diff options
Diffstat (limited to 'src/librustc_trans/trans/debuginfo.rs')
| -rw-r--r-- | src/librustc_trans/trans/debuginfo.rs | 4045 |
1 files changed, 4045 insertions, 0 deletions
diff --git a/src/librustc_trans/trans/debuginfo.rs b/src/librustc_trans/trans/debuginfo.rs new file mode 100644 index 00000000000..e3e36ee53fd --- /dev/null +++ b/src/librustc_trans/trans/debuginfo.rs @@ -0,0 +1,4045 @@ +// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +/*! +# Debug Info Module + +This module serves the purpose of generating debug symbols. We use LLVM's +[source level debugging](http://llvm.org/docs/SourceLevelDebugging.html) +features for generating the debug information. The general principle is this: + +Given the right metadata in the LLVM IR, the LLVM code generator is able to +create DWARF debug symbols for the given code. The +[metadata](http://llvm.org/docs/LangRef.html#metadata-type) is structured much +like DWARF *debugging information entries* (DIE), representing type information +such as datatype layout, function signatures, block layout, variable location +and scope information, etc. It is the purpose of this module to generate correct +metadata and insert it into the LLVM IR. + +As the exact format of metadata trees may change between different LLVM +versions, we now use LLVM +[DIBuilder](http://llvm.org/docs/doxygen/html/classllvm_1_1DIBuilder.html) to +create metadata where possible. This will hopefully ease the adaption of this +module to future LLVM versions. + +The public API of the module is a set of functions that will insert the correct +metadata into the LLVM IR when called with the right parameters. The module is +thus driven from an outside client with functions like +`debuginfo::create_local_var_metadata(bcx: block, local: &ast::local)`. + +Internally the module will try to reuse already created metadata by utilizing a +cache. The way to get a shared metadata node when needed is thus to just call +the corresponding function in this module: + + let file_metadata = file_metadata(crate_context, path); + +The function will take care of probing the cache for an existing node for that +exact file path. + +All private state used by the module is stored within either the +CrateDebugContext struct (owned by the CrateContext) or the FunctionDebugContext +(owned by the FunctionContext). + +This file consists of three conceptual sections: +1. The public interface of the module +2. Module-internal metadata creation functions +3. Minor utility functions + + +## Recursive Types + +Some kinds of types, such as structs and enums can be recursive. That means that +the type definition of some type X refers to some other type which in turn +(transitively) refers to X. This introduces cycles into the type referral graph. +A naive algorithm doing an on-demand, depth-first traversal of this graph when +describing types, can get trapped in an endless loop when it reaches such a +cycle. + +For example, the following simple type for a singly-linked list... + +``` +struct List { + value: int, + tail: Option<Box<List>>, +} +``` + +will generate the following callstack with a naive DFS algorithm: + +``` +describe(t = List) + describe(t = int) + describe(t = Option<Box<List>>) + describe(t = Box<List>) + describe(t = List) // at the beginning again... + ... +``` + +To break cycles like these, we use "forward declarations". That is, when the +algorithm encounters a possibly recursive type (any struct or enum), it +immediately creates a type description node and inserts it into the cache +*before* describing the members of the type. This type description is just a +stub (as type members are not described and added to it yet) but it allows the +algorithm to already refer to the type. After the stub is inserted into the +cache, the algorithm continues as before. If it now encounters a recursive +reference, it will hit the cache and does not try to describe the type anew. + +This behaviour is encapsulated in the 'RecursiveTypeDescription' enum, which +represents a kind of continuation, storing all state needed to continue +traversal at the type members after the type has been registered with the cache. +(This implementation approach might be a tad over-engineered and may change in +the future) + + +## Source Locations and Line Information + +In addition to data type descriptions the debugging information must also allow +to map machine code locations back to source code locations in order to be useful. +This functionality is also handled in this module. The following functions allow +to control source mappings: + ++ set_source_location() ++ clear_source_location() ++ start_emitting_source_locations() + +`set_source_location()` allows to set the current source location. All IR +instructions created after a call to this function will be linked to the given +source location, until another location is specified with +`set_source_location()` or the source location is cleared with +`clear_source_location()`. In the later case, subsequent IR instruction will not +be linked to any source location. As you can see, this is a stateful API +(mimicking the one in LLVM), so be careful with source locations set by previous +calls. It's probably best to not rely on any specific state being present at a +given point in code. + +One topic that deserves some extra attention is *function prologues*. At the +beginning of a function's machine code there are typically a few instructions +for loading argument values into allocas and checking if there's enough stack +space for the function to execute. This *prologue* is not visible in the source +code and LLVM puts a special PROLOGUE END marker into the line table at the +first non-prologue instruction of the function. In order to find out where the +prologue ends, LLVM looks for the first instruction in the function body that is +linked to a source location. So, when generating prologue instructions we have +to make sure that we don't emit source location information until the 'real' +function body begins. For this reason, source location emission is disabled by +default for any new function being translated and is only activated after a call +to the third function from the list above, `start_emitting_source_locations()`. +This function should be called right before regularly starting to translate the +top-level block of the given function. + +There is one exception to the above rule: `llvm.dbg.declare` instruction must be +linked to the source location of the variable being declared. For function +parameters these `llvm.dbg.declare` instructions typically occur in the middle +of the prologue, however, they are ignored by LLVM's prologue detection. The +`create_argument_metadata()` and related functions take care of linking the +`llvm.dbg.declare` instructions to the correct source locations even while +source location emission is still disabled, so there is no need to do anything +special with source location handling here. + +## Unique Type Identification + +In order for link-time optimization to work properly, LLVM needs a unique type +identifier that tells it across compilation units which types are the same as +others. This type identifier is created by TypeMap::get_unique_type_id_of_type() +using the following algorithm: + +(1) Primitive types have their name as ID +(2) Structs, enums and traits have a multipart identifier + + (1) The first part is the SVH (strict version hash) of the crate they were + originally defined in + + (2) The second part is the ast::NodeId of the definition in their original + crate + + (3) The final part is a concatenation of the type IDs of their concrete type + arguments if they are generic types. + +(3) Tuple-, pointer and function types are structurally identified, which means + that they are equivalent if their component types are equivalent (i.e. (int, + int) is the same regardless in which crate it is used). + +This algorithm also provides a stable ID for types that are defined in one crate +but instantiated from metadata within another crate. We just have to take care +to always map crate and node IDs back to the original crate context. + +As a side-effect these unique type IDs also help to solve a problem arising from +lifetime parameters. Since lifetime parameters are completely omitted in +debuginfo, more than one `ty::t` instance may map to the same debuginfo type +metadata, that is, some struct `Struct<'a>` may have N instantiations with +different concrete substitutions for `'a`, and thus there will be N `ty::t` +instances for the type `Struct<'a>` even though it is not generic otherwise. +Unfortunately this means that we cannot use `ty::type_id()` as cheap identifier +for type metadata---we have done this in the past, but it led to unnecessary +metadata duplication in the best case and LLVM assertions in the worst. However, +the unique type ID as described above *can* be used as identifier. Since it is +comparatively expensive to construct, though, `ty::type_id()` is still used +additionally as an optimization for cases where the exact same type has been +seen before (which is most of the time). */ +use self::FunctionDebugContextRepr::*; +use self::VariableAccess::*; +use self::VariableKind::*; +use self::MemberOffset::*; +use self::MemberDescriptionFactory::*; +use self::RecursiveTypeDescription::*; +use self::EnumDiscriminantInfo::*; +use self::DebugLocation::*; + +use llvm; +use llvm::{ModuleRef, ContextRef, ValueRef}; +use llvm::debuginfo::*; +use metadata::csearch; +use middle::subst::{mod, Subst}; +use trans::adt; +use trans::common::*; +use trans::machine; +use trans::_match::{BindingInfo, TrByCopy, TrByMove, TrByRef}; +use trans::type_of; +use trans::type_::Type; +use trans; +use middle::ty; +use middle::pat_util; +use session::config::{mod, FullDebugInfo, LimitedDebugInfo, NoDebugInfo}; +use util::nodemap::{DefIdMap, NodeMap, FnvHashMap, FnvHashSet}; +use util::ppaux; + +use libc::c_uint; +use std::c_str::{CString, ToCStr}; +use std::cell::{Cell, RefCell}; +use std::ptr; +use std::rc::{Rc, Weak}; +use syntax::util::interner::Interner; +use syntax::codemap::{Span, Pos}; +use syntax::{ast, codemap, ast_util, ast_map}; +use syntax::ast_util::PostExpansionMethod; +use syntax::parse::token; +use syntax::parse::token::special_idents; + +static DW_LANG_RUST: c_uint = 0x9000; + +#[allow(non_upper_case_globals)] +static DW_TAG_auto_variable: c_uint = 0x100; +#[allow(non_upper_case_globals)] +static DW_TAG_arg_variable: c_uint = 0x101; + +#[allow(non_upper_case_globals)] +static DW_ATE_boolean: c_uint = 0x02; +#[allow(non_upper_case_globals)] +static DW_ATE_float: c_uint = 0x04; +#[allow(non_upper_case_globals)] +static DW_ATE_signed: c_uint = 0x05; +#[allow(non_upper_case_globals)] +static DW_ATE_unsigned: c_uint = 0x07; +#[allow(non_upper_case_globals)] +static DW_ATE_unsigned_char: c_uint = 0x08; + +static UNKNOWN_LINE_NUMBER: c_uint = 0; +static UNKNOWN_COLUMN_NUMBER: c_uint = 0; + +// ptr::null() doesn't work :( +static UNKNOWN_FILE_METADATA: DIFile = (0 as DIFile); +static UNKNOWN_SCOPE_METADATA: DIScope = (0 as DIScope); + +static FLAGS_NONE: c_uint = 0; + +//=----------------------------------------------------------------------------- +// Public Interface of debuginfo module +//=----------------------------------------------------------------------------- + +#[deriving(Show, Hash, Eq, PartialEq, Clone)] +struct UniqueTypeId(ast::Name); + +// The TypeMap is where the CrateDebugContext holds the type metadata nodes +// created so far. The metadata nodes are indexed by UniqueTypeId, and, for +// faster lookup, also by ty::t. The TypeMap is responsible for creating +// UniqueTypeIds. +struct TypeMap { + // The UniqueTypeIds created so far + unique_id_interner: Interner<Rc<String>>, + // A map from UniqueTypeId to debuginfo metadata for that type. This is a 1:1 mapping. + unique_id_to_metadata: FnvHashMap<UniqueTypeId, DIType>, + // A map from types to debuginfo metadata. This is a N:1 mapping. + type_to_metadata: FnvHashMap<ty::t, DIType>, + // A map from types to UniqueTypeId. This is a N:1 mapping. + type_to_unique_id: FnvHashMap<ty::t, UniqueTypeId> +} + +impl TypeMap { + + fn new() -> TypeMap { + TypeMap { + unique_id_interner: Interner::new(), + type_to_metadata: FnvHashMap::new(), + unique_id_to_metadata: FnvHashMap::new(), + type_to_unique_id: FnvHashMap::new(), + } + } + + // Adds a ty::t to metadata mapping to the TypeMap. The method will fail if + // the mapping already exists. + fn register_type_with_metadata(&mut self, + cx: &CrateContext, + type_: ty::t, + metadata: DIType) { + if self.type_to_metadata.insert(type_, metadata).is_some() { + cx.sess().bug(format!("Type metadata for ty::t '{}' is already in the TypeMap!", + ppaux::ty_to_string(cx.tcx(), type_)).as_slice()); + } + } + + // Adds a UniqueTypeId to metadata mapping to the TypeMap. The method will + // fail if the mapping already exists. + fn register_unique_id_with_metadata(&mut self, + cx: &CrateContext, + unique_type_id: UniqueTypeId, + metadata: DIType) { + if self.unique_id_to_metadata.insert(unique_type_id, metadata).is_some() { + let unique_type_id_str = self.get_unique_type_id_as_string(unique_type_id); + cx.sess().bug(format!("Type metadata for unique id '{}' is already in the TypeMap!", + unique_type_id_str.as_slice()).as_slice()); + } + } + + fn find_metadata_for_type(&self, type_: ty::t) -> Option<DIType> { + self.type_to_metadata.get(&type_).cloned() + } + + fn find_metadata_for_unique_id(&self, unique_type_id: UniqueTypeId) -> Option<DIType> { + self.unique_id_to_metadata.get(&unique_type_id).cloned() + } + + // Get the string representation of a UniqueTypeId. This method will fail if + // the id is unknown. + fn get_unique_type_id_as_string(&self, unique_type_id: UniqueTypeId) -> Rc<String> { + let UniqueTypeId(interner_key) = unique_type_id; + self.unique_id_interner.get(interner_key) + } + + // Get the UniqueTypeId for the given type. If the UniqueTypeId for the given + // type has been requested before, this is just a table lookup. Otherwise an + // ID will be generated and stored for later lookup. + fn get_unique_type_id_of_type(&mut self, cx: &CrateContext, type_: ty::t) -> UniqueTypeId { + + // basic type -> {:name of the type:} + // tuple -> {tuple_(:param-uid:)*} + // struct -> {struct_:svh: / :node-id:_<(:param-uid:),*> } + // enum -> {enum_:svh: / :node-id:_<(:param-uid:),*> } + // enum variant -> {variant_:variant-name:_:enum-uid:} + // reference (&) -> {& :pointee-uid:} + // mut reference (&mut) -> {&mut :pointee-uid:} + // ptr (*) -> {* :pointee-uid:} + // mut ptr (*mut) -> {*mut :pointee-uid:} + // unique ptr (~) -> {~ :pointee-uid:} + // @-ptr (@) -> {@ :pointee-uid:} + // sized vec ([T, ..x]) -> {[:size:] :element-uid:} + // unsized vec ([T]) -> {[] :element-uid:} + // trait (T) -> {trait_:svh: / :node-id:_<(:param-uid:),*> } + // closure -> {<unsafe_> <once_> :store-sigil: |(:param-uid:),* <,_...>| -> \ + // :return-type-uid: : (:bounds:)*} + // function -> {<unsafe_> <abi_> fn( (:param-uid:)* <,_...> ) -> \ + // :return-type-uid:} + // unique vec box (~[]) -> {HEAP_VEC_BOX<:pointee-uid:>} + // gc box -> {GC_BOX<:pointee-uid:>} + + match self.type_to_unique_id.get(&type_).cloned() { + Some(unique_type_id) => return unique_type_id, + None => { /* generate one */} + }; + + let mut unique_type_id = String::with_capacity(256); + unique_type_id.push('{'); + + match ty::get(type_).sty { + ty::ty_bool | + ty::ty_char | + ty::ty_str | + ty::ty_int(_) | + ty::ty_uint(_) | + ty::ty_float(_) => { + push_debuginfo_type_name(cx, type_, false, &mut unique_type_id); + }, + ty::ty_enum(def_id, ref substs) => { + unique_type_id.push_str("enum "); + from_def_id_and_substs(self, cx, def_id, substs, &mut unique_type_id); + }, + ty::ty_struct(def_id, ref substs) => { + unique_type_id.push_str("struct "); + from_def_id_and_substs(self, cx, def_id, substs, &mut unique_type_id); + }, + ty::ty_tup(ref component_types) if component_types.is_empty() => { + push_debuginfo_type_name(cx, type_, false, &mut unique_type_id); + }, + ty::ty_tup(ref component_types) => { + unique_type_id.push_str("tuple "); + for &component_type in component_types.iter() { + let component_type_id = + self.get_unique_type_id_of_type(cx, component_type); + let component_type_id = + self.get_unique_type_id_as_string(component_type_id); + unique_type_id.push_str(component_type_id.as_slice()); + } + }, + ty::ty_uniq(inner_type) => { + unique_type_id.push('~'); + let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type); + let inner_type_id = self.get_unique_type_id_as_string(inner_type_id); + unique_type_id.push_str(inner_type_id.as_slice()); + }, + ty::ty_ptr(ty::mt { ty: inner_type, mutbl } ) => { + unique_type_id.push('*'); + if mutbl == ast::MutMutable { + unique_type_id.push_str("mut"); + } + + let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type); + let inner_type_id = self.get_unique_type_id_as_string(inner_type_id); + unique_type_id.push_str(inner_type_id.as_slice()); + }, + ty::ty_rptr(_, ty::mt { ty: inner_type, mutbl }) => { + unique_type_id.push('&'); + if mutbl == ast::MutMutable { + unique_type_id.push_str("mut"); + } + + let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type); + let inner_type_id = self.get_unique_type_id_as_string(inner_type_id); + unique_type_id.push_str(inner_type_id.as_slice()); + }, + ty::ty_vec(inner_type, optional_length) => { + match optional_length { + Some(len) => { + unique_type_id.push_str(format!("[{}]", len).as_slice()); + } + None => { + unique_type_id.push_str("[]"); + } + }; + + let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type); + let inner_type_id = self.get_unique_type_id_as_string(inner_type_id); + unique_type_id.push_str(inner_type_id.as_slice()); + }, + ty::ty_trait(ref trait_data) => { + unique_type_id.push_str("trait "); + + from_def_id_and_substs(self, + cx, + trait_data.principal.def_id, + &trait_data.principal.substs, + &mut unique_type_id); + }, + ty::ty_bare_fn(ty::BareFnTy{ fn_style, abi, ref sig } ) => { + if fn_style == ast::UnsafeFn { + unique_type_id.push_str("unsafe "); + } + + unique_type_id.push_str(abi.name()); + + unique_type_id.push_str(" fn("); + + for ¶meter_type in sig.inputs.iter() { + let parameter_type_id = + self.get_unique_type_id_of_type(cx, parameter_type); + let parameter_type_id = + self.get_unique_type_id_as_string(parameter_type_id); + unique_type_id.push_str(parameter_type_id.as_slice()); + unique_type_id.push(','); + } + + if sig.variadic { + unique_type_id.push_str("..."); + } + + unique_type_id.push_str(")->"); + match sig.output { + ty::FnConverging(ret_ty) => { + let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty); + let return_type_id = self.get_unique_type_id_as_string(return_type_id); + unique_type_id.push_str(return_type_id.as_slice()); + } + ty::FnDiverging => { + unique_type_id.push_str("!"); + } + } + }, + ty::ty_closure(box ref closure_ty) => { + self.get_unique_type_id_of_closure_type(cx, + closure_ty.clone(), + &mut unique_type_id); + }, + ty::ty_unboxed_closure(ref def_id, _, ref substs) => { + let closure_ty = cx.tcx().unboxed_closures.borrow() + .get(def_id).unwrap().closure_type.subst(cx.tcx(), substs); + self.get_unique_type_id_of_closure_type(cx, + closure_ty, + &mut unique_type_id); + }, + _ => { + cx.sess().bug(format!("get_unique_type_id_of_type() - unexpected type: {}, {}", + ppaux::ty_to_string(cx.tcx(), type_).as_slice(), + ty::get(type_).sty).as_slice()) + } + }; + + unique_type_id.push('}'); + + // Trim to size before storing permanently + unique_type_id.shrink_to_fit(); + + let key = self.unique_id_interner.intern(Rc::new(unique_type_id)); + self.type_to_unique_id.insert(type_, UniqueTypeId(key)); + + return UniqueTypeId(key); + + fn from_def_id_and_substs(type_map: &mut TypeMap, + cx: &CrateContext, + def_id: ast::DefId, + substs: &subst::Substs, + output: &mut String) { + // First, find out the 'real' def_id of the type. Items inlined from + // other crates have to be mapped back to their source. + let source_def_id = if def_id.krate == ast::LOCAL_CRATE { + match cx.external_srcs().borrow().get(&def_id.node).cloned() { + Some(source_def_id) => { + // The given def_id identifies the inlined copy of a + // type definition, let's take the source of the copy. + source_def_id + } + None => def_id + } + } else { + def_id + }; + + // Get the crate hash as first part of the identifier. + let crate_hash = if source_def_id.krate == ast::LOCAL_CRATE { + cx.link_meta().crate_hash.clone() + } else { + cx.sess().cstore.get_crate_hash(source_def_id.krate) + }; + + output.push_str(crate_hash.as_str()); + output.push_str("/"); + output.push_str(format!("{:x}", def_id.node).as_slice()); + + // Maybe check that there is no self type here. + + let tps = substs.types.get_slice(subst::TypeSpace); + if tps.len() > 0 { + output.push('<'); + + for &type_parameter in tps.iter() { + let param_type_id = + type_map.get_unique_type_id_of_type(cx, type_parameter); + let param_type_id = + type_map.get_unique_type_id_as_string(param_type_id); + output.push_str(param_type_id.as_slice()); + output.push(','); + } + + output.push('>'); + } + } + } + + fn get_unique_type_id_of_closure_type(&mut self, + cx: &CrateContext, + closure_ty: ty::ClosureTy, + unique_type_id: &mut String) { + let ty::ClosureTy { fn_style, + onceness, + store, + ref bounds, + ref sig, + abi: _ } = closure_ty; + if fn_style == ast::UnsafeFn { + unique_type_id.push_str("unsafe "); + } + + if onceness == ast::Once { + unique_type_id.push_str("once "); + } + + match store { + ty::UniqTraitStore => unique_type_id.push_str("~|"), + ty::RegionTraitStore(_, ast::MutMutable) => { + unique_type_id.push_str("&mut|") + } + ty::RegionTraitStore(_, ast::MutImmutable) => { + unique_type_id.push_str("&|") + } + }; + + for ¶meter_type in sig.inputs.iter() { + let parameter_type_id = + self.get_unique_type_id_of_type(cx, parameter_type); + let parameter_type_id = + self.get_unique_type_id_as_string(parameter_type_id); + unique_type_id.push_str(parameter_type_id.as_slice()); + unique_type_id.push(','); + } + + if sig.variadic { + unique_type_id.push_str("..."); + } + + unique_type_id.push_str("|->"); + + match sig.output { + ty::FnConverging(ret_ty) => { + let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty); + let return_type_id = self.get_unique_type_id_as_string(return_type_id); + unique_type_id.push_str(return_type_id.as_slice()); + } + ty::FnDiverging => { + unique_type_id.push_str("!"); + } + } + + unique_type_id.push(':'); + + for bound in bounds.builtin_bounds.iter() { + match bound { + ty::BoundSend => unique_type_id.push_str("Send"), + ty::BoundSized => unique_type_id.push_str("Sized"), + ty::BoundCopy => unique_type_id.push_str("Copy"), + ty::BoundSync => unique_type_id.push_str("Sync"), + }; + unique_type_id.push('+'); + } + } + + // Get the UniqueTypeId for an enum variant. Enum variants are not really + // types of their own, so they need special handling. We still need a + // UniqueTypeId for them, since to debuginfo they *are* real types. + fn get_unique_type_id_of_enum_variant(&mut self, + cx: &CrateContext, + enum_type: ty::t, + variant_name: &str) + -> UniqueTypeId { + let enum_type_id = self.get_unique_type_id_of_type(cx, enum_type); + let enum_variant_type_id = format!("{}::{}", + self.get_unique_type_id_as_string(enum_type_id) + .as_slice(), + variant_name); + let interner_key = self.unique_id_interner.intern(Rc::new(enum_variant_type_id)); + UniqueTypeId(interner_key) + } +} + +// Returns from the enclosing function if the type metadata with the given +// unique id can be found in the type map +macro_rules! return_if_metadata_created_in_meantime( + ($cx: expr, $unique_type_id: expr) => ( + match debug_context($cx).type_map + .borrow() + .find_metadata_for_unique_id($unique_type_id) { + Some(metadata) => return MetadataCreationResult::new(metadata, true), + None => { /* proceed normally */ } + }; + ) +) + + +/// A context object for maintaining all state needed by the debuginfo module. +pub struct CrateDebugContext { + llcontext: ContextRef, + builder: DIBuilderRef, + current_debug_location: Cell<DebugLocation>, + created_files: RefCell<FnvHashMap<String, DIFile>>, + created_enum_disr_types: RefCell<DefIdMap<DIType>>, + + type_map: RefCell<TypeMap>, + namespace_map: RefCell<FnvHashMap<Vec<ast::Name>, Rc<NamespaceTreeNode>>>, + + // This collection is used to assert that composite types (structs, enums, + // ...) have their members only set once: + composite_types_completed: RefCell<FnvHashSet<DIType>>, +} + +impl CrateDebugContext { + pub fn new(llmod: ModuleRef) -> CrateDebugContext { + debug!("CrateDebugContext::new"); + let builder = unsafe { llvm::LLVMDIBuilderCreate(llmod) }; + // DIBuilder inherits context from the module, so we'd better use the same one + let llcontext = unsafe { llvm::LLVMGetModuleContext(llmod) }; + return CrateDebugContext { + llcontext: llcontext, + builder: builder, + current_debug_location: Cell::new(UnknownLocation), + created_files: RefCell::new(FnvHashMap::new()), + created_enum_disr_types: RefCell::new(DefIdMap::new()), + type_map: RefCell::new(TypeMap::new()), + namespace_map: RefCell::new(FnvHashMap::new()), + composite_types_completed: RefCell::new(FnvHashSet::new()), + }; + } +} + +pub struct FunctionDebugContext { + repr: FunctionDebugContextRepr, +} + +enum FunctionDebugContextRepr { + DebugInfo(Box<FunctionDebugContextData>), + DebugInfoDisabled, + FunctionWithoutDebugInfo, +} + +impl FunctionDebugContext { + fn get_ref<'a>(&'a self, + cx: &CrateContext, + span: Span) + -> &'a FunctionDebugContextData { + match self.repr { + DebugInfo(box ref data) => data, + DebugInfoDisabled => { + cx.sess().span_bug(span, + FunctionDebugContext::debuginfo_disabled_message()); + } + FunctionWithoutDebugInfo => { + cx.sess().span_bug(span, + FunctionDebugContext::should_be_ignored_message()); + } + } + } + + fn debuginfo_disabled_message() -> &'static str { + "debuginfo: Error trying to access FunctionDebugContext although debug info is disabled!" + } + + fn should_be_ignored_message() -> &'static str { + "debuginfo: Error trying to access FunctionDebugContext for function that should be \ + ignored by debug info!" + } +} + +struct FunctionDebugContextData { + scope_map: RefCell<NodeMap<DIScope>>, + fn_metadata: DISubprogram, + argument_counter: Cell<uint>, + source_locations_enabled: Cell<bool>, +} + +enum VariableAccess<'a> { + // The llptr given is an alloca containing the variable's value + DirectVariable { alloca: ValueRef }, + // The llptr given is an alloca containing the start of some pointer chain + // leading to the variable's content. + IndirectVariable { alloca: ValueRef, address_operations: &'a [ValueRef] } +} + +enum VariableKind { + ArgumentVariable(uint /*index*/), + LocalVariable, + CapturedVariable, +} + +/// Create any deferred debug metadata nodes +pub fn finalize(cx: &CrateContext) { + if cx.dbg_cx().is_none() { + return; + } + + debug!("finalize"); + compile_unit_metadata(cx); + unsafe { + llvm::LLVMDIBuilderFinalize(DIB(cx)); + llvm::LLVMDIBuilderDispose(DIB(cx)); + // Debuginfo generation in LLVM by default uses a higher + // version of dwarf than OS X currently understands. We can + // instruct LLVM to emit an older version of dwarf, however, + // for OS X to understand. For more info see #11352 + // This can be overridden using --llvm-opts -dwarf-version,N. + if cx.sess().target.target.options.is_like_osx { + "Dwarf Version".with_c_str( + |s| llvm::LLVMRustAddModuleFlag(cx.llmod(), s, 2)); + } + + // Prevent bitcode readers from deleting the debug info. + "Debug Info Version".with_c_str( + |s| llvm::LLVMRustAddModuleFlag(cx.llmod(), s, + llvm::LLVMRustDebugMetadataVersion)); + }; +} + +/// Creates debug information for the given global variable. +/// +/// Adds the created metadata nodes directly to the crate's IR. +pub fn create_global_var_metadata(cx: &CrateContext, + node_id: ast::NodeId, + global: ValueRef) { + if cx.dbg_cx().is_none() { + return; + } + + // Don't create debuginfo for globals inlined from other crates. The other + // crate should already contain debuginfo for it. More importantly, the + // global might not even exist in un-inlined form anywhere which would lead + // to a linker errors. + if cx.external_srcs().borrow().contains_key(&node_id) { + return; + } + + let var_item = cx.tcx().map.get(node_id); + + let (ident, span) = match var_item { + ast_map::NodeItem(item) => { + match item.node { + ast::ItemStatic(..) => (item.ident, item.span), + ast::ItemConst(..) => (item.ident, item.span), + _ => { + cx.sess() + .span_bug(item.span, + format!("debuginfo::\ + create_global_var_metadata() - + Captured var-id refers to \ + unexpected ast_item variant: {}", + var_item).as_slice()) + } + } + }, + _ => cx.sess().bug(format!("debuginfo::create_global_var_metadata() \ + - Captured var-id refers to unexpected \ + ast_map variant: {}", + var_item).as_slice()) + }; + + let (file_metadata, line_number) = if span != codemap::DUMMY_SP { + let loc = span_start(cx, span); + (file_metadata(cx, loc.file.name.as_slice()), loc.line as c_uint) + } else { + (UNKNOWN_FILE_METADATA, UNKNOWN_LINE_NUMBER) + }; + + let is_local_to_unit = is_node_local_to_unit(cx, node_id); + let variable_type = ty::node_id_to_type(cx.tcx(), node_id); + let type_metadata = type_metadata(cx, variable_type, span); + let namespace_node = namespace_for_item(cx, ast_util::local_def(node_id)); + let var_name = token::get_ident(ident).get().to_string(); + let linkage_name = + namespace_node.mangled_name_of_contained_item(var_name.as_slice()); + let var_scope = namespace_node.scope; + + var_name.as_slice().with_c_str(|var_name| { + linkage_name.as_slice().with_c_str(|linkage_name| { + unsafe { + llvm::LLVMDIBuilderCreateStaticVariable(DIB(cx), + var_scope, + var_name, + linkage_name, + file_metadata, + line_number, + type_metadata, + is_local_to_unit, + global, + ptr::null_mut()); + } + }) + }); +} + +/// Creates debug information for the given local variable. +/// +/// Adds the created metadata nodes directly to the crate's IR. +pub fn create_local_var_metadata(bcx: Block, local: &ast::Local) { + if fn_should_be_ignored(bcx.fcx) { + return; + } + + let cx = bcx.ccx(); + let def_map = &cx.tcx().def_map; + + pat_util::pat_bindings(def_map, &*local.pat, |_, node_id, span, path1| { + let var_ident = path1.node; + + let datum = match bcx.fcx.lllocals.borrow().get(&node_id).cloned() { + Some(datum) => datum, + None => { + bcx.sess().span_bug(span, + format!("no entry in lllocals table for {}", + node_id).as_slice()); + } + }; + + let scope_metadata = scope_metadata(bcx.fcx, node_id, span); + + declare_local(bcx, + var_ident, + datum.ty, + scope_metadata, + DirectVariable { alloca: datum.val }, + LocalVariable, + span); + }) +} + +/// Creates debug information for a variable captured in a closure. +/// +/// Adds the created metadata nodes directly to the crate's IR. +pub fn create_captured_var_metadata(bcx: Block, + node_id: ast::NodeId, + env_data_type: ty::t, + env_pointer: ValueRef, + env_index: uint, + closure_store: ty::TraitStore, + span: Span) { + if fn_should_be_ignored(bcx.fcx) { + return; + } + + let cx = bcx.ccx(); + + let ast_item = cx.tcx().map.find(node_id); + + let variable_ident = match ast_item { + None => { + cx.sess().span_bug(span, "debuginfo::create_captured_var_metadata: node not found"); + } + Some(ast_map::NodeLocal(pat)) | Some(ast_map::NodeArg(pat)) => { + match pat.node { + ast::PatIdent(_, ref path1, _) => { + path1.node + } + _ => { + cx.sess() + .span_bug(span, + format!( + "debuginfo::create_captured_var_metadata() - \ + Captured var-id refers to unexpected \ + ast_map variant: {}", + ast_item).as_slice()); + } + } + } + _ => { + cx.sess() + .span_bug(span, + format!("debuginfo::create_captured_var_metadata() - \ + Captured var-id refers to unexpected \ + ast_map variant: {}", + ast_item).as_slice()); + } + }; + + let variable_type = node_id_type(bcx, node_id); + let scope_metadata = bcx.fcx.debug_context.get_ref(cx, span).fn_metadata; + + let llvm_env_data_type = type_of::type_of(cx, env_data_type); + let byte_offset_of_var_in_env = machine::llelement_offset(cx, + llvm_env_data_type, + env_index); + + let address_operations = unsafe { + [llvm::LLVMDIBuilderCreateOpDeref(Type::i64(cx).to_ref()), + llvm::LLVMDIBuilderCreateOpPlus(Type::i64(cx).to_ref()), + C_i64(cx, byte_offset_of_var_in_env as i64), + llvm::LLVMDIBuilderCreateOpDeref(Type::i64(cx).to_ref())] + }; + + let address_op_count = match closure_store { + ty::RegionTraitStore(..) => { + address_operations.len() + } + ty::UniqTraitStore => { + address_operations.len() - 1 + } + }; + + let variable_access = IndirectVariable { + alloca: env_pointer, + address_operations: address_operations[..address_op_count] + }; + + declare_local(bcx, + variable_ident, + variable_type, + scope_metadata, + variable_access, + CapturedVariable, + span); +} + +/// Creates debug information for a local variable introduced in the head of a +/// match-statement arm. +/// +/// Adds the created metadata nodes directly to the crate's IR. +pub fn create_match_binding_metadata(bcx: Block, + variable_ident: ast::Ident, + binding: BindingInfo) { + if fn_should_be_ignored(bcx.fcx) { + return; + } + + let scope_metadata = scope_metadata(bcx.fcx, binding.id, binding.span); + let aops = unsafe { + [llvm::LLVMDIBuilderCreateOpDeref(bcx.ccx().int_type().to_ref())] + }; + // Regardless of the actual type (`T`) we're always passed the stack slot (alloca) + // for the binding. For ByRef bindings that's a `T*` but for ByMove bindings we + // actually have `T**`. So to get the actual variable we need to dereference once + // more. For ByCopy we just use the stack slot we created for the binding. + let var_type = match binding.trmode { + TrByCopy(llbinding) => DirectVariable { + alloca: llbinding + }, + TrByMove => IndirectVariable { + alloca: binding.llmatch, + address_operations: &aops + }, + TrByRef => DirectVariable { + alloca: binding.llmatch + } + }; + + declare_local(bcx, + variable_ident, + binding.ty, + scope_metadata, + var_type, + LocalVariable, + binding.span); +} + +/// Creates debug information for the given function argument. +/// +/// Adds the created metadata nodes directly to the crate's IR. +pub fn create_argument_metadata(bcx: Block, arg: &ast::Arg) { + if fn_should_be_ignored(bcx.fcx) { + return; + } + + let fcx = bcx.fcx; + let cx = fcx.ccx; + + let def_map = &cx.tcx().def_map; + let scope_metadata = bcx.fcx.debug_context.get_ref(cx, arg.pat.span).fn_metadata; + + pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, span, path1| { + let llarg = match bcx.fcx.lllocals.borrow().get(&node_id).cloned() { + Some(v) => v, + None => { + bcx.sess().span_bug(span, + format!("no entry in lllocals table for {}", + node_id).as_slice()); + } + }; + + if unsafe { llvm::LLVMIsAAllocaInst(llarg.val) } == ptr::null_mut() { + cx.sess().span_bug(span, "debuginfo::create_argument_metadata() - \ + Referenced variable location is not an alloca!"); + } + + let argument_index = { + let counter = &fcx.debug_context.get_ref(cx, span).argument_counter; + let argument_index = counter.get(); + counter.set(argument_index + 1); + argument_index + }; + + declare_local(bcx, + path1.node, + llarg.ty, + scope_metadata, + DirectVariable { alloca: llarg.val }, + ArgumentVariable(argument_index), + span); + }) +} + +pub fn get_cleanup_debug_loc_for_ast_node(node_id: ast::NodeId, + node_span: Span, + is_block: bool) + -> NodeInfo { + // A debug location needs two things: + // (1) A span (of which only the beginning will actually be used) + // (2) An AST node-id which will be used to look up the lexical scope + // for the location in the functions scope-map + // + // This function will calculate the debug location for compiler-generated + // cleanup calls that are executed when control-flow leaves the + // scope identified by `node_id`. + // + // For everything but block-like things we can simply take id and span of + // the given expression, meaning that from a debugger's view cleanup code is + // executed at the same source location as the statement/expr itself. + // + // Blocks are a special case. Here we want the cleanup to be linked to the + // closing curly brace of the block. The *scope* the cleanup is executed in + // is up to debate: It could either still be *within* the block being + // cleaned up, meaning that locals from the block are still visible in the + // debugger. + // Or it could be in the scope that the block is contained in, so any locals + // from within the block are already considered out-of-scope and thus not + // accessible in the debugger anymore. + // + // The current implementation opts for the second option: cleanup of a block + // already happens in the parent scope of the block. The main reason for + // this decision is that scoping becomes controlflow dependent when variable + // shadowing is involved and it's impossible to decide statically which + // scope is actually left when the cleanup code is executed. + // In practice it shouldn't make much of a difference. + + let cleanup_span = if is_block { + Span { + lo: node_span.hi - codemap::BytePos(1), // closing brace should always be 1 byte... + hi: node_span.hi, + expn_id: node_span.expn_id + } + } else { + node_span + }; + + NodeInfo { + id: node_id, + span: cleanup_span + } +} + +/// Sets the current debug location at the beginning of the span. +/// +/// Maps to a call to llvm::LLVMSetCurrentDebugLocation(...). The node_id +/// parameter is used to reliably find the correct visibility scope for the code +/// position. +pub fn set_source_location(fcx: &FunctionContext, + node_id: ast::NodeId, + span: Span) { + match fcx.debug_context.repr { + DebugInfoDisabled => return, + FunctionWithoutDebugInfo => { + set_debug_location(fcx.ccx, UnknownLocation); + return; + } + DebugInfo(box ref function_debug_context) => { + let cx = fcx.ccx; + + debug!("set_source_location: {}", cx.sess().codemap().span_to_string(span)); + + if function_debug_context.source_locations_enabled.get() { + let loc = span_start(cx, span); + let scope = scope_metadata(fcx, node_id, span); + + set_debug_location(cx, DebugLocation::new(scope, + loc.line, + loc.col.to_uint())); + } else { + set_debug_location(cx, UnknownLocation); + } + } + } +} + +/// Clears the current debug location. +/// +/// Instructions generated hereafter won't be assigned a source location. +pub fn clear_source_location(fcx: &FunctionContext) { + if fn_should_be_ignored(fcx) { + return; + } + + set_debug_location(fcx.ccx, UnknownLocation); +} + +/// Enables emitting source locations for the given functions. +/// +/// Since we don't want source locations to be emitted for the function prelude, +/// they are disabled when beginning to translate a new function. This functions +/// switches source location emitting on and must therefore be called before the +/// first real statement/expression of the function is translated. +pub fn start_emitting_source_locations(fcx: &FunctionContext) { + match fcx.debug_context.repr { + DebugInfo(box ref data) => { + data.source_locations_enabled.set(true) + }, + _ => { /* safe to ignore */ } + } +} + +/// Creates the function-specific debug context. +/// +/// Returns the FunctionDebugContext for the function which holds state needed +/// for debug info creation. The function may also return another variant of the +/// FunctionDebugContext enum which indicates why no debuginfo should be created +/// for the function. +pub fn create_function_debug_context(cx: &CrateContext, + fn_ast_id: ast::NodeId, + param_substs: ¶m_substs, + llfn: ValueRef) -> FunctionDebugContext { + if cx.sess().opts.debuginfo == NoDebugInfo { + return FunctionDebugContext { repr: DebugInfoDisabled }; + } + + // Clear the debug location so we don't assign them in the function prelude. + // Do this here already, in case we do an early exit from this function. + set_debug_location(cx, UnknownLocation); + + if fn_ast_id == ast::DUMMY_NODE_ID { + // This is a function not linked to any source location, so don't + // generate debuginfo for it. + return FunctionDebugContext { repr: FunctionWithoutDebugInfo }; + } + + let empty_generics = ast_util::empty_generics(); + + let fnitem = cx.tcx().map.get(fn_ast_id); + + let (ident, fn_decl, generics, top_level_block, span, has_path) = match fnitem { + ast_map::NodeItem(ref item) => { + if contains_nodebug_attribute(item.attrs.as_slice()) { + return FunctionDebugContext { repr: FunctionWithoutDebugInfo }; + } + + match item.node { + ast::ItemFn(ref fn_decl, _, _, ref generics, ref top_level_block) => { + (item.ident, &**fn_decl, generics, &**top_level_block, item.span, true) + } + _ => { + cx.sess().span_bug(item.span, + "create_function_debug_context: item bound to non-function"); + } + } + } + ast_map::NodeImplItem(ref item) => { + match **item { + ast::MethodImplItem(ref method) => { + if contains_nodebug_attribute(method.attrs.as_slice()) { + return FunctionDebugContext { + repr: FunctionWithoutDebugInfo + }; + } + + (method.pe_ident(), + method.pe_fn_decl(), + method.pe_generics(), + method.pe_body(), + method.span, + true) + } + ast::TypeImplItem(ref typedef) => { + cx.sess().span_bug(typedef.span, + "create_function_debug_context() \ + called on associated type?!") + } + } + } + ast_map::NodeExpr(ref expr) => { + match expr.node { + ast::ExprFnBlock(_, ref fn_decl, ref top_level_block) | + ast::ExprProc(ref fn_decl, ref top_level_block) | + ast::ExprUnboxedFn(_, _, ref fn_decl, ref top_level_block) => { + let name = format!("fn{}", token::gensym("fn")); + let name = token::str_to_ident(name.as_slice()); + (name, &**fn_decl, + // This is not quite right. It should actually inherit + // the generics of the enclosing function. + &empty_generics, + &**top_level_block, + expr.span, + // Don't try to lookup the item path: + false) + } + _ => cx.sess().span_bug(expr.span, + "create_function_debug_context: expected an expr_fn_block here") + } + } + ast_map::NodeTraitItem(ref trait_method) => { + match **trait_method { + ast::ProvidedMethod(ref method) => { + if contains_nodebug_attribute(method.attrs.as_slice()) { + return FunctionDebugContext { + repr: FunctionWithoutDebugInfo + }; + } + + (method.pe_ident(), + method.pe_fn_decl(), + method.pe_generics(), + method.pe_body(), + method.span, + true) + } + _ => { + cx.sess() + .bug(format!("create_function_debug_context: \ + unexpected sort of node: {}", + fnitem).as_slice()) + } + } + } + ast_map::NodeForeignItem(..) | + ast_map::NodeVariant(..) | + ast_map::NodeStructCtor(..) => { + return FunctionDebugContext { repr: FunctionWithoutDebugInfo }; + } + _ => cx.sess().bug(format!("create_function_debug_context: \ + unexpected sort of node: {}", + fnitem).as_slice()) + }; + + // This can be the case for functions inlined from another crate + if span == codemap::DUMMY_SP { + return FunctionDebugContext { repr: FunctionWithoutDebugInfo }; + } + + let loc = span_start(cx, span); + let file_metadata = file_metadata(cx, loc.file.name.as_slice()); + + let function_type_metadata = unsafe { + let fn_signature = get_function_signature(cx, + fn_ast_id, + &*fn_decl, + param_substs, + span); + llvm::LLVMDIBuilderCreateSubroutineType(DIB(cx), file_metadata, fn_signature) + }; + + // Get_template_parameters() will append a `<...>` clause to the function + // name if necessary. + let mut function_name = String::from_str(token::get_ident(ident).get()); + let template_parameters = get_template_parameters(cx, + generics, + param_substs, + file_metadata, + &mut function_name); + + // There is no ast_map::Path for ast::ExprFnBlock-type functions. For now, + // just don't put them into a namespace. In the future this could be improved + // somehow (storing a path in the ast_map, or construct a path using the + // enclosing function). + let (linkage_name, containing_scope) = if has_path { + let namespace_node = namespace_for_item(cx, ast_util::local_def(fn_ast_id)); + let linkage_name = namespace_node.mangled_name_of_contained_item( + function_name.as_slice()); + let containing_scope = namespace_node.scope; + (linkage_name, containing_scope) + } else { + (function_name.as_slice().to_string(), file_metadata) + }; + + // Clang sets this parameter to the opening brace of the function's block, + // so let's do this too. + let scope_line = span_start(cx, top_level_block.span).line; + + let is_local_to_unit = is_node_local_to_unit(cx, fn_ast_id); + + let fn_metadata = function_name.as_slice().with_c_str(|function_name| { + linkage_name.as_slice().with_c_str(|linkage_name| { + unsafe { + llvm::LLVMDIBuilderCreateFunction( + DIB(cx), + containing_scope, + function_name, + linkage_name, + file_metadata, + loc.line as c_uint, + function_type_metadata, + is_local_to_unit, + true, + scope_line as c_uint, + FlagPrototyped as c_uint, + cx.sess().opts.optimize != config::No, + llfn, + template_parameters, + ptr::null_mut()) + } + }) + }); + + // Initialize fn debug context (including scope map and namespace map) + let fn_debug_context = box FunctionDebugContextData { + scope_map: RefCell::new(NodeMap::new()), + fn_metadata: fn_metadata, + argument_counter: Cell::new(1), + source_locations_enabled: Cell::new(false), + }; + + populate_scope_map(cx, + fn_decl.inputs.as_slice(), + &*top_level_block, + fn_metadata, + fn_ast_id, + &mut *fn_debug_context.scope_map.borrow_mut()); + + return FunctionDebugContext { repr: DebugInfo(fn_debug_context) }; + + fn get_function_signature(cx: &CrateContext, + fn_ast_id: ast::NodeId, + fn_decl: &ast::FnDecl, + param_substs: ¶m_substs, + error_reporting_span: Span) -> DIArray { + if cx.sess().opts.debuginfo == LimitedDebugInfo { + return create_DIArray(DIB(cx), &[]); + } + + let mut signature = Vec::with_capacity(fn_decl.inputs.len() + 1); + + // Return type -- llvm::DIBuilder wants this at index 0 + match fn_decl.output { + ast::Return(ref ret_ty) if ret_ty.node == ast::TyTup(vec![]) => + signature.push(ptr::null_mut()), + _ => { + assert_type_for_node_id(cx, fn_ast_id, error_reporting_span); + + let return_type = ty::node_id_to_type(cx.tcx(), fn_ast_id); + let return_type = return_type.substp(cx.tcx(), param_substs); + signature.push(type_metadata(cx, return_type, codemap::DUMMY_SP)); + } + } + + // Arguments types + for arg in fn_decl.inputs.iter() { + assert_type_for_node_id(cx, arg.pat.id, arg.pat.span); + let arg_type = ty::node_id_to_type(cx.tcx(), arg.pat.id); + let arg_type = arg_type.substp(cx.tcx(), param_substs); + signature.push(type_metadata(cx, arg_type, codemap::DUMMY_SP)); + } + + return create_DIArray(DIB(cx), signature.as_slice()); + } + + fn get_template_parameters(cx: &CrateContext, + generics: &ast::Generics, + param_substs: ¶m_substs, + file_metadata: DIFile, + name_to_append_suffix_to: &mut String) + -> DIArray { + let self_type = param_substs.substs.self_ty(); + + // Only true for static default methods: + let has_self_type = self_type.is_some(); + + if !generics.is_type_parameterized() && !has_self_type { + return create_DIArray(DIB(cx), &[]); + } + + name_to_append_suffix_to.push('<'); + + // The list to be filled with template parameters: + let mut template_params: Vec<DIDescriptor> = + Vec::with_capacity(generics.ty_params.len() + 1); + + // Handle self type + if has_self_type { + let actual_self_type = self_type.unwrap(); + // Add self type name to <...> clause of function name + let actual_self_type_name = compute_debuginfo_type_name( + cx, + actual_self_type, + true); + + name_to_append_suffix_to.push_str(actual_self_type_name.as_slice()); + + if generics.is_type_parameterized() { + name_to_append_suffix_to.push_str(","); + } + + // Only create type information if full debuginfo is enabled + if cx.sess().opts.debuginfo == FullDebugInfo { + let actual_self_type_metadata = type_metadata(cx, + actual_self_type, + codemap::DUMMY_SP); + + let ident = special_idents::type_self; + + let param_metadata = token::get_ident(ident).get() + .with_c_str(|name| { + unsafe { + llvm::LLVMDIBuilderCreateTemplateTypeParameter( + DIB(cx), + file_metadata, + name, + actual_self_type_metadata, + ptr::null_mut(), + 0, + 0) + } + }); + + template_params.push(param_metadata); + } + } + + // Handle other generic parameters + let actual_types = param_substs.substs.types.get_slice(subst::FnSpace); + for (index, &ast::TyParam{ ident, .. }) in generics.ty_params.iter().enumerate() { + let actual_type = actual_types[index]; + // Add actual type name to <...> clause of function name + let actual_type_name = compute_debuginfo_type_name(cx, + actual_type, + true); + name_to_append_suffix_to.push_str(actual_type_name.as_slice()); + + if index != generics.ty_params.len() - 1 { + name_to_append_suffix_to.push_str(","); + } + + // Again, only create type information if full debuginfo is enabled + if cx.sess().opts.debuginfo == FullDebugInfo { + let actual_type_metadata = type_metadata(cx, actual_type, codemap::DUMMY_SP); + let param_metadata = token::get_ident(ident).get() + .with_c_str(|name| { + unsafe { + llvm::LLVMDIBuilderCreateTemplateTypeParameter( + DIB(cx), + file_metadata, + name, + actual_type_metadata, + ptr::null_mut(), + 0, + 0) + } + }); + template_params.push(param_metadata); + } + } + + name_to_append_suffix_to.push('>'); + + return create_DIArray(DIB(cx), template_params.as_slice()); + } +} + +//=----------------------------------------------------------------------------- +// Module-Internal debug info creation functions +//=----------------------------------------------------------------------------- + +fn is_node_local_to_unit(cx: &CrateContext, node_id: ast::NodeId) -> bool +{ + // The is_local_to_unit flag indicates whether a function is local to the + // current compilation unit (i.e. if it is *static* in the C-sense). The + // *reachable* set should provide a good approximation of this, as it + // contains everything that might leak out of the current crate (by being + // externally visible or by being inlined into something externally visible). + // It might better to use the `exported_items` set from `driver::CrateAnalysis` + // in the future, but (atm) this set is not available in the translation pass. + !cx.reachable().contains(&node_id) +} + +#[allow(non_snake_case)] +fn create_DIArray(builder: DIBuilderRef, arr: &[DIDescriptor]) -> DIArray { + return unsafe { + llvm::LLVMDIBuilderGetOrCreateArray(builder, arr.as_ptr(), arr.len() as u32) + }; +} + +fn compile_unit_metadata(cx: &CrateContext) { + let work_dir = &cx.sess().working_dir; + let compile_unit_name = match cx.sess().local_crate_source_file { + None => fallback_path(cx), + Some(ref abs_path) => { + if abs_path.is_relative() { + cx.sess().warn("debuginfo: Invalid path to crate's local root source file!"); + fallback_path(cx) + } else { + match abs_path.path_relative_from(work_dir) { + Some(ref p) if p.is_relative() => { + // prepend "./" if necessary + let dotdot = b".."; + let prefix = &[dotdot[0], ::std::path::SEP_BYTE]; + let mut path_bytes = p.as_vec().to_vec(); + + if path_bytes.slice_to(2) != prefix && + path_bytes.slice_to(2) != dotdot { + path_bytes.insert(0, prefix[0]); + path_bytes.insert(1, prefix[1]); + } + + path_bytes.as_slice().to_c_str() + } + _ => fallback_path(cx) + } + } + } + }; + + debug!("compile_unit_metadata: {}", compile_unit_name); + let producer = format!("rustc version {}", + (option_env!("CFG_VERSION")).expect("CFG_VERSION")); + + let compile_unit_name = compile_unit_name.as_ptr(); + work_dir.as_vec().with_c_str(|work_dir| { + producer.with_c_str(|producer| { + "".with_c_str(|flags| { + "".with_c_str(|split_name| { + unsafe { + llvm::LLVMDIBuilderCreateCompileUnit( + debug_context(cx).builder, + DW_LANG_RUST, + compile_unit_name, + work_dir, + producer, + cx.sess().opts.optimize != config::No, + flags, + 0, + split_name); + } + }) + }) + }) + }); + + fn fallback_path(cx: &CrateContext) -> CString { + cx.link_meta().crate_name.as_slice().to_c_str() + } +} + +fn declare_local(bcx: Block, + variable_ident: ast::Ident, + variable_type: ty::t, + scope_metadata: DIScope, + variable_access: VariableAccess, + variable_kind: VariableKind, + span: Span) { + let cx: &CrateContext = bcx.ccx(); + + let filename = span_start(cx, span).file.name.clone(); + let file_metadata = file_metadata(cx, filename.as_slice()); + + let name = token::get_ident(variable_ident); + let loc = span_start(cx, span); + let type_metadata = type_metadata(cx, variable_type, span); + + let (argument_index, dwarf_tag) = match variable_kind { + ArgumentVariable(index) => (index as c_uint, DW_TAG_arg_variable), + LocalVariable | + CapturedVariable => (0, DW_TAG_auto_variable) + }; + + let (var_alloca, var_metadata) = name.get().with_c_str(|name| { + match variable_access { + DirectVariable { alloca } => ( + alloca, + unsafe { + llvm::LLVMDIBuilderCreateLocalVariable( + DIB(cx), + dwarf_tag, + scope_metadata, + name, + file_metadata, + loc.line as c_uint, + type_metadata, + cx.sess().opts.optimize != config::No, + 0, + argument_index) + } + ), + IndirectVariable { alloca, address_operations } => ( + alloca, + unsafe { + llvm::LLVMDIBuilderCreateComplexVariable( + DIB(cx), + dwarf_tag, + scope_metadata, + name, + file_metadata, + loc.line as c_uint, + type_metadata, + address_operations.as_ptr(), + address_operations.len() as c_uint, + argument_index) + } + ) + } + }); + + set_debug_location(cx, DebugLocation::new(scope_metadata, + loc.line, + loc.col.to_uint())); + unsafe { + let instr = llvm::LLVMDIBuilderInsertDeclareAtEnd( + DIB(cx), + var_alloca, + var_metadata, + bcx.llbb); + + llvm::LLVMSetInstDebugLocation(trans::build::B(bcx).llbuilder, instr); + } + + match variable_kind { + ArgumentVariable(_) | CapturedVariable => { + assert!(!bcx.fcx + .debug_context + .get_ref(cx, span) + .source_locations_enabled + .get()); + set_debug_location(cx, UnknownLocation); + } + _ => { /* nothing to do */ } + } +} + +fn file_metadata(cx: &CrateContext, full_path: &str) -> DIFile { + match debug_context(cx).created_files.borrow().get(full_path) { + Some(file_metadata) => return *file_metadata, + None => () + } + + debug!("file_metadata: {}", full_path); + + // FIXME (#9639): This needs to handle non-utf8 paths + let work_dir = cx.sess().working_dir.as_str().unwrap(); + let file_name = + if full_path.starts_with(work_dir) { + full_path.slice(work_dir.len() + 1u, full_path.len()) + } else { + full_path + }; + + let file_metadata = + file_name.with_c_str(|file_name| { + work_dir.with_c_str(|work_dir| { + unsafe { + llvm::LLVMDIBuilderCreateFile(DIB(cx), file_name, work_dir) + } + }) + }); + + let mut created_files = debug_context(cx).created_files.borrow_mut(); + created_files.insert(full_path.to_string(), file_metadata); + return file_metadata; +} + +/// Finds the scope metadata node for the given AST node. +fn scope_metadata(fcx: &FunctionContext, + node_id: ast::NodeId, + error_reporting_span: Span) + -> DIScope { + let scope_map = &fcx.debug_context + .get_ref(fcx.ccx, error_reporting_span) + .scope_map; + match scope_map.borrow().get(&node_id).cloned() { + Some(scope_metadata) => scope_metadata, + None => { + let node = fcx.ccx.tcx().map.get(node_id); + + fcx.ccx.sess().span_bug(error_reporting_span, + format!("debuginfo: Could not find scope info for node {}", + node).as_slice()); + } + } +} + +fn diverging_type_metadata(cx: &CrateContext) -> DIType { + "!".with_c_str(|name| { + unsafe { + llvm::LLVMDIBuilderCreateBasicType( + DIB(cx), + name, + bytes_to_bits(0), + bytes_to_bits(0), + DW_ATE_unsigned) + } + }) +} + +fn basic_type_metadata(cx: &CrateContext, t: ty::t) -> DIType { + + debug!("basic_type_metadata: {}", ty::get(t)); + + let (name, encoding) = match ty::get(t).sty { + ty::ty_tup(ref elements) if elements.is_empty() => + ("()".to_string(), DW_ATE_unsigned), + ty::ty_bool => ("bool".to_string(), DW_ATE_boolean), + ty::ty_char => ("char".to_string(), DW_ATE_unsigned_char), + ty::ty_int(int_ty) => match int_ty { + ast::TyI => ("int".to_string(), DW_ATE_signed), + ast::TyI8 => ("i8".to_string(), DW_ATE_signed), + ast::TyI16 => ("i16".to_string(), DW_ATE_signed), + ast::TyI32 => ("i32".to_string(), DW_ATE_signed), + ast::TyI64 => ("i64".to_string(), DW_ATE_signed) + }, + ty::ty_uint(uint_ty) => match uint_ty { + ast::TyU => ("uint".to_string(), DW_ATE_unsigned), + ast::TyU8 => ("u8".to_string(), DW_ATE_unsigned), + ast::TyU16 => ("u16".to_string(), DW_ATE_unsigned), + ast::TyU32 => ("u32".to_string(), DW_ATE_unsigned), + ast::TyU64 => ("u64".to_string(), DW_ATE_unsigned) + }, + ty::ty_float(float_ty) => match float_ty { + ast::TyF32 => ("f32".to_string(), DW_ATE_float), + ast::TyF64 => ("f64".to_string(), DW_ATE_float), + }, + _ => cx.sess().bug("debuginfo::basic_type_metadata - t is invalid type") + }; + + let llvm_type = type_of::type_of(cx, t); + let (size, align) = size_and_align_of(cx, llvm_type); + let ty_metadata = name.with_c_str(|name| { + unsafe { + llvm::LLVMDIBuilderCreateBasicType( + DIB(cx), + name, + bytes_to_bits(size), + bytes_to_bits(align), + encoding) + } + }); + + return ty_metadata; +} + +fn pointer_type_metadata(cx: &CrateContext, + pointer_type: ty::t, + pointee_type_metadata: DIType) + -> DIType { + let pointer_llvm_type = type_of::type_of(cx, pointer_type); + let (pointer_size, pointer_align) = size_and_align_of(cx, pointer_llvm_type); + let name = compute_debuginfo_type_name(cx, pointer_type, false); + let ptr_metadata = name.as_slice().with_c_str(|name| { + unsafe { + llvm::LLVMDIBuilderCreatePointerType( + DIB(cx), + pointee_type_metadata, + bytes_to_bits(pointer_size), + bytes_to_bits(pointer_align), + name) + } + }); + return ptr_metadata; +} + +//=----------------------------------------------------------------------------- +// Common facilities for record-like types (structs, enums, tuples) +//=----------------------------------------------------------------------------- + +enum MemberOffset { + FixedMemberOffset { bytes: uint }, + // For ComputedMemberOffset, the offset is read from the llvm type definition + ComputedMemberOffset +} + +// Description of a type member, which can either be a regular field (as in +// structs or tuples) or an enum variant +struct MemberDescription { + name: String, + llvm_type: Type, + type_metadata: DIType, + offset: MemberOffset, + flags: c_uint +} + +// A factory for MemberDescriptions. It produces a list of member descriptions +// for some record-like type. MemberDescriptionFactories are used to defer the +// creation of type member descriptions in order to break cycles arising from +// recursive type definitions. +enum MemberDescriptionFactory { + StructMDF(StructMemberDescriptionFactory), + TupleMDF(TupleMemberDescriptionFactory), + EnumMDF(EnumMemberDescriptionFactory), + VariantMDF(VariantMemberDescriptionFactory) +} + +impl MemberDescriptionFactory { + fn create_member_descriptions(&self, cx: &CrateContext) -> Vec<MemberDescription> { + match *self { + StructMDF(ref this) => { + this.create_member_descriptions(cx) + } + TupleMDF(ref this) => { + this.create_member_descriptions(cx) + } + EnumMDF(ref this) => { + this.create_member_descriptions(cx) + } + VariantMDF(ref this) => { + this.create_member_descriptions(cx) + } + } + } +} + +// A description of some recursive type. It can either be already finished (as +// with FinalMetadata) or it is not yet finished, but contains all information +// needed to generate the missing parts of the description. See the documentation +// section on Recursive Types at the top of this file for more information. +enum RecursiveTypeDescription { + UnfinishedMetadata { + unfinished_type: ty::t, + unique_type_id: UniqueTypeId, + metadata_stub: DICompositeType, + llvm_type: Type, + member_description_factory: MemberDescriptionFactory, + }, + FinalMetadata(DICompositeType) +} + +fn create_and_register_recursive_type_forward_declaration( + cx: &CrateContext, + unfinished_type: ty::t, + unique_type_id: UniqueTypeId, + metadata_stub: DICompositeType, + llvm_type: Type, + member_description_factory: MemberDescriptionFactory) + -> RecursiveTypeDescription { + + // Insert the stub into the TypeMap in order to allow for recursive references + let mut type_map = debug_context(cx).type_map.borrow_mut(); + type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata_stub); + type_map.register_type_with_metadata(cx, unfinished_type, metadata_stub); + + UnfinishedMetadata { + unfinished_type: unfinished_type, + unique_type_id: unique_type_id, + metadata_stub: metadata_stub, + llvm_type: llvm_type, + member_description_factory: member_description_factory, + } +} + +impl RecursiveTypeDescription { + // Finishes up the description of the type in question (mostly by providing + // descriptions of the fields of the given type) and returns the final type metadata. + fn finalize(&self, cx: &CrateContext) -> MetadataCreationResult { + match *self { + FinalMetadata(metadata) => MetadataCreationResult::new(metadata, false), + UnfinishedMetadata { + unfinished_type, + unique_type_id, + metadata_stub, + llvm_type, + ref member_description_factory, + .. + } => { + // Make sure that we have a forward declaration of the type in + // the TypeMap so that recursive references are possible. This + // will always be the case if the RecursiveTypeDescription has + // been properly created through the + // create_and_register_recursive_type_forward_declaration() function. + { + let type_map = debug_context(cx).type_map.borrow(); + if type_map.find_metadata_for_unique_id(unique_type_id).is_none() || + type_map.find_metadata_for_type(unfinished_type).is_none() { + cx.sess().bug(format!("Forward declaration of potentially recursive type \ + '{}' was not found in TypeMap!", + ppaux::ty_to_string(cx.tcx(), unfinished_type)) + .as_slice()); + } + } + + // ... then create the member descriptions ... + let member_descriptions = + member_description_factory.create_member_descriptions(cx); + + // ... and attach them to the stub to complete it. + set_members_of_composite_type(cx, + metadata_stub, + llvm_type, + member_descriptions.as_slice()); + return MetadataCreationResult::new(metadata_stub, true); + } + } + } +} + + +//=----------------------------------------------------------------------------- +// Structs +//=----------------------------------------------------------------------------- + +// Creates MemberDescriptions for the fields of a struct +struct StructMemberDescriptionFactory { + fields: Vec<ty::field>, + is_simd: bool, + span: Span, +} + +impl StructMemberDescriptionFactory { + fn create_member_descriptions(&self, cx: &CrateContext) -> Vec<MemberDescription> { + if self.fields.len() == 0 { + return Vec::new(); + } + + let field_size = if self.is_simd { + machine::llsize_of_alloc(cx, type_of::type_of(cx, self.fields[0].mt.ty)) as uint + } else { + 0xdeadbeef + }; + + self.fields.iter().enumerate().map(|(i, field)| { + let name = if field.name == special_idents::unnamed_field.name { + "".to_string() + } else { + token::get_name(field.name).get().to_string() + }; + + let offset = if self.is_simd { + assert!(field_size != 0xdeadbeef); + FixedMemberOffset { bytes: i * field_size } + } else { + ComputedMemberOffset + }; + + MemberDescription { + name: name, + llvm_type: type_of::type_of(cx, field.mt.ty), + type_metadata: type_metadata(cx, field.mt.ty, self.span), + offset: offset, + flags: FLAGS_NONE, + } + }).collect() + } +} + + +fn prepare_struct_metadata(cx: &CrateContext, + struct_type: ty::t, + def_id: ast::DefId, + substs: &subst::Substs, + unique_type_id: UniqueTypeId, + span: Span) + -> RecursiveTypeDescription { + let struct_name = compute_debuginfo_type_name(cx, struct_type, false); + let struct_llvm_type = type_of::type_of(cx, struct_type); + + let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id); + + let struct_metadata_stub = create_struct_stub(cx, + struct_llvm_type, + struct_name.as_slice(), + unique_type_id, + containing_scope); + + let fields = ty::struct_fields(cx.tcx(), def_id, substs); + + create_and_register_recursive_type_forward_declaration( + cx, + struct_type, + unique_type_id, + struct_metadata_stub, + struct_llvm_type, + StructMDF(StructMemberDescriptionFactory { + fields: fields, + is_simd: ty::type_is_simd(cx.tcx(), struct_type), + span: span, + }) + ) +} + + +//=----------------------------------------------------------------------------- +// Tuples +//=----------------------------------------------------------------------------- + +// Creates MemberDescriptions for the fields of a tuple +struct TupleMemberDescriptionFactory { + component_types: Vec<ty::t> , + span: Span, +} + +impl TupleMemberDescriptionFactory { + fn create_member_descriptions(&self, cx: &CrateContext) + -> Vec<MemberDescription> { + self.component_types.iter().map(|&component_type| { + MemberDescription { + name: "".to_string(), + llvm_type: type_of::type_of(cx, component_type), + type_metadata: type_metadata(cx, component_type, self.span), + offset: ComputedMemberOffset, + flags: FLAGS_NONE, + } + }).collect() + } +} + +fn prepare_tuple_metadata(cx: &CrateContext, + tuple_type: ty::t, + component_types: &[ty::t], + unique_type_id: UniqueTypeId, + span: Span) + -> RecursiveTypeDescription { + let tuple_name = compute_debuginfo_type_name(cx, tuple_type, false); + let tuple_llvm_type = type_of::type_of(cx, tuple_type); + + create_and_register_recursive_type_forward_declaration( + cx, + tuple_type, + unique_type_id, + create_struct_stub(cx, + tuple_llvm_type, + tuple_name.as_slice(), + unique_type_id, + UNKNOWN_SCOPE_METADATA), + tuple_llvm_type, + TupleMDF(TupleMemberDescriptionFactory { + component_types: component_types.to_vec(), + span: span, + }) + ) +} + + +//=----------------------------------------------------------------------------- +// Enums +//=----------------------------------------------------------------------------- + +// Describes the members of an enum value: An enum is described as a union of +// structs in DWARF. This MemberDescriptionFactory provides the description for +// the members of this union; so for every variant of the given enum, this factory +// will produce one MemberDescription (all with no name and a fixed offset of +// zero bytes). +struct EnumMemberDescriptionFactory { + enum_type: ty::t, + type_rep: Rc<adt::Repr>, + variants: Rc<Vec<Rc<ty::VariantInfo>>>, + discriminant_type_metadata: Option<DIType>, + containing_scope: DIScope, + file_metadata: DIFile, + span: Span, +} + +impl EnumMemberDescriptionFactory { + fn create_member_descriptions(&self, cx: &CrateContext) -> Vec<MemberDescription> { + match *self.type_rep { + adt::General(_, ref struct_defs, _) => { + let discriminant_info = RegularDiscriminant(self.discriminant_type_metadata + .expect("")); + + struct_defs + .iter() + .enumerate() + .map(|(i, struct_def)| { + let (variant_type_metadata, + variant_llvm_type, + member_desc_factory) = + describe_enum_variant(cx, + self.enum_type, + struct_def, + &*(*self.variants)[i], + discriminant_info, + self.containing_scope, + self.span); + + let member_descriptions = member_desc_factory + .create_member_descriptions(cx); + + set_members_of_composite_type(cx, + variant_type_metadata, + variant_llvm_type, + member_descriptions.as_slice()); + MemberDescription { + name: "".to_string(), + llvm_type: variant_llvm_type, + type_metadata: variant_type_metadata, + offset: FixedMemberOffset { bytes: 0 }, + flags: FLAGS_NONE + } + }).collect() + }, + adt::Univariant(ref struct_def, _) => { + assert!(self.variants.len() <= 1); + + if self.variants.len() == 0 { + vec![] + } else { + let (variant_type_metadata, + variant_llvm_type, + member_description_factory) = + describe_enum_variant(cx, + self.enum_type, + struct_def, + &*(*self.variants)[0], + NoDiscriminant, + self.containing_scope, + self.span); + + let member_descriptions = + member_description_factory.create_member_descriptions(cx); + + set_members_of_composite_type(cx, + variant_type_metadata, + variant_llvm_type, + member_descriptions.as_slice()); + vec![ + MemberDescription { + name: "".to_string(), + llvm_type: variant_llvm_type, + type_metadata: variant_type_metadata, + offset: FixedMemberOffset { bytes: 0 }, + flags: FLAGS_NONE + } + ] + } + } + adt::RawNullablePointer { nndiscr: non_null_variant_index, nnty, .. } => { + // As far as debuginfo is concerned, the pointer this enum + // represents is still wrapped in a struct. This is to make the + // DWARF representation of enums uniform. + + // First create a description of the artificial wrapper struct: + let non_null_variant = &(*self.variants)[non_null_variant_index as uint]; + let non_null_variant_name = token::get_name(non_null_variant.name); + + // The llvm type and metadata of the pointer + let non_null_llvm_type = type_of::type_of(cx, nnty); + let non_null_type_metadata = type_metadata(cx, nnty, self.span); + + // The type of the artificial struct wrapping the pointer + let artificial_struct_llvm_type = Type::struct_(cx, + &[non_null_llvm_type], + false); + + // For the metadata of the wrapper struct, we need to create a + // MemberDescription of the struct's single field. + let sole_struct_member_description = MemberDescription { + name: match non_null_variant.arg_names { + Some(ref names) => token::get_ident(names[0]).get().to_string(), + None => "".to_string() + }, + llvm_type: non_null_llvm_type, + type_metadata: non_null_type_metadata, + offset: FixedMemberOffset { bytes: 0 }, + flags: FLAGS_NONE + }; + + let unique_type_id = debug_context(cx).type_map + .borrow_mut() + .get_unique_type_id_of_enum_variant( + cx, + self.enum_type, + non_null_variant_name.get()); + + // Now we can create the metadata of the artificial struct + let artificial_struct_metadata = + composite_type_metadata(cx, + artificial_struct_llvm_type, + non_null_variant_name.get(), + unique_type_id, + &[sole_struct_member_description], + self.containing_scope, + self.file_metadata, + codemap::DUMMY_SP); + + // Encode the information about the null variant in the union + // member's name. + let null_variant_index = (1 - non_null_variant_index) as uint; + let null_variant_name = token::get_name((*self.variants)[null_variant_index].name); + let union_member_name = format!("RUST$ENCODED$ENUM${}${}", + 0u, + null_variant_name); + + // Finally create the (singleton) list of descriptions of union + // members. + vec![ + MemberDescription { + name: union_member_name, + llvm_type: artificial_struct_llvm_type, + type_metadata: artificial_struct_metadata, + offset: FixedMemberOffset { bytes: 0 }, + flags: FLAGS_NONE + } + ] + }, + adt::StructWrappedNullablePointer { nonnull: ref struct_def, + nndiscr, + ptrfield, ..} => { + // Create a description of the non-null variant + let (variant_type_metadata, variant_llvm_type, member_description_factory) = + describe_enum_variant(cx, + self.enum_type, + struct_def, + &*(*self.variants)[nndiscr as uint], + OptimizedDiscriminant(ptrfield), + self.containing_scope, + self.span); + + let variant_member_descriptions = + member_description_factory.create_member_descriptions(cx); + + set_members_of_composite_type(cx, + variant_type_metadata, + variant_llvm_type, + variant_member_descriptions.as_slice()); + + // Encode the information about the null variant in the union + // member's name. + let null_variant_index = (1 - nndiscr) as uint; + let null_variant_name = token::get_name((*self.variants)[null_variant_index].name); + let discrfield = match ptrfield { + adt::ThinPointer(field) => format!("{}", field), + adt::FatPointer(field) => format!("{}", field) + }; + let union_member_name = format!("RUST$ENCODED$ENUM${}${}", + discrfield, + null_variant_name); + + // Create the (singleton) list of descriptions of union members. + vec![ + MemberDescription { + name: union_member_name, + llvm_type: variant_llvm_type, + type_metadata: variant_type_metadata, + offset: FixedMemberOffset { bytes: 0 }, + flags: FLAGS_NONE + } + ] + }, + adt::CEnum(..) => cx.sess().span_bug(self.span, "This should be unreachable.") + } + } +} + +// Creates MemberDescriptions for the fields of a single enum variant. +struct VariantMemberDescriptionFactory { + args: Vec<(String, ty::t)> , + discriminant_type_metadata: Option<DIType>, + span: Span, +} + +impl VariantMemberDescriptionFactory { + fn create_member_descriptions(&self, cx: &CrateContext) -> Vec<MemberDescription> { + self.args.iter().enumerate().map(|(i, &(ref name, ty))| { + MemberDescription { + name: name.to_string(), + llvm_type: type_of::type_of(cx, ty), + type_metadata: match self.discriminant_type_metadata { + Some(metadata) if i == 0 => metadata, + _ => type_metadata(cx, ty, self.span) + }, + offset: ComputedMemberOffset, + flags: FLAGS_NONE + } + }).collect() + } +} + +enum EnumDiscriminantInfo { + RegularDiscriminant(DIType), + OptimizedDiscriminant(adt::PointerField), + NoDiscriminant +} + +// Returns a tuple of (1) type_metadata_stub of the variant, (2) the llvm_type +// of the variant, and (3) a MemberDescriptionFactory for producing the +// descriptions of the fields of the variant. This is a rudimentary version of a +// full RecursiveTypeDescription. +fn describe_enum_variant(cx: &CrateContext, + enum_type: ty::t, + struct_def: &adt::Struct, + variant_info: &ty::VariantInfo, + discriminant_info: EnumDiscriminantInfo, + containing_scope: DIScope, + span: Span) + -> (DICompositeType, Type, MemberDescriptionFactory) { + let variant_llvm_type = + Type::struct_(cx, struct_def.fields + .iter() + .map(|&t| type_of::type_of(cx, t)) + .collect::<Vec<_>>() + .as_slice(), + struct_def.packed); + // Could do some consistency checks here: size, align, field count, discr type + + let variant_name = token::get_name(variant_info.name); + let variant_name = variant_name.get(); + let unique_type_id = debug_context(cx).type_map + .borrow_mut() + .get_unique_type_id_of_enum_variant( + cx, + enum_type, + variant_name); + + let metadata_stub = create_struct_stub(cx, + variant_llvm_type, + variant_name, + unique_type_id, + containing_scope); + + // Get the argument names from the enum variant info + let mut arg_names: Vec<_> = match variant_info.arg_names { + Some(ref names) => { + names.iter() + .map(|ident| { + token::get_ident(*ident).get().to_string().into_string() + }).collect() + } + None => variant_info.args.iter().map(|_| "".to_string()).collect() + }; + + // If this is not a univariant enum, there is also the discriminant field. + match discriminant_info { + RegularDiscriminant(_) => arg_names.insert(0, "RUST$ENUM$DISR".to_string()), + _ => { /* do nothing */ } + }; + + // Build an array of (field name, field type) pairs to be captured in the factory closure. + let args: Vec<(String, ty::t)> = arg_names.iter() + .zip(struct_def.fields.iter()) + .map(|(s, &t)| (s.to_string(), t)) + .collect(); + + let member_description_factory = + VariantMDF(VariantMemberDescriptionFactory { + args: args, + discriminant_type_metadata: match discriminant_info { + RegularDiscriminant(discriminant_type_metadata) => { + Some(discriminant_type_metadata) + } + _ => None + }, + span: span, + }); + + (metadata_stub, variant_llvm_type, member_description_factory) +} + +fn prepare_enum_metadata(cx: &CrateContext, + enum_type: ty::t, + enum_def_id: ast::DefId, + unique_type_id: UniqueTypeId, + span: Span) + -> RecursiveTypeDescription { + let enum_name = compute_debuginfo_type_name(cx, enum_type, false); + + let (containing_scope, definition_span) = get_namespace_and_span_for_item(cx, enum_def_id); + let loc = span_start(cx, definition_span); + let file_metadata = file_metadata(cx, loc.file.name.as_slice()); + + let variants = ty::enum_variants(cx.tcx(), enum_def_id); + + let enumerators_metadata: Vec<DIDescriptor> = variants + .iter() + .map(|v| { + token::get_name(v.name).get().with_c_str(|name| { + unsafe { + llvm::LLVMDIBuilderCreateEnumerator( + DIB(cx), + name, + v.disr_val as u64) + } + }) + }) + .collect(); + + let discriminant_type_metadata = |inttype| { + // We can reuse the type of the discriminant for all monomorphized + // instances of an enum because it doesn't depend on any type parameters. + // The def_id, uniquely identifying the enum's polytype acts as key in + // this cache. + let cached_discriminant_type_metadata = debug_context(cx).created_enum_disr_types + .borrow() + .get(&enum_def_id).cloned(); + match cached_discriminant_type_metadata { + Some(discriminant_type_metadata) => discriminant_type_metadata, + None => { + let discriminant_llvm_type = adt::ll_inttype(cx, inttype); + let (discriminant_size, discriminant_align) = + size_and_align_of(cx, discriminant_llvm_type); + let discriminant_base_type_metadata = type_metadata(cx, + adt::ty_of_inttype(inttype), + codemap::DUMMY_SP); + let discriminant_name = get_enum_discriminant_name(cx, enum_def_id); + + let discriminant_type_metadata = discriminant_name.get().with_c_str(|name| { + unsafe { + llvm::LLVMDIBuilderCreateEnumerationType( + DIB(cx), + containing_scope, + name, + UNKNOWN_FILE_METADATA, + UNKNOWN_LINE_NUMBER, + bytes_to_bits(discriminant_size), + bytes_to_bits(discriminant_align), + create_DIArray(DIB(cx), enumerators_metadata.as_slice()), + discriminant_base_type_metadata) + } + }); + + debug_context(cx).created_enum_disr_types + .borrow_mut() + .insert(enum_def_id, discriminant_type_metadata); + + discriminant_type_metadata + } + } + }; + + let type_rep = adt::represent_type(cx, enum_type); + + let discriminant_type_metadata = match *type_rep { + adt::CEnum(inttype, _, _) => { + return FinalMetadata(discriminant_type_metadata(inttype)) + }, + adt::RawNullablePointer { .. } | + adt::StructWrappedNullablePointer { .. } | + adt::Univariant(..) => None, + adt::General(inttype, _, _) => Some(discriminant_type_metadata(inttype)), + }; + + let enum_llvm_type = type_of::type_of(cx, enum_type); + let (enum_type_size, enum_type_align) = size_and_align_of(cx, enum_llvm_type); + + let unique_type_id_str = debug_context(cx) + .type_map + .borrow() + .get_unique_type_id_as_string(unique_type_id); + + let enum_metadata = enum_name.as_slice().with_c_str(|enum_name| { + unique_type_id_str.as_slice().with_c_str(|unique_type_id_str| { + unsafe { + llvm::LLVMDIBuilderCreateUnionType( + DIB(cx), + containing_scope, + enum_name, + UNKNOWN_FILE_METADATA, + UNKNOWN_LINE_NUMBER, + bytes_to_bits(enum_type_size), + bytes_to_bits(enum_type_align), + 0, // Flags + ptr::null_mut(), + 0, // RuntimeLang + unique_type_id_str) + } + }) + }); + + return create_and_register_recursive_type_forward_declaration( + cx, + enum_type, + unique_type_id, + enum_metadata, + enum_llvm_type, + EnumMDF(EnumMemberDescriptionFactory { + enum_type: enum_type, + type_rep: type_rep.clone(), + variants: variants, + discriminant_type_metadata: discriminant_type_metadata, + containing_scope: containing_scope, + file_metadata: file_metadata, + span: span, + }), + ); + + fn get_enum_discriminant_name(cx: &CrateContext, + def_id: ast::DefId) + -> token::InternedString { + let name = if def_id.krate == ast::LOCAL_CRATE { + cx.tcx().map.get_path_elem(def_id.node).name() + } else { + csearch::get_item_path(cx.tcx(), def_id).last().unwrap().name() + }; + + token::get_name(name) + } +} + +/// Creates debug information for a composite type, that is, anything that +/// results in a LLVM struct. +/// +/// Examples of Rust types to use this are: structs, tuples, boxes, vecs, and enums. +fn composite_type_metadata(cx: &CrateContext, + composite_llvm_type: Type, + composite_type_name: &str, + composite_type_unique_id: UniqueTypeId, + member_descriptions: &[MemberDescription], + containing_scope: DIScope, + + // Ignore source location information as long as it + // can't be reconstructed for non-local crates. + _file_metadata: DIFile, + _definition_span: Span) + -> DICompositeType { + // Create the (empty) struct metadata node ... + let composite_type_metadata = create_struct_stub(cx, + composite_llvm_type, + composite_type_name, + composite_type_unique_id, + containing_scope); + // ... and immediately create and add the member descriptions. + set_members_of_composite_type(cx, + composite_type_metadata, + composite_llvm_type, + member_descriptions); + + return composite_type_metadata; +} + +fn set_members_of_composite_type(cx: &CrateContext, + composite_type_metadata: DICompositeType, + composite_llvm_type: Type, + member_descriptions: &[MemberDescription]) { + // In some rare cases LLVM metadata uniquing would lead to an existing type + // description being used instead of a new one created in create_struct_stub. + // This would cause a hard to trace assertion in DICompositeType::SetTypeArray(). + // The following check makes sure that we get a better error message if this + // should happen again due to some regression. + { + let mut composite_types_completed = + debug_context(cx).composite_types_completed.borrow_mut(); + if composite_types_completed.contains(&composite_type_metadata) { + let (llvm_version_major, llvm_version_minor) = unsafe { + (llvm::LLVMVersionMajor(), llvm::LLVMVersionMinor()) + }; + + let actual_llvm_version = llvm_version_major * 1000000 + llvm_version_minor * 1000; + let min_supported_llvm_version = 3 * 1000000 + 4 * 1000; + + if actual_llvm_version < min_supported_llvm_version { + cx.sess().warn(format!("This version of rustc was built with LLVM \ + {}.{}. Rustc just ran into a known \ + debuginfo corruption problem thatoften \ + occurs with LLVM versions below 3.4. \ + Please use a rustc built with anewer \ + version of LLVM.", + llvm_version_major, + llvm_version_minor).as_slice()); + } else { + cx.sess().bug("debuginfo::set_members_of_composite_type() - \ + Already completed forward declaration re-encountered."); + } + } else { + composite_types_completed.insert(composite_type_metadata); + } + } + + let member_metadata: Vec<DIDescriptor> = member_descriptions + .iter() + .enumerate() + .map(|(i, member_description)| { + let (member_size, member_align) = size_and_align_of(cx, member_description.llvm_type); + let member_offset = match member_description.offset { + FixedMemberOffset { bytes } => bytes as u64, + ComputedMemberOffset => machine::llelement_offset(cx, composite_llvm_type, i) + }; + + member_description.name.as_slice().with_c_str(|member_name| { + unsafe { + llvm::LLVMDIBuilderCreateMemberType( + DIB(cx), + composite_type_metadata, + member_name, + UNKNOWN_FILE_METADATA, + UNKNOWN_LINE_NUMBER, + bytes_to_bits(member_size), + bytes_to_bits(member_align), + bytes_to_bits(member_offset), + member_description.flags, + member_description.type_metadata) + } + }) + }) + .collect(); + + unsafe { + let type_array = create_DIArray(DIB(cx), member_metadata.as_slice()); + llvm::LLVMDICompositeTypeSetTypeArray(composite_type_metadata, type_array); + } +} + +// A convenience wrapper around LLVMDIBuilderCreateStructType(). Does not do any +// caching, does not add any fields to the struct. This can be done later with +// set_members_of_composite_type(). +fn create_struct_stub(cx: &CrateContext, + struct_llvm_type: Type, + struct_type_name: &str, + unique_type_id: UniqueTypeId, + containing_scope: DIScope) + -> DICompositeType { + let (struct_size, struct_align) = size_and_align_of(cx, struct_llvm_type); + + let unique_type_id_str = debug_context(cx).type_map + .borrow() + .get_unique_type_id_as_string(unique_type_id); + let metadata_stub = unsafe { + struct_type_name.with_c_str(|name| { + unique_type_id_str.as_slice().with_c_str(|unique_type_id| { + // LLVMDIBuilderCreateStructType() wants an empty array. A null + // pointer will lead to hard to trace and debug LLVM assertions + // later on in llvm/lib/IR/Value.cpp. + let empty_array = create_DIArray(DIB(cx), &[]); + + llvm::LLVMDIBuilderCreateStructType( + DIB(cx), + containing_scope, + name, + UNKNOWN_FILE_METADATA, + UNKNOWN_LINE_NUMBER, + bytes_to_bits(struct_size), + bytes_to_bits(struct_align), + 0, + ptr::null_mut(), + empty_array, + 0, + ptr::null_mut(), + unique_type_id) + }) + }) + }; + + return metadata_stub; +} + +fn fixed_vec_metadata(cx: &CrateContext, + unique_type_id: UniqueTypeId, + element_type: ty::t, + len: uint, + span: Span) + -> MetadataCreationResult { + let element_type_metadata = type_metadata(cx, element_type, span); + + return_if_metadata_created_in_meantime!(cx, unique_type_id); + + let element_llvm_type = type_of::type_of(cx, element_type); + let (element_type_size, element_type_align) = size_and_align_of(cx, element_llvm_type); + + let subrange = unsafe { + llvm::LLVMDIBuilderGetOrCreateSubrange( + DIB(cx), + 0, + len as i64) + }; + + let subscripts = create_DIArray(DIB(cx), &[subrange]); + let metadata = unsafe { + llvm::LLVMDIBuilderCreateArrayType( + DIB(cx), + bytes_to_bits(element_type_size * (len as u64)), + bytes_to_bits(element_type_align), + element_type_metadata, + subscripts) + }; + + return MetadataCreationResult::new(metadata, false); +} + +fn vec_slice_metadata(cx: &CrateContext, + vec_type: ty::t, + element_type: ty::t, + unique_type_id: UniqueTypeId, + span: Span) + -> MetadataCreationResult { + let data_ptr_type = ty::mk_ptr(cx.tcx(), ty::mt { + ty: element_type, + mutbl: ast::MutImmutable + }); + + let element_type_metadata = type_metadata(cx, data_ptr_type, span); + + return_if_metadata_created_in_meantime!(cx, unique_type_id); + + let slice_llvm_type = type_of::type_of(cx, vec_type); + let slice_type_name = compute_debuginfo_type_name(cx, vec_type, true); + + let member_llvm_types = slice_llvm_type.field_types(); + assert!(slice_layout_is_correct(cx, + member_llvm_types.as_slice(), + element_type)); + let member_descriptions = [ + MemberDescription { + name: "data_ptr".to_string(), + llvm_type: member_llvm_types[0], + type_metadata: element_type_metadata, + offset: ComputedMemberOffset, + flags: FLAGS_NONE + }, + MemberDescription { + name: "length".to_string(), + llvm_type: member_llvm_types[1], + type_metadata: type_metadata(cx, ty::mk_uint(), span), + offset: ComputedMemberOffset, + flags: FLAGS_NONE + }, + ]; + + assert!(member_descriptions.len() == member_llvm_types.len()); + + let loc = span_start(cx, span); + let file_metadata = file_metadata(cx, loc.file.name.as_slice()); + + let metadata = composite_type_metadata(cx, + slice_llvm_type, + slice_type_name.as_slice(), + unique_type_id, + &member_descriptions, + UNKNOWN_SCOPE_METADATA, + file_metadata, + span); + return MetadataCreationResult::new(metadata, false); + + fn slice_layout_is_correct(cx: &CrateContext, + member_llvm_types: &[Type], + element_type: ty::t) + -> bool { + member_llvm_types.len() == 2 && + member_llvm_types[0] == type_of::type_of(cx, element_type).ptr_to() && + member_llvm_types[1] == cx.int_type() + } +} + +fn subroutine_type_metadata(cx: &CrateContext, + unique_type_id: UniqueTypeId, + signature: &ty::FnSig, + span: Span) + -> MetadataCreationResult { + let mut signature_metadata: Vec<DIType> = Vec::with_capacity(signature.inputs.len() + 1); + + // return type + signature_metadata.push(match signature.output { + ty::FnConverging(ret_ty) => match ty::get(ret_ty).sty { + ty::ty_tup(ref tys) if tys.is_empty() => ptr::null_mut(), + _ => type_metadata(cx, ret_ty, span) + }, + ty::FnDiverging => diverging_type_metadata(cx) + }); + + // regular arguments + for &argument_type in signature.inputs.iter() { + signature_metadata.push(type_metadata(cx, argument_type, span)); + } + + return_if_metadata_created_in_meantime!(cx, unique_type_id); + + return MetadataCreationResult::new( + unsafe { + llvm::LLVMDIBuilderCreateSubroutineType( + DIB(cx), + UNKNOWN_FILE_METADATA, + create_DIArray(DIB(cx), signature_metadata.as_slice())) + }, + false); +} + +// FIXME(1563) This is all a bit of a hack because 'trait pointer' is an ill- +// defined concept. For the case of an actual trait pointer (i.e., Box<Trait>, +// &Trait), trait_object_type should be the whole thing (e.g, Box<Trait>) and +// trait_type should be the actual trait (e.g., Trait). Where the trait is part +// of a DST struct, there is no trait_object_type and the results of this +// function will be a little bit weird. +fn trait_pointer_metadata(cx: &CrateContext, + trait_type: ty::t, + trait_object_type: Option<ty::t>, + unique_type_id: UniqueTypeId) + -> DIType { + // The implementation provided here is a stub. It makes sure that the trait + // type is assigned the correct name, size, namespace, and source location. + // But it does not describe the trait's methods. + + let def_id = match ty::get(trait_type).sty { + ty::ty_trait(box ty::TyTrait { ref principal, .. }) => principal.def_id, + _ => { + let pp_type_name = ppaux::ty_to_string(cx.tcx(), trait_type); + cx.sess().bug(format!("debuginfo: Unexpected trait-object type in \ + trait_pointer_metadata(): {}", + pp_type_name.as_slice()).as_slice()); + } + }; + + let trait_object_type = trait_object_type.unwrap_or(trait_type); + let trait_type_name = + compute_debuginfo_type_name(cx, trait_object_type, false); + + let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id); + + let trait_llvm_type = type_of::type_of(cx, trait_object_type); + + composite_type_metadata(cx, + trait_llvm_type, + trait_type_name.as_slice(), + unique_type_id, + &[], + containing_scope, + UNKNOWN_FILE_METADATA, + codemap::DUMMY_SP) +} + +fn type_metadata(cx: &CrateContext, + t: ty::t, + usage_site_span: Span) + -> DIType { + // Get the unique type id of this type. + let unique_type_id = { + let mut type_map = debug_context(cx).type_map.borrow_mut(); + // First, try to find the type in TypeMap. If we have seen it before, we + // can exit early here. + match type_map.find_metadata_for_type(t) { + Some(metadata) => { + return metadata; + }, + None => { + // The ty::t is not in the TypeMap but maybe we have already seen + // an equivalent type (e.g. only differing in region arguments). + // In order to find out, generate the unique type id and look + // that up. + let unique_type_id = type_map.get_unique_type_id_of_type(cx, t); + match type_map.find_metadata_for_unique_id(unique_type_id) { + Some(metadata) => { + // There is already an equivalent type in the TypeMap. + // Register this ty::t as an alias in the cache and + // return the cached metadata. + type_map.register_type_with_metadata(cx, t, metadata); + return metadata; + }, + None => { + // There really is no type metadata for this type, so + // proceed by creating it. + unique_type_id + } + } + } + } + }; + + debug!("type_metadata: {}", ty::get(t)); + + let sty = &ty::get(t).sty; + let MetadataCreationResult { metadata, already_stored_in_typemap } = match *sty { + ty::ty_bool | + ty::ty_char | + ty::ty_int(_) | + ty::ty_uint(_) | + ty::ty_float(_) => { + MetadataCreationResult::new(basic_type_metadata(cx, t), false) + } + ty::ty_tup(ref elements) if elements.is_empty() => { + MetadataCreationResult::new(basic_type_metadata(cx, t), false) + } + ty::ty_enum(def_id, _) => { + prepare_enum_metadata(cx, t, def_id, unique_type_id, usage_site_span).finalize(cx) + } + ty::ty_vec(typ, Some(len)) => { + fixed_vec_metadata(cx, unique_type_id, typ, len, usage_site_span) + } + // FIXME Can we do better than this for unsized vec/str fields? + ty::ty_vec(typ, None) => fixed_vec_metadata(cx, unique_type_id, typ, 0, usage_site_span), + ty::ty_str => fixed_vec_metadata(cx, unique_type_id, ty::mk_i8(), 0, usage_site_span), + ty::ty_trait(..) => { + MetadataCreationResult::new( + trait_pointer_metadata(cx, t, None, unique_type_id), + false) + } + ty::ty_uniq(ty) | ty::ty_ptr(ty::mt{ty, ..}) | ty::ty_rptr(_, ty::mt{ty, ..}) => { + match ty::get(ty).sty { + ty::ty_vec(typ, None) => { + vec_slice_metadata(cx, t, typ, unique_type_id, usage_site_span) + } + ty::ty_str => { + vec_slice_metadata(cx, t, ty::mk_u8(), unique_type_id, usage_site_span) + } + ty::ty_trait(..) => { + MetadataCreationResult::new( + trait_pointer_metadata(cx, ty, Some(t), unique_type_id), + false) + } + _ => { + let pointee_metadata = type_metadata(cx, ty, usage_site_span); + + match debug_context(cx).type_map + .borrow() + .find_metadata_for_unique_id(unique_type_id) { + Some(metadata) => return metadata, + None => { /* proceed normally */ } + }; + + MetadataCreationResult::new(pointer_type_metadata(cx, t, pointee_metadata), + false) + } + } + } + ty::ty_bare_fn(ref barefnty) => { + subroutine_type_metadata(cx, unique_type_id, &barefnty.sig, usage_site_span) + } + ty::ty_closure(ref closurety) => { + subroutine_type_metadata(cx, unique_type_id, &closurety.sig, usage_site_span) + } + ty::ty_unboxed_closure(ref def_id, _, ref substs) => { + let sig = cx.tcx().unboxed_closures.borrow() + .get(def_id).unwrap().closure_type.sig.subst(cx.tcx(), substs); + subroutine_type_metadata(cx, unique_type_id, &sig, usage_site_span) + } + ty::ty_struct(def_id, ref substs) => { + prepare_struct_metadata(cx, + t, + def_id, + substs, + unique_type_id, + usage_site_span).finalize(cx) + } + ty::ty_tup(ref elements) => { + prepare_tuple_metadata(cx, + t, + elements.as_slice(), + unique_type_id, + usage_site_span).finalize(cx) + } + _ => { + cx.sess().bug(format!("debuginfo: unexpected type in type_metadata: {}", + sty).as_slice()) + } + }; + + { + let mut type_map = debug_context(cx).type_map.borrow_mut(); + + if already_stored_in_typemap { + // Also make sure that we already have a TypeMap entry entry for the unique type id. + let metadata_for_uid = match type_map.find_metadata_for_unique_id(unique_type_id) { + Some(metadata) => metadata, + None => { + let unique_type_id_str = + type_map.get_unique_type_id_as_string(unique_type_id); + let error_message = format!("Expected type metadata for unique \ + type id '{}' to already be in \ + the debuginfo::TypeMap but it \ + was not. (ty::t = {})", + unique_type_id_str.as_slice(), + ppaux::ty_to_string(cx.tcx(), t)); + cx.sess().span_bug(usage_site_span, error_message.as_slice()); + } + }; + + match type_map.find_metadata_for_type(t) { + Some(metadata) => { + if metadata != metadata_for_uid { + let unique_type_id_str = + type_map.get_unique_type_id_as_string(unique_type_id); + let error_message = format!("Mismatch between ty::t and \ + UniqueTypeId maps in \ + debuginfo::TypeMap. \ + UniqueTypeId={}, ty::t={}", + unique_type_id_str.as_slice(), + ppaux::ty_to_string(cx.tcx(), t)); + cx.sess().span_bug(usage_site_span, error_message.as_slice()); + } + } + None => { + type_map.register_type_with_metadata(cx, t, metadata); + } + } + } else { + type_map.register_type_with_metadata(cx, t, metadata); + type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata); + } + } + + metadata +} + +struct MetadataCreationResult { + metadata: DIType, + already_stored_in_typemap: bool +} + +impl MetadataCreationResult { + fn new(metadata: DIType, already_stored_in_typemap: bool) -> MetadataCreationResult { + MetadataCreationResult { + metadata: metadata, + already_stored_in_typemap: already_stored_in_typemap + } + } +} + +#[deriving(PartialEq)] +enum DebugLocation { + KnownLocation { scope: DIScope, line: uint, col: uint }, + UnknownLocation +} + +impl DebugLocation { + fn new(scope: DIScope, line: uint, col: uint) -> DebugLocation { + KnownLocation { + scope: scope, + line: line, + col: col, + } + } +} + +fn set_debug_location(cx: &CrateContext, debug_location: DebugLocation) { + if debug_location == debug_context(cx).current_debug_location.get() { + return; + } + + let metadata_node; + + match debug_location { + KnownLocation { scope, line, .. } => { + // Always set the column to zero like Clang and GCC + let col = UNKNOWN_COLUMN_NUMBER; + debug!("setting debug location to {} {}", line, col); + let elements = [C_i32(cx, line as i32), C_i32(cx, col as i32), + scope, ptr::null_mut()]; + unsafe { + metadata_node = llvm::LLVMMDNodeInContext(debug_context(cx).llcontext, + elements.as_ptr(), + elements.len() as c_uint); + } + } + UnknownLocation => { + debug!("clearing debug location "); + metadata_node = ptr::null_mut(); + } + }; + + unsafe { + llvm::LLVMSetCurrentDebugLocation(cx.raw_builder(), metadata_node); + } + + debug_context(cx).current_debug_location.set(debug_location); +} + +//=----------------------------------------------------------------------------- +// Utility Functions +//=----------------------------------------------------------------------------- + +fn contains_nodebug_attribute(attributes: &[ast::Attribute]) -> bool { + attributes.iter().any(|attr| { + let meta_item: &ast::MetaItem = &*attr.node.value; + match meta_item.node { + ast::MetaWord(ref value) => value.get() == "no_debug", + _ => false + } + }) +} + +/// Return codemap::Loc corresponding to the beginning of the span +fn span_start(cx: &CrateContext, span: Span) -> codemap::Loc { + cx.sess().codemap().lookup_char_pos(span.lo) +} + +fn size_and_align_of(cx: &CrateContext, llvm_type: Type) -> (u64, u64) { + (machine::llsize_of_alloc(cx, llvm_type), machine::llalign_of_min(cx, llvm_type) as u64) +} + +fn bytes_to_bits(bytes: u64) -> u64 { + bytes * 8 +} + +#[inline] +fn debug_context<'a>(cx: &'a CrateContext) -> &'a CrateDebugContext { + let debug_context: &'a CrateDebugContext = cx.dbg_cx().as_ref().unwrap(); + debug_context +} + +#[inline] +#[allow(non_snake_case)] +fn DIB(cx: &CrateContext) -> DIBuilderRef { + cx.dbg_cx().as_ref().unwrap().builder +} + +fn fn_should_be_ignored(fcx: &FunctionContext) -> bool { + match fcx.debug_context.repr { + DebugInfo(_) => false, + _ => true + } +} + +fn assert_type_for_node_id(cx: &CrateContext, + node_id: ast::NodeId, + error_reporting_span: Span) { + if !cx.tcx().node_types.borrow().contains_key(&node_id) { + cx.sess().span_bug(error_reporting_span, + "debuginfo: Could not find type for node id!"); + } +} + +fn get_namespace_and_span_for_item(cx: &CrateContext, def_id: ast::DefId) + -> (DIScope, Span) { + let containing_scope = namespace_for_item(cx, def_id).scope; + let definition_span = if def_id.krate == ast::LOCAL_CRATE { + cx.tcx().map.span(def_id.node) + } else { + // For external items there is no span information + codemap::DUMMY_SP + }; + + (containing_scope, definition_span) +} + +// This procedure builds the *scope map* for a given function, which maps any +// given ast::NodeId in the function's AST to the correct DIScope metadata instance. +// +// This builder procedure walks the AST in execution order and keeps track of +// what belongs to which scope, creating DIScope DIEs along the way, and +// introducing *artificial* lexical scope descriptors where necessary. These +// artificial scopes allow GDB to correctly handle name shadowing. +fn populate_scope_map(cx: &CrateContext, + args: &[ast::Arg], + fn_entry_block: &ast::Block, + fn_metadata: DISubprogram, + fn_ast_id: ast::NodeId, + scope_map: &mut NodeMap<DIScope>) { + let def_map = &cx.tcx().def_map; + + struct ScopeStackEntry { + scope_metadata: DIScope, + ident: Option<ast::Ident> + } + + let mut scope_stack = vec!(ScopeStackEntry { scope_metadata: fn_metadata, + ident: None }); + scope_map.insert(fn_ast_id, fn_metadata); + + // Push argument identifiers onto the stack so arguments integrate nicely + // with variable shadowing. + for arg in args.iter() { + pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, _, path1| { + scope_stack.push(ScopeStackEntry { scope_metadata: fn_metadata, + ident: Some(path1.node) }); + scope_map.insert(node_id, fn_metadata); + }) + } + + // Clang creates a separate scope for function bodies, so let's do this too. + with_new_scope(cx, + fn_entry_block.span, + &mut scope_stack, + scope_map, + |cx, scope_stack, scope_map| { + walk_block(cx, fn_entry_block, scope_stack, scope_map); + }); + + // local helper functions for walking the AST. + fn with_new_scope(cx: &CrateContext, + scope_span: Span, + scope_stack: &mut Vec<ScopeStackEntry> , + scope_map: &mut NodeMap<DIScope>, + inner_walk: |&CrateContext, + &mut Vec<ScopeStackEntry> , + &mut NodeMap<DIScope>|) { + // Create a new lexical scope and push it onto the stack + let loc = cx.sess().codemap().lookup_char_pos(scope_span.lo); + let file_metadata = file_metadata(cx, loc.file.name.as_slice()); + let parent_scope = scope_stack.last().unwrap().scope_metadata; + + let scope_metadata = unsafe { + llvm::LLVMDIBuilderCreateLexicalBlock( + DIB(cx), + parent_scope, + file_metadata, + loc.line as c_uint, + loc.col.to_uint() as c_uint) + }; + + scope_stack.push(ScopeStackEntry { scope_metadata: scope_metadata, + ident: None }); + + inner_walk(cx, scope_stack, scope_map); + + // pop artificial scopes + while scope_stack.last().unwrap().ident.is_some() { + scope_stack.pop(); + } + + if scope_stack.last().unwrap().scope_metadata != scope_metadata { + cx.sess().span_bug(scope_span, "debuginfo: Inconsistency in scope management."); + } + + scope_stack.pop(); + } + + fn walk_block(cx: &CrateContext, + block: &ast::Block, + scope_stack: &mut Vec<ScopeStackEntry> , + scope_map: &mut NodeMap<DIScope>) { + scope_map.insert(block.id, scope_stack.last().unwrap().scope_metadata); + + // The interesting things here are statements and the concluding expression. + for statement in block.stmts.iter() { + scope_map.insert(ast_util::stmt_id(&**statement), + scope_stack.last().unwrap().scope_metadata); + + match statement.node { + ast::StmtDecl(ref decl, _) => + walk_decl(cx, &**decl, scope_stack, scope_map), + ast::StmtExpr(ref exp, _) | + ast::StmtSemi(ref exp, _) => + walk_expr(cx, &**exp, scope_stack, scope_map), + ast::StmtMac(..) => () // Ignore macros (which should be expanded anyway). + } + } + + for exp in block.expr.iter() { + walk_expr(cx, &**exp, scope_stack, scope_map); + } + } + + fn walk_decl(cx: &CrateContext, + decl: &ast::Decl, + scope_stack: &mut Vec<ScopeStackEntry> , + scope_map: &mut NodeMap<DIScope>) { + match *decl { + codemap::Spanned { node: ast::DeclLocal(ref local), .. } => { + scope_map.insert(local.id, scope_stack.last().unwrap().scope_metadata); + + walk_pattern(cx, &*local.pat, scope_stack, scope_map); + + for exp in local.init.iter() { + walk_expr(cx, &**exp, scope_stack, scope_map); + } + } + _ => () + } + } + + fn walk_pattern(cx: &CrateContext, + pat: &ast::Pat, + scope_stack: &mut Vec<ScopeStackEntry> , + scope_map: &mut NodeMap<DIScope>) { + + let def_map = &cx.tcx().def_map; + + // Unfortunately, we cannot just use pat_util::pat_bindings() or + // ast_util::walk_pat() here because we have to visit *all* nodes in + // order to put them into the scope map. The above functions don't do that. + match pat.node { + ast::PatIdent(_, ref path1, ref sub_pat_opt) => { + + // Check if this is a binding. If so we need to put it on the + // scope stack and maybe introduce an artificial scope + if pat_util::pat_is_binding(def_map, &*pat) { + + let ident = path1.node; + + // LLVM does not properly generate 'DW_AT_start_scope' fields + // for variable DIEs. For this reason we have to introduce + // an artificial scope at bindings whenever a variable with + // the same name is declared in *any* parent scope. + // + // Otherwise the following error occurs: + // + // let x = 10; + // + // do_something(); // 'gdb print x' correctly prints 10 + // + // { + // do_something(); // 'gdb print x' prints 0, because it + // // already reads the uninitialized 'x' + // // from the next line... + // let x = 100; + // do_something(); // 'gdb print x' correctly prints 100 + // } + + // Is there already a binding with that name? + // N.B.: this comparison must be UNhygienic... because + // gdb knows nothing about the context, so any two + // variables with the same name will cause the problem. + let need_new_scope = scope_stack + .iter() + .any(|entry| entry.ident.iter().any(|i| i.name == ident.name)); + + if need_new_scope { + // Create a new lexical scope and push it onto the stack + let loc = cx.sess().codemap().lookup_char_pos(pat.span.lo); + let file_metadata = file_metadata(cx, + loc.file + .name + .as_slice()); + let parent_scope = scope_stack.last().unwrap().scope_metadata; + + let scope_metadata = unsafe { + llvm::LLVMDIBuilderCreateLexicalBlock( + DIB(cx), + parent_scope, + file_metadata, + loc.line as c_uint, + loc.col.to_uint() as c_uint) + }; + + scope_stack.push(ScopeStackEntry { + scope_metadata: scope_metadata, + ident: Some(ident) + }); + + } else { + // Push a new entry anyway so the name can be found + let prev_metadata = scope_stack.last().unwrap().scope_metadata; + scope_stack.push(ScopeStackEntry { + scope_metadata: prev_metadata, + ident: Some(ident) + }); + } + } + + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + + for sub_pat in sub_pat_opt.iter() { + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + } + + ast::PatWild(_) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + } + + ast::PatEnum(_, ref sub_pats_opt) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + + for sub_pats in sub_pats_opt.iter() { + for p in sub_pats.iter() { + walk_pattern(cx, &**p, scope_stack, scope_map); + } + } + } + + ast::PatStruct(_, ref field_pats, _) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + + for &codemap::Spanned { + node: ast::FieldPat { pat: ref sub_pat, .. }, + .. + } in field_pats.iter() { + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + } + + ast::PatTup(ref sub_pats) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + + for sub_pat in sub_pats.iter() { + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + } + + ast::PatBox(ref sub_pat) | ast::PatRegion(ref sub_pat) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + + ast::PatLit(ref exp) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + walk_expr(cx, &**exp, scope_stack, scope_map); + } + + ast::PatRange(ref exp1, ref exp2) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + walk_expr(cx, &**exp1, scope_stack, scope_map); + walk_expr(cx, &**exp2, scope_stack, scope_map); + } + + ast::PatVec(ref front_sub_pats, ref middle_sub_pats, ref back_sub_pats) => { + scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); + + for sub_pat in front_sub_pats.iter() { + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + + for sub_pat in middle_sub_pats.iter() { + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + + for sub_pat in back_sub_pats.iter() { + walk_pattern(cx, &**sub_pat, scope_stack, scope_map); + } + } + + ast::PatMac(_) => { + cx.sess().span_bug(pat.span, "debuginfo::populate_scope_map() - \ + Found unexpanded macro."); + } + } + } + + fn walk_expr(cx: &CrateContext, + exp: &ast::Expr, + scope_stack: &mut Vec<ScopeStackEntry> , + scope_map: &mut NodeMap<DIScope>) { + + scope_map.insert(exp.id, scope_stack.last().unwrap().scope_metadata); + + match exp.node { + ast::ExprLit(_) | + ast::ExprBreak(_) | + ast::ExprAgain(_) | + ast::ExprPath(_) => {} + + ast::ExprCast(ref sub_exp, _) | + ast::ExprAddrOf(_, ref sub_exp) | + ast::ExprField(ref sub_exp, _, _) | + ast::ExprTupField(ref sub_exp, _, _) | + ast::ExprParen(ref sub_exp) => + walk_expr(cx, &**sub_exp, scope_stack, scope_map), + + ast::ExprBox(ref place, ref sub_expr) => { + walk_expr(cx, &**place, scope_stack, scope_map); + walk_expr(cx, &**sub_expr, scope_stack, scope_map); + } + + ast::ExprRet(ref exp_opt) => match *exp_opt { + Some(ref sub_exp) => walk_expr(cx, &**sub_exp, scope_stack, scope_map), + None => () + }, + + ast::ExprUnary(_, ref sub_exp) => { + walk_expr(cx, &**sub_exp, scope_stack, scope_map); + } + + ast::ExprAssignOp(_, ref lhs, ref rhs) | + ast::ExprIndex(ref lhs, ref rhs) | + ast::ExprBinary(_, ref lhs, ref rhs) => { + walk_expr(cx, &**lhs, scope_stack, scope_map); + walk_expr(cx, &**rhs, scope_stack, scope_map); + } + + ast::ExprSlice(ref base, ref start, ref end, _) => { + walk_expr(cx, &**base, scope_stack, scope_map); + start.as_ref().map(|x| walk_expr(cx, &**x, scope_stack, scope_map)); + end.as_ref().map(|x| walk_expr(cx, &**x, scope_stack, scope_map)); + } + + ast::ExprVec(ref init_expressions) | + ast::ExprTup(ref init_expressions) => { + for ie in init_expressions.iter() { + walk_expr(cx, &**ie, scope_stack, scope_map); + } + } + + ast::ExprAssign(ref sub_exp1, ref sub_exp2) | + ast::ExprRepeat(ref sub_exp1, ref sub_exp2) => { + walk_expr(cx, &**sub_exp1, scope_stack, scope_map); + walk_expr(cx, &**sub_exp2, scope_stack, scope_map); + } + + ast::ExprIf(ref cond_exp, ref then_block, ref opt_else_exp) => { + walk_expr(cx, &**cond_exp, scope_stack, scope_map); + + with_new_scope(cx, + then_block.span, + scope_stack, + scope_map, + |cx, scope_stack, scope_map| { + walk_block(cx, &**then_block, scope_stack, scope_map); + }); + + match *opt_else_exp { + Some(ref else_exp) => + walk_expr(cx, &**else_exp, scope_stack, scope_map), + _ => () + } + } + + ast::ExprIfLet(..) => { + cx.sess().span_bug(exp.span, "debuginfo::populate_scope_map() - \ + Found unexpanded if-let."); + } + + ast::ExprWhile(ref cond_exp, ref loop_body, _) => { + walk_expr(cx, &**cond_exp, scope_stack, scope_map); + + with_new_scope(cx, + loop_body.span, + scope_stack, + scope_map, + |cx, scope_stack, scope_map| { + walk_block(cx, &**loop_body, scope_stack, scope_map); + }) + } + + ast::ExprWhileLet(..) => { + cx.sess().span_bug(exp.span, "debuginfo::populate_scope_map() - \ + Found unexpanded while-let."); + } + + ast::ExprForLoop(ref pattern, ref head, ref body, _) => { + walk_expr(cx, &**head, scope_stack, scope_map); + + with_new_scope(cx, + exp.span, + scope_stack, + scope_map, + |cx, scope_stack, scope_map| { + scope_map.insert(exp.id, + scope_stack.last() + .unwrap() + .scope_metadata); + walk_pattern(cx, + &**pattern, + scope_stack, + scope_map); + walk_block(cx, &**body, scope_stack, scope_map); + }) + } + + ast::ExprMac(_) => { + cx.sess().span_bug(exp.span, "debuginfo::populate_scope_map() - \ + Found unexpanded macro."); + } + + ast::ExprLoop(ref block, _) | + ast::ExprBlock(ref block) => { + with_new_scope(cx, + block.span, + scope_stack, + scope_map, + |cx, scope_stack, scope_map| { + walk_block(cx, &**block, scope_stack, scope_map); + }) + } + + ast::ExprFnBlock(_, ref decl, ref block) | + ast::ExprProc(ref decl, ref block) | + ast::ExprUnboxedFn(_, _, ref decl, ref block) => { + with_new_scope(cx, + block.span, + scope_stack, + scope_map, + |cx, scope_stack, scope_map| { + for &ast::Arg { pat: ref pattern, .. } in decl.inputs.iter() { + walk_pattern(cx, &**pattern, scope_stack, scope_map); + } + + walk_block(cx, &**block, scope_stack, scope_map); + }) + } + + ast::ExprCall(ref fn_exp, ref args) => { + walk_expr(cx, &**fn_exp, scope_stack, scope_map); + + for arg_exp in args.iter() { + walk_expr(cx, &**arg_exp, scope_stack, scope_map); + } + } + + ast::ExprMethodCall(_, _, ref args) => { + for arg_exp in args.iter() { + walk_expr(cx, &**arg_exp, scope_stack, scope_map); + } + } + + ast::ExprMatch(ref discriminant_exp, ref arms, _) => { + walk_expr(cx, &**discriminant_exp, scope_stack, scope_map); + + // For each arm we have to first walk the pattern as these might + // introduce new artificial scopes. It should be sufficient to + // walk only one pattern per arm, as they all must contain the + // same binding names. + + for arm_ref in arms.iter() { + let arm_span = arm_ref.pats[0].span; + + with_new_scope(cx, + arm_span, + scope_stack, + scope_map, + |cx, scope_stack, scope_map| { + for pat in arm_ref.pats.iter() { + walk_pattern(cx, &**pat, scope_stack, scope_map); + } + + for guard_exp in arm_ref.guard.iter() { + walk_expr(cx, &**guard_exp, scope_stack, scope_map) + } + + walk_expr(cx, &*arm_ref.body, scope_stack, scope_map); + }) + } + } + + ast::ExprStruct(_, ref fields, ref base_exp) => { + for &ast::Field { expr: ref exp, .. } in fields.iter() { + walk_expr(cx, &**exp, scope_stack, scope_map); + } + + match *base_exp { + Some(ref exp) => walk_expr(cx, &**exp, scope_stack, scope_map), + None => () + } + } + + ast::ExprInlineAsm(ast::InlineAsm { ref inputs, + ref outputs, + .. }) => { + // inputs, outputs: Vec<(String, P<Expr>)> + for &(_, ref exp) in inputs.iter() { + walk_expr(cx, &**exp, scope_stack, scope_map); + } + + for &(_, ref exp, _) in outputs.iter() { + walk_expr(cx, &**exp, scope_stack, scope_map); + } + } + } + } +} + + +//=----------------------------------------------------------------------------- +// Type Names for Debug Info +//=----------------------------------------------------------------------------- + +// Compute the name of the type as it should be stored in debuginfo. Does not do +// any caching, i.e. calling the function twice with the same type will also do +// the work twice. The `qualified` parameter only affects the first level of the +// type name, further levels (i.e. type parameters) are always fully qualified. +fn compute_debuginfo_type_name(cx: &CrateContext, + t: ty::t, + qualified: bool) + -> String { + let mut result = String::with_capacity(64); + push_debuginfo_type_name(cx, t, qualified, &mut result); + result +} + +// Pushes the name of the type as it should be stored in debuginfo on the +// `output` String. See also compute_debuginfo_type_name(). +fn push_debuginfo_type_name(cx: &CrateContext, + t: ty::t, + qualified: bool, + output: &mut String) { + match ty::get(t).sty { + ty::ty_bool => output.push_str("bool"), + ty::ty_char => output.push_str("char"), + ty::ty_str => output.push_str("str"), + ty::ty_int(ast::TyI) => output.push_str("int"), + ty::ty_int(ast::TyI8) => output.push_str("i8"), + ty::ty_int(ast::TyI16) => output.push_str("i16"), + ty::ty_int(ast::TyI32) => output.push_str("i32"), + ty::ty_int(ast::TyI64) => output.push_str("i64"), + ty::ty_uint(ast::TyU) => output.push_str("uint"), + ty::ty_uint(ast::TyU8) => output.push_str("u8"), + ty::ty_uint(ast::TyU16) => output.push_str("u16"), + ty::ty_uint(ast::TyU32) => output.push_str("u32"), + ty::ty_uint(ast::TyU64) => output.push_str("u64"), + ty::ty_float(ast::TyF32) => output.push_str("f32"), + ty::ty_float(ast::TyF64) => output.push_str("f64"), + ty::ty_struct(def_id, ref substs) | + ty::ty_enum(def_id, ref substs) => { + push_item_name(cx, def_id, qualified, output); + push_type_params(cx, substs, output); + }, + ty::ty_tup(ref component_types) => { + output.push('('); + for &component_type in component_types.iter() { + push_debuginfo_type_name(cx, component_type, true, output); + output.push_str(", "); + } + if !component_types.is_empty() { + output.pop(); + output.pop(); + } + output.push(')'); + }, + ty::ty_uniq(inner_type) => { + output.push_str("Box<"); + push_debuginfo_type_name(cx, inner_type, true, output); + output.push('>'); + }, + ty::ty_ptr(ty::mt { ty: inner_type, mutbl } ) => { + output.push('*'); + match mutbl { + ast::MutImmutable => output.push_str("const "), + ast::MutMutable => output.push_str("mut "), + } + + push_debuginfo_type_name(cx, inner_type, true, output); + }, + ty::ty_rptr(_, ty::mt { ty: inner_type, mutbl }) => { + output.push('&'); + if mutbl == ast::MutMutable { + output.push_str("mut "); + } + + push_debuginfo_type_name(cx, inner_type, true, output); + }, + ty::ty_vec(inner_type, optional_length) => { + output.push('['); + push_debuginfo_type_name(cx, inner_type, true, output); + + match optional_length { + Some(len) => { + output.push_str(format!(", ..{}", len).as_slice()); + } + None => { /* nothing to do */ } + }; + + output.push(']'); + }, + ty::ty_trait(ref trait_data) => { + push_item_name(cx, trait_data.principal.def_id, false, output); + push_type_params(cx, &trait_data.principal.substs, output); + }, + ty::ty_bare_fn(ty::BareFnTy{ fn_style, abi, ref sig } ) => { + if fn_style == ast::UnsafeFn { + output.push_str("unsafe "); + } + + if abi != ::syntax::abi::Rust { + output.push_str("extern \""); + output.push_str(abi.name()); + output.push_str("\" "); + } + + output.push_str("fn("); + + if sig.inputs.len() > 0 { + for ¶meter_type in sig.inputs.iter() { + push_debuginfo_type_name(cx, parameter_type, true, output); + output.push_str(", "); + } + output.pop(); + output.pop(); + } + + if sig.variadic { + if sig.inputs.len() > 0 { + output.push_str(", ..."); + } else { + output.push_str("..."); + } + } + + output.push(')'); + + match sig.output { + ty::FnConverging(result_type) if ty::type_is_nil(result_type) => {} + ty::FnConverging(result_type) => { + output.push_str(" -> "); + push_debuginfo_type_name(cx, result_type, true, output); + } + ty::FnDiverging => { + output.push_str(" -> !"); + } + } + }, + ty::ty_closure(box ty::ClosureTy { fn_style, + onceness, + store, + ref sig, + .. // omitting bounds ... + }) => { + if fn_style == ast::UnsafeFn { + output.push_str("unsafe "); + } + + if onceness == ast::Once { + output.push_str("once "); + } + + let param_list_closing_char; + match store { + ty::UniqTraitStore => { + output.push_str("proc("); + param_list_closing_char = ')'; + } + ty::RegionTraitStore(_, ast::MutMutable) => { + output.push_str("&mut|"); + param_list_closing_char = '|'; + } + ty::RegionTraitStore(_, ast::MutImmutable) => { + output.push_str("&|"); + param_list_closing_char = '|'; + } + }; + + if sig.inputs.len() > 0 { + for ¶meter_type in sig.inputs.iter() { + push_debuginfo_type_name(cx, parameter_type, true, output); + output.push_str(", "); + } + output.pop(); + output.pop(); + } + + if sig.variadic { + if sig.inputs.len() > 0 { + output.push_str(", ..."); + } else { + output.push_str("..."); + } + } + + output.push(param_list_closing_char); + + match sig.output { + ty::FnConverging(result_type) if ty::type_is_nil(result_type) => {} + ty::FnConverging(result_type) => { + output.push_str(" -> "); + push_debuginfo_type_name(cx, result_type, true, output); + } + ty::FnDiverging => { + output.push_str(" -> !"); + } + } + }, + ty::ty_unboxed_closure(..) => { + output.push_str("closure"); + } + ty::ty_err | + ty::ty_infer(_) | + ty::ty_open(_) | + ty::ty_param(_) => { + cx.sess().bug(format!("debuginfo: Trying to create type name for \ + unexpected type: {}", ppaux::ty_to_string(cx.tcx(), t)).as_slice()); + } + } + + fn push_item_name(cx: &CrateContext, + def_id: ast::DefId, + qualified: bool, + output: &mut String) { + ty::with_path(cx.tcx(), def_id, |mut path| { + if qualified { + if def_id.krate == ast::LOCAL_CRATE { + output.push_str(crate_root_namespace(cx)); + output.push_str("::"); + } + + let mut path_element_count = 0u; + for path_element in path { + let name = token::get_name(path_element.name()); + output.push_str(name.get()); + output.push_str("::"); + path_element_count += 1; + } + + if path_element_count == 0 { + cx.sess().bug("debuginfo: Encountered empty item path!"); + } + + output.pop(); + output.pop(); + } else { + let name = token::get_name(path.last() + .expect("debuginfo: Empty item path?") + .name()); + output.push_str(name.get()); + } + }); + } + + // Pushes the type parameters in the given `Substs` to the output string. + // This ignores region parameters, since they can't reliably be + // reconstructed for items from non-local crates. For local crates, this + // would be possible but with inlining and LTO we have to use the least + // common denominator - otherwise we would run into conflicts. + fn push_type_params(cx: &CrateContext, + substs: &subst::Substs, + output: &mut String) { + if substs.types.is_empty() { + return; + } + + output.push('<'); + + for &type_parameter in substs.types.iter() { + push_debuginfo_type_name(cx, type_parameter, true, output); + output.push_str(", "); + } + + output.pop(); + output.pop(); + + output.push('>'); + } +} + + +//=----------------------------------------------------------------------------- +// Namespace Handling +//=----------------------------------------------------------------------------- + +struct NamespaceTreeNode { + name: ast::Name, + scope: DIScope, + parent: Option<Weak<NamespaceTreeNode>>, +} + +impl NamespaceTreeNode { + fn mangled_name_of_contained_item(&self, item_name: &str) -> String { + fn fill_nested(node: &NamespaceTreeNode, output: &mut String) { + match node.parent { + Some(ref parent) => fill_nested(&*parent.upgrade().unwrap(), output), + None => {} + } + let string = token::get_name(node.name); + output.push_str(format!("{}", string.get().len()).as_slice()); + output.push_str(string.get()); + } + + let mut name = String::from_str("_ZN"); + fill_nested(self, &mut name); + name.push_str(format!("{}", item_name.len()).as_slice()); + name.push_str(item_name); + name.push('E'); + name + } +} + +fn crate_root_namespace<'a>(cx: &'a CrateContext) -> &'a str { + cx.link_meta().crate_name.as_slice() +} + +fn namespace_for_item(cx: &CrateContext, def_id: ast::DefId) -> Rc<NamespaceTreeNode> { + ty::with_path(cx.tcx(), def_id, |path| { + // prepend crate name if not already present + let krate = if def_id.krate == ast::LOCAL_CRATE { + let crate_namespace_ident = token::str_to_ident(crate_root_namespace(cx)); + Some(ast_map::PathMod(crate_namespace_ident.name)) + } else { + None + }; + let mut path = krate.into_iter().chain(path).peekable(); + + let mut current_key = Vec::new(); + let mut parent_node: Option<Rc<NamespaceTreeNode>> = None; + + // Create/Lookup namespace for each element of the path. + loop { + // Emulate a for loop so we can use peek below. + let path_element = match path.next() { + Some(e) => e, + None => break + }; + // Ignore the name of the item (the last path element). + if path.peek().is_none() { + break; + } + + let name = path_element.name(); + current_key.push(name); + + let existing_node = debug_context(cx).namespace_map.borrow() + .get(¤t_key).cloned(); + let current_node = match existing_node { + Some(existing_node) => existing_node, + None => { + // create and insert + let parent_scope = match parent_node { + Some(ref node) => node.scope, + None => ptr::null_mut() + }; + let namespace_name = token::get_name(name); + let scope = namespace_name.get().with_c_str(|namespace_name| { + unsafe { + llvm::LLVMDIBuilderCreateNameSpace( + DIB(cx), + parent_scope, + namespace_name, + // cannot reconstruct file ... + ptr::null_mut(), + // ... or line information, but that's not so important. + 0) + } + }); + + let node = Rc::new(NamespaceTreeNode { + name: name, + scope: scope, + parent: parent_node.map(|parent| parent.downgrade()), + }); + + debug_context(cx).namespace_map.borrow_mut() + .insert(current_key.clone(), node.clone()); + + node + } + }; + + parent_node = Some(current_node); + } + + match parent_node { + Some(node) => node, + None => { + cx.sess().bug(format!("debuginfo::namespace_for_item(): \ + path too short for {}", + def_id).as_slice()); + } + } + }) +} |
