that the code will never call it. +/// +/// The [`unreachable!()`] macro is the safe counterpart of this function, which +/// will panic instead when executed. +/// +/// [`unreachable!()`]: ../macro.unreachable.html +/// +/// # Example +/// +/// ``` +/// fn div_1(a: u32, b: u32) -> u32 { +/// use std::hint::unreachable_unchecked; +/// +/// // `b.saturating_add(1)` is always positive (not zero), +/// // hence `checked_div` will never return None. +/// // Therefore, the else branch is unreachable. +/// a.checked_div(b.saturating_add(1)) +/// .unwrap_or_else(|| unsafe { unreachable_unchecked() }) +/// } +/// +/// assert_eq!(div_1(7, 0), 7); +/// assert_eq!(div_1(9, 1), 4); +/// assert_eq!(div_1(11, std::u32::MAX), 0); +/// ``` +#[inline] +#[stable(feature = "unreachable", since = "1.27.0")] +pub unsafe fn unreachable_unchecked() -> ! { + intrinsics::unreachable() +} diff --git a/src/libcore/internal_macros.rs b/src/libcore/internal_macros.rs index cb215a38e53..58eef649287 100644 --- a/src/libcore/internal_macros.rs +++ b/src/libcore/internal_macros.rs @@ -87,3 +87,16 @@ macro_rules! forward_ref_op_assign { } } +#[cfg(stage0)] +macro_rules! public_in_stage0 { + ( { $(#[$attr:meta])* } $($Item: tt)*) => { + $(#[$attr])* pub $($Item)* + } +} + +#[cfg(not(stage0))] +macro_rules! public_in_stage0 { + ( { $(#[$attr:meta])* } $($Item: tt)*) => { + $(#[$attr])* pub(crate) $($Item)* + } +} diff --git a/src/libcore/intrinsics.rs b/src/libcore/intrinsics.rs index 83274682250..fb0d2d9c882 100644 --- a/src/libcore/intrinsics.rs +++ b/src/libcore/intrinsics.rs @@ -638,6 +638,9 @@ extern "rust-intrinsic" { /// NB: This is very different from the `unreachable!()` macro: Unlike the /// macro, which panics when it is executed, it is *undefined behavior* to /// reach code marked with this function. + /// + /// The stabilized version of this intrinsic is + /// [`std::hint::unreachable_unchecked`](../../std/hint/fn.unreachable_unchecked.html). pub fn unreachable() -> !; /// Informs the optimizer that a condition is always true. diff --git a/src/libcore/lib.rs b/src/libcore/lib.rs index ea7a46f44ae..0e21a3327fd 100644 --- a/src/libcore/lib.rs +++ b/src/libcore/lib.rs @@ -71,6 +71,7 @@ #![feature(cfg_target_has_atomic)] #![feature(concat_idents)] #![feature(const_fn)] +#![feature(core_float)] #![feature(custom_attribute)] #![feature(doc_cfg)] #![feature(doc_spotlight)] @@ -82,6 +83,7 @@ #![feature(iterator_repeat_with)] #![feature(lang_items)] #![feature(link_llvm_intrinsics)] +#![feature(never_type)] #![feature(exhaustive_patterns)] #![feature(macro_at_most_once_rep)] #![feature(no_core)] @@ -92,12 +94,15 @@ #![feature(rustc_attrs)] #![feature(rustc_const_unstable)] #![feature(simd_ffi)] +#![feature(core_slice_ext)] +#![feature(core_str_ext)] #![feature(specialization)] #![feature(staged_api)] #![feature(stmt_expr_attributes)] #![feature(unboxed_closures)] #![feature(untagged_unions)] #![feature(unwind_attributes)] +#![feature(doc_alias)] #![cfg_attr(not(stage0), feature(mmx_target_feature))] #![cfg_attr(not(stage0), feature(tbm_target_feature))] @@ -158,6 +163,7 @@ pub mod intrinsics; pub mod mem; pub mod nonzero; pub mod ptr; +pub mod hint; /* Core language traits */ @@ -228,7 +234,7 @@ macro_rules! test_v512 { ($item:item) => {}; } #[allow(unused_macros)] macro_rules! vector_impl { ($([$f:ident, $($args:tt)*]),*) => { $($f!($($args)*);)* } } #[path = "../stdsimd/coresimd/mod.rs"] -#[allow(missing_docs, missing_debug_implementations, dead_code)] +#[allow(missing_docs, missing_debug_implementations, dead_code, unused_imports)] #[unstable(feature = "stdsimd", issue = "48556")] #[cfg(not(stage0))] // allow changes to how stdsimd works in stage0 mod coresimd; diff --git a/src/libcore/macros.rs b/src/libcore/macros.rs index 90a9cb3379b..f9371ed0575 100644 --- a/src/libcore/macros.rs +++ b/src/libcore/macros.rs @@ -295,6 +295,7 @@ macro_rules! debug_assert_ne { /// ``` #[macro_export] #[stable(feature = "rust1", since = "1.0.0")] +#[doc(alias = "?")] macro_rules! try { ($expr:expr) => (match $expr { $crate::result::Result::Ok(val) => val, @@ -420,13 +421,13 @@ macro_rules! writeln { /// * Iterators that dynamically terminate. /// /// If the determination that the code is unreachable proves incorrect, the -/// program immediately terminates with a [`panic!`]. The function [`unreachable`], -/// which belongs to the [`std::intrinsics`] module, informs the compilier to +/// program immediately terminates with a [`panic!`]. The function [`unreachable_unchecked`], +/// which belongs to the [`std::hint`] module, informs the compilier to /// optimize the code out of the release version entirely. /// /// [`panic!`]: ../std/macro.panic.html -/// [`unreachable`]: ../std/intrinsics/fn.unreachable.html -/// [`std::intrinsics`]: ../std/intrinsics/index.html +/// [`unreachable_unchecked`]: ../std/hint/fn.unreachable_unchecked.html +/// [`std::hint`]: ../std/hint/index.html /// /// # Panics /// diff --git a/src/libcore/marker.rs b/src/libcore/marker.rs index 885aabe0806..feb689dbc1f 100644 --- a/src/libcore/marker.rs +++ b/src/libcore/marker.rs @@ -630,7 +630,7 @@ mod copy_impls { bool char } - #[stable(feature = "never_type", since = "1.26.0")] + #[unstable(feature = "never_type", issue = "35121")] impl Copy for ! {} #[stable(feature = "rust1", since = "1.0.0")] diff --git a/src/libcore/mem.rs b/src/libcore/mem.rs index e3f08926610..10efab82ddf 100644 --- a/src/libcore/mem.rs +++ b/src/libcore/mem.rs @@ -1094,18 +1094,6 @@ impl<T: ::hash::Hash> ::hash::Hash for ManuallyDrop<T> { } } -/// Tells LLVM that this point in the code is not reachable, enabling further -/// optimizations. -/// -/// NB: This is very different from the `unreachable!()` macro: Unlike the -/// macro, which panics when it is executed, it is *undefined behavior* to -/// reach code marked with this function. -#[inline] -#[unstable(feature = "unreachable", issue = "43751")] -pub unsafe fn unreachable() -> ! { - intrinsics::unreachable() -} - /// A pinned reference. /// /// A pinned reference is a lot like a mutable reference, except that it is not diff --git a/src/libcore/num/f32.rs b/src/libcore/num/f32.rs index 3586fa5442f..8d5f6f601da 100644 --- a/src/libcore/num/f32.rs +++ b/src/libcore/num/f32.rs @@ -17,9 +17,9 @@ #![stable(feature = "rust1", since = "1.0.0")] -use intrinsics; use mem; use num::Float; +#[cfg(not(stage0))] use num::FpCategory; use num::FpCategory as Fp; /// The radix or base of the internal representation of `f32`. @@ -188,27 +188,6 @@ impl Float for f32 { } } - /// Computes the absolute value of `self`. Returns `Float::nan()` if the - /// number is `Float::nan()`. - #[inline] - fn abs(self) -> f32 { - unsafe { intrinsics::fabsf32(self) } - } - - /// Returns a number that represents the sign of `self`. - /// - /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` - /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` - /// - `Float::nan()` if the number is `Float::nan()` - #[inline] - fn signum(self) -> f32 { - if self.is_nan() { - NAN - } else { - unsafe { intrinsics::copysignf32(1.0, self) } - } - } - /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaN`s with /// positive sign bit and positive infinity. #[inline] @@ -231,11 +210,6 @@ impl Float for f32 { 1.0 / self } - #[inline] - fn powi(self, n: i32) -> f32 { - unsafe { intrinsics::powif32(self, n) } - } - /// Converts to degrees, assuming the number is in radians. #[inline] fn to_degrees(self) -> f32 { @@ -292,3 +266,286 @@ impl Float for f32 { unsafe { mem::transmute(v) } } } + +// FIXME: remove (inline) this macro and the Float trait +// when updating to a bootstrap compiler that has the new lang items. +#[cfg_attr(stage0, macro_export)] +#[unstable(feature = "core_float", issue = "32110")] +macro_rules! f32_core_methods { () => { + /// Returns `true` if this value is `NaN` and false otherwise. + /// + /// ``` + /// use std::f32; + /// + /// let nan = f32::NAN; + /// let f = 7.0_f32; + /// + /// assert!(nan.is_nan()); + /// assert!(!f.is_nan()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_nan(self) -> bool { Float::is_nan(self) } + + /// Returns `true` if this value is positive infinity or negative infinity and + /// false otherwise. + /// + /// ``` + /// use std::f32; + /// + /// let f = 7.0f32; + /// let inf = f32::INFINITY; + /// let neg_inf = f32::NEG_INFINITY; + /// let nan = f32::NAN; + /// + /// assert!(!f.is_infinite()); + /// assert!(!nan.is_infinite()); + /// + /// assert!(inf.is_infinite()); + /// assert!(neg_inf.is_infinite()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_infinite(self) -> bool { Float::is_infinite(self) } + + /// Returns `true` if this number is neither infinite nor `NaN`. + /// + /// ``` + /// use std::f32; + /// + /// let f = 7.0f32; + /// let inf = f32::INFINITY; + /// let neg_inf = f32::NEG_INFINITY; + /// let nan = f32::NAN; + /// + /// assert!(f.is_finite()); + /// + /// assert!(!nan.is_finite()); + /// assert!(!inf.is_finite()); + /// assert!(!neg_inf.is_finite()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_finite(self) -> bool { Float::is_finite(self) } + + /// Returns `true` if the number is neither zero, infinite, + /// [subnormal][subnormal], or `NaN`. + /// + /// ``` + /// use std::f32; + /// + /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 + /// let max = f32::MAX; + /// let lower_than_min = 1.0e-40_f32; + /// let zero = 0.0_f32; + /// + /// assert!(min.is_normal()); + /// assert!(max.is_normal()); + /// + /// assert!(!zero.is_normal()); + /// assert!(!f32::NAN.is_normal()); + /// assert!(!f32::INFINITY.is_normal()); + /// // Values between `0` and `min` are Subnormal. + /// assert!(!lower_than_min.is_normal()); + /// ``` + /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_normal(self) -> bool { Float::is_normal(self) } + + /// Returns the floating point category of the number. If only one property + /// is going to be tested, it is generally faster to use the specific + /// predicate instead. + /// + /// ``` + /// use std::num::FpCategory; + /// use std::f32; + /// + /// let num = 12.4_f32; + /// let inf = f32::INFINITY; + /// + /// assert_eq!(num.classify(), FpCategory::Normal); + /// assert_eq!(inf.classify(), FpCategory::Infinite); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn classify(self) -> FpCategory { Float::classify(self) } + + /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaN`s with + /// positive sign bit and positive infinity. + /// + /// ``` + /// let f = 7.0_f32; + /// let g = -7.0_f32; + /// + /// assert!(f.is_sign_positive()); + /// assert!(!g.is_sign_positive()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_sign_positive(self) -> bool { Float::is_sign_positive(self) } + + /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaN`s with + /// negative sign bit and negative infinity. + /// + /// ``` + /// let f = 7.0f32; + /// let g = -7.0f32; + /// + /// assert!(!f.is_sign_negative()); + /// assert!(g.is_sign_negative()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_sign_negative(self) -> bool { Float::is_sign_negative(self) } + + /// Takes the reciprocal (inverse) of a number, `1/x`. + /// + /// ``` + /// use std::f32; + /// + /// let x = 2.0_f32; + /// let abs_difference = (x.recip() - (1.0/x)).abs(); + /// + /// assert!(abs_difference <= f32::EPSILON); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn recip(self) -> f32 { Float::recip(self) } + + /// Converts radians to degrees. + /// + /// ``` + /// use std::f32::{self, consts}; + /// + /// let angle = consts::PI; + /// + /// let abs_difference = (angle.to_degrees() - 180.0).abs(); + /// + /// assert!(abs_difference <= f32::EPSILON); + /// ``` + #[stable(feature = "f32_deg_rad_conversions", since="1.7.0")] + #[inline] + pub fn to_degrees(self) -> f32 { Float::to_degrees(self) } + + /// Converts degrees to radians. + /// + /// ``` + /// use std::f32::{self, consts}; + /// + /// let angle = 180.0f32; + /// + /// let abs_difference = (angle.to_radians() - consts::PI).abs(); + /// + /// assert!(abs_difference <= f32::EPSILON); + /// ``` + #[stable(feature = "f32_deg_rad_conversions", since="1.7.0")] + #[inline] + pub fn to_radians(self) -> f32 { Float::to_radians(self) } + + /// Returns the maximum of the two numbers. + /// + /// ``` + /// let x = 1.0f32; + /// let y = 2.0f32; + /// + /// assert_eq!(x.max(y), y); + /// ``` + /// + /// If one of the arguments is NaN, then the other argument is returned. + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn max(self, other: f32) -> f32 { + Float::max(self, other) + } + + /// Returns the minimum of the two numbers. + /// + /// ``` + /// let x = 1.0f32; + /// let y = 2.0f32; + /// + /// assert_eq!(x.min(y), x); + /// ``` + /// + /// If one of the arguments is NaN, then the other argument is returned. + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn min(self, other: f32) -> f32 { + Float::min(self, other) + } + + /// Raw transmutation to `u32`. + /// + /// This is currently identical to `transmute::<f32, u32>(self)` on all platforms. + /// + /// See `from_bits` for some discussion of the portability of this operation + /// (there are almost no issues). + /// + /// Note that this function is distinct from `as` casting, which attempts to + /// preserve the *numeric* value, and not the bitwise value. + /// + /// # Examples + /// + /// ``` + /// assert_ne!((1f32).to_bits(), 1f32 as u32); // to_bits() is not casting! + /// assert_eq!((12.5f32).to_bits(), 0x41480000); + /// + /// ``` + #[stable(feature = "float_bits_conv", since = "1.20.0")] + #[inline] + pub fn to_bits(self) -> u32 { + Float::to_bits(self) + } + + /// Raw transmutation from `u32`. + /// + /// This is currently identical to `transmute::<u32, f32>(v)` on all platforms. + /// It turns out this is incredibly portable, for two reasons: + /// + /// * Floats and Ints have the same endianness on all supported platforms. + /// * IEEE-754 very precisely specifies the bit layout of floats. + /// + /// However there is one caveat: prior to the 2008 version of IEEE-754, how + /// to interpret the NaN signaling bit wasn't actually specified. Most platforms + /// (notably x86 and ARM) picked the interpretation that was ultimately + /// standardized in 2008, but some didn't (notably MIPS). As a result, all + /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa. + /// + /// Rather than trying to preserve signaling-ness cross-platform, this + /// implementation favours preserving the exact bits. This means that + /// any payloads encoded in NaNs will be preserved even if the result of + /// this method is sent over the network from an x86 machine to a MIPS one. + /// + /// If the results of this method are only manipulated by the same + /// architecture that produced them, then there is no portability concern. + /// + /// If the input isn't NaN, then there is no portability concern. + /// + /// If you don't care about signalingness (very likely), then there is no + /// portability concern. + /// + /// Note that this function is distinct from `as` casting, which attempts to + /// preserve the *numeric* value, and not the bitwise value. + /// + /// # Examples + /// + /// ``` + /// use std::f32; + /// let v = f32::from_bits(0x41480000); + /// let difference = (v - 12.5).abs(); + /// assert!(difference <= 1e-5); + /// ``` + #[stable(feature = "float_bits_conv", since = "1.20.0")] + #[inline] + pub fn from_bits(v: u32) -> Self { + Float::from_bits(v) + } +}} + +#[lang = "f32"] +#[cfg(not(test))] +#[cfg(not(stage0))] +impl f32 { + f32_core_methods!(); +} diff --git a/src/libcore/num/f64.rs b/src/libcore/num/f64.rs index 64c0d508b38..08b869734d4 100644 --- a/src/libcore/num/f64.rs +++ b/src/libcore/num/f64.rs @@ -17,10 +17,10 @@ #![stable(feature = "rust1", since = "1.0.0")] -use intrinsics; use mem; -use num::FpCategory as Fp; use num::Float; +#[cfg(not(stage0))] use num::FpCategory; +use num::FpCategory as Fp; /// The radix or base of the internal representation of `f64`. #[stable(feature = "rust1", since = "1.0.0")] @@ -188,27 +188,6 @@ impl Float for f64 { } } - /// Computes the absolute value of `self`. Returns `Float::nan()` if the - /// number is `Float::nan()`. - #[inline] - fn abs(self) -> f64 { - unsafe { intrinsics::fabsf64(self) } - } - - /// Returns a number that represents the sign of `self`. - /// - /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` - /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` - /// - `Float::nan()` if the number is `Float::nan()` - #[inline] - fn signum(self) -> f64 { - if self.is_nan() { - NAN - } else { - unsafe { intrinsics::copysignf64(1.0, self) } - } - } - /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaN`s with /// positive sign bit and positive infinity. #[inline] @@ -229,11 +208,6 @@ impl Float for f64 { 1.0 / self } - #[inline] - fn powi(self, n: i32) -> f64 { - unsafe { intrinsics::powif64(self, n) } - } - /// Converts to degrees, assuming the number is in radians. #[inline] fn to_degrees(self) -> f64 { @@ -291,3 +265,296 @@ impl Float for f64 { unsafe { mem::transmute(v) } } } + +// FIXME: remove (inline) this macro and the Float trait +// when updating to a bootstrap compiler that has the new lang items. +#[cfg_attr(stage0, macro_export)] +#[unstable(feature = "core_float", issue = "32110")] +macro_rules! f64_core_methods { () => { + /// Returns `true` if this value is `NaN` and false otherwise. + /// + /// ``` + /// use std::f64; + /// + /// let nan = f64::NAN; + /// let f = 7.0_f64; + /// + /// assert!(nan.is_nan()); + /// assert!(!f.is_nan()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_nan(self) -> bool { Float::is_nan(self) } + + /// Returns `true` if this value is positive infinity or negative infinity and + /// false otherwise. + /// + /// ``` + /// use std::f64; + /// + /// let f = 7.0f64; + /// let inf = f64::INFINITY; + /// let neg_inf = f64::NEG_INFINITY; + /// let nan = f64::NAN; + /// + /// assert!(!f.is_infinite()); + /// assert!(!nan.is_infinite()); + /// + /// assert!(inf.is_infinite()); + /// assert!(neg_inf.is_infinite()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_infinite(self) -> bool { Float::is_infinite(self) } + + /// Returns `true` if this number is neither infinite nor `NaN`. + /// + /// ``` + /// use std::f64; + /// + /// let f = 7.0f64; + /// let inf: f64 = f64::INFINITY; + /// let neg_inf: f64 = f64::NEG_INFINITY; + /// let nan: f64 = f64::NAN; + /// + /// assert!(f.is_finite()); + /// + /// assert!(!nan.is_finite()); + /// assert!(!inf.is_finite()); + /// assert!(!neg_inf.is_finite()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_finite(self) -> bool { Float::is_finite(self) } + + /// Returns `true` if the number is neither zero, infinite, + /// [subnormal][subnormal], or `NaN`. + /// + /// ``` + /// use std::f64; + /// + /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64 + /// let max = f64::MAX; + /// let lower_than_min = 1.0e-308_f64; + /// let zero = 0.0f64; + /// + /// assert!(min.is_normal()); + /// assert!(max.is_normal()); + /// + /// assert!(!zero.is_normal()); + /// assert!(!f64::NAN.is_normal()); + /// assert!(!f64::INFINITY.is_normal()); + /// // Values between `0` and `min` are Subnormal. + /// assert!(!lower_than_min.is_normal()); + /// ``` + /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_normal(self) -> bool { Float::is_normal(self) } + + /// Returns the floating point category of the number. If only one property + /// is going to be tested, it is generally faster to use the specific + /// predicate instead. + /// + /// ``` + /// use std::num::FpCategory; + /// use std::f64; + /// + /// let num = 12.4_f64; + /// let inf = f64::INFINITY; + /// + /// assert_eq!(num.classify(), FpCategory::Normal); + /// assert_eq!(inf.classify(), FpCategory::Infinite); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn classify(self) -> FpCategory { Float::classify(self) } + + /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaN`s with + /// positive sign bit and positive infinity. + /// + /// ``` + /// let f = 7.0_f64; + /// let g = -7.0_f64; + /// + /// assert!(f.is_sign_positive()); + /// assert!(!g.is_sign_positive()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_sign_positive(self) -> bool { Float::is_sign_positive(self) } + + #[stable(feature = "rust1", since = "1.0.0")] + #[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_positive")] + #[inline] + #[doc(hidden)] + pub fn is_positive(self) -> bool { Float::is_sign_positive(self) } + + /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaN`s with + /// negative sign bit and negative infinity. + /// + /// ``` + /// let f = 7.0_f64; + /// let g = -7.0_f64; + /// + /// assert!(!f.is_sign_negative()); + /// assert!(g.is_sign_negative()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_sign_negative(self) -> bool { Float::is_sign_negative(self) } + + #[stable(feature = "rust1", since = "1.0.0")] + #[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_negative")] + #[inline] + #[doc(hidden)] + pub fn is_negative(self) -> bool { Float::is_sign_negative(self) } + + /// Takes the reciprocal (inverse) of a number, `1/x`. + /// + /// ``` + /// let x = 2.0_f64; + /// let abs_difference = (x.recip() - (1.0/x)).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn recip(self) -> f64 { Float::recip(self) } + + /// Converts radians to degrees. + /// + /// ``` + /// use std::f64::consts; + /// + /// let angle = consts::PI; + /// + /// let abs_difference = (angle.to_degrees() - 180.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn to_degrees(self) -> f64 { Float::to_degrees(self) } + + /// Converts degrees to radians. + /// + /// ``` + /// use std::f64::consts; + /// + /// let angle = 180.0_f64; + /// + /// let abs_difference = (angle.to_radians() - consts::PI).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn to_radians(self) -> f64 { Float::to_radians(self) } + + /// Returns the maximum of the two numbers. + /// + /// ``` + /// let x = 1.0_f64; + /// let y = 2.0_f64; + /// + /// assert_eq!(x.max(y), y); + /// ``` + /// + /// If one of the arguments is NaN, then the other argument is returned. + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn max(self, other: f64) -> f64 { + Float::max(self, other) + } + + /// Returns the minimum of the two numbers. + /// + /// ``` + /// let x = 1.0_f64; + /// let y = 2.0_f64; + /// + /// assert_eq!(x.min(y), x); + /// ``` + /// + /// If one of the arguments is NaN, then the other argument is returned. + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn min(self, other: f64) -> f64 { + Float::min(self, other) + } + + /// Raw transmutation to `u64`. + /// + /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms. + /// + /// See `from_bits` for some discussion of the portability of this operation + /// (there are almost no issues). + /// + /// Note that this function is distinct from `as` casting, which attempts to + /// preserve the *numeric* value, and not the bitwise value. + /// + /// # Examples + /// + /// ``` + /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting! + /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000); + /// + /// ``` + #[stable(feature = "float_bits_conv", since = "1.20.0")] + #[inline] + pub fn to_bits(self) -> u64 { + Float::to_bits(self) + } + + /// Raw transmutation from `u64`. + /// + /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms. + /// It turns out this is incredibly portable, for two reasons: + /// + /// * Floats and Ints have the same endianness on all supported platforms. + /// * IEEE-754 very precisely specifies the bit layout of floats. + /// + /// However there is one caveat: prior to the 2008 version of IEEE-754, how + /// to interpret the NaN signaling bit wasn't actually specified. Most platforms + /// (notably x86 and ARM) picked the interpretation that was ultimately + /// standardized in 2008, but some didn't (notably MIPS). As a result, all + /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa. + /// + /// Rather than trying to preserve signaling-ness cross-platform, this + /// implementation favours preserving the exact bits. This means that + /// any payloads encoded in NaNs will be preserved even if the result of + /// this method is sent over the network from an x86 machine to a MIPS one. + /// + /// If the results of this method are only manipulated by the same + /// architecture that produced them, then there is no portability concern. + /// + /// If the input isn't NaN, then there is no portability concern. + /// + /// If you don't care about signalingness (very likely), then there is no + /// portability concern. + /// + /// Note that this function is distinct from `as` casting, which attempts to + /// preserve the *numeric* value, and not the bitwise value. + /// + /// # Examples + /// + /// ``` + /// use std::f64; + /// let v = f64::from_bits(0x4029000000000000); + /// let difference = (v - 12.5).abs(); + /// assert!(difference <= 1e-5); + /// ``` + #[stable(feature = "float_bits_conv", since = "1.20.0")] + #[inline] + pub fn from_bits(v: u64) -> Self { + Float::from_bits(v) + } +}} + +#[lang = "f64"] +#[cfg(not(test))] +#[cfg(not(stage0))] +impl f64 { + f64_core_methods!(); +} diff --git a/src/libcore/num/mod.rs b/src/libcore/num/mod.rs index f2e8caaad14..a062fbda5ba 100644 --- a/src/libcore/num/mod.rs +++ b/src/libcore/num/mod.rs @@ -1765,7 +1765,11 @@ assert_eq!((-a).mod_euc(-b), 1); pub fn mod_euc(self, rhs: Self) -> Self { let r = self % rhs; if r < 0 { - r + rhs.abs() + if rhs < 0 { + r - rhs + } else { + r + rhs + } } else { r } @@ -4098,83 +4102,58 @@ pub enum FpCategory { Normal, } -/// A built-in floating point number. +// Technically private and only exposed for coretests: #[doc(hidden)] -#[unstable(feature = "core_float", - reason = "stable interface is via `impl f{32,64}` in later crates", - issue = "32110")] +#[unstable(feature = "float_internals", + reason = "internal routines only exposed for testing", + issue = "0")] pub trait Float: Sized { /// Type used by `to_bits` and `from_bits`. - #[stable(feature = "core_float_bits", since = "1.25.0")] type Bits; /// Returns `true` if this value is NaN and false otherwise. - #[stable(feature = "core", since = "1.6.0")] fn is_nan(self) -> bool; + /// Returns `true` if this value is positive infinity or negative infinity and /// false otherwise. - #[stable(feature = "core", since = "1.6.0")] fn is_infinite(self) -> bool; + /// Returns `true` if this number is neither infinite nor NaN. - #[stable(feature = "core", since = "1.6.0")] fn is_finite(self) -> bool; + /// Returns `true` if this number is neither zero, infinite, denormal, or NaN. - #[stable(feature = "core", since = "1.6.0")] fn is_normal(self) -> bool; + /// Returns the category that this number falls into. - #[stable(feature = "core", since = "1.6.0")] fn classify(self) -> FpCategory; - /// Computes the absolute value of `self`. Returns `Float::nan()` if the - /// number is `Float::nan()`. - #[stable(feature = "core", since = "1.6.0")] - fn abs(self) -> Self; - /// Returns a number that represents the sign of `self`. - /// - /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` - /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` - /// - `Float::nan()` if the number is `Float::nan()` - #[stable(feature = "core", since = "1.6.0")] - fn signum(self) -> Self; - /// Returns `true` if `self` is positive, including `+0.0` and /// `Float::infinity()`. - #[stable(feature = "core", since = "1.6.0")] fn is_sign_positive(self) -> bool; + /// Returns `true` if `self` is negative, including `-0.0` and /// `Float::neg_infinity()`. - #[stable(feature = "core", since = "1.6.0")] fn is_sign_negative(self) -> bool; /// Take the reciprocal (inverse) of a number, `1/x`. - #[stable(feature = "core", since = "1.6.0")] fn recip(self) -> Self; - /// Raise a number to an integer power. - /// - /// Using this function is generally faster than using `powf` - #[stable(feature = "core", since = "1.6.0")] - fn powi(self, n: i32) -> Self; - /// Convert radians to degrees. - #[stable(feature = "deg_rad_conversions", since="1.7.0")] fn to_degrees(self) -> Self; + /// Convert degrees to radians. - #[stable(feature = "deg_rad_conversions", since="1.7.0")] fn to_radians(self) -> Self; /// Returns the maximum of the two numbers. - #[stable(feature = "core_float_min_max", since="1.20.0")] fn max(self, other: Self) -> Self; + /// Returns the minimum of the two numbers. - #[stable(feature = "core_float_min_max", since="1.20.0")] fn min(self, other: Self) -> Self; /// Raw transmutation to integer. - #[stable(feature = "core_float_bits", since="1.25.0")] fn to_bits(self) -> Self::Bits; + /// Raw transmutation from integer. - #[stable(feature = "core_float_bits", since="1.25.0")] fn from_bits(v: Self::Bits) -> Self; } @@ -4192,7 +4171,7 @@ macro_rules! from_str_radix_int_impl { from_str_radix_int_impl! { isize i8 i16 i32 i64 i128 usize u8 u16 u32 u64 u128 } /// The error type returned when a checked integral type conversion fails. -#[stable(feature = "try_from", since = "1.26.0")] +#[unstable(feature = "try_from", issue = "33417")] #[derive(Debug, Copy, Clone)] pub struct TryFromIntError(()); @@ -4207,14 +4186,14 @@ impl TryFromIntError { } } -#[stable(feature = "try_from", since = "1.26.0")] +#[unstable(feature = "try_from", issue = "33417")] impl fmt::Display for TryFromIntError { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { self.__description().fmt(fmt) } } -#[stable(feature = "try_from", since = "1.26.0")] +#[unstable(feature = "try_from", issue = "33417")] impl From<!> for TryFromIntError { fn from(never: !) -> TryFromIntError { never @@ -4224,7 +4203,7 @@ impl From<!> for TryFromIntError { // only negative bounds macro_rules! try_from_lower_bounded { ($source:ty, $($target:ty),*) => {$( - #[stable(feature = "try_from", since = "1.26.0")] + #[unstable(feature = "try_from", issue = "33417")] impl TryFrom<$source> for $target { type Error = TryFromIntError; @@ -4243,7 +4222,7 @@ macro_rules! try_from_lower_bounded { // unsigned to signed (only positive bound) macro_rules! try_from_upper_bounded { ($source:ty, $($target:ty),*) => {$( - #[stable(feature = "try_from", since = "1.26.0")] + #[unstable(feature = "try_from", issue = "33417")] impl TryFrom<$source> for $target { type Error = TryFromIntError; @@ -4262,7 +4241,7 @@ macro_rules! try_from_upper_bounded { // all other cases macro_rules! try_from_both_bounded { ($source:ty, $($target:ty),*) => {$( - #[stable(feature = "try_from", since = "1.26.0")] + #[unstable(feature = "try_from", issue = "33417")] impl TryFrom<$source> for $target { type Error = TryFromIntError; diff --git a/src/libcore/ops/arith.rs b/src/libcore/ops/arith.rs index 88db019b02f..a1bc5463f73 100644 --- a/src/libcore/ops/arith.rs +++ b/src/libcore/ops/arith.rs @@ -87,12 +87,14 @@ message="cannot add `{RHS}` to `{Self}`", label="no implementation for `{Self} + {RHS}`", )] +#[doc(alias = "+")] pub trait Add<RHS=Self> { /// The resulting type after applying the `+` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output; /// Performs the `+` operation. + #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn add(self, rhs: RHS) -> Self::Output; } @@ -183,12 +185,14 @@ add_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented(message="cannot subtract `{RHS}` from `{Self}`", label="no implementation for `{Self} - {RHS}`")] +#[doc(alias = "-")] pub trait Sub<RHS=Self> { /// The resulting type after applying the `-` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output; /// Performs the `-` operation. + #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn sub(self, rhs: RHS) -> Self::Output; } @@ -301,12 +305,14 @@ sub_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented(message="cannot multiply `{RHS}` to `{Self}`", label="no implementation for `{Self} * {RHS}`")] +#[doc(alias = "*")] pub trait Mul<RHS=Self> { /// The resulting type after applying the `*` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output; /// Performs the `*` operation. + #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn mul(self, rhs: RHS) -> Self::Output; } @@ -423,12 +429,14 @@ mul_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented(message="cannot divide `{Self}` by `{RHS}`", label="no implementation for `{Self} / {RHS}`")] +#[doc(alias = "/")] pub trait Div<RHS=Self> { /// The resulting type after applying the `/` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output; /// Performs the `/` operation. + #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn div(self, rhs: RHS) -> Self::Output; } @@ -506,12 +514,14 @@ div_impl_float! { f32 f64 } #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented(message="cannot mod `{Self}` by `{RHS}`", label="no implementation for `{Self} % {RHS}`")] +#[doc(alias = "%")] pub trait Rem<RHS=Self> { /// The resulting type after applying the `%` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output = Self; /// Performs the `%` operation. + #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn rem(self, rhs: RHS) -> Self::Output; } @@ -589,12 +599,14 @@ rem_impl_float! { f32 f64 } /// ``` #[lang = "neg"] #[stable(feature = "rust1", since = "1.0.0")] +#[doc(alias = "-")] pub trait Neg { /// The resulting type after applying the `-` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output; /// Performs the unary `-` operation. + #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn neg(self) -> Self::Output; } @@ -664,6 +676,8 @@ neg_impl_numeric! { isize i8 i16 i32 i64 i128 f32 f64 } #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented(message="cannot add-assign `{Rhs}` to `{Self}`", label="no implementation for `{Self} += {Rhs}`")] +#[doc(alias = "+")] +#[doc(alias = "+=")] pub trait AddAssign<Rhs=Self> { /// Performs the `+=` operation. #[stable(feature = "op_assign_traits", since = "1.8.0")] @@ -718,6 +732,8 @@ add_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented(message="cannot subtract-assign `{Rhs}` from `{Self}`", label="no implementation for `{Self} -= {Rhs}`")] +#[doc(alias = "-")] +#[doc(alias = "-=")] pub trait SubAssign<Rhs=Self> { /// Performs the `-=` operation. #[stable(feature = "op_assign_traits", since = "1.8.0")] @@ -763,6 +779,8 @@ sub_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented(message="cannot multiply-assign `{Rhs}` to `{Self}`", label="no implementation for `{Self} *= {Rhs}`")] +#[doc(alias = "*")] +#[doc(alias = "*=")] pub trait MulAssign<Rhs=Self> { /// Performs the `*=` operation. #[stable(feature = "op_assign_traits", since = "1.8.0")] @@ -808,6 +826,8 @@ mul_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented(message="cannot divide-assign `{Self}` by `{Rhs}`", label="no implementation for `{Self} /= {Rhs}`")] +#[doc(alias = "/")] +#[doc(alias = "/=")] pub trait DivAssign<Rhs=Self> { /// Performs the `/=` operation. #[stable(feature = "op_assign_traits", since = "1.8.0")] @@ -856,6 +876,8 @@ div_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented(message="cannot mod-assign `{Self}` by `{Rhs}``", label="no implementation for `{Self} %= {Rhs}`")] +#[doc(alias = "%")] +#[doc(alias = "%=")] pub trait RemAssign<Rhs=Self> { /// Performs the `%=` operation. #[stable(feature = "op_assign_traits", since = "1.8.0")] diff --git a/src/libcore/ops/bit.rs b/src/libcore/ops/bit.rs index ec1e65be774..3900f365b0a 100644 --- a/src/libcore/ops/bit.rs +++ b/src/libcore/ops/bit.rs @@ -46,6 +46,7 @@ pub trait Not { type Output; /// Performs the unary `!` operation. + #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn not(self) -> Self::Output; } @@ -119,6 +120,7 @@ not_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 } /// assert_eq!(bv1 & bv2, expected); /// ``` #[lang = "bitand"] +#[doc(alias = "&")] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented(message="no implementation for `{Self} & {RHS}`", label="no implementation for `{Self} & {RHS}`")] @@ -128,6 +130,7 @@ pub trait BitAnd<RHS=Self> { type Output; /// Performs the `&` operation. + #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn bitand(self, rhs: RHS) -> Self::Output; } @@ -201,6 +204,7 @@ bitand_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 } /// assert_eq!(bv1 | bv2, expected); /// ``` #[lang = "bitor"] +#[doc(alias = "|")] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented(message="no implementation for `{Self} | {RHS}`", label="no implementation for `{Self} | {RHS}`")] @@ -210,6 +214,7 @@ pub trait BitOr<RHS=Self> { type Output; /// Performs the `|` operation. + #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn bitor(self, rhs: RHS) -> Self::Output; } @@ -286,6 +291,7 @@ bitor_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 } /// assert_eq!(bv1 ^ bv2, expected); /// ``` #[lang = "bitxor"] +#[doc(alias = "^")] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented(message="no implementation for `{Self} ^ {RHS}`", label="no implementation for `{Self} ^ {RHS}`")] @@ -295,6 +301,7 @@ pub trait BitXor<RHS=Self> { type Output; /// Performs the `^` operation. + #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn bitxor(self, rhs: RHS) -> Self::Output; } @@ -372,15 +379,17 @@ bitxor_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 } /// SpinVector { vec: vec![2, 3, 4, 0, 1] }); /// ``` #[lang = "shl"] +#[doc(alias = "<<")] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented(message="no implementation for `{Self} << {RHS}`", label="no implementation for `{Self} << {RHS}`")] -pub trait Shl<RHS> { +pub trait Shl<RHS=Self> { /// The resulting type after applying the `<<` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output; /// Performs the `<<` operation. + #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn shl(self, rhs: RHS) -> Self::Output; } @@ -479,15 +488,17 @@ shl_impl_all! { u8 u16 u32 u64 u128 usize i8 i16 i32 i64 isize i128 } /// SpinVector { vec: vec![3, 4, 0, 1, 2] }); /// ``` #[lang = "shr"] +#[doc(alias = ">>")] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented(message="no implementation for `{Self} >> {RHS}`", label="no implementation for `{Self} >> {RHS}`")] -pub trait Shr<RHS> { +pub trait Shr<RHS=Self> { /// The resulting type after applying the `>>` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output; /// Performs the `>>` operation. + #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn shr(self, rhs: RHS) -> Self::Output; } @@ -593,6 +604,7 @@ shr_impl_all! { u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize } /// assert_eq!(bv, expected); /// ``` #[lang = "bitand_assign"] +#[doc(alias = "&=")] #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented(message="no implementation for `{Self} &= {Rhs}`", label="no implementation for `{Self} &= {Rhs}`")] @@ -641,6 +653,7 @@ bitand_assign_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 } /// assert_eq!(prefs, PersonalPreferences { likes_cats: true, likes_dogs: true }); /// ``` #[lang = "bitor_assign"] +#[doc(alias = "|=")] #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented(message="no implementation for `{Self} |= {Rhs}`", label="no implementation for `{Self} |= {Rhs}`")] @@ -689,6 +702,7 @@ bitor_assign_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 } /// assert_eq!(personality, Personality { has_soul: true, likes_knitting: false}); /// ``` #[lang = "bitxor_assign"] +#[doc(alias = "^=")] #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented(message="no implementation for `{Self} ^= {Rhs}`", label="no implementation for `{Self} ^= {Rhs}`")] @@ -735,10 +749,11 @@ bitxor_assign_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 } /// assert_eq!(scalar, Scalar(16)); /// ``` #[lang = "shl_assign"] +#[doc(alias = "<<=")] #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented(message="no implementation for `{Self} <<= {Rhs}`", label="no implementation for `{Self} <<= {Rhs}`")] -pub trait ShlAssign<Rhs> { +pub trait ShlAssign<Rhs=Self> { /// Performs the `<<=` operation. #[stable(feature = "op_assign_traits", since = "1.8.0")] fn shl_assign(&mut self, rhs: Rhs); @@ -802,6 +817,7 @@ shl_assign_impl_all! { u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize } /// assert_eq!(scalar, Scalar(4)); /// ``` #[lang = "shr_assign"] +#[doc(alias = ">>=")] #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented(message="no implementation for `{Self} >>= {Rhs}`", label="no implementation for `{Self} >>= {Rhs}`")] diff --git a/src/libcore/ops/deref.rs b/src/libcore/ops/deref.rs index 4ce0740130b..54eecc82e19 100644 --- a/src/libcore/ops/deref.rs +++ b/src/libcore/ops/deref.rs @@ -68,6 +68,8 @@ /// assert_eq!('a', *x); /// ``` #[lang = "deref"] +#[doc(alias = "*")] +#[doc(alias = "&*")] #[stable(feature = "rust1", since = "1.0.0")] pub trait Deref { /// The resulting type after dereferencing. @@ -75,6 +77,7 @@ pub trait Deref { type Target: ?Sized; /// Dereferences the value. + #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn deref(&self) -> &Self::Target; } @@ -162,6 +165,7 @@ impl<'a, T: ?Sized> Deref for &'a mut T { /// assert_eq!('b', *x); /// ``` #[lang = "deref_mut"] +#[doc(alias = "*")] #[stable(feature = "rust1", since = "1.0.0")] pub trait DerefMut: Deref { /// Mutably dereferences the value. diff --git a/src/libcore/ops/index.rs b/src/libcore/ops/index.rs index d65c0aba504..0a0e92a9180 100644 --- a/src/libcore/ops/index.rs +++ b/src/libcore/ops/index.rs @@ -62,6 +62,9 @@ #[lang = "index"] #[rustc_on_unimplemented = "the type `{Self}` cannot be indexed by `{Idx}`"] #[stable(feature = "rust1", since = "1.0.0")] +#[doc(alias = "]")] +#[doc(alias = "[")] +#[doc(alias = "[]")] pub trait Index<Idx: ?Sized> { /// The returned type after indexing. #[stable(feature = "rust1", since = "1.0.0")] @@ -146,6 +149,9 @@ pub trait Index<Idx: ?Sized> { #[lang = "index_mut"] #[rustc_on_unimplemented = "the type `{Self}` cannot be mutably indexed by `{Idx}`"] #[stable(feature = "rust1", since = "1.0.0")] +#[doc(alias = "[")] +#[doc(alias = "]")] +#[doc(alias = "[]")] pub trait IndexMut<Idx: ?Sized>: Index<Idx> { /// Performs the mutable indexing (`container[index]`) operation. #[stable(feature = "rust1", since = "1.0.0")] diff --git a/src/libcore/ops/range.rs b/src/libcore/ops/range.rs index 6f3e3b50885..d70f7ae66f9 100644 --- a/src/libcore/ops/range.rs +++ b/src/libcore/ops/range.rs @@ -45,6 +45,7 @@ use fmt; /// [`IntoIterator`]: ../iter/trait.Iterator.html /// [`Iterator`]: ../iter/trait.IntoIterator.html /// [slicing index]: ../slice/trait.SliceIndex.html +#[doc(alias = "..")] #[derive(Copy, Clone, PartialEq, Eq, Hash)] #[stable(feature = "rust1", since = "1.0.0")] pub struct RangeFull; @@ -74,6 +75,7 @@ impl fmt::Debug for RangeFull { /// assert_eq!(arr[1.. ], [ 'b', 'c', 'd']); /// assert_eq!(arr[1..3], [ 'b', 'c' ]); // Range /// ``` +#[doc(alias = "..")] #[derive(Clone, PartialEq, Eq, Hash)] // not Copy -- see #27186 #[stable(feature = "rust1", since = "1.0.0")] pub struct Range<Idx> { @@ -175,6 +177,7 @@ impl<Idx: PartialOrd<Idx>> Range<Idx> { /// ``` /// /// [`Iterator`]: ../iter/trait.IntoIterator.html +#[doc(alias = "..")] #[derive(Clone, PartialEq, Eq, Hash)] // not Copy -- see #27186 #[stable(feature = "rust1", since = "1.0.0")] pub struct RangeFrom<Idx> { @@ -256,6 +259,7 @@ impl<Idx: PartialOrd<Idx>> RangeFrom<Idx> { /// [`IntoIterator`]: ../iter/trait.Iterator.html /// [`Iterator`]: ../iter/trait.IntoIterator.html /// [slicing index]: ../slice/trait.SliceIndex.html +#[doc(alias = "..")] #[derive(Copy, Clone, PartialEq, Eq, Hash)] #[stable(feature = "rust1", since = "1.0.0")] pub struct RangeTo<Idx> { @@ -323,6 +327,7 @@ impl<Idx: PartialOrd<Idx>> RangeTo<Idx> { /// assert_eq!(arr[ ..=2], [0,1,2 ]); /// assert_eq!(arr[1..=2], [ 1,2 ]); // RangeInclusive /// ``` +#[doc(alias = "..=")] #[derive(Clone, PartialEq, Eq, Hash)] // not Copy -- see #27186 #[stable(feature = "inclusive_range", since = "1.26.0")] pub struct RangeInclusive<Idx> { @@ -449,6 +454,7 @@ impl<Idx: PartialOrd<Idx>> RangeInclusive<Idx> { /// [`IntoIterator`]: ../iter/trait.Iterator.html /// [`Iterator`]: ../iter/trait.IntoIterator.html /// [slicing index]: ../slice/trait.SliceIndex.html +#[doc(alias = "..=")] #[derive(Copy, Clone, PartialEq, Eq, Hash)] #[stable(feature = "inclusive_range", since = "1.26.0")] pub struct RangeToInclusive<Idx> { diff --git a/src/libcore/ops/try.rs b/src/libcore/ops/try.rs index ef6a8fb6a61..4f2d30aa6a8 100644 --- a/src/libcore/ops/try.rs +++ b/src/libcore/ops/try.rs @@ -28,6 +28,7 @@ that implement `{Try}`", label="the `?` operator cannot be applied to type `{Self}`") )] +#[doc(alias = "?")] pub trait Try { /// The type of this value when viewed as successful. #[unstable(feature = "try_trait", issue = "42327")] diff --git a/src/libcore/prelude/v1.rs b/src/libcore/prelude/v1.rs index cc3ad71117a..8212648f2d8 100644 --- a/src/libcore/prelude/v1.rs +++ b/src/libcore/prelude/v1.rs @@ -58,7 +58,9 @@ pub use result::Result::{self, Ok, Err}; // Re-exported extension traits for primitive types #[stable(feature = "core_prelude", since = "1.4.0")] #[doc(no_inline)] +#[cfg(stage0)] pub use slice::SliceExt; #[stable(feature = "core_prelude", since = "1.4.0")] #[doc(no_inline)] +#[cfg(stage0)] pub use str::StrExt; diff --git a/src/libcore/ptr.rs b/src/libcore/ptr.rs index 4a7d7c410eb..c61bdfc9c4f 100644 --- a/src/libcore/ptr.rs +++ b/src/libcore/ptr.rs @@ -166,8 +166,6 @@ pub unsafe fn swap<T>(x: *mut T, y: *mut T) { /// Basic usage: /// /// ``` -/// #![feature(swap_nonoverlapping)] -/// /// use std::ptr; /// /// let mut x = [1, 2, 3, 4]; @@ -181,7 +179,7 @@ pub unsafe fn swap<T>(x: *mut T, y: *mut T) { /// assert_eq!(y, [1, 2, 9]); /// ``` #[inline] -#[unstable(feature = "swap_nonoverlapping", issue = "42818")] +#[stable(feature = "swap_nonoverlapping", since = "1.27.0")] pub unsafe fn swap_nonoverlapping<T>(x: *mut T, y: *mut T, count: usize) { let x = x as *mut u8; let y = y as *mut u8; @@ -2515,6 +2513,7 @@ impl<T: ?Sized> PartialOrd for *mut T { reason = "use NonNull instead and consider PhantomData<T> \ (if you also use #[may_dangle]), Send, and/or Sync")] #[allow(deprecated)] +#[doc(hidden)] pub struct Unique<T: ?Sized> { pointer: NonZero<*const T>, // NOTE: this marker has no consequences for variance, but is necessary @@ -2744,7 +2743,7 @@ impl<T: ?Sized> NonNull<T> { } /// Cast to a pointer of another type - #[unstable(feature = "nonnull_cast", issue = "47653")] + #[stable(feature = "nonnull_cast", since = "1.27.0")] pub fn cast<U>(self) -> NonNull<U> { unsafe { NonNull::new_unchecked(self.as_ptr() as *mut U) diff --git a/src/libcore/slice/mod.rs b/src/libcore/slice/mod.rs index 0a22028da81..83e8a6e4b68 100644 --- a/src/libcore/slice/mod.rs +++ b/src/libcore/slice/mod.rs @@ -68,12 +68,15 @@ struct Repr<T> { // Extension traits // +public_in_stage0! { +{ /// Extension methods for slices. #[unstable(feature = "core_slice_ext", reason = "stable interface provided by `impl [T]` in later crates", issue = "32110")] #[allow(missing_docs)] // documented elsewhere -pub trait SliceExt { +} +trait SliceExt { type Item; #[stable(feature = "core", since = "1.6.0")] @@ -86,7 +89,7 @@ pub trait SliceExt { fn split<P>(&self, pred: P) -> Split<Self::Item, P> where P: FnMut(&Self::Item) -> bool; - #[unstable(feature = "slice_rsplit", issue = "41020")] + #[stable(feature = "slice_rsplit", since = "1.27.0")] fn rsplit<P>(&self, pred: P) -> RSplit<Self::Item, P> where P: FnMut(&Self::Item) -> bool; @@ -169,7 +172,7 @@ pub trait SliceExt { fn split_mut<P>(&mut self, pred: P) -> SplitMut<Self::Item, P> where P: FnMut(&Self::Item) -> bool; - #[unstable(feature = "slice_rsplit", issue = "41020")] + #[stable(feature = "slice_rsplit", since = "1.27.0")] fn rsplit_mut<P>(&mut self, pred: P) -> RSplitMut<Self::Item, P> where P: FnMut(&Self::Item) -> bool; @@ -223,7 +226,7 @@ pub trait SliceExt { #[stable(feature = "copy_from_slice", since = "1.9.0")] fn copy_from_slice(&mut self, src: &[Self::Item]) where Self::Item: Copy; - #[unstable(feature = "swap_with_slice", issue = "44030")] + #[stable(feature = "swap_with_slice", since = "1.27.0")] fn swap_with_slice(&mut self, src: &mut [Self::Item]); #[stable(feature = "sort_unstable", since = "1.20.0")] @@ -238,7 +241,7 @@ pub trait SliceExt { fn sort_unstable_by_key<B, F>(&mut self, f: F) where F: FnMut(&Self::Item) -> B, B: Ord; -} +}} // Use macros to be generic over const/mut macro_rules! slice_offset { @@ -755,6 +758,1474 @@ impl<T> SliceExt for [T] { } } +// FIXME: remove (inline) this macro and the SliceExt trait +// when updating to a bootstrap compiler that has the new lang items. +#[cfg_attr(stage0, macro_export)] +#[unstable(feature = "core_slice_ext", issue = "32110")] +macro_rules! slice_core_methods { () => { + /// Returns the number of elements in the slice. + /// + /// # Examples + /// + /// ``` + /// let a = [1, 2, 3]; + /// assert_eq!(a.len(), 3); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn len(&self) -> usize { + SliceExt::len(self) + } + + /// Returns `true` if the slice has a length of 0. + /// + /// # Examples + /// + /// ``` + /// let a = [1, 2, 3]; + /// assert!(!a.is_empty()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn is_empty(&self) -> bool { + SliceExt::is_empty(self) + } + + /// Returns the first element of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert_eq!(Some(&10), v.first()); + /// + /// let w: &[i32] = &[]; + /// assert_eq!(None, w.first()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn first(&self) -> Option<&T> { + SliceExt::first(self) + } + + /// Returns a mutable pointer to the first element of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some(first) = x.first_mut() { + /// *first = 5; + /// } + /// assert_eq!(x, &[5, 1, 2]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn first_mut(&mut self) -> Option<&mut T> { + SliceExt::first_mut(self) + } + + /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &[0, 1, 2]; + /// + /// if let Some((first, elements)) = x.split_first() { + /// assert_eq!(first, &0); + /// assert_eq!(elements, &[1, 2]); + /// } + /// ``` + #[stable(feature = "slice_splits", since = "1.5.0")] + #[inline] + pub fn split_first(&self) -> Option<(&T, &[T])> { + SliceExt::split_first(self) + } + + /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some((first, elements)) = x.split_first_mut() { + /// *first = 3; + /// elements[0] = 4; + /// elements[1] = 5; + /// } + /// assert_eq!(x, &[3, 4, 5]); + /// ``` + #[stable(feature = "slice_splits", since = "1.5.0")] + #[inline] + pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> { + SliceExt::split_first_mut(self) + } + + /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &[0, 1, 2]; + /// + /// if let Some((last, elements)) = x.split_last() { + /// assert_eq!(last, &2); + /// assert_eq!(elements, &[0, 1]); + /// } + /// ``` + #[stable(feature = "slice_splits", since = "1.5.0")] + #[inline] + pub fn split_last(&self) -> Option<(&T, &[T])> { + SliceExt::split_last(self) + } + + /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some((last, elements)) = x.split_last_mut() { + /// *last = 3; + /// elements[0] = 4; + /// elements[1] = 5; + /// } + /// assert_eq!(x, &[4, 5, 3]); + /// ``` + #[stable(feature = "slice_splits", since = "1.5.0")] + #[inline] + pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> { + SliceExt::split_last_mut(self) + } + + /// Returns the last element of the slice, or `None` if it is empty. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert_eq!(Some(&30), v.last()); + /// + /// let w: &[i32] = &[]; + /// assert_eq!(None, w.last()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn last(&self) -> Option<&T> { + SliceExt::last(self) + } + + /// Returns a mutable pointer to the last item in the slice. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some(last) = x.last_mut() { + /// *last = 10; + /// } + /// assert_eq!(x, &[0, 1, 10]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn last_mut(&mut self) -> Option<&mut T> { + SliceExt::last_mut(self) + } + + /// Returns a reference to an element or subslice depending on the type of + /// index. + /// + /// - If given a position, returns a reference to the element at that + /// position or `None` if out of bounds. + /// - If given a range, returns the subslice corresponding to that range, + /// or `None` if out of bounds. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert_eq!(Some(&40), v.get(1)); + /// assert_eq!(Some(&[10, 40][..]), v.get(0..2)); + /// assert_eq!(None, v.get(3)); + /// assert_eq!(None, v.get(0..4)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn get<I>(&self, index: I) -> Option<&I::Output> + where I: SliceIndex<Self> + { + SliceExt::get(self, index) + } + + /// Returns a mutable reference to an element or subslice depending on the + /// type of index (see [`get`]) or `None` if the index is out of bounds. + /// + /// [`get`]: #method.get + /// + /// # Examples + /// + /// ``` + /// let x = &mut [0, 1, 2]; + /// + /// if let Some(elem) = x.get_mut(1) { + /// *elem = 42; + /// } + /// assert_eq!(x, &[0, 42, 2]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output> + where I: SliceIndex<Self> + { + SliceExt::get_mut(self, index) + } + + /// Returns a reference to an element or subslice, without doing bounds + /// checking. + /// + /// This is generally not recommended, use with caution! For a safe + /// alternative see [`get`]. + /// + /// [`get`]: #method.get + /// + /// # Examples + /// + /// ``` + /// let x = &[1, 2, 4]; + /// + /// unsafe { + /// assert_eq!(x.get_unchecked(1), &2); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output + where I: SliceIndex<Self> + { + SliceExt::get_unchecked(self, index) + } + + /// Returns a mutable reference to an element or subslice, without doing + /// bounds checking. + /// + /// This is generally not recommended, use with caution! For a safe + /// alternative see [`get_mut`]. + /// + /// [`get_mut`]: #method.get_mut + /// + /// # Examples + /// + /// ``` + /// let x = &mut [1, 2, 4]; + /// + /// unsafe { + /// let elem = x.get_unchecked_mut(1); + /// *elem = 13; + /// } + /// assert_eq!(x, &[1, 13, 4]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output + where I: SliceIndex<Self> + { + SliceExt::get_unchecked_mut(self, index) + } + + /// Returns a raw pointer to the slice's buffer. + /// + /// The caller must ensure that the slice outlives the pointer this + /// function returns, or else it will end up pointing to garbage. + /// + /// Modifying the container referenced by this slice may cause its buffer + /// to be reallocated, which would also make any pointers to it invalid. + /// + /// # Examples + /// + /// ``` + /// let x = &[1, 2, 4]; + /// let x_ptr = x.as_ptr(); + /// + /// unsafe { + /// for i in 0..x.len() { + /// assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); + /// } + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn as_ptr(&self) -> *const T { + SliceExt::as_ptr(self) + } + + /// Returns an unsafe mutable pointer to the slice's buffer. + /// + /// The caller must ensure that the slice outlives the pointer this + /// function returns, or else it will end up pointing to garbage. + /// + /// Modifying the container referenced by this slice may cause its buffer + /// to be reallocated, which would also make any pointers to it invalid. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [1, 2, 4]; + /// let x_ptr = x.as_mut_ptr(); + /// + /// unsafe { + /// for i in 0..x.len() { + /// *x_ptr.offset(i as isize) += 2; + /// } + /// } + /// assert_eq!(x, &[3, 4, 6]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn as_mut_ptr(&mut self) -> *mut T { + SliceExt::as_mut_ptr(self) + } + + /// Swaps two elements in the slice. + /// + /// # Arguments + /// + /// * a - The index of the first element + /// * b - The index of the second element + /// + /// # Panics + /// + /// Panics if `a` or `b` are out of bounds. + /// + /// # Examples + /// + /// ``` + /// let mut v = ["a", "b", "c", "d"]; + /// v.swap(1, 3); + /// assert!(v == ["a", "d", "c", "b"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn swap(&mut self, a: usize, b: usize) { + SliceExt::swap(self, a, b) + } + + /// Reverses the order of elements in the slice, in place. + /// + /// # Examples + /// + /// ``` + /// let mut v = [1, 2, 3]; + /// v.reverse(); + /// assert!(v == [3, 2, 1]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn reverse(&mut self) { + SliceExt::reverse(self) + } + + /// Returns an iterator over the slice. + /// + /// # Examples + /// + /// ``` + /// let x = &[1, 2, 4]; + /// let mut iterator = x.iter(); + /// + /// assert_eq!(iterator.next(), Some(&1)); + /// assert_eq!(iterator.next(), Some(&2)); + /// assert_eq!(iterator.next(), Some(&4)); + /// assert_eq!(iterator.next(), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn iter(&self) -> Iter<T> { + SliceExt::iter(self) + } + + /// Returns an iterator that allows modifying each value. + /// + /// # Examples + /// + /// ``` + /// let x = &mut [1, 2, 4]; + /// for elem in x.iter_mut() { + /// *elem += 2; + /// } + /// assert_eq!(x, &[3, 4, 6]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn iter_mut(&mut self) -> IterMut<T> { + SliceExt::iter_mut(self) + } + + /// Returns an iterator over all contiguous windows of length + /// `size`. The windows overlap. If the slice is shorter than + /// `size`, the iterator returns no values. + /// + /// # Panics + /// + /// Panics if `size` is 0. + /// + /// # Examples + /// + /// ``` + /// let slice = ['r', 'u', 's', 't']; + /// let mut iter = slice.windows(2); + /// assert_eq!(iter.next().unwrap(), &['r', 'u']); + /// assert_eq!(iter.next().unwrap(), &['u', 's']); + /// assert_eq!(iter.next().unwrap(), &['s', 't']); + /// assert!(iter.next().is_none()); + /// ``` + /// + /// If the slice is shorter than `size`: + /// + /// ``` + /// let slice = ['f', 'o', 'o']; + /// let mut iter = slice.windows(4); + /// assert!(iter.next().is_none()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn windows(&self, size: usize) -> Windows<T> { + SliceExt::windows(self, size) + } + + /// Returns an iterator over `chunk_size` elements of the slice at a + /// time. The chunks are slices and do not overlap. If `chunk_size` does + /// not divide the length of the slice, then the last chunk will + /// not have length `chunk_size`. + /// + /// See [`exact_chunks`] for a variant of this iterator that returns chunks + /// of always exactly `chunk_size` elements. + /// + /// # Panics + /// + /// Panics if `chunk_size` is 0. + /// + /// # Examples + /// + /// ``` + /// let slice = ['l', 'o', 'r', 'e', 'm']; + /// let mut iter = slice.chunks(2); + /// assert_eq!(iter.next().unwrap(), &['l', 'o']); + /// assert_eq!(iter.next().unwrap(), &['r', 'e']); + /// assert_eq!(iter.next().unwrap(), &['m']); + /// assert!(iter.next().is_none()); + /// ``` + /// + /// [`exact_chunks`]: #method.exact_chunks + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn chunks(&self, chunk_size: usize) -> Chunks<T> { + SliceExt::chunks(self, chunk_size) + } + + /// Returns an iterator over `chunk_size` elements of the slice at a + /// time. The chunks are slices and do not overlap. If `chunk_size` does + /// not divide the length of the slice, then the last up to `chunk_size-1` + /// elements will be omitted. + /// + /// Due to each chunk having exactly `chunk_size` elements, the compiler + /// can often optimize the resulting code better than in the case of + /// [`chunks`]. + /// + /// # Panics + /// + /// Panics if `chunk_size` is 0. + /// + /// # Examples + /// + /// ``` + /// #![feature(exact_chunks)] + /// + /// let slice = ['l', 'o', 'r', 'e', 'm']; + /// let mut iter = slice.exact_chunks(2); + /// assert_eq!(iter.next().unwrap(), &['l', 'o']); + /// assert_eq!(iter.next().unwrap(), &['r', 'e']); + /// assert!(iter.next().is_none()); + /// ``` + /// + /// [`chunks`]: #method.chunks + #[unstable(feature = "exact_chunks", issue = "47115")] + #[inline] + pub fn exact_chunks(&self, chunk_size: usize) -> ExactChunks<T> { + SliceExt::exact_chunks(self, chunk_size) + } + + /// Returns an iterator over `chunk_size` elements of the slice at a time. + /// The chunks are mutable slices, and do not overlap. If `chunk_size` does + /// not divide the length of the slice, then the last chunk will not + /// have length `chunk_size`. + /// + /// See [`exact_chunks_mut`] for a variant of this iterator that returns chunks + /// of always exactly `chunk_size` elements. + /// + /// # Panics + /// + /// Panics if `chunk_size` is 0. + /// + /// # Examples + /// + /// ``` + /// let v = &mut [0, 0, 0, 0, 0]; + /// let mut count = 1; + /// + /// for chunk in v.chunks_mut(2) { + /// for elem in chunk.iter_mut() { + /// *elem += count; + /// } + /// count += 1; + /// } + /// assert_eq!(v, &[1, 1, 2, 2, 3]); + /// ``` + /// + /// [`exact_chunks_mut`]: #method.exact_chunks_mut + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T> { + SliceExt::chunks_mut(self, chunk_size) + } + + /// Returns an iterator over `chunk_size` elements of the slice at a time. + /// The chunks are mutable slices, and do not overlap. If `chunk_size` does + /// not divide the length of the slice, then the last up to `chunk_size-1` + /// elements will be omitted. + /// + /// + /// Due to each chunk having exactly `chunk_size` elements, the compiler + /// can often optimize the resulting code better than in the case of + /// [`chunks_mut`]. + /// + /// # Panics + /// + /// Panics if `chunk_size` is 0. + /// + /// # Examples + /// + /// ``` + /// #![feature(exact_chunks)] + /// + /// let v = &mut [0, 0, 0, 0, 0]; + /// let mut count = 1; + /// + /// for chunk in v.exact_chunks_mut(2) { + /// for elem in chunk.iter_mut() { + /// *elem += count; + /// } + /// count += 1; + /// } + /// assert_eq!(v, &[1, 1, 2, 2, 0]); + /// ``` + /// + /// [`chunks_mut`]: #method.chunks_mut + #[unstable(feature = "exact_chunks", issue = "47115")] + #[inline] + pub fn exact_chunks_mut(&mut self, chunk_size: usize) -> ExactChunksMut<T> { + SliceExt::exact_chunks_mut(self, chunk_size) + } + + /// Divides one slice into two at an index. + /// + /// The first will contain all indices from `[0, mid)` (excluding + /// the index `mid` itself) and the second will contain all + /// indices from `[mid, len)` (excluding the index `len` itself). + /// + /// # Panics + /// + /// Panics if `mid > len`. + /// + /// # Examples + /// + /// ``` + /// let v = [1, 2, 3, 4, 5, 6]; + /// + /// { + /// let (left, right) = v.split_at(0); + /// assert!(left == []); + /// assert!(right == [1, 2, 3, 4, 5, 6]); + /// } + /// + /// { + /// let (left, right) = v.split_at(2); + /// assert!(left == [1, 2]); + /// assert!(right == [3, 4, 5, 6]); + /// } + /// + /// { + /// let (left, right) = v.split_at(6); + /// assert!(left == [1, 2, 3, 4, 5, 6]); + /// assert!(right == []); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split_at(&self, mid: usize) -> (&[T], &[T]) { + SliceExt::split_at(self, mid) + } + + /// Divides one mutable slice into two at an index. + /// + /// The first will contain all indices from `[0, mid)` (excluding + /// the index `mid` itself) and the second will contain all + /// indices from `[mid, len)` (excluding the index `len` itself). + /// + /// # Panics + /// + /// Panics if `mid > len`. + /// + /// # Examples + /// + /// ``` + /// let mut v = [1, 0, 3, 0, 5, 6]; + /// // scoped to restrict the lifetime of the borrows + /// { + /// let (left, right) = v.split_at_mut(2); + /// assert!(left == [1, 0]); + /// assert!(right == [3, 0, 5, 6]); + /// left[1] = 2; + /// right[1] = 4; + /// } + /// assert!(v == [1, 2, 3, 4, 5, 6]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) { + SliceExt::split_at_mut(self, mid) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred`. The matched element is not contained in the subslices. + /// + /// # Examples + /// + /// ``` + /// let slice = [10, 40, 33, 20]; + /// let mut iter = slice.split(|num| num % 3 == 0); + /// + /// assert_eq!(iter.next().unwrap(), &[10, 40]); + /// assert_eq!(iter.next().unwrap(), &[20]); + /// assert!(iter.next().is_none()); + /// ``` + /// + /// If the first element is matched, an empty slice will be the first item + /// returned by the iterator. Similarly, if the last element in the slice + /// is matched, an empty slice will be the last item returned by the + /// iterator: + /// + /// ``` + /// let slice = [10, 40, 33]; + /// let mut iter = slice.split(|num| num % 3 == 0); + /// + /// assert_eq!(iter.next().unwrap(), &[10, 40]); + /// assert_eq!(iter.next().unwrap(), &[]); + /// assert!(iter.next().is_none()); + /// ``` + /// + /// If two matched elements are directly adjacent, an empty slice will be + /// present between them: + /// + /// ``` + /// let slice = [10, 6, 33, 20]; + /// let mut iter = slice.split(|num| num % 3 == 0); + /// + /// assert_eq!(iter.next().unwrap(), &[10]); + /// assert_eq!(iter.next().unwrap(), &[]); + /// assert_eq!(iter.next().unwrap(), &[20]); + /// assert!(iter.next().is_none()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split<F>(&self, pred: F) -> Split<T, F> + where F: FnMut(&T) -> bool + { + SliceExt::split(self, pred) + } + + /// Returns an iterator over mutable subslices separated by elements that + /// match `pred`. The matched element is not contained in the subslices. + /// + /// # Examples + /// + /// ``` + /// let mut v = [10, 40, 30, 20, 60, 50]; + /// + /// for group in v.split_mut(|num| *num % 3 == 0) { + /// group[0] = 1; + /// } + /// assert_eq!(v, [1, 40, 30, 1, 60, 1]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> + where F: FnMut(&T) -> bool + { + SliceExt::split_mut(self, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred`, starting at the end of the slice and working backwards. + /// The matched element is not contained in the subslices. + /// + /// # Examples + /// + /// ``` + /// let slice = [11, 22, 33, 0, 44, 55]; + /// let mut iter = slice.rsplit(|num| *num == 0); + /// + /// assert_eq!(iter.next().unwrap(), &[44, 55]); + /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]); + /// assert_eq!(iter.next(), None); + /// ``` + /// + /// As with `split()`, if the first or last element is matched, an empty + /// slice will be the first (or last) item returned by the iterator. + /// + /// ``` + /// let v = &[0, 1, 1, 2, 3, 5, 8]; + /// let mut it = v.rsplit(|n| *n % 2 == 0); + /// assert_eq!(it.next().unwrap(), &[]); + /// assert_eq!(it.next().unwrap(), &[3, 5]); + /// assert_eq!(it.next().unwrap(), &[1, 1]); + /// assert_eq!(it.next().unwrap(), &[]); + /// assert_eq!(it.next(), None); + /// ``` + #[stable(feature = "slice_rsplit", since = "1.27.0")] + #[inline] + pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> + where F: FnMut(&T) -> bool + { + SliceExt::rsplit(self, pred) + } + + /// Returns an iterator over mutable subslices separated by elements that + /// match `pred`, starting at the end of the slice and working + /// backwards. The matched element is not contained in the subslices. + /// + /// # Examples + /// + /// ``` + /// let mut v = [100, 400, 300, 200, 600, 500]; + /// + /// let mut count = 0; + /// for group in v.rsplit_mut(|num| *num % 3 == 0) { + /// count += 1; + /// group[0] = count; + /// } + /// assert_eq!(v, [3, 400, 300, 2, 600, 1]); + /// ``` + /// + #[stable(feature = "slice_rsplit", since = "1.27.0")] + #[inline] + pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F> + where F: FnMut(&T) -> bool + { + SliceExt::rsplit_mut(self, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred`, limited to returning at most `n` items. The matched element is + /// not contained in the subslices. + /// + /// The last element returned, if any, will contain the remainder of the + /// slice. + /// + /// # Examples + /// + /// Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`, + /// `[20, 60, 50]`): + /// + /// ``` + /// let v = [10, 40, 30, 20, 60, 50]; + /// + /// for group in v.splitn(2, |num| *num % 3 == 0) { + /// println!("{:?}", group); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> + where F: FnMut(&T) -> bool + { + SliceExt::splitn(self, n, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred`, limited to returning at most `n` items. The matched element is + /// not contained in the subslices. + /// + /// The last element returned, if any, will contain the remainder of the + /// slice. + /// + /// # Examples + /// + /// ``` + /// let mut v = [10, 40, 30, 20, 60, 50]; + /// + /// for group in v.splitn_mut(2, |num| *num % 3 == 0) { + /// group[0] = 1; + /// } + /// assert_eq!(v, [1, 40, 30, 1, 60, 50]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> + where F: FnMut(&T) -> bool + { + SliceExt::splitn_mut(self, n, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred` limited to returning at most `n` items. This starts at the end of + /// the slice and works backwards. The matched element is not contained in + /// the subslices. + /// + /// The last element returned, if any, will contain the remainder of the + /// slice. + /// + /// # Examples + /// + /// Print the slice split once, starting from the end, by numbers divisible + /// by 3 (i.e. `[50]`, `[10, 40, 30, 20]`): + /// + /// ``` + /// let v = [10, 40, 30, 20, 60, 50]; + /// + /// for group in v.rsplitn(2, |num| *num % 3 == 0) { + /// println!("{:?}", group); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> + where F: FnMut(&T) -> bool + { + SliceExt::rsplitn(self, n, pred) + } + + /// Returns an iterator over subslices separated by elements that match + /// `pred` limited to returning at most `n` items. This starts at the end of + /// the slice and works backwards. The matched element is not contained in + /// the subslices. + /// + /// The last element returned, if any, will contain the remainder of the + /// slice. + /// + /// # Examples + /// + /// ``` + /// let mut s = [10, 40, 30, 20, 60, 50]; + /// + /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) { + /// group[0] = 1; + /// } + /// assert_eq!(s, [1, 40, 30, 20, 60, 1]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> + where F: FnMut(&T) -> bool + { + SliceExt::rsplitn_mut(self, n, pred) + } + + /// Returns `true` if the slice contains an element with the given value. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert!(v.contains(&30)); + /// assert!(!v.contains(&50)); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn contains(&self, x: &T) -> bool + where T: PartialEq + { + SliceExt::contains(self, x) + } + + /// Returns `true` if `needle` is a prefix of the slice. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert!(v.starts_with(&[10])); + /// assert!(v.starts_with(&[10, 40])); + /// assert!(!v.starts_with(&[50])); + /// assert!(!v.starts_with(&[10, 50])); + /// ``` + /// + /// Always returns `true` if `needle` is an empty slice: + /// + /// ``` + /// let v = &[10, 40, 30]; + /// assert!(v.starts_with(&[])); + /// let v: &[u8] = &[]; + /// assert!(v.starts_with(&[])); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn starts_with(&self, needle: &[T]) -> bool + where T: PartialEq + { + SliceExt::starts_with(self, needle) + } + + /// Returns `true` if `needle` is a suffix of the slice. + /// + /// # Examples + /// + /// ``` + /// let v = [10, 40, 30]; + /// assert!(v.ends_with(&[30])); + /// assert!(v.ends_with(&[40, 30])); + /// assert!(!v.ends_with(&[50])); + /// assert!(!v.ends_with(&[50, 30])); + /// ``` + /// + /// Always returns `true` if `needle` is an empty slice: + /// + /// ``` + /// let v = &[10, 40, 30]; + /// assert!(v.ends_with(&[])); + /// let v: &[u8] = &[]; + /// assert!(v.ends_with(&[])); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn ends_with(&self, needle: &[T]) -> bool + where T: PartialEq + { + SliceExt::ends_with(self, needle) + } + + /// Binary searches this sorted slice for a given element. + /// + /// If the value is found then `Ok` is returned, containing the + /// index of the matching element; if the value is not found then + /// `Err` is returned, containing the index where a matching + /// element could be inserted while maintaining sorted order. + /// + /// # Examples + /// + /// Looks up a series of four elements. The first is found, with a + /// uniquely determined position; the second and third are not + /// found; the fourth could match any position in `[1, 4]`. + /// + /// ``` + /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; + /// + /// assert_eq!(s.binary_search(&13), Ok(9)); + /// assert_eq!(s.binary_search(&4), Err(7)); + /// assert_eq!(s.binary_search(&100), Err(13)); + /// let r = s.binary_search(&1); + /// assert!(match r { Ok(1...4) => true, _ => false, }); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn binary_search(&self, x: &T) -> Result<usize, usize> + where T: Ord + { + SliceExt::binary_search(self, x) + } + + /// Binary searches this sorted slice with a comparator function. + /// + /// The comparator function should implement an order consistent + /// with the sort order of the underlying slice, returning an + /// order code that indicates whether its argument is `Less`, + /// `Equal` or `Greater` the desired target. + /// + /// If a matching value is found then returns `Ok`, containing + /// the index for the matched element; if no match is found then + /// `Err` is returned, containing the index where a matching + /// element could be inserted while maintaining sorted order. + /// + /// # Examples + /// + /// Looks up a series of four elements. The first is found, with a + /// uniquely determined position; the second and third are not + /// found; the fourth could match any position in `[1, 4]`. + /// + /// ``` + /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; + /// + /// let seek = 13; + /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); + /// let seek = 4; + /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); + /// let seek = 100; + /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); + /// let seek = 1; + /// let r = s.binary_search_by(|probe| probe.cmp(&seek)); + /// assert!(match r { Ok(1...4) => true, _ => false, }); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> + where F: FnMut(&'a T) -> Ordering + { + SliceExt::binary_search_by(self, f) + } + + /// Binary searches this sorted slice with a key extraction function. + /// + /// Assumes that the slice is sorted by the key, for instance with + /// [`sort_by_key`] using the same key extraction function. + /// + /// If a matching value is found then returns `Ok`, containing the + /// index for the matched element; if no match is found then `Err` + /// is returned, containing the index where a matching element could + /// be inserted while maintaining sorted order. + /// + /// [`sort_by_key`]: #method.sort_by_key + /// + /// # Examples + /// + /// Looks up a series of four elements in a slice of pairs sorted by + /// their second elements. The first is found, with a uniquely + /// determined position; the second and third are not found; the + /// fourth could match any position in `[1, 4]`. + /// + /// ``` + /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), + /// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), + /// (1, 21), (2, 34), (4, 55)]; + /// + /// assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); + /// assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); + /// assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); + /// let r = s.binary_search_by_key(&1, |&(a,b)| b); + /// assert!(match r { Ok(1...4) => true, _ => false, }); + /// ``` + #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")] + #[inline] + pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> + where F: FnMut(&'a T) -> B, + B: Ord + { + SliceExt::binary_search_by_key(self, b, f) + } + + /// Sorts the slice, but may not preserve the order of equal elements. + /// + /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), + /// and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, + /// which combines the fast average case of randomized quicksort with the fast worst case of + /// heapsort, while achieving linear time on slices with certain patterns. It uses some + /// randomization to avoid degenerate cases, but with a fixed seed to always provide + /// deterministic behavior. + /// + /// It is typically faster than stable sorting, except in a few special cases, e.g. when the + /// slice consists of several concatenated sorted sequences. + /// + /// # Examples + /// + /// ``` + /// let mut v = [-5, 4, 1, -3, 2]; + /// + /// v.sort_unstable(); + /// assert!(v == [-5, -3, 1, 2, 4]); + /// ``` + /// + /// [pdqsort]: https://github.com/orlp/pdqsort + #[stable(feature = "sort_unstable", since = "1.20.0")] + #[inline] + pub fn sort_unstable(&mut self) + where T: Ord + { + SliceExt::sort_unstable(self); + } + + /// Sorts the slice with a comparator function, but may not preserve the order of equal + /// elements. + /// + /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), + /// and `O(n log n)` worst-case. + /// + /// # Current implementation + /// + /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, + /// which combines the fast average case of randomized quicksort with the fast worst case of + /// heapsort, while achieving linear time on slices with certain patterns. It uses some + /// randomization to avoid degenerate cases, but with a fixed seed to always provide + /// deterministic behavior. + /// + /// It is typically faster than stable sorting, except in a few special cases, e.g. when the + /// slice consists of several concatenated sorted sequences. + /// + /// # Examples + /// + /// ``` + /// let mut v = [5, 4, 1, 3, 2]; + /// v.sort_unstable_by(|a, b| a.cmp(b)); + /// assert!(v == [1, 2, 3, 4, 5]); + /// + /// // reverse sorting + /// v.sort_unstable_by(|a, b| b.cmp(a)); + /// assert!(v == [5, 4, 3, 2, 1]); + /// ``` + /// + /// [pdqsort]: https://github.com/orlp/pdqsort + #[stable(feature = "sort_unstable", since = "1.20.0")] + #[inline] + pub fn sort_unstable_by<F>(&mut self, compare: F) + where F: FnMut(&T, &T) -> Ordering + { + SliceExt::sort_unstable_by(self, compare); + } + + /// Sorts the slice with a key extraction function, but may not preserve the order of equal + /// elements. + /// + /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), + /// and `O(m n log(m n))` worst-case, where the key function is `O(m)`. + /// + /// # Current implementation + /// + /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, + /// which combines the fast average case of randomized quicksort with the fast worst case of + /// heapsort, while achieving linear time on slices with certain patterns. It uses some + /// randomization to avoid degenerate cases, but with a fixed seed to always provide + /// deterministic behavior. + /// + /// # Examples + /// + /// ``` + /// let mut v = [-5i32, 4, 1, -3, 2]; + /// + /// v.sort_unstable_by_key(|k| k.abs()); + /// assert!(v == [1, 2, -3, 4, -5]); + /// ``` + /// + /// [pdqsort]: https://github.com/orlp/pdqsort + #[stable(feature = "sort_unstable", since = "1.20.0")] + #[inline] + pub fn sort_unstable_by_key<K, F>(&mut self, f: F) + where F: FnMut(&T) -> K, K: Ord + { + SliceExt::sort_unstable_by_key(self, f); + } + + /// Rotates the slice in-place such that the first `mid` elements of the + /// slice move to the end while the last `self.len() - mid` elements move to + /// the front. After calling `rotate_left`, the element previously at index + /// `mid` will become the first element in the slice. + /// + /// # Panics + /// + /// This function will panic if `mid` is greater than the length of the + /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op + /// rotation. + /// + /// # Complexity + /// + /// Takes linear (in `self.len()`) time. + /// + /// # Examples + /// + /// ``` + /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; + /// a.rotate_left(2); + /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']); + /// ``` + /// + /// Rotating a subslice: + /// + /// ``` + /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; + /// a[1..5].rotate_left(1); + /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']); + /// ``` + #[stable(feature = "slice_rotate", since = "1.26.0")] + pub fn rotate_left(&mut self, mid: usize) { + SliceExt::rotate_left(self, mid); + } + + /// Rotates the slice in-place such that the first `self.len() - k` + /// elements of the slice move to the end while the last `k` elements move + /// to the front. After calling `rotate_right`, the element previously at + /// index `self.len() - k` will become the first element in the slice. + /// + /// # Panics + /// + /// This function will panic if `k` is greater than the length of the + /// slice. Note that `k == self.len()` does _not_ panic and is a no-op + /// rotation. + /// + /// # Complexity + /// + /// Takes linear (in `self.len()`) time. + /// + /// # Examples + /// + /// ``` + /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; + /// a.rotate_right(2); + /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']); + /// ``` + /// + /// Rotate a subslice: + /// + /// ``` + /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; + /// a[1..5].rotate_right(1); + /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']); + /// ``` + #[stable(feature = "slice_rotate", since = "1.26.0")] + pub fn rotate_right(&mut self, k: usize) { + SliceExt::rotate_right(self, k); + } + + /// Copies the elements from `src` into `self`. + /// + /// The length of `src` must be the same as `self`. + /// + /// If `src` implements `Copy`, it can be more performant to use + /// [`copy_from_slice`]. + /// + /// # Panics + /// + /// This function will panic if the two slices have different lengths. + /// + /// # Examples + /// + /// Cloning two elements from a slice into another: + /// + /// ``` + /// let src = [1, 2, 3, 4]; + /// let mut dst = [0, 0]; + /// + /// dst.clone_from_slice(&src[2..]); + /// + /// assert_eq!(src, [1, 2, 3, 4]); + /// assert_eq!(dst, [3, 4]); + /// ``` + /// + /// Rust enforces that there can only be one mutable reference with no + /// immutable references to a particular piece of data in a particular + /// scope. Because of this, attempting to use `clone_from_slice` on a + /// single slice will result in a compile failure: + /// + /// ```compile_fail + /// let mut slice = [1, 2, 3, 4, 5]; + /// + /// slice[..2].clone_from_slice(&slice[3..]); // compile fail! + /// ``` + /// + /// To work around this, we can use [`split_at_mut`] to create two distinct + /// sub-slices from a slice: + /// + /// ``` + /// let mut slice = [1, 2, 3, 4, 5]; + /// + /// { + /// let (left, right) = slice.split_at_mut(2); + /// left.clone_from_slice(&right[1..]); + /// } + /// + /// assert_eq!(slice, [4, 5, 3, 4, 5]); + /// ``` + /// + /// [`copy_from_slice`]: #method.copy_from_slice + /// [`split_at_mut`]: #method.split_at_mut + #[stable(feature = "clone_from_slice", since = "1.7.0")] + pub fn clone_from_slice(&mut self, src: &[T]) where T: Clone { + SliceExt::clone_from_slice(self, src) + } + + /// Copies all elements from `src` into `self`, using a memcpy. + /// + /// The length of `src` must be the same as `self`. + /// + /// If `src` does not implement `Copy`, use [`clone_from_slice`]. + /// + /// # Panics + /// + /// This function will panic if the two slices have different lengths. + /// + /// # Examples + /// + /// Copying two elements from a slice into another: + /// + /// ``` + /// let src = [1, 2, 3, 4]; + /// let mut dst = [0, 0]; + /// + /// dst.copy_from_slice(&src[2..]); + /// + /// assert_eq!(src, [1, 2, 3, 4]); + /// assert_eq!(dst, [3, 4]); + /// ``` + /// + /// Rust enforces that there can only be one mutable reference with no + /// immutable references to a particular piece of data in a particular + /// scope. Because of this, attempting to use `copy_from_slice` on a + /// single slice will result in a compile failure: + /// + /// ```compile_fail + /// let mut slice = [1, 2, 3, 4, 5]; + /// + /// slice[..2].copy_from_slice(&slice[3..]); // compile fail! + /// ``` + /// + /// To work around this, we can use [`split_at_mut`] to create two distinct + /// sub-slices from a slice: + /// + /// ``` + /// let mut slice = [1, 2, 3, 4, 5]; + /// + /// { + /// let (left, right) = slice.split_at_mut(2); + /// left.copy_from_slice(&right[1..]); + /// } + /// + /// assert_eq!(slice, [4, 5, 3, 4, 5]); + /// ``` + /// + /// [`clone_from_slice`]: #method.clone_from_slice + /// [`split_at_mut`]: #method.split_at_mut + #[stable(feature = "copy_from_slice", since = "1.9.0")] + pub fn copy_from_slice(&mut self, src: &[T]) where T: Copy { + SliceExt::copy_from_slice(self, src) + } + + /// Swaps all elements in `self` with those in `other`. + /// + /// The length of `other` must be the same as `self`. + /// + /// # Panics + /// + /// This function will panic if the two slices have different lengths. + /// + /// # Example + /// + /// Swapping two elements across slices: + /// + /// ``` + /// let mut slice1 = [0, 0]; + /// let mut slice2 = [1, 2, 3, 4]; + /// + /// slice1.swap_with_slice(&mut slice2[2..]); + /// + /// assert_eq!(slice1, [3, 4]); + /// assert_eq!(slice2, [1, 2, 0, 0]); + /// ``` + /// + /// Rust enforces that there can only be one mutable reference to a + /// particular piece of data in a particular scope. Because of this, + /// attempting to use `swap_with_slice` on a single slice will result in + /// a compile failure: + /// + /// ```compile_fail + /// let mut slice = [1, 2, 3, 4, 5]; + /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail! + /// ``` + /// + /// To work around this, we can use [`split_at_mut`] to create two distinct + /// mutable sub-slices from a slice: + /// + /// ``` + /// let mut slice = [1, 2, 3, 4, 5]; + /// + /// { + /// let (left, right) = slice.split_at_mut(2); + /// left.swap_with_slice(&mut right[1..]); + /// } + /// + /// assert_eq!(slice, [4, 5, 3, 1, 2]); + /// ``` + /// + /// [`split_at_mut`]: #method.split_at_mut + #[stable(feature = "swap_with_slice", since = "1.27.0")] + pub fn swap_with_slice(&mut self, other: &mut [T]) { + SliceExt::swap_with_slice(self, other) + } +}} + +#[lang = "slice"] +#[cfg(not(test))] +#[cfg(not(stage0))] +impl<T> [T] { + slice_core_methods!(); +} + +// FIXME: remove (inline) this macro +// when updating to a bootstrap compiler that has the new lang items. +#[cfg_attr(stage0, macro_export)] +#[unstable(feature = "core_slice_ext", issue = "32110")] +macro_rules! slice_u8_core_methods { () => { + /// Checks if all bytes in this slice are within the ASCII range. + #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] + #[inline] + pub fn is_ascii(&self) -> bool { + self.iter().all(|b| b.is_ascii()) + } + + /// Checks that two slices are an ASCII case-insensitive match. + /// + /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, + /// but without allocating and copying temporaries. + #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] + #[inline] + pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool { + self.len() == other.len() && + self.iter().zip(other).all(|(a, b)| { + a.eq_ignore_ascii_case(b) + }) + } + + /// Converts this slice to its ASCII upper case equivalent in-place. + /// + /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', + /// but non-ASCII letters are unchanged. + /// + /// To return a new uppercased value without modifying the existing one, use + /// [`to_ascii_uppercase`]. + /// + /// [`to_ascii_uppercase`]: #method.to_ascii_uppercase + #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] + #[inline] + pub fn make_ascii_uppercase(&mut self) { + for byte in self { + byte.make_ascii_uppercase(); + } + } + + /// Converts this slice to its ASCII lower case equivalent in-place. + /// + /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', + /// but non-ASCII letters are unchanged. + /// + /// To return a new lowercased value without modifying the existing one, use + /// [`to_ascii_lowercase`]. + /// + /// [`to_ascii_lowercase`]: #method.to_ascii_lowercase + #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] + #[inline] + pub fn make_ascii_lowercase(&mut self) { + for byte in self { + byte.make_ascii_lowercase(); + } + } +}} + +#[lang = "slice_u8"] +#[cfg(not(test))] +#[cfg(not(stage0))] +impl [u8] { + slice_u8_core_methods!(); +} + #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented = "slice indices are of type `usize` or ranges of `usize`"] impl<T, I> ops::Index<I> for [T] @@ -1840,13 +3311,13 @@ impl<'a, T, P> FusedIterator for SplitMut<'a, T, P> where P: FnMut(&T) -> bool { /// /// [`rsplit`]: ../../std/primitive.slice.html#method.rsplit /// [slices]: ../../std/primitive.slice.html -#[unstable(feature = "slice_rsplit", issue = "41020")] +#[stable(feature = "slice_rsplit", since = "1.27.0")] #[derive(Clone)] // Is this correct, or does it incorrectly require `T: Clone`? pub struct RSplit<'a, T:'a, P> where P: FnMut(&T) -> bool { inner: Split<'a, T, P> } -#[unstable(feature = "slice_rsplit", issue = "41020")] +#[stable(feature = "slice_rsplit", since = "1.27.0")] impl<'a, T: 'a + fmt::Debug, P> fmt::Debug for RSplit<'a, T, P> where P: FnMut(&T) -> bool { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("RSplit") @@ -1856,7 +3327,7 @@ impl<'a, T: 'a + fmt::Debug, P> fmt::Debug for RSplit<'a, T, P> where P: FnMut(& } } -#[unstable(feature = "slice_rsplit", issue = "41020")] +#[stable(feature = "slice_rsplit", since = "1.27.0")] impl<'a, T, P> Iterator for RSplit<'a, T, P> where P: FnMut(&T) -> bool { type Item = &'a [T]; @@ -1871,7 +3342,7 @@ impl<'a, T, P> Iterator for RSplit<'a, T, P> where P: FnMut(&T) -> bool { } } -#[unstable(feature = "slice_rsplit", issue = "41020")] +#[stable(feature = "slice_rsplit", since = "1.27.0")] impl<'a, T, P> DoubleEndedIterator for RSplit<'a, T, P> where P: FnMut(&T) -> bool { #[inline] fn next_back(&mut self) -> Option<&'a [T]> { @@ -1879,7 +3350,7 @@ impl<'a, T, P> DoubleEndedIterator for RSplit<'a, T, P> where P: FnMut(&T) -> bo } } -#[unstable(feature = "slice_rsplit", issue = "41020")] +#[stable(feature = "slice_rsplit", since = "1.27.0")] impl<'a, T, P> SplitIter for RSplit<'a, T, P> where P: FnMut(&T) -> bool { #[inline] fn finish(&mut self) -> Option<&'a [T]> { @@ -1887,7 +3358,7 @@ impl<'a, T, P> SplitIter for RSplit<'a, T, P> where P: FnMut(&T) -> bool { } } -#[unstable(feature = "slice_rsplit", issue = "41020")] +#[stable(feature = "slice_rsplit", since = "1.27.0")] impl<'a, T, P> FusedIterator for RSplit<'a, T, P> where P: FnMut(&T) -> bool {} /// An iterator over the subslices of the vector which are separated @@ -1897,12 +3368,12 @@ impl<'a, T, P> FusedIterator for RSplit<'a, T, P> where P: FnMut(&T) -> bool {} /// /// [`rsplit_mut`]: ../../std/primitive.slice.html#method.rsplit_mut /// [slices]: ../../std/primitive.slice.html -#[unstable(feature = "slice_rsplit", issue = "41020")] +#[stable(feature = "slice_rsplit", since = "1.27.0")] pub struct RSplitMut<'a, T:'a, P> where P: FnMut(&T) -> bool { inner: SplitMut<'a, T, P> } -#[unstable(feature = "slice_rsplit", issue = "41020")] +#[stable(feature = "slice_rsplit", since = "1.27.0")] impl<'a, T: 'a + fmt::Debug, P> fmt::Debug for RSplitMut<'a, T, P> where P: FnMut(&T) -> bool { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("RSplitMut") @@ -1912,7 +3383,7 @@ impl<'a, T: 'a + fmt::Debug, P> fmt::Debug for RSplitMut<'a, T, P> where P: FnMu } } -#[unstable(feature = "slice_rsplit", issue = "41020")] +#[stable(feature = "slice_rsplit", since = "1.27.0")] impl<'a, T, P> SplitIter for RSplitMut<'a, T, P> where P: FnMut(&T) -> bool { #[inline] fn finish(&mut self) -> Option<&'a mut [T]> { @@ -1920,7 +3391,7 @@ impl<'a, T, P> SplitIter for RSplitMut<'a, T, P> where P: FnMut(&T) -> bool { } } -#[unstable(feature = "slice_rsplit", issue = "41020")] +#[stable(feature = "slice_rsplit", since = "1.27.0")] impl<'a, T, P> Iterator for RSplitMut<'a, T, P> where P: FnMut(&T) -> bool { type Item = &'a mut [T]; @@ -1935,7 +3406,7 @@ impl<'a, T, P> Iterator for RSplitMut<'a, T, P> where P: FnMut(&T) -> bool { } } -#[unstable(feature = "slice_rsplit", issue = "41020")] +#[stable(feature = "slice_rsplit", since = "1.27.0")] impl<'a, T, P> DoubleEndedIterator for RSplitMut<'a, T, P> where P: FnMut(&T) -> bool, { @@ -1945,7 +3416,7 @@ impl<'a, T, P> DoubleEndedIterator for RSplitMut<'a, T, P> where } } -#[unstable(feature = "slice_rsplit", issue = "41020")] +#[stable(feature = "slice_rsplit", since = "1.27.0")] impl<'a, T, P> FusedIterator for RSplitMut<'a, T, P> where P: FnMut(&T) -> bool {} /// An private iterator over subslices separated by elements that diff --git a/src/libcore/str/mod.rs b/src/libcore/str/mod.rs index f1fe23092de..b39d9feb35b 100644 --- a/src/libcore/str/mod.rs +++ b/src/libcore/str/mod.rs @@ -2100,31 +2100,28 @@ mod traits { fn index(self, slice: &str) -> &Self::Output { assert!(self.end != usize::max_value(), "attempted to index str up to maximum usize"); - let end = self.end + 1; - self.get(slice).unwrap_or_else(|| super::slice_error_fail(slice, 0, end)) + (..self.end+1).index(slice) } #[inline] fn index_mut(self, slice: &mut str) -> &mut Self::Output { assert!(self.end != usize::max_value(), "attempted to index str up to maximum usize"); - if slice.is_char_boundary(self.end) { - unsafe { self.get_unchecked_mut(slice) } - } else { - super::slice_error_fail(slice, 0, self.end + 1) - } + (..self.end+1).index_mut(slice) } } } - +public_in_stage0! { +{ /// Methods for string slices #[allow(missing_docs)] #[doc(hidden)] #[unstable(feature = "core_str_ext", reason = "stable interface provided by `impl str` in later crates", issue = "32110")] -pub trait StrExt { +} +trait StrExt { // NB there are no docs here are they're all located on the StrExt trait in // liballoc, not here. @@ -2218,17 +2215,13 @@ pub trait StrExt { fn parse<T: FromStr>(&self) -> Result<T, T::Err>; #[stable(feature = "split_whitespace", since = "1.1.0")] fn split_whitespace<'a>(&'a self) -> SplitWhitespace<'a>; - #[stable(feature = "unicode_methods_on_intrinsics", since = "1.27.0")] - fn is_whitespace(&self) -> bool; - #[stable(feature = "unicode_methods_on_intrinsics", since = "1.27.0")] - fn is_alphanumeric(&self) -> bool; #[stable(feature = "rust1", since = "1.0.0")] fn trim(&self) -> &str; #[stable(feature = "rust1", since = "1.0.0")] fn trim_left(&self) -> &str; #[stable(feature = "rust1", since = "1.0.0")] fn trim_right(&self) -> &str; -} +}} // truncate `&str` to length at most equal to `max` // return `true` if it were truncated, and the new str. @@ -2555,16 +2548,6 @@ impl StrExt for str { } #[inline] - fn is_whitespace(&self) -> bool { - self.chars().all(|c| c.is_whitespace()) - } - - #[inline] - fn is_alphanumeric(&self) -> bool { - self.chars().all(|c| c.is_alphanumeric()) - } - - #[inline] fn trim(&self) -> &str { self.trim_matches(|c: char| c.is_whitespace()) } @@ -2580,6 +2563,1685 @@ impl StrExt for str { } } +// FIXME: remove (inline) this macro and the SliceExt trait +// when updating to a bootstrap compiler that has the new lang items. +#[cfg_attr(stage0, macro_export)] +#[unstable(feature = "core_str_ext", issue = "32110")] +macro_rules! str_core_methods { () => { + /// Returns the length of `self`. + /// + /// This length is in bytes, not [`char`]s or graphemes. In other words, + /// it may not be what a human considers the length of the string. + /// + /// [`char`]: primitive.char.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let len = "foo".len(); + /// assert_eq!(3, len); + /// + /// let len = "ƒoo".len(); // fancy f! + /// assert_eq!(4, len); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn len(&self) -> usize { + StrExt::len(self) + } + + /// Returns `true` if `self` has a length of zero bytes. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = ""; + /// assert!(s.is_empty()); + /// + /// let s = "not empty"; + /// assert!(!s.is_empty()); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn is_empty(&self) -> bool { + StrExt::is_empty(self) + } + + /// Checks that `index`-th byte lies at the start and/or end of a + /// UTF-8 code point sequence. + /// + /// The start and end of the string (when `index == self.len()`) are + /// considered to be + /// boundaries. + /// + /// Returns `false` if `index` is greater than `self.len()`. + /// + /// # Examples + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// assert!(s.is_char_boundary(0)); + /// // start of `老` + /// assert!(s.is_char_boundary(6)); + /// assert!(s.is_char_boundary(s.len())); + /// + /// // second byte of `ö` + /// assert!(!s.is_char_boundary(2)); + /// + /// // third byte of `老` + /// assert!(!s.is_char_boundary(8)); + /// ``` + #[stable(feature = "is_char_boundary", since = "1.9.0")] + #[inline] + pub fn is_char_boundary(&self, index: usize) -> bool { + StrExt::is_char_boundary(self, index) + } + + /// Converts a string slice to a byte slice. To convert the byte slice back + /// into a string slice, use the [`str::from_utf8`] function. + /// + /// [`str::from_utf8`]: ./str/fn.from_utf8.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let bytes = "bors".as_bytes(); + /// assert_eq!(b"bors", bytes); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline(always)] + pub fn as_bytes(&self) -> &[u8] { + StrExt::as_bytes(self) + } + + /// Converts a mutable string slice to a mutable byte slice. To convert the + /// mutable byte slice back into a mutable string slice, use the + /// [`str::from_utf8_mut`] function. + /// + /// [`str::from_utf8_mut`]: ./str/fn.from_utf8_mut.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = String::from("Hello"); + /// let bytes = unsafe { s.as_bytes_mut() }; + /// + /// assert_eq!(b"Hello", bytes); + /// ``` + /// + /// Mutability: + /// + /// ``` + /// let mut s = String::from("🗻∈🌏"); + /// + /// unsafe { + /// let bytes = s.as_bytes_mut(); + /// + /// bytes[0] = 0xF0; + /// bytes[1] = 0x9F; + /// bytes[2] = 0x8D; + /// bytes[3] = 0x94; + /// } + /// + /// assert_eq!("🍔∈🌏", s); + /// ``` + #[stable(feature = "str_mut_extras", since = "1.20.0")] + #[inline(always)] + pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] { + StrExt::as_bytes_mut(self) + } + + /// Converts a string slice to a raw pointer. + /// + /// As string slices are a slice of bytes, the raw pointer points to a + /// [`u8`]. This pointer will be pointing to the first byte of the string + /// slice. + /// + /// [`u8`]: primitive.u8.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "Hello"; + /// let ptr = s.as_ptr(); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn as_ptr(&self) -> *const u8 { + StrExt::as_ptr(self) + } + + /// Returns a subslice of `str`. + /// + /// This is the non-panicking alternative to indexing the `str`. Returns + /// [`None`] whenever equivalent indexing operation would panic. + /// + /// [`None`]: option/enum.Option.html#variant.None + /// + /// # Examples + /// + /// ``` + /// let v = String::from("🗻∈🌏"); + /// + /// assert_eq!(Some("🗻"), v.get(0..4)); + /// + /// // indices not on UTF-8 sequence boundaries + /// assert!(v.get(1..).is_none()); + /// assert!(v.get(..8).is_none()); + /// + /// // out of bounds + /// assert!(v.get(..42).is_none()); + /// ``` + #[stable(feature = "str_checked_slicing", since = "1.20.0")] + #[inline] + pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> { + StrExt::get(self, i) + } + + /// Returns a mutable subslice of `str`. + /// + /// This is the non-panicking alternative to indexing the `str`. Returns + /// [`None`] whenever equivalent indexing operation would panic. + /// + /// [`None`]: option/enum.Option.html#variant.None + /// + /// # Examples + /// + /// ``` + /// let mut v = String::from("hello"); + /// // correct length + /// assert!(v.get_mut(0..5).is_some()); + /// // out of bounds + /// assert!(v.get_mut(..42).is_none()); + /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v)); + /// + /// assert_eq!("hello", v); + /// { + /// let s = v.get_mut(0..2); + /// let s = s.map(|s| { + /// s.make_ascii_uppercase(); + /// &*s + /// }); + /// assert_eq!(Some("HE"), s); + /// } + /// assert_eq!("HEllo", v); + /// ``` + #[stable(feature = "str_checked_slicing", since = "1.20.0")] + #[inline] + pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> { + StrExt::get_mut(self, i) + } + + /// Returns a unchecked subslice of `str`. + /// + /// This is the unchecked alternative to indexing the `str`. + /// + /// # Safety + /// + /// Callers of this function are responsible that these preconditions are + /// satisfied: + /// + /// * The starting index must come before the ending index; + /// * Indexes must be within bounds of the original slice; + /// * Indexes must lie on UTF-8 sequence boundaries. + /// + /// Failing that, the returned string slice may reference invalid memory or + /// violate the invariants communicated by the `str` type. + /// + /// # Examples + /// + /// ``` + /// let v = "🗻∈🌏"; + /// unsafe { + /// assert_eq!("🗻", v.get_unchecked(0..4)); + /// assert_eq!("∈", v.get_unchecked(4..7)); + /// assert_eq!("🌏", v.get_unchecked(7..11)); + /// } + /// ``` + #[stable(feature = "str_checked_slicing", since = "1.20.0")] + #[inline] + pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output { + StrExt::get_unchecked(self, i) + } + + /// Returns a mutable, unchecked subslice of `str`. + /// + /// This is the unchecked alternative to indexing the `str`. + /// + /// # Safety + /// + /// Callers of this function are responsible that these preconditions are + /// satisfied: + /// + /// * The starting index must come before the ending index; + /// * Indexes must be within bounds of the original slice; + /// * Indexes must lie on UTF-8 sequence boundaries. + /// + /// Failing that, the returned string slice may reference invalid memory or + /// violate the invariants communicated by the `str` type. + /// + /// # Examples + /// + /// ``` + /// let mut v = String::from("🗻∈🌏"); + /// unsafe { + /// assert_eq!("🗻", v.get_unchecked_mut(0..4)); + /// assert_eq!("∈", v.get_unchecked_mut(4..7)); + /// assert_eq!("🌏", v.get_unchecked_mut(7..11)); + /// } + /// ``` + #[stable(feature = "str_checked_slicing", since = "1.20.0")] + #[inline] + pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output { + StrExt::get_unchecked_mut(self, i) + } + + /// Creates a string slice from another string slice, bypassing safety + /// checks. + /// + /// This is generally not recommended, use with caution! For a safe + /// alternative see [`str`] and [`Index`]. + /// + /// [`str`]: primitive.str.html + /// [`Index`]: ops/trait.Index.html + /// + /// This new slice goes from `begin` to `end`, including `begin` but + /// excluding `end`. + /// + /// To get a mutable string slice instead, see the + /// [`slice_mut_unchecked`] method. + /// + /// [`slice_mut_unchecked`]: #method.slice_mut_unchecked + /// + /// # Safety + /// + /// Callers of this function are responsible that three preconditions are + /// satisfied: + /// + /// * `begin` must come before `end`. + /// * `begin` and `end` must be byte positions within the string slice. + /// * `begin` and `end` must lie on UTF-8 sequence boundaries. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// + /// unsafe { + /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21)); + /// } + /// + /// let s = "Hello, world!"; + /// + /// unsafe { + /// assert_eq!("world", s.slice_unchecked(7, 12)); + /// } + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str { + StrExt::slice_unchecked(self, begin, end) + } + + /// Creates a string slice from another string slice, bypassing safety + /// checks. + /// This is generally not recommended, use with caution! For a safe + /// alternative see [`str`] and [`IndexMut`]. + /// + /// [`str`]: primitive.str.html + /// [`IndexMut`]: ops/trait.IndexMut.html + /// + /// This new slice goes from `begin` to `end`, including `begin` but + /// excluding `end`. + /// + /// To get an immutable string slice instead, see the + /// [`slice_unchecked`] method. + /// + /// [`slice_unchecked`]: #method.slice_unchecked + /// + /// # Safety + /// + /// Callers of this function are responsible that three preconditions are + /// satisfied: + /// + /// * `begin` must come before `end`. + /// * `begin` and `end` must be byte positions within the string slice. + /// * `begin` and `end` must lie on UTF-8 sequence boundaries. + #[stable(feature = "str_slice_mut", since = "1.5.0")] + #[inline] + pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str { + StrExt::slice_mut_unchecked(self, begin, end) + } + + /// Divide one string slice into two at an index. + /// + /// The argument, `mid`, should be a byte offset from the start of the + /// string. It must also be on the boundary of a UTF-8 code point. + /// + /// The two slices returned go from the start of the string slice to `mid`, + /// and from `mid` to the end of the string slice. + /// + /// To get mutable string slices instead, see the [`split_at_mut`] + /// method. + /// + /// [`split_at_mut`]: #method.split_at_mut + /// + /// # Panics + /// + /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is + /// beyond the last code point of the string slice. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = "Per Martin-Löf"; + /// + /// let (first, last) = s.split_at(3); + /// + /// assert_eq!("Per", first); + /// assert_eq!(" Martin-Löf", last); + /// ``` + #[inline] + #[stable(feature = "str_split_at", since = "1.4.0")] + pub fn split_at(&self, mid: usize) -> (&str, &str) { + StrExt::split_at(self, mid) + } + + /// Divide one mutable string slice into two at an index. + /// + /// The argument, `mid`, should be a byte offset from the start of the + /// string. It must also be on the boundary of a UTF-8 code point. + /// + /// The two slices returned go from the start of the string slice to `mid`, + /// and from `mid` to the end of the string slice. + /// + /// To get immutable string slices instead, see the [`split_at`] method. + /// + /// [`split_at`]: #method.split_at + /// + /// # Panics + /// + /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is + /// beyond the last code point of the string slice. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut s = "Per Martin-Löf".to_string(); + /// { + /// let (first, last) = s.split_at_mut(3); + /// first.make_ascii_uppercase(); + /// assert_eq!("PER", first); + /// assert_eq!(" Martin-Löf", last); + /// } + /// assert_eq!("PER Martin-Löf", s); + /// ``` + #[inline] + #[stable(feature = "str_split_at", since = "1.4.0")] + pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) { + StrExt::split_at_mut(self, mid) + } + + /// Returns an iterator over the [`char`]s of a string slice. + /// + /// As a string slice consists of valid UTF-8, we can iterate through a + /// string slice by [`char`]. This method returns such an iterator. + /// + /// It's important to remember that [`char`] represents a Unicode Scalar + /// Value, and may not match your idea of what a 'character' is. Iteration + /// over grapheme clusters may be what you actually want. + /// + /// [`char`]: primitive.char.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let word = "goodbye"; + /// + /// let count = word.chars().count(); + /// assert_eq!(7, count); + /// + /// let mut chars = word.chars(); + /// + /// assert_eq!(Some('g'), chars.next()); + /// assert_eq!(Some('o'), chars.next()); + /// assert_eq!(Some('o'), chars.next()); + /// assert_eq!(Some('d'), chars.next()); + /// assert_eq!(Some('b'), chars.next()); + /// assert_eq!(Some('y'), chars.next()); + /// assert_eq!(Some('e'), chars.next()); + /// + /// assert_eq!(None, chars.next()); + /// ``` + /// + /// Remember, [`char`]s may not match your human intuition about characters: + /// + /// ``` + /// let y = "y̆"; + /// + /// let mut chars = y.chars(); + /// + /// assert_eq!(Some('y'), chars.next()); // not 'y̆' + /// assert_eq!(Some('\u{0306}'), chars.next()); + /// + /// assert_eq!(None, chars.next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn chars(&self) -> Chars { + StrExt::chars(self) + } + /// Returns an iterator over the [`char`]s of a string slice, and their + /// positions. + /// + /// As a string slice consists of valid UTF-8, we can iterate through a + /// string slice by [`char`]. This method returns an iterator of both + /// these [`char`]s, as well as their byte positions. + /// + /// The iterator yields tuples. The position is first, the [`char`] is + /// second. + /// + /// [`char`]: primitive.char.html + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let word = "goodbye"; + /// + /// let count = word.char_indices().count(); + /// assert_eq!(7, count); + /// + /// let mut char_indices = word.char_indices(); + /// + /// assert_eq!(Some((0, 'g')), char_indices.next()); + /// assert_eq!(Some((1, 'o')), char_indices.next()); + /// assert_eq!(Some((2, 'o')), char_indices.next()); + /// assert_eq!(Some((3, 'd')), char_indices.next()); + /// assert_eq!(Some((4, 'b')), char_indices.next()); + /// assert_eq!(Some((5, 'y')), char_indices.next()); + /// assert_eq!(Some((6, 'e')), char_indices.next()); + /// + /// assert_eq!(None, char_indices.next()); + /// ``` + /// + /// Remember, [`char`]s may not match your human intuition about characters: + /// + /// ``` + /// let yes = "y̆es"; + /// + /// let mut char_indices = yes.char_indices(); + /// + /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆') + /// assert_eq!(Some((1, '\u{0306}')), char_indices.next()); + /// + /// // note the 3 here - the last character took up two bytes + /// assert_eq!(Some((3, 'e')), char_indices.next()); + /// assert_eq!(Some((4, 's')), char_indices.next()); + /// + /// assert_eq!(None, char_indices.next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn char_indices(&self) -> CharIndices { + StrExt::char_indices(self) + } + + /// An iterator over the bytes of a string slice. + /// + /// As a string slice consists of a sequence of bytes, we can iterate + /// through a string slice by byte. This method returns such an iterator. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut bytes = "bors".bytes(); + /// + /// assert_eq!(Some(b'b'), bytes.next()); + /// assert_eq!(Some(b'o'), bytes.next()); + /// assert_eq!(Some(b'r'), bytes.next()); + /// assert_eq!(Some(b's'), bytes.next()); + /// + /// assert_eq!(None, bytes.next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn bytes(&self) -> Bytes { + StrExt::bytes(self) + } + + /// Split a string slice by whitespace. + /// + /// The iterator returned will return string slices that are sub-slices of + /// the original string slice, separated by any amount of whitespace. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let mut iter = "A few words".split_whitespace(); + /// + /// assert_eq!(Some("A"), iter.next()); + /// assert_eq!(Some("few"), iter.next()); + /// assert_eq!(Some("words"), iter.next()); + /// + /// assert_eq!(None, iter.next()); + /// ``` + /// + /// All kinds of whitespace are considered: + /// + /// ``` + /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace(); + /// assert_eq!(Some("Mary"), iter.next()); + /// assert_eq!(Some("had"), iter.next()); + /// assert_eq!(Some("a"), iter.next()); + /// assert_eq!(Some("little"), iter.next()); + /// assert_eq!(Some("lamb"), iter.next()); + /// + /// assert_eq!(None, iter.next()); + /// ``` + #[stable(feature = "split_whitespace", since = "1.1.0")] + #[inline] + pub fn split_whitespace(&self) -> SplitWhitespace { + StrExt::split_whitespace(self) + } + + /// An iterator over the lines of a string, as string slices. + /// + /// Lines are ended with either a newline (`\n`) or a carriage return with + /// a line feed (`\r\n`). + /// + /// The final line ending is optional. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let text = "foo\r\nbar\n\nbaz\n"; + /// let mut lines = text.lines(); + /// + /// assert_eq!(Some("foo"), lines.next()); + /// assert_eq!(Some("bar"), lines.next()); + /// assert_eq!(Some(""), lines.next()); + /// assert_eq!(Some("baz"), lines.next()); + /// + /// assert_eq!(None, lines.next()); + /// ``` + /// + /// The final line ending isn't required: + /// + /// ``` + /// let text = "foo\nbar\n\r\nbaz"; + /// let mut lines = text.lines(); + /// + /// assert_eq!(Some("foo"), lines.next()); + /// assert_eq!(Some("bar"), lines.next()); + /// assert_eq!(Some(""), lines.next()); + /// assert_eq!(Some("baz"), lines.next()); + /// + /// assert_eq!(None, lines.next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn lines(&self) -> Lines { + StrExt::lines(self) + } + + /// An iterator over the lines of a string. + #[stable(feature = "rust1", since = "1.0.0")] + #[rustc_deprecated(since = "1.4.0", reason = "use lines() instead now")] + #[inline] + #[allow(deprecated)] + pub fn lines_any(&self) -> LinesAny { + StrExt::lines_any(self) + } + + /// Returns an iterator of `u16` over the string encoded as UTF-16. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let text = "Zażółć gęślą jaźń"; + /// + /// let utf8_len = text.len(); + /// let utf16_len = text.encode_utf16().count(); + /// + /// assert!(utf16_len <= utf8_len); + /// ``` + #[stable(feature = "encode_utf16", since = "1.8.0")] + pub fn encode_utf16(&self) -> EncodeUtf16 { + EncodeUtf16::new(self) + } + + /// Returns `true` if the given pattern matches a sub-slice of + /// this string slice. + /// + /// Returns `false` if it does not. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let bananas = "bananas"; + /// + /// assert!(bananas.contains("nana")); + /// assert!(!bananas.contains("apples")); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { + StrExt::contains(self, pat) + } + + /// Returns `true` if the given pattern matches a prefix of this + /// string slice. + /// + /// Returns `false` if it does not. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let bananas = "bananas"; + /// + /// assert!(bananas.starts_with("bana")); + /// assert!(!bananas.starts_with("nana")); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { + StrExt::starts_with(self, pat) + } + + /// Returns `true` if the given pattern matches a suffix of this + /// string slice. + /// + /// Returns `false` if it does not. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let bananas = "bananas"; + /// + /// assert!(bananas.ends_with("anas")); + /// assert!(!bananas.ends_with("nana")); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn ends_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool + where P::Searcher: ReverseSearcher<'a> + { + StrExt::ends_with(self, pat) + } + + /// Returns the byte index of the first character of this string slice that + /// matches the pattern. + /// + /// Returns [`None`] if the pattern doesn't match. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines if + /// a character matches. + /// + /// [`char`]: primitive.char.html + /// [`None`]: option/enum.Option.html#variant.None + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// + /// assert_eq!(s.find('L'), Some(0)); + /// assert_eq!(s.find('é'), Some(14)); + /// assert_eq!(s.find("Léopard"), Some(13)); + /// ``` + /// + /// More complex patterns using point-free style and closures: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// + /// assert_eq!(s.find(char::is_whitespace), Some(5)); + /// assert_eq!(s.find(char::is_lowercase), Some(1)); + /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1)); + /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4)); + /// ``` + /// + /// Not finding the pattern: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// let x: &[_] = &['1', '2']; + /// + /// assert_eq!(s.find(x), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize> { + StrExt::find(self, pat) + } + + /// Returns the byte index of the last character of this string slice that + /// matches the pattern. + /// + /// Returns [`None`] if the pattern doesn't match. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines if + /// a character matches. + /// + /// [`char`]: primitive.char.html + /// [`None`]: option/enum.Option.html#variant.None + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// + /// assert_eq!(s.rfind('L'), Some(13)); + /// assert_eq!(s.rfind('é'), Some(14)); + /// ``` + /// + /// More complex patterns with closures: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// + /// assert_eq!(s.rfind(char::is_whitespace), Some(12)); + /// assert_eq!(s.rfind(char::is_lowercase), Some(20)); + /// ``` + /// + /// Not finding the pattern: + /// + /// ``` + /// let s = "Löwe 老虎 Léopard"; + /// let x: &[_] = &['1', '2']; + /// + /// assert_eq!(s.rfind(x), None); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rfind<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize> + where P::Searcher: ReverseSearcher<'a> + { + StrExt::rfind(self, pat) + } + + /// An iterator over substrings of this string slice, separated by + /// characters matched by a pattern. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines the + /// split. + /// + /// # Iterator behavior + /// + /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern + /// allows a reverse search and forward/reverse search yields the same + /// elements. This is true for, eg, [`char`] but not for `&str`. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// + /// If the pattern allows a reverse search but its results might differ + /// from a forward search, the [`rsplit`] method can be used. + /// + /// [`char`]: primitive.char.html + /// [`rsplit`]: #method.rsplit + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect(); + /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]); + /// + /// let v: Vec<&str> = "".split('X').collect(); + /// assert_eq!(v, [""]); + /// + /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect(); + /// assert_eq!(v, ["lion", "", "tiger", "leopard"]); + /// + /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect(); + /// assert_eq!(v, ["lion", "tiger", "leopard"]); + /// + /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect(); + /// assert_eq!(v, ["abc", "def", "ghi"]); + /// + /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect(); + /// assert_eq!(v, ["lion", "tiger", "leopard"]); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect(); + /// assert_eq!(v, ["abc", "def", "ghi"]); + /// ``` + /// + /// If a string contains multiple contiguous separators, you will end up + /// with empty strings in the output: + /// + /// ``` + /// let x = "||||a||b|c".to_string(); + /// let d: Vec<_> = x.split('|').collect(); + /// + /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); + /// ``` + /// + /// Contiguous separators are separated by the empty string. + /// + /// ``` + /// let x = "(///)".to_string(); + /// let d: Vec<_> = x.split('/').collect(); + /// + /// assert_eq!(d, &["(", "", "", ")"]); + /// ``` + /// + /// Separators at the start or end of a string are neighbored + /// by empty strings. + /// + /// ``` + /// let d: Vec<_> = "010".split("0").collect(); + /// assert_eq!(d, &["", "1", ""]); + /// ``` + /// + /// When the empty string is used as a separator, it separates + /// every character in the string, along with the beginning + /// and end of the string. + /// + /// ``` + /// let f: Vec<_> = "rust".split("").collect(); + /// assert_eq!(f, &["", "r", "u", "s", "t", ""]); + /// ``` + /// + /// Contiguous separators can lead to possibly surprising behavior + /// when whitespace is used as the separator. This code is correct: + /// + /// ``` + /// let x = " a b c".to_string(); + /// let d: Vec<_> = x.split(' ').collect(); + /// + /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); + /// ``` + /// + /// It does _not_ give you: + /// + /// ```,ignore + /// assert_eq!(d, &["a", "b", "c"]); + /// ``` + /// + /// Use [`split_whitespace`] for this behavior. + /// + /// [`split_whitespace`]: #method.split_whitespace + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P> { + StrExt::split(self, pat) + } + + /// An iterator over substrings of the given string slice, separated by + /// characters matched by a pattern and yielded in reverse order. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines the + /// split. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator requires that the pattern supports a reverse + /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse + /// search yields the same elements. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// + /// For iterating from the front, the [`split`] method can be used. + /// + /// [`split`]: #method.split + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect(); + /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]); + /// + /// let v: Vec<&str> = "".rsplit('X').collect(); + /// assert_eq!(v, [""]); + /// + /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect(); + /// assert_eq!(v, ["leopard", "tiger", "", "lion"]); + /// + /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect(); + /// assert_eq!(v, ["leopard", "tiger", "lion"]); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect(); + /// assert_eq!(v, ["ghi", "def", "abc"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplit<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplit<'a, P> + where P::Searcher: ReverseSearcher<'a> + { + StrExt::rsplit(self, pat) + } + + /// An iterator over substrings of the given string slice, separated by + /// characters matched by a pattern. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines the + /// split. + /// + /// Equivalent to [`split`], except that the trailing substring + /// is skipped if empty. + /// + /// [`split`]: #method.split + /// + /// This method can be used for string data that is _terminated_, + /// rather than _separated_ by a pattern. + /// + /// # Iterator behavior + /// + /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern + /// allows a reverse search and forward/reverse search yields the same + /// elements. This is true for, eg, [`char`] but not for `&str`. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// [`char`]: primitive.char.html + /// + /// If the pattern allows a reverse search but its results might differ + /// from a forward search, the [`rsplit_terminator`] method can be used. + /// + /// [`rsplit_terminator`]: #method.rsplit_terminator + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<&str> = "A.B.".split_terminator('.').collect(); + /// assert_eq!(v, ["A", "B"]); + /// + /// let v: Vec<&str> = "A..B..".split_terminator(".").collect(); + /// assert_eq!(v, ["A", "", "B", ""]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P> { + StrExt::split_terminator(self, pat) + } + + /// An iterator over substrings of `self`, separated by characters + /// matched by a pattern and yielded in reverse order. + /// + /// The pattern can be a simple `&str`, [`char`], or a closure that + /// determines the split. + /// Additional libraries might provide more complex patterns like + /// regular expressions. + /// + /// [`char`]: primitive.char.html + /// + /// Equivalent to [`split`], except that the trailing substring is + /// skipped if empty. + /// + /// [`split`]: #method.split + /// + /// This method can be used for string data that is _terminated_, + /// rather than _separated_ by a pattern. + /// + /// # Iterator behavior + /// + /// The returned iterator requires that the pattern supports a + /// reverse search, and it will be double ended if a forward/reverse + /// search yields the same elements. + /// + /// For iterating from the front, the [`split_terminator`] method can be + /// used. + /// + /// [`split_terminator`]: #method.split_terminator + /// + /// # Examples + /// + /// ``` + /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect(); + /// assert_eq!(v, ["B", "A"]); + /// + /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect(); + /// assert_eq!(v, ["", "B", "", "A"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplit_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> RSplitTerminator<'a, P> + where P::Searcher: ReverseSearcher<'a> + { + StrExt::rsplit_terminator(self, pat) + } + + /// An iterator over substrings of the given string slice, separated by a + /// pattern, restricted to returning at most `n` items. + /// + /// If `n` substrings are returned, the last substring (the `n`th substring) + /// will contain the remainder of the string. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines the + /// split. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator will not be double ended, because it is + /// not efficient to support. + /// + /// If the pattern allows a reverse search, the [`rsplitn`] method can be + /// used. + /// + /// [`rsplitn`]: #method.rsplitn + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect(); + /// assert_eq!(v, ["Mary", "had", "a little lambda"]); + /// + /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect(); + /// assert_eq!(v, ["lion", "", "tigerXleopard"]); + /// + /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect(); + /// assert_eq!(v, ["abcXdef"]); + /// + /// let v: Vec<&str> = "".splitn(1, 'X').collect(); + /// assert_eq!(v, [""]); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect(); + /// assert_eq!(v, ["abc", "defXghi"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn splitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> SplitN<'a, P> { + StrExt::splitn(self, n, pat) + } + + /// An iterator over substrings of this string slice, separated by a + /// pattern, starting from the end of the string, restricted to returning + /// at most `n` items. + /// + /// If `n` substrings are returned, the last substring (the `n`th substring) + /// will contain the remainder of the string. + /// + /// The pattern can be a `&str`, [`char`], or a closure that + /// determines the split. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator will not be double ended, because it is not + /// efficient to support. + /// + /// For splitting from the front, the [`splitn`] method can be used. + /// + /// [`splitn`]: #method.splitn + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect(); + /// assert_eq!(v, ["lamb", "little", "Mary had a"]); + /// + /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect(); + /// assert_eq!(v, ["leopard", "tiger", "lionX"]); + /// + /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect(); + /// assert_eq!(v, ["leopard", "lion::tiger"]); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect(); + /// assert_eq!(v, ["ghi", "abc1def"]); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + #[inline] + pub fn rsplitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> + where P::Searcher: ReverseSearcher<'a> + { + StrExt::rsplitn(self, n, pat) + } + + /// An iterator over the disjoint matches of a pattern within the given string + /// slice. + /// + /// The pattern can be a `&str`, [`char`], or a closure that + /// determines if a character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern + /// allows a reverse search and forward/reverse search yields the same + /// elements. This is true for, eg, [`char`] but not for `&str`. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// [`char`]: primitive.char.html + /// + /// If the pattern allows a reverse search but its results might differ + /// from a forward search, the [`rmatches`] method can be used. + /// + /// [`rmatches`]: #method.rmatches + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect(); + /// assert_eq!(v, ["abc", "abc", "abc"]); + /// + /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect(); + /// assert_eq!(v, ["1", "2", "3"]); + /// ``` + #[stable(feature = "str_matches", since = "1.2.0")] + #[inline] + pub fn matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> Matches<'a, P> { + StrExt::matches(self, pat) + } + + /// An iterator over the disjoint matches of a pattern within this string slice, + /// yielded in reverse order. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines if + /// a character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator requires that the pattern supports a reverse + /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse + /// search yields the same elements. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// + /// For iterating from the front, the [`matches`] method can be used. + /// + /// [`matches`]: #method.matches + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect(); + /// assert_eq!(v, ["abc", "abc", "abc"]); + /// + /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect(); + /// assert_eq!(v, ["3", "2", "1"]); + /// ``` + #[stable(feature = "str_matches", since = "1.2.0")] + #[inline] + pub fn rmatches<'a, P: Pattern<'a>>(&'a self, pat: P) -> RMatches<'a, P> + where P::Searcher: ReverseSearcher<'a> + { + StrExt::rmatches(self, pat) + } + + /// An iterator over the disjoint matches of a pattern within this string + /// slice as well as the index that the match starts at. + /// + /// For matches of `pat` within `self` that overlap, only the indices + /// corresponding to the first match are returned. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines + /// if a character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern + /// allows a reverse search and forward/reverse search yields the same + /// elements. This is true for, eg, [`char`] but not for `&str`. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// + /// If the pattern allows a reverse search but its results might differ + /// from a forward search, the [`rmatch_indices`] method can be used. + /// + /// [`rmatch_indices`]: #method.rmatch_indices + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect(); + /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]); + /// + /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect(); + /// assert_eq!(v, [(1, "abc"), (4, "abc")]); + /// + /// let v: Vec<_> = "ababa".match_indices("aba").collect(); + /// assert_eq!(v, [(0, "aba")]); // only the first `aba` + /// ``` + #[stable(feature = "str_match_indices", since = "1.5.0")] + #[inline] + pub fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P> { + StrExt::match_indices(self, pat) + } + + /// An iterator over the disjoint matches of a pattern within `self`, + /// yielded in reverse order along with the index of the match. + /// + /// For matches of `pat` within `self` that overlap, only the indices + /// corresponding to the last match are returned. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines if a + /// character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Iterator behavior + /// + /// The returned iterator requires that the pattern supports a reverse + /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse + /// search yields the same elements. + /// + /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html + /// + /// For iterating from the front, the [`match_indices`] method can be used. + /// + /// [`match_indices`]: #method.match_indices + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect(); + /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]); + /// + /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect(); + /// assert_eq!(v, [(4, "abc"), (1, "abc")]); + /// + /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect(); + /// assert_eq!(v, [(2, "aba")]); // only the last `aba` + /// ``` + #[stable(feature = "str_match_indices", since = "1.5.0")] + #[inline] + pub fn rmatch_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> RMatchIndices<'a, P> + where P::Searcher: ReverseSearcher<'a> + { + StrExt::rmatch_indices(self, pat) + } + + /// Returns a string slice with leading and trailing whitespace removed. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = " Hello\tworld\t"; + /// + /// assert_eq!("Hello\tworld", s.trim()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn trim(&self) -> &str { + StrExt::trim(self) + } + + /// Returns a string slice with leading whitespace removed. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`. + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. 'Left' in this context means the first + /// position of that byte string; for a language like Arabic or Hebrew + /// which are 'right to left' rather than 'left to right', this will be + /// the _right_ side, not the left. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = " Hello\tworld\t"; + /// + /// assert_eq!("Hello\tworld\t", s.trim_left()); + /// ``` + /// + /// Directionality: + /// + /// ``` + /// let s = " English"; + /// assert!(Some('E') == s.trim_left().chars().next()); + /// + /// let s = " עברית"; + /// assert!(Some('ע') == s.trim_left().chars().next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn trim_left(&self) -> &str { + StrExt::trim_left(self) + } + + /// Returns a string slice with trailing whitespace removed. + /// + /// 'Whitespace' is defined according to the terms of the Unicode Derived + /// Core Property `White_Space`. + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. 'Right' in this context means the last + /// position of that byte string; for a language like Arabic or Hebrew + /// which are 'right to left' rather than 'left to right', this will be + /// the _left_ side, not the right. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// let s = " Hello\tworld\t"; + /// + /// assert_eq!(" Hello\tworld", s.trim_right()); + /// ``` + /// + /// Directionality: + /// + /// ``` + /// let s = "English "; + /// assert!(Some('h') == s.trim_right().chars().rev().next()); + /// + /// let s = "עברית "; + /// assert!(Some('ת') == s.trim_right().chars().rev().next()); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn trim_right(&self) -> &str { + StrExt::trim_right(self) + } + + /// Returns a string slice with all prefixes and suffixes that match a + /// pattern repeatedly removed. + /// + /// The pattern can be a [`char`] or a closure that determines if a + /// character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar"); + /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar"); + /// + /// let x: &[_] = &['1', '2']; + /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar"); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar"); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn trim_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str + where P::Searcher: DoubleEndedSearcher<'a> + { + StrExt::trim_matches(self, pat) + } + + /// Returns a string slice with all prefixes that match a pattern + /// repeatedly removed. + /// + /// The pattern can be a `&str`, [`char`], or a closure that determines if + /// a character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. 'Left' in this context means the first + /// position of that byte string; for a language like Arabic or Hebrew + /// which are 'right to left' rather than 'left to right', this will be + /// the _right_ side, not the left. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11"); + /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123"); + /// + /// let x: &[_] = &['1', '2']; + /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12"); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str { + StrExt::trim_left_matches(self, pat) + } + + /// Returns a string slice with all suffixes that match a pattern + /// repeatedly removed. + /// + /// The pattern can be a `&str`, [`char`], or a closure that + /// determines if a character matches. + /// + /// [`char`]: primitive.char.html + /// + /// # Text directionality + /// + /// A string is a sequence of bytes. 'Right' in this context means the last + /// position of that byte string; for a language like Arabic or Hebrew + /// which are 'right to left' rather than 'left to right', this will be + /// the _left_ side, not the right. + /// + /// # Examples + /// + /// Simple patterns: + /// + /// ``` + /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar"); + /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar"); + /// + /// let x: &[_] = &['1', '2']; + /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar"); + /// ``` + /// + /// A more complex pattern, using a closure: + /// + /// ``` + /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo"); + /// ``` + #[stable(feature = "rust1", since = "1.0.0")] + pub fn trim_right_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str + where P::Searcher: ReverseSearcher<'a> + { + StrExt::trim_right_matches(self, pat) + } + + /// Parses this string slice into another type. + /// + /// Because `parse` is so general, it can cause problems with type + /// inference. As such, `parse` is one of the few times you'll see + /// the syntax affectionately known as the 'turbofish': `::<>`. This + /// helps the inference algorithm understand specifically which type + /// you're trying to parse into. + /// + /// `parse` can parse any type that implements the [`FromStr`] trait. + /// + /// [`FromStr`]: str/trait.FromStr.html + /// + /// # Errors + /// + /// Will return [`Err`] if it's not possible to parse this string slice into + /// the desired type. + /// + /// [`Err`]: str/trait.FromStr.html#associatedtype.Err + /// + /// # Examples + /// + /// Basic usage + /// + /// ``` + /// let four: u32 = "4".parse().unwrap(); + /// + /// assert_eq!(4, four); + /// ``` + /// + /// Using the 'turbofish' instead of annotating `four`: + /// + /// ``` + /// let four = "4".parse::<u32>(); + /// + /// assert_eq!(Ok(4), four); + /// ``` + /// + /// Failing to parse: + /// + /// ``` + /// let nope = "j".parse::<u32>(); + /// + /// assert!(nope.is_err()); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> { + StrExt::parse(self) + } + + /// Checks if all characters in this string are within the ASCII range. + /// + /// # Examples + /// + /// ``` + /// let ascii = "hello!\n"; + /// let non_ascii = "Grüße, Jürgen ❤"; + /// + /// assert!(ascii.is_ascii()); + /// assert!(!non_ascii.is_ascii()); + /// ``` + #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] + #[inline] + pub fn is_ascii(&self) -> bool { + // We can treat each byte as character here: all multibyte characters + // start with a byte that is not in the ascii range, so we will stop + // there already. + self.bytes().all(|b| b.is_ascii()) + } + + /// Checks that two strings are an ASCII case-insensitive match. + /// + /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, + /// but without allocating and copying temporaries. + /// + /// # Examples + /// + /// ``` + /// assert!("Ferris".eq_ignore_ascii_case("FERRIS")); + /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS")); + /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS")); + /// ``` + #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] + #[inline] + pub fn eq_ignore_ascii_case(&self, other: &str) -> bool { + self.as_bytes().eq_ignore_ascii_case(other.as_bytes()) + } + + /// Converts this string to its ASCII upper case equivalent in-place. + /// + /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', + /// but non-ASCII letters are unchanged. + /// + /// To return a new uppercased value without modifying the existing one, use + /// [`to_ascii_uppercase`]. + /// + /// [`to_ascii_uppercase`]: #method.to_ascii_uppercase + #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] + pub fn make_ascii_uppercase(&mut self) { + let me = unsafe { self.as_bytes_mut() }; + me.make_ascii_uppercase() + } + + /// Converts this string to its ASCII lower case equivalent in-place. + /// + /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', + /// but non-ASCII letters are unchanged. + /// + /// To return a new lowercased value without modifying the existing one, use + /// [`to_ascii_lowercase`]. + /// + /// [`to_ascii_lowercase`]: #method.to_ascii_lowercase + #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] + pub fn make_ascii_lowercase(&mut self) { + let me = unsafe { self.as_bytes_mut() }; + me.make_ascii_lowercase() + } +}} + +#[lang = "str"] +#[cfg(not(test))] +#[cfg(not(stage0))] +impl str { + str_core_methods!(); +} + + #[stable(feature = "rust1", since = "1.0.0")] impl AsRef<[u8]> for str { #[inline] @@ -2665,3 +4327,72 @@ impl<'a> DoubleEndedIterator for SplitWhitespace<'a> { #[stable(feature = "fused", since = "1.26.0")] impl<'a> FusedIterator for SplitWhitespace<'a> {} + +/// An iterator of [`u16`] over the string encoded as UTF-16. +/// +/// [`u16`]: ../../std/primitive.u16.html +/// +/// This struct is created by the [`encode_utf16`] method on [`str`]. +/// See its documentation for more. +/// +/// [`encode_utf16`]: ../../std/primitive.str.html#method.encode_utf16 +/// [`str`]: ../../std/primitive.str.html +#[derive(Clone)] +#[stable(feature = "encode_utf16", since = "1.8.0")] +pub struct EncodeUtf16<'a> { + chars: Chars<'a>, + extra: u16, +} + +// FIXME: remove (inline) this method +// when updating to a bootstrap compiler that has the new lang items. +// For grepping purpose: #[cfg(stage0)] +impl<'a> EncodeUtf16<'a> { + #[unstable(feature = "core_str_ext", issue = "32110")] + #[doc(hidden)] + pub fn new(s: &'a str) -> Self { + EncodeUtf16 { chars: s.chars(), extra: 0 } + } +} + +#[stable(feature = "collection_debug", since = "1.17.0")] +impl<'a> fmt::Debug for EncodeUtf16<'a> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.pad("EncodeUtf16 { .. }") + } +} + +#[stable(feature = "encode_utf16", since = "1.8.0")] +impl<'a> Iterator for EncodeUtf16<'a> { + type Item = u16; + + #[inline] + fn next(&mut self) -> Option<u16> { + if self.extra != 0 { + let tmp = self.extra; + self.extra = 0; + return Some(tmp); + } + + let mut buf = [0; 2]; + self.chars.next().map(|ch| { + let n = ch.encode_utf16(&mut buf).len(); + if n == 2 { + self.extra = buf[1]; + } + buf[0] + }) + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + let (low, high) = self.chars.size_hint(); + // every char gets either one u16 or two u16, + // so this iterator is between 1 or 2 times as + // long as the underlying iterator. + (low, high.and_then(|n| n.checked_mul(2))) + } +} + +#[stable(feature = "fused", since = "1.26.0")] +impl<'a> FusedIterator for EncodeUtf16<'a> {} diff --git a/src/libcore/sync/atomic.rs b/src/libcore/sync/atomic.rs index cf3842dbe27..7aba8b51cff 100644 --- a/src/libcore/sync/atomic.rs +++ b/src/libcore/sync/atomic.rs @@ -990,9 +990,7 @@ macro_rules! atomic_int { #[$stable_debug] impl fmt::Debug for $atomic_type { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - f.debug_tuple(stringify!($atomic_type)) - .field(&self.load(Ordering::SeqCst)) - .finish() + fmt::Debug::fmt(&self.load(Ordering::SeqCst), f) } } @@ -2090,7 +2088,7 @@ pub fn compiler_fence(order: Ordering) { #[stable(feature = "atomic_debug", since = "1.3.0")] impl fmt::Debug for AtomicBool { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - f.debug_tuple("AtomicBool").field(&self.load(Ordering::SeqCst)).finish() + fmt::Debug::fmt(&self.load(Ordering::SeqCst), f) } } @@ -2098,7 +2096,7 @@ impl fmt::Debug for AtomicBool { #[stable(feature = "atomic_debug", since = "1.3.0")] impl<T> fmt::Debug for AtomicPtr<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - f.debug_tuple("AtomicPtr").field(&self.load(Ordering::SeqCst)).finish() + fmt::Debug::fmt(&self.load(Ordering::SeqCst), f) } } diff --git a/src/libcore/tests/cell.rs b/src/libcore/tests/cell.rs index cc0ef6a6f17..962fb2f0e02 100644 --- a/src/libcore/tests/cell.rs +++ b/src/libcore/tests/cell.rs @@ -27,6 +27,17 @@ fn smoketest_cell() { } #[test] +fn cell_update() { + let x = Cell::new(10); + + assert_eq!(x.update(|x| x + 5), 15); + assert_eq!(x.get(), 15); + + assert_eq!(x.update(|x| x / 3), 5); + assert_eq!(x.get(), 5); +} + +#[test] fn cell_has_sensible_show() { let x = Cell::new("foo bar"); assert!(format!("{:?}", x).contains(x.get())); diff --git a/src/libcore/tests/char.rs b/src/libcore/tests/char.rs index 4e10ceac878..ab90763abf8 100644 --- a/src/libcore/tests/char.rs +++ b/src/libcore/tests/char.rs @@ -364,6 +364,7 @@ fn eu_iterator_specializations() { } #[test] +#[allow(deprecated)] fn test_decode_utf8() { macro_rules! assert_decode_utf8 { ($input_bytes: expr, $expected_str: expr) => { diff --git a/src/libcore/tests/lib.rs b/src/libcore/tests/lib.rs index bb875c7219a..e4d27717938 100644 --- a/src/libcore/tests/lib.rs +++ b/src/libcore/tests/lib.rs @@ -10,13 +10,16 @@ #![feature(ascii_ctype)] #![feature(box_syntax)] +#![feature(cell_update)] #![feature(core_float)] #![feature(core_private_bignum)] #![feature(core_private_diy_float)] #![feature(dec2flt)] #![feature(decode_utf8)] +#![feature(euclidean_division)] #![feature(exact_size_is_empty)] #![feature(fixed_size_array)] +#![feature(float_internals)] #![feature(flt2dec)] #![feature(fmt_internals)] #![feature(hashmap_internals)] @@ -36,6 +39,7 @@ #![feature(str_internals)] #![feature(test)] #![feature(trusted_len)] +#![feature(try_from)] #![feature(try_trait)] #![feature(exact_chunks)] #![cfg_attr(stage0, feature(atomic_nand))] diff --git a/src/libcore/tests/num/int_macros.rs b/src/libcore/tests/num/int_macros.rs index 8d791283ab8..71d2e794538 100644 --- a/src/libcore/tests/num/int_macros.rs +++ b/src/libcore/tests/num/int_macros.rs @@ -31,6 +31,11 @@ mod tests { } #[test] + fn test_mod_euc() { + assert!((-1 as $T).mod_euc(MIN) == MAX); + } + + #[test] pub fn test_abs() { assert!((1 as $T).abs() == 1 as $T); assert!((0 as $T).abs() == 0 as $T); diff --git a/src/libcore/time.rs b/src/libcore/time.rs index b8d0719b9b9..e22fe450bb1 100644 --- a/src/libcore/time.rs +++ b/src/libcore/time.rs @@ -137,7 +137,6 @@ impl Duration { /// # Examples /// /// ``` - /// #![feature(duration_from_micros)] /// use std::time::Duration; /// /// let duration = Duration::from_micros(1_000_002); @@ -145,7 +144,7 @@ impl Duration { /// assert_eq!(1, duration.as_secs()); /// assert_eq!(2000, duration.subsec_nanos()); /// ``` - #[unstable(feature = "duration_from_micros", issue = "44400")] + #[stable(feature = "duration_from_micros", since = "1.27.0")] #[inline] pub const fn from_micros(micros: u64) -> Duration { Duration { @@ -159,7 +158,6 @@ impl Duration { /// # Examples /// /// ``` - /// #![feature(duration_extras)] /// use std::time::Duration; /// /// let duration = Duration::from_nanos(1_000_000_123); @@ -167,7 +165,7 @@ impl Duration { /// assert_eq!(1, duration.as_secs()); /// assert_eq!(123, duration.subsec_nanos()); /// ``` - #[unstable(feature = "duration_extras", issue = "46507")] + #[stable(feature = "duration_extras", since = "1.27.0")] #[inline] pub const fn from_nanos(nanos: u64) -> Duration { Duration { @@ -217,14 +215,13 @@ impl Duration { /// # Examples /// /// ``` - /// #![feature(duration_extras)] /// use std::time::Duration; /// /// let duration = Duration::from_millis(5432); /// assert_eq!(duration.as_secs(), 5); /// assert_eq!(duration.subsec_millis(), 432); /// ``` - #[unstable(feature = "duration_extras", issue = "46507")] + #[stable(feature = "duration_extras", since = "1.27.0")] #[inline] pub fn subsec_millis(&self) -> u32 { self.nanos / NANOS_PER_MILLI } @@ -237,14 +234,13 @@ impl Duration { /// # Examples /// /// ``` - /// #![feature(duration_extras, duration_from_micros)] /// use std::time::Duration; /// /// let duration = Duration::from_micros(1_234_567); /// assert_eq!(duration.as_secs(), 1); /// assert_eq!(duration.subsec_micros(), 234_567); /// ``` - #[unstable(feature = "duration_extras", issue = "46507")] + #[stable(feature = "duration_extras", since = "1.27.0")] #[inline] pub fn subsec_micros(&self) -> u32 { self.nanos / NANOS_PER_MICRO } |
