about summary refs log tree commit diff
path: root/src/libstd/io/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/libstd/io/mod.rs')
-rw-r--r--src/libstd/io/mod.rs2993
1 files changed, 0 insertions, 2993 deletions
diff --git a/src/libstd/io/mod.rs b/src/libstd/io/mod.rs
deleted file mode 100644
index 9eb54c2cc00..00000000000
--- a/src/libstd/io/mod.rs
+++ /dev/null
@@ -1,2993 +0,0 @@
-//! Traits, helpers, and type definitions for core I/O functionality.
-//!
-//! The `std::io` module contains a number of common things you'll need
-//! when doing input and output. The most core part of this module is
-//! the [`Read`] and [`Write`] traits, which provide the
-//! most general interface for reading and writing input and output.
-//!
-//! # Read and Write
-//!
-//! Because they are traits, [`Read`] and [`Write`] are implemented by a number
-//! of other types, and you can implement them for your types too. As such,
-//! you'll see a few different types of I/O throughout the documentation in
-//! this module: [`File`]s, [`TcpStream`]s, and sometimes even [`Vec<T>`]s. For
-//! example, [`Read`] adds a [`read`][`Read::read`] method, which we can use on
-//! [`File`]s:
-//!
-//! ```no_run
-//! use std::io;
-//! use std::io::prelude::*;
-//! use std::fs::File;
-//!
-//! fn main() -> io::Result<()> {
-//!     let mut f = File::open("foo.txt")?;
-//!     let mut buffer = [0; 10];
-//!
-//!     // read up to 10 bytes
-//!     let n = f.read(&mut buffer)?;
-//!
-//!     println!("The bytes: {:?}", &buffer[..n]);
-//!     Ok(())
-//! }
-//! ```
-//!
-//! [`Read`] and [`Write`] are so important, implementors of the two traits have a
-//! nickname: readers and writers. So you'll sometimes see 'a reader' instead
-//! of 'a type that implements the [`Read`] trait'. Much easier!
-//!
-//! ## Seek and BufRead
-//!
-//! Beyond that, there are two important traits that are provided: [`Seek`]
-//! and [`BufRead`]. Both of these build on top of a reader to control
-//! how the reading happens. [`Seek`] lets you control where the next byte is
-//! coming from:
-//!
-//! ```no_run
-//! use std::io;
-//! use std::io::prelude::*;
-//! use std::io::SeekFrom;
-//! use std::fs::File;
-//!
-//! fn main() -> io::Result<()> {
-//!     let mut f = File::open("foo.txt")?;
-//!     let mut buffer = [0; 10];
-//!
-//!     // skip to the last 10 bytes of the file
-//!     f.seek(SeekFrom::End(-10))?;
-//!
-//!     // read up to 10 bytes
-//!     let n = f.read(&mut buffer)?;
-//!
-//!     println!("The bytes: {:?}", &buffer[..n]);
-//!     Ok(())
-//! }
-//! ```
-//!
-//! [`BufRead`] uses an internal buffer to provide a number of other ways to read, but
-//! to show it off, we'll need to talk about buffers in general. Keep reading!
-//!
-//! ## BufReader and BufWriter
-//!
-//! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
-//! making near-constant calls to the operating system. To help with this,
-//! `std::io` comes with two structs, [`BufReader`] and [`BufWriter`], which wrap
-//! readers and writers. The wrapper uses a buffer, reducing the number of
-//! calls and providing nicer methods for accessing exactly what you want.
-//!
-//! For example, [`BufReader`] works with the [`BufRead`] trait to add extra
-//! methods to any reader:
-//!
-//! ```no_run
-//! use std::io;
-//! use std::io::prelude::*;
-//! use std::io::BufReader;
-//! use std::fs::File;
-//!
-//! fn main() -> io::Result<()> {
-//!     let f = File::open("foo.txt")?;
-//!     let mut reader = BufReader::new(f);
-//!     let mut buffer = String::new();
-//!
-//!     // read a line into buffer
-//!     reader.read_line(&mut buffer)?;
-//!
-//!     println!("{}", buffer);
-//!     Ok(())
-//! }
-//! ```
-//!
-//! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call
-//! to [`write`][`Write::write`]:
-//!
-//! ```no_run
-//! use std::io;
-//! use std::io::prelude::*;
-//! use std::io::BufWriter;
-//! use std::fs::File;
-//!
-//! fn main() -> io::Result<()> {
-//!     let f = File::create("foo.txt")?;
-//!     {
-//!         let mut writer = BufWriter::new(f);
-//!
-//!         // write a byte to the buffer
-//!         writer.write(&[42])?;
-//!
-//!     } // the buffer is flushed once writer goes out of scope
-//!
-//!     Ok(())
-//! }
-//! ```
-//!
-//! ## Standard input and output
-//!
-//! A very common source of input is standard input:
-//!
-//! ```no_run
-//! use std::io;
-//!
-//! fn main() -> io::Result<()> {
-//!     let mut input = String::new();
-//!
-//!     io::stdin().read_line(&mut input)?;
-//!
-//!     println!("You typed: {}", input.trim());
-//!     Ok(())
-//! }
-//! ```
-//!
-//! Note that you cannot use the [`?` operator] in functions that do not return
-//! a [`Result<T, E>`][`Result`]. Instead, you can call [`.unwrap()`]
-//! or `match` on the return value to catch any possible errors:
-//!
-//! ```no_run
-//! use std::io;
-//!
-//! let mut input = String::new();
-//!
-//! io::stdin().read_line(&mut input).unwrap();
-//! ```
-//!
-//! And a very common source of output is standard output:
-//!
-//! ```no_run
-//! use std::io;
-//! use std::io::prelude::*;
-//!
-//! fn main() -> io::Result<()> {
-//!     io::stdout().write(&[42])?;
-//!     Ok(())
-//! }
-//! ```
-//!
-//! Of course, using [`io::stdout`] directly is less common than something like
-//! [`println!`].
-//!
-//! ## Iterator types
-//!
-//! A large number of the structures provided by `std::io` are for various
-//! ways of iterating over I/O. For example, [`Lines`] is used to split over
-//! lines:
-//!
-//! ```no_run
-//! use std::io;
-//! use std::io::prelude::*;
-//! use std::io::BufReader;
-//! use std::fs::File;
-//!
-//! fn main() -> io::Result<()> {
-//!     let f = File::open("foo.txt")?;
-//!     let reader = BufReader::new(f);
-//!
-//!     for line in reader.lines() {
-//!         println!("{}", line?);
-//!     }
-//!     Ok(())
-//! }
-//! ```
-//!
-//! ## Functions
-//!
-//! There are a number of [functions][functions-list] that offer access to various
-//! features. For example, we can use three of these functions to copy everything
-//! from standard input to standard output:
-//!
-//! ```no_run
-//! use std::io;
-//!
-//! fn main() -> io::Result<()> {
-//!     io::copy(&mut io::stdin(), &mut io::stdout())?;
-//!     Ok(())
-//! }
-//! ```
-//!
-//! [functions-list]: #functions-1
-//!
-//! ## io::Result
-//!
-//! Last, but certainly not least, is [`io::Result`]. This type is used
-//! as the return type of many `std::io` functions that can cause an error, and
-//! can be returned from your own functions as well. Many of the examples in this
-//! module use the [`?` operator]:
-//!
-//! ```
-//! use std::io;
-//!
-//! fn read_input() -> io::Result<()> {
-//!     let mut input = String::new();
-//!
-//!     io::stdin().read_line(&mut input)?;
-//!
-//!     println!("You typed: {}", input.trim());
-//!
-//!     Ok(())
-//! }
-//! ```
-//!
-//! The return type of `read_input()`, [`io::Result<()>`][`io::Result`], is a very
-//! common type for functions which don't have a 'real' return value, but do want to
-//! return errors if they happen. In this case, the only purpose of this function is
-//! to read the line and print it, so we use `()`.
-//!
-//! ## Platform-specific behavior
-//!
-//! Many I/O functions throughout the standard library are documented to indicate
-//! what various library or syscalls they are delegated to. This is done to help
-//! applications both understand what's happening under the hood as well as investigate
-//! any possibly unclear semantics. Note, however, that this is informative, not a binding
-//! contract. The implementation of many of these functions are subject to change over
-//! time and may call fewer or more syscalls/library functions.
-//!
-//! [`File`]: crate::fs::File
-//! [`TcpStream`]: crate::net::TcpStream
-//! [`Vec<T>`]: crate::vec::Vec
-//! [`io::stdout`]: stdout
-//! [`io::Result`]: crate::io::Result
-//! [`?` operator]: ../../book/appendix-02-operators.html
-//! [`Result`]: crate::result::Result
-//! [`.unwrap()`]: crate::result::Result::unwrap
-
-#![stable(feature = "rust1", since = "1.0.0")]
-
-use crate::cmp;
-use crate::fmt;
-use crate::memchr;
-use crate::ops::{Deref, DerefMut};
-use crate::ptr;
-use crate::slice;
-use crate::str;
-use crate::sys;
-
-#[stable(feature = "rust1", since = "1.0.0")]
-pub use self::buffered::IntoInnerError;
-#[stable(feature = "rust1", since = "1.0.0")]
-pub use self::buffered::{BufReader, BufWriter, LineWriter};
-#[stable(feature = "rust1", since = "1.0.0")]
-pub use self::cursor::Cursor;
-#[stable(feature = "rust1", since = "1.0.0")]
-pub use self::error::{Error, ErrorKind, Result};
-#[stable(feature = "rust1", since = "1.0.0")]
-pub use self::stdio::{stderr, stdin, stdout, Stderr, Stdin, Stdout};
-#[stable(feature = "rust1", since = "1.0.0")]
-pub use self::stdio::{StderrLock, StdinLock, StdoutLock};
-#[unstable(feature = "print_internals", issue = "none")]
-pub use self::stdio::{_eprint, _print};
-#[unstable(feature = "libstd_io_internals", issue = "42788")]
-#[doc(no_inline, hidden)]
-pub use self::stdio::{set_panic, set_print};
-#[stable(feature = "rust1", since = "1.0.0")]
-pub use self::util::{copy, empty, repeat, sink, Empty, Repeat, Sink};
-
-mod buffered;
-mod cursor;
-mod error;
-mod impls;
-mod lazy;
-pub mod prelude;
-mod stdio;
-mod util;
-
-const DEFAULT_BUF_SIZE: usize = crate::sys_common::io::DEFAULT_BUF_SIZE;
-
-struct Guard<'a> {
-    buf: &'a mut Vec<u8>,
-    len: usize,
-}
-
-impl Drop for Guard<'_> {
-    fn drop(&mut self) {
-        unsafe {
-            self.buf.set_len(self.len);
-        }
-    }
-}
-
-// A few methods below (read_to_string, read_line) will append data into a
-// `String` buffer, but we need to be pretty careful when doing this. The
-// implementation will just call `.as_mut_vec()` and then delegate to a
-// byte-oriented reading method, but we must ensure that when returning we never
-// leave `buf` in a state such that it contains invalid UTF-8 in its bounds.
-//
-// To this end, we use an RAII guard (to protect against panics) which updates
-// the length of the string when it is dropped. This guard initially truncates
-// the string to the prior length and only after we've validated that the
-// new contents are valid UTF-8 do we allow it to set a longer length.
-//
-// The unsafety in this function is twofold:
-//
-// 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
-//    checks.
-// 2. We're passing a raw buffer to the function `f`, and it is expected that
-//    the function only *appends* bytes to the buffer. We'll get undefined
-//    behavior if existing bytes are overwritten to have non-UTF-8 data.
-fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
-where
-    F: FnOnce(&mut Vec<u8>) -> Result<usize>,
-{
-    unsafe {
-        let mut g = Guard { len: buf.len(), buf: buf.as_mut_vec() };
-        let ret = f(g.buf);
-        if str::from_utf8(&g.buf[g.len..]).is_err() {
-            ret.and_then(|_| {
-                Err(Error::new(ErrorKind::InvalidData, "stream did not contain valid UTF-8"))
-            })
-        } else {
-            g.len = g.buf.len();
-            ret
-        }
-    }
-}
-
-// This uses an adaptive system to extend the vector when it fills. We want to
-// avoid paying to allocate and zero a huge chunk of memory if the reader only
-// has 4 bytes while still making large reads if the reader does have a ton
-// of data to return. Simply tacking on an extra DEFAULT_BUF_SIZE space every
-// time is 4,500 times (!) slower than a default reservation size of 32 if the
-// reader has a very small amount of data to return.
-//
-// Because we're extending the buffer with uninitialized data for trusted
-// readers, we need to make sure to truncate that if any of this panics.
-fn read_to_end<R: Read + ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
-    read_to_end_with_reservation(r, buf, |_| 32)
-}
-
-fn read_to_end_with_reservation<R, F>(
-    r: &mut R,
-    buf: &mut Vec<u8>,
-    mut reservation_size: F,
-) -> Result<usize>
-where
-    R: Read + ?Sized,
-    F: FnMut(&R) -> usize,
-{
-    let start_len = buf.len();
-    let mut g = Guard { len: buf.len(), buf };
-    let ret;
-    loop {
-        if g.len == g.buf.len() {
-            unsafe {
-                // FIXME(danielhenrymantilla): #42788
-                //
-                //   - This creates a (mut) reference to a slice of
-                //     _uninitialized_ integers, which is **undefined behavior**
-                //
-                //   - Only the standard library gets to soundly "ignore" this,
-                //     based on its privileged knowledge of unstable rustc
-                //     internals;
-                g.buf.reserve(reservation_size(r));
-                let capacity = g.buf.capacity();
-                g.buf.set_len(capacity);
-                r.initializer().initialize(&mut g.buf[g.len..]);
-            }
-        }
-
-        match r.read(&mut g.buf[g.len..]) {
-            Ok(0) => {
-                ret = Ok(g.len - start_len);
-                break;
-            }
-            Ok(n) => g.len += n,
-            Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
-            Err(e) => {
-                ret = Err(e);
-                break;
-            }
-        }
-    }
-
-    ret
-}
-
-pub(crate) fn default_read_vectored<F>(read: F, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>
-where
-    F: FnOnce(&mut [u8]) -> Result<usize>,
-{
-    let buf = bufs.iter_mut().find(|b| !b.is_empty()).map_or(&mut [][..], |b| &mut **b);
-    read(buf)
-}
-
-pub(crate) fn default_write_vectored<F>(write: F, bufs: &[IoSlice<'_>]) -> Result<usize>
-where
-    F: FnOnce(&[u8]) -> Result<usize>,
-{
-    let buf = bufs.iter().find(|b| !b.is_empty()).map_or(&[][..], |b| &**b);
-    write(buf)
-}
-
-/// The `Read` trait allows for reading bytes from a source.
-///
-/// Implementors of the `Read` trait are called 'readers'.
-///
-/// Readers are defined by one required method, [`read()`]. Each call to [`read()`]
-/// will attempt to pull bytes from this source into a provided buffer. A
-/// number of other methods are implemented in terms of [`read()`], giving
-/// implementors a number of ways to read bytes while only needing to implement
-/// a single method.
-///
-/// Readers are intended to be composable with one another. Many implementors
-/// throughout [`std::io`] take and provide types which implement the `Read`
-/// trait.
-///
-/// Please note that each call to [`read()`] may involve a system call, and
-/// therefore, using something that implements [`BufRead`], such as
-/// [`BufReader`], will be more efficient.
-///
-/// # Examples
-///
-/// [`File`]s implement `Read`:
-///
-/// ```no_run
-/// use std::io;
-/// use std::io::prelude::*;
-/// use std::fs::File;
-///
-/// fn main() -> io::Result<()> {
-///     let mut f = File::open("foo.txt")?;
-///     let mut buffer = [0; 10];
-///
-///     // read up to 10 bytes
-///     f.read(&mut buffer)?;
-///
-///     let mut buffer = Vec::new();
-///     // read the whole file
-///     f.read_to_end(&mut buffer)?;
-///
-///     // read into a String, so that you don't need to do the conversion.
-///     let mut buffer = String::new();
-///     f.read_to_string(&mut buffer)?;
-///
-///     // and more! See the other methods for more details.
-///     Ok(())
-/// }
-/// ```
-///
-/// Read from [`&str`] because [`&[u8]`][slice] implements `Read`:
-///
-/// ```no_run
-/// # use std::io;
-/// use std::io::prelude::*;
-///
-/// fn main() -> io::Result<()> {
-///     let mut b = "This string will be read".as_bytes();
-///     let mut buffer = [0; 10];
-///
-///     // read up to 10 bytes
-///     b.read(&mut buffer)?;
-///
-///     // etc... it works exactly as a File does!
-///     Ok(())
-/// }
-/// ```
-///
-/// [`read()`]: Read::read
-/// [`&str`]: str
-/// [`std::io`]: self
-/// [`File`]: crate::fs::File
-/// [slice]: ../../std/primitive.slice.html
-#[stable(feature = "rust1", since = "1.0.0")]
-#[doc(spotlight)]
-pub trait Read {
-    /// Pull some bytes from this source into the specified buffer, returning
-    /// how many bytes were read.
-    ///
-    /// This function does not provide any guarantees about whether it blocks
-    /// waiting for data, but if an object needs to block for a read and cannot,
-    /// it will typically signal this via an [`Err`] return value.
-    ///
-    /// If the return value of this method is [`Ok(n)`], then it must be
-    /// guaranteed that `0 <= n <= buf.len()`. A nonzero `n` value indicates
-    /// that the buffer `buf` has been filled in with `n` bytes of data from this
-    /// source. If `n` is `0`, then it can indicate one of two scenarios:
-    ///
-    /// 1. This reader has reached its "end of file" and will likely no longer
-    ///    be able to produce bytes. Note that this does not mean that the
-    ///    reader will *always* no longer be able to produce bytes.
-    /// 2. The buffer specified was 0 bytes in length.
-    ///
-    /// It is not an error if the returned value `n` is smaller than the buffer size,
-    /// even when the reader is not at the end of the stream yet.
-    /// This may happen for example because fewer bytes are actually available right now
-    /// (e. g. being close to end-of-file) or because read() was interrupted by a signal.
-    ///
-    /// No guarantees are provided about the contents of `buf` when this
-    /// function is called, implementations cannot rely on any property of the
-    /// contents of `buf` being true. It is recommended that *implementations*
-    /// only write data to `buf` instead of reading its contents.
-    ///
-    /// Correspondingly, however, *callers* of this method may not assume any guarantees
-    /// about how the implementation uses `buf`. The trait is safe to implement,
-    /// so it is possible that the code that's supposed to write to the buffer might also read
-    /// from it. It is your responsibility to make sure that `buf` is initialized
-    /// before calling `read`. Calling `read` with an uninitialized `buf` (of the kind one
-    /// obtains via [`MaybeUninit<T>`]) is not safe, and can lead to undefined behavior.
-    ///
-    /// [`MaybeUninit<T>`]: crate::mem::MaybeUninit
-    ///
-    /// # Errors
-    ///
-    /// If this function encounters any form of I/O or other error, an error
-    /// variant will be returned. If an error is returned then it must be
-    /// guaranteed that no bytes were read.
-    ///
-    /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read
-    /// operation should be retried if there is nothing else to do.
-    ///
-    /// # Examples
-    ///
-    /// [`File`]s implement `Read`:
-    ///
-    /// [`Ok(n)`]: Ok
-    /// [`File`]: crate::fs::File
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut f = File::open("foo.txt")?;
-    ///     let mut buffer = [0; 10];
-    ///
-    ///     // read up to 10 bytes
-    ///     let n = f.read(&mut buffer[..])?;
-    ///
-    ///     println!("The bytes: {:?}", &buffer[..n]);
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
-
-    /// Like `read`, except that it reads into a slice of buffers.
-    ///
-    /// Data is copied to fill each buffer in order, with the final buffer
-    /// written to possibly being only partially filled. This method must
-    /// behave equivalently to a single call to `read` with concatenated
-    /// buffers.
-    ///
-    /// The default implementation calls `read` with either the first nonempty
-    /// buffer provided, or an empty one if none exists.
-    #[stable(feature = "iovec", since = "1.36.0")]
-    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
-        default_read_vectored(|b| self.read(b), bufs)
-    }
-
-    /// Determines if this `Read`er has an efficient `read_vectored`
-    /// implementation.
-    ///
-    /// If a `Read`er does not override the default `read_vectored`
-    /// implementation, code using it may want to avoid the method all together
-    /// and coalesce writes into a single buffer for higher performance.
-    ///
-    /// The default implementation returns `false`.
-    #[unstable(feature = "can_vector", issue = "69941")]
-    fn is_read_vectored(&self) -> bool {
-        false
-    }
-
-    /// Determines if this `Read`er can work with buffers of uninitialized
-    /// memory.
-    ///
-    /// The default implementation returns an initializer which will zero
-    /// buffers.
-    ///
-    /// If a `Read`er guarantees that it can work properly with uninitialized
-    /// memory, it should call [`Initializer::nop()`]. See the documentation for
-    /// [`Initializer`] for details.
-    ///
-    /// The behavior of this method must be independent of the state of the
-    /// `Read`er - the method only takes `&self` so that it can be used through
-    /// trait objects.
-    ///
-    /// # Safety
-    ///
-    /// This method is unsafe because a `Read`er could otherwise return a
-    /// non-zeroing `Initializer` from another `Read` type without an `unsafe`
-    /// block.
-    #[unstable(feature = "read_initializer", issue = "42788")]
-    #[inline]
-    unsafe fn initializer(&self) -> Initializer {
-        Initializer::zeroing()
-    }
-
-    /// Read all bytes until EOF in this source, placing them into `buf`.
-    ///
-    /// All bytes read from this source will be appended to the specified buffer
-    /// `buf`. This function will continuously call [`read()`] to append more data to
-    /// `buf` until [`read()`] returns either [`Ok(0)`] or an error of
-    /// non-[`ErrorKind::Interrupted`] kind.
-    ///
-    /// If successful, this function will return the total number of bytes read.
-    ///
-    /// # Errors
-    ///
-    /// If this function encounters an error of the kind
-    /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
-    /// will continue.
-    ///
-    /// If any other read error is encountered then this function immediately
-    /// returns. Any bytes which have already been read will be appended to
-    /// `buf`.
-    ///
-    /// # Examples
-    ///
-    /// [`File`]s implement `Read`:
-    ///
-    /// [`read()`]: Read::read
-    /// [`Ok(0)`]: Ok
-    /// [`File`]: crate::fs::File
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut f = File::open("foo.txt")?;
-    ///     let mut buffer = Vec::new();
-    ///
-    ///     // read the whole file
-    ///     f.read_to_end(&mut buffer)?;
-    ///     Ok(())
-    /// }
-    /// ```
-    ///
-    /// (See also the [`std::fs::read`] convenience function for reading from a
-    /// file.)
-    ///
-    /// [`std::fs::read`]: crate::fs::read
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
-        read_to_end(self, buf)
-    }
-
-    /// Read all bytes until EOF in this source, appending them to `buf`.
-    ///
-    /// If successful, this function returns the number of bytes which were read
-    /// and appended to `buf`.
-    ///
-    /// # Errors
-    ///
-    /// If the data in this stream is *not* valid UTF-8 then an error is
-    /// returned and `buf` is unchanged.
-    ///
-    /// See [`read_to_end`][readtoend] for other error semantics.
-    ///
-    /// [readtoend]: Self::read_to_end
-    ///
-    /// # Examples
-    ///
-    /// [`File`][file]s implement `Read`:
-    ///
-    /// [file]: crate::fs::File
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut f = File::open("foo.txt")?;
-    ///     let mut buffer = String::new();
-    ///
-    ///     f.read_to_string(&mut buffer)?;
-    ///     Ok(())
-    /// }
-    /// ```
-    ///
-    /// (See also the [`std::fs::read_to_string`] convenience function for
-    /// reading from a file.)
-    ///
-    /// [`std::fs::read_to_string`]: crate::fs::read_to_string
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
-        // Note that we do *not* call `.read_to_end()` here. We are passing
-        // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
-        // method to fill it up. An arbitrary implementation could overwrite the
-        // entire contents of the vector, not just append to it (which is what
-        // we are expecting).
-        //
-        // To prevent extraneously checking the UTF-8-ness of the entire buffer
-        // we pass it to our hardcoded `read_to_end` implementation which we
-        // know is guaranteed to only read data into the end of the buffer.
-        append_to_string(buf, |b| read_to_end(self, b))
-    }
-
-    /// Read the exact number of bytes required to fill `buf`.
-    ///
-    /// This function reads as many bytes as necessary to completely fill the
-    /// specified buffer `buf`.
-    ///
-    /// No guarantees are provided about the contents of `buf` when this
-    /// function is called, implementations cannot rely on any property of the
-    /// contents of `buf` being true. It is recommended that implementations
-    /// only write data to `buf` instead of reading its contents. The
-    /// documentation on [`read`] has a more detailed explanation on this
-    /// subject.
-    ///
-    /// # Errors
-    ///
-    /// If this function encounters an error of the kind
-    /// [`ErrorKind::Interrupted`] then the error is ignored and the operation
-    /// will continue.
-    ///
-    /// If this function encounters an "end of file" before completely filling
-    /// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
-    /// The contents of `buf` are unspecified in this case.
-    ///
-    /// If any other read error is encountered then this function immediately
-    /// returns. The contents of `buf` are unspecified in this case.
-    ///
-    /// If this function returns an error, it is unspecified how many bytes it
-    /// has read, but it will never read more than would be necessary to
-    /// completely fill the buffer.
-    ///
-    /// # Examples
-    ///
-    /// [`File`]s implement `Read`:
-    ///
-    /// [`read`]: Read::read
-    /// [`File`]: crate::fs::File
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut f = File::open("foo.txt")?;
-    ///     let mut buffer = [0; 10];
-    ///
-    ///     // read exactly 10 bytes
-    ///     f.read_exact(&mut buffer)?;
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "read_exact", since = "1.6.0")]
-    fn read_exact(&mut self, mut buf: &mut [u8]) -> Result<()> {
-        while !buf.is_empty() {
-            match self.read(buf) {
-                Ok(0) => break,
-                Ok(n) => {
-                    let tmp = buf;
-                    buf = &mut tmp[n..];
-                }
-                Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
-                Err(e) => return Err(e),
-            }
-        }
-        if !buf.is_empty() {
-            Err(Error::new(ErrorKind::UnexpectedEof, "failed to fill whole buffer"))
-        } else {
-            Ok(())
-        }
-    }
-
-    /// Creates a "by reference" adaptor for this instance of `Read`.
-    ///
-    /// The returned adaptor also implements `Read` and will simply borrow this
-    /// current reader.
-    ///
-    /// # Examples
-    ///
-    /// [`File`][file]s implement `Read`:
-    ///
-    /// [file]: crate::fs::File
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::Read;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut f = File::open("foo.txt")?;
-    ///     let mut buffer = Vec::new();
-    ///     let mut other_buffer = Vec::new();
-    ///
-    ///     {
-    ///         let reference = f.by_ref();
-    ///
-    ///         // read at most 5 bytes
-    ///         reference.take(5).read_to_end(&mut buffer)?;
-    ///
-    ///     } // drop our &mut reference so we can use f again
-    ///
-    ///     // original file still usable, read the rest
-    ///     f.read_to_end(&mut other_buffer)?;
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn by_ref(&mut self) -> &mut Self
-    where
-        Self: Sized,
-    {
-        self
-    }
-
-    /// Transforms this `Read` instance to an [`Iterator`] over its bytes.
-    ///
-    /// The returned type implements [`Iterator`] where the `Item` is
-    /// [`Result`]`<`[`u8`]`, `[`io::Error`]`>`.
-    /// The yielded item is [`Ok`] if a byte was successfully read and [`Err`]
-    /// otherwise. EOF is mapped to returning [`None`] from this iterator.
-    ///
-    /// # Examples
-    ///
-    /// [`File`][file]s implement `Read`:
-    ///
-    /// [file]: crate::fs::File
-    /// [`Iterator`]: crate::iter::Iterator
-    /// [`Result`]: crate::result::Result
-    /// [`io::Error`]: self::Error
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut f = File::open("foo.txt")?;
-    ///
-    ///     for byte in f.bytes() {
-    ///         println!("{}", byte.unwrap());
-    ///     }
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn bytes(self) -> Bytes<Self>
-    where
-        Self: Sized,
-    {
-        Bytes { inner: self }
-    }
-
-    /// Creates an adaptor which will chain this stream with another.
-    ///
-    /// The returned `Read` instance will first read all bytes from this object
-    /// until EOF is encountered. Afterwards the output is equivalent to the
-    /// output of `next`.
-    ///
-    /// # Examples
-    ///
-    /// [`File`][file]s implement `Read`:
-    ///
-    /// [file]: crate::fs::File
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut f1 = File::open("foo.txt")?;
-    ///     let mut f2 = File::open("bar.txt")?;
-    ///
-    ///     let mut handle = f1.chain(f2);
-    ///     let mut buffer = String::new();
-    ///
-    ///     // read the value into a String. We could use any Read method here,
-    ///     // this is just one example.
-    ///     handle.read_to_string(&mut buffer)?;
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn chain<R: Read>(self, next: R) -> Chain<Self, R>
-    where
-        Self: Sized,
-    {
-        Chain { first: self, second: next, done_first: false }
-    }
-
-    /// Creates an adaptor which will read at most `limit` bytes from it.
-    ///
-    /// This function returns a new instance of `Read` which will read at most
-    /// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
-    /// read errors will not count towards the number of bytes read and future
-    /// calls to [`read()`] may succeed.
-    ///
-    /// # Examples
-    ///
-    /// [`File`]s implement `Read`:
-    ///
-    /// [`File`]: crate::fs::File
-    /// [`Ok(0)`]: Ok
-    /// [`read()`]: Read::read
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut f = File::open("foo.txt")?;
-    ///     let mut buffer = [0; 5];
-    ///
-    ///     // read at most five bytes
-    ///     let mut handle = f.take(5);
-    ///
-    ///     handle.read(&mut buffer)?;
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn take(self, limit: u64) -> Take<Self>
-    where
-        Self: Sized,
-    {
-        Take { inner: self, limit }
-    }
-}
-
-/// A buffer type used with `Read::read_vectored`.
-///
-/// It is semantically a wrapper around an `&mut [u8]`, but is guaranteed to be
-/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
-/// Windows.
-#[stable(feature = "iovec", since = "1.36.0")]
-#[repr(transparent)]
-pub struct IoSliceMut<'a>(sys::io::IoSliceMut<'a>);
-
-#[stable(feature = "iovec-send-sync", since = "1.44.0")]
-unsafe impl<'a> Send for IoSliceMut<'a> {}
-
-#[stable(feature = "iovec-send-sync", since = "1.44.0")]
-unsafe impl<'a> Sync for IoSliceMut<'a> {}
-
-#[stable(feature = "iovec", since = "1.36.0")]
-impl<'a> fmt::Debug for IoSliceMut<'a> {
-    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
-        fmt::Debug::fmt(self.0.as_slice(), fmt)
-    }
-}
-
-impl<'a> IoSliceMut<'a> {
-    /// Creates a new `IoSliceMut` wrapping a byte slice.
-    ///
-    /// # Panics
-    ///
-    /// Panics on Windows if the slice is larger than 4GB.
-    #[stable(feature = "iovec", since = "1.36.0")]
-    #[inline]
-    pub fn new(buf: &'a mut [u8]) -> IoSliceMut<'a> {
-        IoSliceMut(sys::io::IoSliceMut::new(buf))
-    }
-
-    /// Advance the internal cursor of the slice.
-    ///
-    /// # Notes
-    ///
-    /// Elements in the slice may be modified if the cursor is not advanced to
-    /// the end of the slice. For example if we have a slice of buffers with 2
-    /// `IoSliceMut`s, both of length 8, and we advance the cursor by 10 bytes
-    /// the first `IoSliceMut` will be untouched however the second will be
-    /// modified to remove the first 2 bytes (10 - 8).
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(io_slice_advance)]
-    ///
-    /// use std::io::IoSliceMut;
-    /// use std::ops::Deref;
-    ///
-    /// let mut buf1 = [1; 8];
-    /// let mut buf2 = [2; 16];
-    /// let mut buf3 = [3; 8];
-    /// let mut bufs = &mut [
-    ///     IoSliceMut::new(&mut buf1),
-    ///     IoSliceMut::new(&mut buf2),
-    ///     IoSliceMut::new(&mut buf3),
-    /// ][..];
-    ///
-    /// // Mark 10 bytes as read.
-    /// bufs = IoSliceMut::advance(bufs, 10);
-    /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
-    /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
-    /// ```
-    #[unstable(feature = "io_slice_advance", issue = "62726")]
-    #[inline]
-    pub fn advance<'b>(bufs: &'b mut [IoSliceMut<'a>], n: usize) -> &'b mut [IoSliceMut<'a>] {
-        // Number of buffers to remove.
-        let mut remove = 0;
-        // Total length of all the to be removed buffers.
-        let mut accumulated_len = 0;
-        for buf in bufs.iter() {
-            if accumulated_len + buf.len() > n {
-                break;
-            } else {
-                accumulated_len += buf.len();
-                remove += 1;
-            }
-        }
-
-        let bufs = &mut bufs[remove..];
-        if !bufs.is_empty() {
-            bufs[0].0.advance(n - accumulated_len)
-        }
-        bufs
-    }
-}
-
-#[stable(feature = "iovec", since = "1.36.0")]
-impl<'a> Deref for IoSliceMut<'a> {
-    type Target = [u8];
-
-    #[inline]
-    fn deref(&self) -> &[u8] {
-        self.0.as_slice()
-    }
-}
-
-#[stable(feature = "iovec", since = "1.36.0")]
-impl<'a> DerefMut for IoSliceMut<'a> {
-    #[inline]
-    fn deref_mut(&mut self) -> &mut [u8] {
-        self.0.as_mut_slice()
-    }
-}
-
-/// A buffer type used with `Write::write_vectored`.
-///
-/// It is semantically a wrapper around an `&[u8]`, but is guaranteed to be
-/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
-/// Windows.
-#[stable(feature = "iovec", since = "1.36.0")]
-#[derive(Copy, Clone)]
-#[repr(transparent)]
-pub struct IoSlice<'a>(sys::io::IoSlice<'a>);
-
-#[stable(feature = "iovec-send-sync", since = "1.44.0")]
-unsafe impl<'a> Send for IoSlice<'a> {}
-
-#[stable(feature = "iovec-send-sync", since = "1.44.0")]
-unsafe impl<'a> Sync for IoSlice<'a> {}
-
-#[stable(feature = "iovec", since = "1.36.0")]
-impl<'a> fmt::Debug for IoSlice<'a> {
-    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
-        fmt::Debug::fmt(self.0.as_slice(), fmt)
-    }
-}
-
-impl<'a> IoSlice<'a> {
-    /// Creates a new `IoSlice` wrapping a byte slice.
-    ///
-    /// # Panics
-    ///
-    /// Panics on Windows if the slice is larger than 4GB.
-    #[stable(feature = "iovec", since = "1.36.0")]
-    #[inline]
-    pub fn new(buf: &'a [u8]) -> IoSlice<'a> {
-        IoSlice(sys::io::IoSlice::new(buf))
-    }
-
-    /// Advance the internal cursor of the slice.
-    ///
-    /// # Notes
-    ///
-    /// Elements in the slice may be modified if the cursor is not advanced to
-    /// the end of the slice. For example if we have a slice of buffers with 2
-    /// `IoSlice`s, both of length 8, and we advance the cursor by 10 bytes the
-    /// first `IoSlice` will be untouched however the second will be modified to
-    /// remove the first 2 bytes (10 - 8).
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(io_slice_advance)]
-    ///
-    /// use std::io::IoSlice;
-    /// use std::ops::Deref;
-    ///
-    /// let buf1 = [1; 8];
-    /// let buf2 = [2; 16];
-    /// let buf3 = [3; 8];
-    /// let mut bufs = &mut [
-    ///     IoSlice::new(&buf1),
-    ///     IoSlice::new(&buf2),
-    ///     IoSlice::new(&buf3),
-    /// ][..];
-    ///
-    /// // Mark 10 bytes as written.
-    /// bufs = IoSlice::advance(bufs, 10);
-    /// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
-    /// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
-    #[unstable(feature = "io_slice_advance", issue = "62726")]
-    #[inline]
-    pub fn advance<'b>(bufs: &'b mut [IoSlice<'a>], n: usize) -> &'b mut [IoSlice<'a>] {
-        // Number of buffers to remove.
-        let mut remove = 0;
-        // Total length of all the to be removed buffers.
-        let mut accumulated_len = 0;
-        for buf in bufs.iter() {
-            if accumulated_len + buf.len() > n {
-                break;
-            } else {
-                accumulated_len += buf.len();
-                remove += 1;
-            }
-        }
-
-        let bufs = &mut bufs[remove..];
-        if !bufs.is_empty() {
-            bufs[0].0.advance(n - accumulated_len)
-        }
-        bufs
-    }
-}
-
-#[stable(feature = "iovec", since = "1.36.0")]
-impl<'a> Deref for IoSlice<'a> {
-    type Target = [u8];
-
-    #[inline]
-    fn deref(&self) -> &[u8] {
-        self.0.as_slice()
-    }
-}
-
-/// A type used to conditionally initialize buffers passed to `Read` methods.
-#[unstable(feature = "read_initializer", issue = "42788")]
-#[derive(Debug)]
-pub struct Initializer(bool);
-
-impl Initializer {
-    /// Returns a new `Initializer` which will zero out buffers.
-    #[unstable(feature = "read_initializer", issue = "42788")]
-    #[inline]
-    pub fn zeroing() -> Initializer {
-        Initializer(true)
-    }
-
-    /// Returns a new `Initializer` which will not zero out buffers.
-    ///
-    /// # Safety
-    ///
-    /// This may only be called by `Read`ers which guarantee that they will not
-    /// read from buffers passed to `Read` methods, and that the return value of
-    /// the method accurately reflects the number of bytes that have been
-    /// written to the head of the buffer.
-    #[unstable(feature = "read_initializer", issue = "42788")]
-    #[inline]
-    pub unsafe fn nop() -> Initializer {
-        Initializer(false)
-    }
-
-    /// Indicates if a buffer should be initialized.
-    #[unstable(feature = "read_initializer", issue = "42788")]
-    #[inline]
-    pub fn should_initialize(&self) -> bool {
-        self.0
-    }
-
-    /// Initializes a buffer if necessary.
-    #[unstable(feature = "read_initializer", issue = "42788")]
-    #[inline]
-    pub fn initialize(&self, buf: &mut [u8]) {
-        if self.should_initialize() {
-            unsafe { ptr::write_bytes(buf.as_mut_ptr(), 0, buf.len()) }
-        }
-    }
-}
-
-/// A trait for objects which are byte-oriented sinks.
-///
-/// Implementors of the `Write` trait are sometimes called 'writers'.
-///
-/// Writers are defined by two required methods, [`write`] and [`flush`]:
-///
-/// * The [`write`] method will attempt to write some data into the object,
-///   returning how many bytes were successfully written.
-///
-/// * The [`flush`] method is useful for adaptors and explicit buffers
-///   themselves for ensuring that all buffered data has been pushed out to the
-///   'true sink'.
-///
-/// Writers are intended to be composable with one another. Many implementors
-/// throughout [`std::io`] take and provide types which implement the `Write`
-/// trait.
-///
-/// [`write`]: Self::write
-/// [`flush`]: Self::flush
-/// [`std::io`]: index.html
-///
-/// # Examples
-///
-/// ```no_run
-/// use std::io::prelude::*;
-/// use std::fs::File;
-///
-/// fn main() -> std::io::Result<()> {
-///     let data = b"some bytes";
-///
-///     let mut pos = 0;
-///     let mut buffer = File::create("foo.txt")?;
-///
-///     while pos < data.len() {
-///         let bytes_written = buffer.write(&data[pos..])?;
-///         pos += bytes_written;
-///     }
-///     Ok(())
-/// }
-/// ```
-///
-/// The trait also provides convenience methods like [`write_all`], which calls
-/// `write` in a loop until its entire input has been written.
-///
-/// [`write_all`]: Self::write_all
-#[stable(feature = "rust1", since = "1.0.0")]
-#[doc(spotlight)]
-pub trait Write {
-    /// Write a buffer into this writer, returning how many bytes were written.
-    ///
-    /// This function will attempt to write the entire contents of `buf`, but
-    /// the entire write may not succeed, or the write may also generate an
-    /// error. A call to `write` represents *at most one* attempt to write to
-    /// any wrapped object.
-    ///
-    /// Calls to `write` are not guaranteed to block waiting for data to be
-    /// written, and a write which would otherwise block can be indicated through
-    /// an [`Err`] variant.
-    ///
-    /// If the return value is [`Ok(n)`] then it must be guaranteed that
-    /// `n <= buf.len()`. A return value of `0` typically means that the
-    /// underlying object is no longer able to accept bytes and will likely not
-    /// be able to in the future as well, or that the buffer provided is empty.
-    ///
-    /// # Errors
-    ///
-    /// Each call to `write` may generate an I/O error indicating that the
-    /// operation could not be completed. If an error is returned then no bytes
-    /// in the buffer were written to this writer.
-    ///
-    /// It is **not** considered an error if the entire buffer could not be
-    /// written to this writer.
-    ///
-    /// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the
-    /// write operation should be retried if there is nothing else to do.
-    ///
-    /// # Examples
-    ///
-    /// ```no_run
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> std::io::Result<()> {
-    ///     let mut buffer = File::create("foo.txt")?;
-    ///
-    ///     // Writes some prefix of the byte string, not necessarily all of it.
-    ///     buffer.write(b"some bytes")?;
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn write(&mut self, buf: &[u8]) -> Result<usize>;
-
-    /// Like `write`, except that it writes from a slice of buffers.
-    ///
-    /// Data is copied from each buffer in order, with the final buffer
-    /// read from possibly being only partially consumed. This method must
-    /// behave as a call to `write` with the buffers concatenated would.
-    ///
-    /// The default implementation calls `write` with either the first nonempty
-    /// buffer provided, or an empty one if none exists.
-    #[stable(feature = "iovec", since = "1.36.0")]
-    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
-        default_write_vectored(|b| self.write(b), bufs)
-    }
-
-    /// Determines if this `Write`er has an efficient `write_vectored`
-    /// implementation.
-    ///
-    /// If a `Write`er does not override the default `write_vectored`
-    /// implementation, code using it may want to avoid the method all together
-    /// and coalesce writes into a single buffer for higher performance.
-    ///
-    /// The default implementation returns `false`.
-    #[unstable(feature = "can_vector", issue = "69941")]
-    fn is_write_vectored(&self) -> bool {
-        false
-    }
-
-    /// Flush this output stream, ensuring that all intermediately buffered
-    /// contents reach their destination.
-    ///
-    /// # Errors
-    ///
-    /// It is considered an error if not all bytes could be written due to
-    /// I/O errors or EOF being reached.
-    ///
-    /// # Examples
-    ///
-    /// ```no_run
-    /// use std::io::prelude::*;
-    /// use std::io::BufWriter;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> std::io::Result<()> {
-    ///     let mut buffer = BufWriter::new(File::create("foo.txt")?);
-    ///
-    ///     buffer.write_all(b"some bytes")?;
-    ///     buffer.flush()?;
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn flush(&mut self) -> Result<()>;
-
-    /// Attempts to write an entire buffer into this writer.
-    ///
-    /// This method will continuously call [`write`] until there is no more data
-    /// to be written or an error of non-[`ErrorKind::Interrupted`] kind is
-    /// returned. This method will not return until the entire buffer has been
-    /// successfully written or such an error occurs. The first error that is
-    /// not of [`ErrorKind::Interrupted`] kind generated from this method will be
-    /// returned.
-    ///
-    /// If the buffer contains no data, this will never call [`write`].
-    ///
-    /// # Errors
-    ///
-    /// This function will return the first error of
-    /// non-[`ErrorKind::Interrupted`] kind that [`write`] returns.
-    ///
-    /// [`write`]: Self::write
-    ///
-    /// # Examples
-    ///
-    /// ```no_run
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> std::io::Result<()> {
-    ///     let mut buffer = File::create("foo.txt")?;
-    ///
-    ///     buffer.write_all(b"some bytes")?;
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
-        while !buf.is_empty() {
-            match self.write(buf) {
-                Ok(0) => {
-                    return Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"));
-                }
-                Ok(n) => buf = &buf[n..],
-                Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
-                Err(e) => return Err(e),
-            }
-        }
-        Ok(())
-    }
-
-    /// Attempts to write multiple buffers into this writer.
-    ///
-    /// This method will continuously call [`write_vectored`] until there is no
-    /// more data to be written or an error of non-[`ErrorKind::Interrupted`]
-    /// kind is returned. This method will not return until all buffers have
-    /// been successfully written or such an error occurs. The first error that
-    /// is not of [`ErrorKind::Interrupted`] kind generated from this method
-    /// will be returned.
-    ///
-    /// If the buffer contains no data, this will never call [`write_vectored`].
-    ///
-    /// [`write_vectored`]: Self::write_vectored
-    ///
-    /// # Notes
-    ///
-    ///
-    /// Unlike `io::Write::write_vectored`, this takes a *mutable* reference to
-    /// a slice of `IoSlice`s, not an immutable one. That's because we need to
-    /// modify the slice to keep track of the bytes already written.
-    ///
-    /// Once this function returns, the contents of `bufs` are unspecified, as
-    /// this depends on how many calls to `write_vectored` were necessary. It is
-    /// best to understand this function as taking ownership of `bufs` and to
-    /// not use `bufs` afterwards. The underlying buffers, to which the
-    /// `IoSlice`s point (but not the `IoSlice`s themselves), are unchanged and
-    /// can be reused.
-    ///
-    /// # Examples
-    ///
-    /// ```
-    /// #![feature(write_all_vectored)]
-    /// # fn main() -> std::io::Result<()> {
-    ///
-    /// use std::io::{Write, IoSlice};
-    ///
-    /// let mut writer = Vec::new();
-    /// let bufs = &mut [
-    ///     IoSlice::new(&[1]),
-    ///     IoSlice::new(&[2, 3]),
-    ///     IoSlice::new(&[4, 5, 6]),
-    /// ];
-    ///
-    /// writer.write_all_vectored(bufs)?;
-    /// // Note: the contents of `bufs` is now undefined, see the Notes section.
-    ///
-    /// assert_eq!(writer, &[1, 2, 3, 4, 5, 6]);
-    /// # Ok(()) }
-    /// ```
-    #[unstable(feature = "write_all_vectored", issue = "70436")]
-    fn write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()> {
-        // Guarantee that bufs is empty if it contains no data,
-        // to avoid calling write_vectored if there is no data to be written.
-        bufs = IoSlice::advance(bufs, 0);
-        while !bufs.is_empty() {
-            match self.write_vectored(bufs) {
-                Ok(0) => {
-                    return Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"));
-                }
-                Ok(n) => bufs = IoSlice::advance(bufs, n),
-                Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
-                Err(e) => return Err(e),
-            }
-        }
-        Ok(())
-    }
-
-    /// Writes a formatted string into this writer, returning any error
-    /// encountered.
-    ///
-    /// This method is primarily used to interface with the
-    /// [`format_args!()`] macro, but it is rare that this should
-    /// explicitly be called. The [`write!()`] macro should be favored to
-    /// invoke this method instead.
-    ///
-    /// This function internally uses the [`write_all`][writeall] method on
-    /// this trait and hence will continuously write data so long as no errors
-    /// are received. This also means that partial writes are not indicated in
-    /// this signature.
-    ///
-    /// [writeall]: Self::write_all
-    ///
-    /// # Errors
-    ///
-    /// This function will return any I/O error reported while formatting.
-    ///
-    /// # Examples
-    ///
-    /// ```no_run
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> std::io::Result<()> {
-    ///     let mut buffer = File::create("foo.txt")?;
-    ///
-    ///     // this call
-    ///     write!(buffer, "{:.*}", 2, 1.234567)?;
-    ///     // turns into this:
-    ///     buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))?;
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> Result<()> {
-        // Create a shim which translates a Write to a fmt::Write and saves
-        // off I/O errors. instead of discarding them
-        struct Adaptor<'a, T: ?Sized + 'a> {
-            inner: &'a mut T,
-            error: Result<()>,
-        }
-
-        impl<T: Write + ?Sized> fmt::Write for Adaptor<'_, T> {
-            fn write_str(&mut self, s: &str) -> fmt::Result {
-                match self.inner.write_all(s.as_bytes()) {
-                    Ok(()) => Ok(()),
-                    Err(e) => {
-                        self.error = Err(e);
-                        Err(fmt::Error)
-                    }
-                }
-            }
-        }
-
-        let mut output = Adaptor { inner: self, error: Ok(()) };
-        match fmt::write(&mut output, fmt) {
-            Ok(()) => Ok(()),
-            Err(..) => {
-                // check if the error came from the underlying `Write` or not
-                if output.error.is_err() {
-                    output.error
-                } else {
-                    Err(Error::new(ErrorKind::Other, "formatter error"))
-                }
-            }
-        }
-    }
-
-    /// Creates a "by reference" adaptor for this instance of `Write`.
-    ///
-    /// The returned adaptor also implements `Write` and will simply borrow this
-    /// current writer.
-    ///
-    /// # Examples
-    ///
-    /// ```no_run
-    /// use std::io::Write;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> std::io::Result<()> {
-    ///     let mut buffer = File::create("foo.txt")?;
-    ///
-    ///     let reference = buffer.by_ref();
-    ///
-    ///     // we can use reference just like our original buffer
-    ///     reference.write_all(b"some bytes")?;
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn by_ref(&mut self) -> &mut Self
-    where
-        Self: Sized,
-    {
-        self
-    }
-}
-
-/// The `Seek` trait provides a cursor which can be moved within a stream of
-/// bytes.
-///
-/// The stream typically has a fixed size, allowing seeking relative to either
-/// end or the current offset.
-///
-/// # Examples
-///
-/// [`File`][file]s implement `Seek`:
-///
-/// [file]: crate::fs::File
-///
-/// ```no_run
-/// use std::io;
-/// use std::io::prelude::*;
-/// use std::fs::File;
-/// use std::io::SeekFrom;
-///
-/// fn main() -> io::Result<()> {
-///     let mut f = File::open("foo.txt")?;
-///
-///     // move the cursor 42 bytes from the start of the file
-///     f.seek(SeekFrom::Start(42))?;
-///     Ok(())
-/// }
-/// ```
-#[stable(feature = "rust1", since = "1.0.0")]
-pub trait Seek {
-    /// Seek to an offset, in bytes, in a stream.
-    ///
-    /// A seek beyond the end of a stream is allowed, but behavior is defined
-    /// by the implementation.
-    ///
-    /// If the seek operation completed successfully,
-    /// this method returns the new position from the start of the stream.
-    /// That position can be used later with [`SeekFrom::Start`].
-    ///
-    /// # Errors
-    ///
-    /// Seeking to a negative offset is considered an error.
-    ///
-    /// [`SeekFrom::Start`]: enum.SeekFrom.html#variant.Start
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn seek(&mut self, pos: SeekFrom) -> Result<u64>;
-
-    /// Returns the length of this stream (in bytes).
-    ///
-    /// This method is implemented using up to three seek operations. If this
-    /// method returns successfully, the seek position is unchanged (i.e. the
-    /// position before calling this method is the same as afterwards).
-    /// However, if this method returns an error, the seek position is
-    /// unspecified.
-    ///
-    /// If you need to obtain the length of *many* streams and you don't care
-    /// about the seek position afterwards, you can reduce the number of seek
-    /// operations by simply calling `seek(SeekFrom::End(0))` and using its
-    /// return value (it is also the stream length).
-    ///
-    /// Note that length of a stream can change over time (for example, when
-    /// data is appended to a file). So calling this method multiple times does
-    /// not necessarily return the same length each time.
-    ///
-    ///
-    /// # Example
-    ///
-    /// ```no_run
-    /// #![feature(seek_convenience)]
-    /// use std::{
-    ///     io::{self, Seek},
-    ///     fs::File,
-    /// };
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut f = File::open("foo.txt")?;
-    ///
-    ///     let len = f.stream_len()?;
-    ///     println!("The file is currently {} bytes long", len);
-    ///     Ok(())
-    /// }
-    /// ```
-    #[unstable(feature = "seek_convenience", issue = "59359")]
-    fn stream_len(&mut self) -> Result<u64> {
-        let old_pos = self.stream_position()?;
-        let len = self.seek(SeekFrom::End(0))?;
-
-        // Avoid seeking a third time when we were already at the end of the
-        // stream. The branch is usually way cheaper than a seek operation.
-        if old_pos != len {
-            self.seek(SeekFrom::Start(old_pos))?;
-        }
-
-        Ok(len)
-    }
-
-    /// Returns the current seek position from the start of the stream.
-    ///
-    /// This is equivalent to `self.seek(SeekFrom::Current(0))`.
-    ///
-    ///
-    /// # Example
-    ///
-    /// ```no_run
-    /// #![feature(seek_convenience)]
-    /// use std::{
-    ///     io::{self, BufRead, BufReader, Seek},
-    ///     fs::File,
-    /// };
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut f = BufReader::new(File::open("foo.txt")?);
-    ///
-    ///     let before = f.stream_position()?;
-    ///     f.read_line(&mut String::new())?;
-    ///     let after = f.stream_position()?;
-    ///
-    ///     println!("The first line was {} bytes long", after - before);
-    ///     Ok(())
-    /// }
-    /// ```
-    #[unstable(feature = "seek_convenience", issue = "59359")]
-    fn stream_position(&mut self) -> Result<u64> {
-        self.seek(SeekFrom::Current(0))
-    }
-}
-
-/// Enumeration of possible methods to seek within an I/O object.
-///
-/// It is used by the [`Seek`] trait.
-///
-/// [`Seek`]: trait.Seek.html
-#[derive(Copy, PartialEq, Eq, Clone, Debug)]
-#[stable(feature = "rust1", since = "1.0.0")]
-pub enum SeekFrom {
-    /// Sets the offset to the provided number of bytes.
-    #[stable(feature = "rust1", since = "1.0.0")]
-    Start(#[stable(feature = "rust1", since = "1.0.0")] u64),
-
-    /// Sets the offset to the size of this object plus the specified number of
-    /// bytes.
-    ///
-    /// It is possible to seek beyond the end of an object, but it's an error to
-    /// seek before byte 0.
-    #[stable(feature = "rust1", since = "1.0.0")]
-    End(#[stable(feature = "rust1", since = "1.0.0")] i64),
-
-    /// Sets the offset to the current position plus the specified number of
-    /// bytes.
-    ///
-    /// It is possible to seek beyond the end of an object, but it's an error to
-    /// seek before byte 0.
-    #[stable(feature = "rust1", since = "1.0.0")]
-    Current(#[stable(feature = "rust1", since = "1.0.0")] i64),
-}
-
-fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>) -> Result<usize> {
-    let mut read = 0;
-    loop {
-        let (done, used) = {
-            let available = match r.fill_buf() {
-                Ok(n) => n,
-                Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
-                Err(e) => return Err(e),
-            };
-            match memchr::memchr(delim, available) {
-                Some(i) => {
-                    buf.extend_from_slice(&available[..=i]);
-                    (true, i + 1)
-                }
-                None => {
-                    buf.extend_from_slice(available);
-                    (false, available.len())
-                }
-            }
-        };
-        r.consume(used);
-        read += used;
-        if done || used == 0 {
-            return Ok(read);
-        }
-    }
-}
-
-/// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
-/// to perform extra ways of reading.
-///
-/// For example, reading line-by-line is inefficient without using a buffer, so
-/// if you want to read by line, you'll need `BufRead`, which includes a
-/// [`read_line`] method as well as a [`lines`] iterator.
-///
-/// # Examples
-///
-/// A locked standard input implements `BufRead`:
-///
-/// ```no_run
-/// use std::io;
-/// use std::io::prelude::*;
-///
-/// let stdin = io::stdin();
-/// for line in stdin.lock().lines() {
-///     println!("{}", line.unwrap());
-/// }
-/// ```
-///
-/// If you have something that implements [`Read`], you can use the [`BufReader`
-/// type][`BufReader`] to turn it into a `BufRead`.
-///
-/// For example, [`File`] implements [`Read`], but not `BufRead`.
-/// [`BufReader`] to the rescue!
-///
-/// [`BufReader`]: struct.BufReader.html
-/// [`File`]: crate::fs::File
-/// [`read_line`]: Self::read_line
-/// [`lines`]: Self::lines
-/// [`Read`]: trait.Read.html
-///
-/// ```no_run
-/// use std::io::{self, BufReader};
-/// use std::io::prelude::*;
-/// use std::fs::File;
-///
-/// fn main() -> io::Result<()> {
-///     let f = File::open("foo.txt")?;
-///     let f = BufReader::new(f);
-///
-///     for line in f.lines() {
-///         println!("{}", line.unwrap());
-///     }
-///
-///     Ok(())
-/// }
-/// ```
-///
-#[stable(feature = "rust1", since = "1.0.0")]
-pub trait BufRead: Read {
-    /// Returns the contents of the internal buffer, filling it with more data
-    /// from the inner reader if it is empty.
-    ///
-    /// This function is a lower-level call. It needs to be paired with the
-    /// [`consume`] method to function properly. When calling this
-    /// method, none of the contents will be "read" in the sense that later
-    /// calling `read` may return the same contents. As such, [`consume`] must
-    /// be called with the number of bytes that are consumed from this buffer to
-    /// ensure that the bytes are never returned twice.
-    ///
-    /// [`consume`]: Self::consume
-    ///
-    /// An empty buffer returned indicates that the stream has reached EOF.
-    ///
-    /// # Errors
-    ///
-    /// This function will return an I/O error if the underlying reader was
-    /// read, but returned an error.
-    ///
-    /// # Examples
-    ///
-    /// A locked standard input implements `BufRead`:
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    ///
-    /// let stdin = io::stdin();
-    /// let mut stdin = stdin.lock();
-    ///
-    /// let buffer = stdin.fill_buf().unwrap();
-    ///
-    /// // work with buffer
-    /// println!("{:?}", buffer);
-    ///
-    /// // ensure the bytes we worked with aren't returned again later
-    /// let length = buffer.len();
-    /// stdin.consume(length);
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn fill_buf(&mut self) -> Result<&[u8]>;
-
-    /// Tells this buffer that `amt` bytes have been consumed from the buffer,
-    /// so they should no longer be returned in calls to `read`.
-    ///
-    /// This function is a lower-level call. It needs to be paired with the
-    /// [`fill_buf`] method to function properly. This function does
-    /// not perform any I/O, it simply informs this object that some amount of
-    /// its buffer, returned from [`fill_buf`], has been consumed and should
-    /// no longer be returned. As such, this function may do odd things if
-    /// [`fill_buf`] isn't called before calling it.
-    ///
-    /// The `amt` must be `<=` the number of bytes in the buffer returned by
-    /// [`fill_buf`].
-    ///
-    /// # Examples
-    ///
-    /// Since `consume()` is meant to be used with [`fill_buf`],
-    /// that method's example includes an example of `consume()`.
-    ///
-    /// [`fill_buf`]: Self::fill_buf
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn consume(&mut self, amt: usize);
-
-    /// Read all bytes into `buf` until the delimiter `byte` or EOF is reached.
-    ///
-    /// This function will read bytes from the underlying stream until the
-    /// delimiter or EOF is found. Once found, all bytes up to, and including,
-    /// the delimiter (if found) will be appended to `buf`.
-    ///
-    /// If successful, this function will return the total number of bytes read.
-    ///
-    /// This function is blocking and should be used carefully: it is possible for
-    /// an attacker to continuously send bytes without ever sending the delimiter
-    /// or EOF.
-    ///
-    /// # Errors
-    ///
-    /// This function will ignore all instances of [`ErrorKind::Interrupted`] and
-    /// will otherwise return any errors returned by [`fill_buf`].
-    ///
-    /// If an I/O error is encountered then all bytes read so far will be
-    /// present in `buf` and its length will have been adjusted appropriately.
-    ///
-    /// [`fill_buf`]: Self::fill_buf
-    /// [`ErrorKind::Interrupted`]: enum.ErrorKind.html#variant.Interrupted
-    ///
-    /// # Examples
-    ///
-    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
-    /// this example, we use [`Cursor`] to read all the bytes in a byte slice
-    /// in hyphen delimited segments:
-    ///
-    /// [`Cursor`]: struct.Cursor.html
-    ///
-    /// ```
-    /// use std::io::{self, BufRead};
-    ///
-    /// let mut cursor = io::Cursor::new(b"lorem-ipsum");
-    /// let mut buf = vec![];
-    ///
-    /// // cursor is at 'l'
-    /// let num_bytes = cursor.read_until(b'-', &mut buf)
-    ///     .expect("reading from cursor won't fail");
-    /// assert_eq!(num_bytes, 6);
-    /// assert_eq!(buf, b"lorem-");
-    /// buf.clear();
-    ///
-    /// // cursor is at 'i'
-    /// let num_bytes = cursor.read_until(b'-', &mut buf)
-    ///     .expect("reading from cursor won't fail");
-    /// assert_eq!(num_bytes, 5);
-    /// assert_eq!(buf, b"ipsum");
-    /// buf.clear();
-    ///
-    /// // cursor is at EOF
-    /// let num_bytes = cursor.read_until(b'-', &mut buf)
-    ///     .expect("reading from cursor won't fail");
-    /// assert_eq!(num_bytes, 0);
-    /// assert_eq!(buf, b"");
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
-        read_until(self, byte, buf)
-    }
-
-    /// Read all bytes until a newline (the 0xA byte) is reached, and append
-    /// them to the provided buffer.
-    ///
-    /// This function will read bytes from the underlying stream until the
-    /// newline delimiter (the 0xA byte) or EOF is found. Once found, all bytes
-    /// up to, and including, the delimiter (if found) will be appended to
-    /// `buf`.
-    ///
-    /// If successful, this function will return the total number of bytes read.
-    ///
-    /// If this function returns `Ok(0)`, the stream has reached EOF.
-    ///
-    /// This function is blocking and should be used carefully: it is possible for
-    /// an attacker to continuously send bytes without ever sending a newline
-    /// or EOF.
-    ///
-    /// # Errors
-    ///
-    /// This function has the same error semantics as [`read_until`] and will
-    /// also return an error if the read bytes are not valid UTF-8. If an I/O
-    /// error is encountered then `buf` may contain some bytes already read in
-    /// the event that all data read so far was valid UTF-8.
-    ///
-    /// [`read_until`]: Self::read_until
-    ///
-    /// # Examples
-    ///
-    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
-    /// this example, we use [`Cursor`] to read all the lines in a byte slice:
-    ///
-    /// [`Cursor`]: struct.Cursor.html
-    ///
-    /// ```
-    /// use std::io::{self, BufRead};
-    ///
-    /// let mut cursor = io::Cursor::new(b"foo\nbar");
-    /// let mut buf = String::new();
-    ///
-    /// // cursor is at 'f'
-    /// let num_bytes = cursor.read_line(&mut buf)
-    ///     .expect("reading from cursor won't fail");
-    /// assert_eq!(num_bytes, 4);
-    /// assert_eq!(buf, "foo\n");
-    /// buf.clear();
-    ///
-    /// // cursor is at 'b'
-    /// let num_bytes = cursor.read_line(&mut buf)
-    ///     .expect("reading from cursor won't fail");
-    /// assert_eq!(num_bytes, 3);
-    /// assert_eq!(buf, "bar");
-    /// buf.clear();
-    ///
-    /// // cursor is at EOF
-    /// let num_bytes = cursor.read_line(&mut buf)
-    ///     .expect("reading from cursor won't fail");
-    /// assert_eq!(num_bytes, 0);
-    /// assert_eq!(buf, "");
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn read_line(&mut self, buf: &mut String) -> Result<usize> {
-        // Note that we are not calling the `.read_until` method here, but
-        // rather our hardcoded implementation. For more details as to why, see
-        // the comments in `read_to_end`.
-        append_to_string(buf, |b| read_until(self, b'\n', b))
-    }
-
-    /// Returns an iterator over the contents of this reader split on the byte
-    /// `byte`.
-    ///
-    /// The iterator returned from this function will return instances of
-    /// [`io::Result`]`<`[`Vec<u8>`]`>`. Each vector returned will *not* have
-    /// the delimiter byte at the end.
-    ///
-    /// This function will yield errors whenever [`read_until`] would have
-    /// also yielded an error.
-    ///
-    /// [`io::Result`]: self::Result
-    /// [`Vec<u8>`]: crate::vec::Vec
-    /// [`read_until`]: Self::read_until
-    ///
-    /// # Examples
-    ///
-    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
-    /// this example, we use [`Cursor`] to iterate over all hyphen delimited
-    /// segments in a byte slice
-    ///
-    /// [`Cursor`]: struct.Cursor.html
-    ///
-    /// ```
-    /// use std::io::{self, BufRead};
-    ///
-    /// let cursor = io::Cursor::new(b"lorem-ipsum-dolor");
-    ///
-    /// let mut split_iter = cursor.split(b'-').map(|l| l.unwrap());
-    /// assert_eq!(split_iter.next(), Some(b"lorem".to_vec()));
-    /// assert_eq!(split_iter.next(), Some(b"ipsum".to_vec()));
-    /// assert_eq!(split_iter.next(), Some(b"dolor".to_vec()));
-    /// assert_eq!(split_iter.next(), None);
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn split(self, byte: u8) -> Split<Self>
-    where
-        Self: Sized,
-    {
-        Split { buf: self, delim: byte }
-    }
-
-    /// Returns an iterator over the lines of this reader.
-    ///
-    /// The iterator returned from this function will yield instances of
-    /// [`io::Result`]`<`[`String`]`>`. Each string returned will *not* have a newline
-    /// byte (the 0xA byte) or CRLF (0xD, 0xA bytes) at the end.
-    ///
-    /// [`io::Result`]: self::Result
-    ///
-    /// # Examples
-    ///
-    /// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
-    /// this example, we use [`Cursor`] to iterate over all the lines in a byte
-    /// slice.
-    ///
-    /// ```
-    /// use std::io::{self, BufRead};
-    ///
-    /// let cursor = io::Cursor::new(b"lorem\nipsum\r\ndolor");
-    ///
-    /// let mut lines_iter = cursor.lines().map(|l| l.unwrap());
-    /// assert_eq!(lines_iter.next(), Some(String::from("lorem")));
-    /// assert_eq!(lines_iter.next(), Some(String::from("ipsum")));
-    /// assert_eq!(lines_iter.next(), Some(String::from("dolor")));
-    /// assert_eq!(lines_iter.next(), None);
-    /// ```
-    ///
-    /// # Errors
-    ///
-    /// Each line of the iterator has the same error semantics as [`BufRead::read_line`].
-    ///
-    /// [`BufRead::read_line`]: trait.BufRead.html#method.read_line
-    #[stable(feature = "rust1", since = "1.0.0")]
-    fn lines(self) -> Lines<Self>
-    where
-        Self: Sized,
-    {
-        Lines { buf: self }
-    }
-}
-
-/// Adaptor to chain together two readers.
-///
-/// This struct is generally created by calling [`chain`] on a reader.
-/// Please see the documentation of [`chain`] for more details.
-///
-/// [`chain`]: trait.Read.html#method.chain
-#[stable(feature = "rust1", since = "1.0.0")]
-pub struct Chain<T, U> {
-    first: T,
-    second: U,
-    done_first: bool,
-}
-
-impl<T, U> Chain<T, U> {
-    /// Consumes the `Chain`, returning the wrapped readers.
-    ///
-    /// # Examples
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut foo_file = File::open("foo.txt")?;
-    ///     let mut bar_file = File::open("bar.txt")?;
-    ///
-    ///     let chain = foo_file.chain(bar_file);
-    ///     let (foo_file, bar_file) = chain.into_inner();
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
-    pub fn into_inner(self) -> (T, U) {
-        (self.first, self.second)
-    }
-
-    /// Gets references to the underlying readers in this `Chain`.
-    ///
-    /// # Examples
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut foo_file = File::open("foo.txt")?;
-    ///     let mut bar_file = File::open("bar.txt")?;
-    ///
-    ///     let chain = foo_file.chain(bar_file);
-    ///     let (foo_file, bar_file) = chain.get_ref();
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
-    pub fn get_ref(&self) -> (&T, &U) {
-        (&self.first, &self.second)
-    }
-
-    /// Gets mutable references to the underlying readers in this `Chain`.
-    ///
-    /// Care should be taken to avoid modifying the internal I/O state of the
-    /// underlying readers as doing so may corrupt the internal state of this
-    /// `Chain`.
-    ///
-    /// # Examples
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut foo_file = File::open("foo.txt")?;
-    ///     let mut bar_file = File::open("bar.txt")?;
-    ///
-    ///     let mut chain = foo_file.chain(bar_file);
-    ///     let (foo_file, bar_file) = chain.get_mut();
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
-    pub fn get_mut(&mut self) -> (&mut T, &mut U) {
-        (&mut self.first, &mut self.second)
-    }
-}
-
-#[stable(feature = "std_debug", since = "1.16.0")]
-impl<T: fmt::Debug, U: fmt::Debug> fmt::Debug for Chain<T, U> {
-    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        f.debug_struct("Chain").field("t", &self.first).field("u", &self.second).finish()
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Read, U: Read> Read for Chain<T, U> {
-    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
-        if !self.done_first {
-            match self.first.read(buf)? {
-                0 if !buf.is_empty() => self.done_first = true,
-                n => return Ok(n),
-            }
-        }
-        self.second.read(buf)
-    }
-
-    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
-        if !self.done_first {
-            match self.first.read_vectored(bufs)? {
-                0 if bufs.iter().any(|b| !b.is_empty()) => self.done_first = true,
-                n => return Ok(n),
-            }
-        }
-        self.second.read_vectored(bufs)
-    }
-
-    unsafe fn initializer(&self) -> Initializer {
-        let initializer = self.first.initializer();
-        if initializer.should_initialize() { initializer } else { self.second.initializer() }
-    }
-}
-
-#[stable(feature = "chain_bufread", since = "1.9.0")]
-impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
-    fn fill_buf(&mut self) -> Result<&[u8]> {
-        if !self.done_first {
-            match self.first.fill_buf()? {
-                buf if buf.is_empty() => {
-                    self.done_first = true;
-                }
-                buf => return Ok(buf),
-            }
-        }
-        self.second.fill_buf()
-    }
-
-    fn consume(&mut self, amt: usize) {
-        if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) }
-    }
-}
-
-/// Reader adaptor which limits the bytes read from an underlying reader.
-///
-/// This struct is generally created by calling [`take`] on a reader.
-/// Please see the documentation of [`take`] for more details.
-///
-/// [`take`]: trait.Read.html#method.take
-#[stable(feature = "rust1", since = "1.0.0")]
-#[derive(Debug)]
-pub struct Take<T> {
-    inner: T,
-    limit: u64,
-}
-
-impl<T> Take<T> {
-    /// Returns the number of bytes that can be read before this instance will
-    /// return EOF.
-    ///
-    /// # Note
-    ///
-    /// This instance may reach `EOF` after reading fewer bytes than indicated by
-    /// this method if the underlying [`Read`] instance reaches EOF.
-    ///
-    /// # Examples
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let f = File::open("foo.txt")?;
-    ///
-    ///     // read at most five bytes
-    ///     let handle = f.take(5);
-    ///
-    ///     println!("limit: {}", handle.limit());
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "rust1", since = "1.0.0")]
-    pub fn limit(&self) -> u64 {
-        self.limit
-    }
-
-    /// Sets the number of bytes that can be read before this instance will
-    /// return EOF. This is the same as constructing a new `Take` instance, so
-    /// the amount of bytes read and the previous limit value don't matter when
-    /// calling this method.
-    ///
-    /// # Examples
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let f = File::open("foo.txt")?;
-    ///
-    ///     // read at most five bytes
-    ///     let mut handle = f.take(5);
-    ///     handle.set_limit(10);
-    ///
-    ///     assert_eq!(handle.limit(), 10);
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "take_set_limit", since = "1.27.0")]
-    pub fn set_limit(&mut self, limit: u64) {
-        self.limit = limit;
-    }
-
-    /// Consumes the `Take`, returning the wrapped reader.
-    ///
-    /// # Examples
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut file = File::open("foo.txt")?;
-    ///
-    ///     let mut buffer = [0; 5];
-    ///     let mut handle = file.take(5);
-    ///     handle.read(&mut buffer)?;
-    ///
-    ///     let file = handle.into_inner();
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "io_take_into_inner", since = "1.15.0")]
-    pub fn into_inner(self) -> T {
-        self.inner
-    }
-
-    /// Gets a reference to the underlying reader.
-    ///
-    /// # Examples
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut file = File::open("foo.txt")?;
-    ///
-    ///     let mut buffer = [0; 5];
-    ///     let mut handle = file.take(5);
-    ///     handle.read(&mut buffer)?;
-    ///
-    ///     let file = handle.get_ref();
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
-    pub fn get_ref(&self) -> &T {
-        &self.inner
-    }
-
-    /// Gets a mutable reference to the underlying reader.
-    ///
-    /// Care should be taken to avoid modifying the internal I/O state of the
-    /// underlying reader as doing so may corrupt the internal limit of this
-    /// `Take`.
-    ///
-    /// # Examples
-    ///
-    /// ```no_run
-    /// use std::io;
-    /// use std::io::prelude::*;
-    /// use std::fs::File;
-    ///
-    /// fn main() -> io::Result<()> {
-    ///     let mut file = File::open("foo.txt")?;
-    ///
-    ///     let mut buffer = [0; 5];
-    ///     let mut handle = file.take(5);
-    ///     handle.read(&mut buffer)?;
-    ///
-    ///     let file = handle.get_mut();
-    ///     Ok(())
-    /// }
-    /// ```
-    #[stable(feature = "more_io_inner_methods", since = "1.20.0")]
-    pub fn get_mut(&mut self) -> &mut T {
-        &mut self.inner
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: Read> Read for Take<T> {
-    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
-        // Don't call into inner reader at all at EOF because it may still block
-        if self.limit == 0 {
-            return Ok(0);
-        }
-
-        let max = cmp::min(buf.len() as u64, self.limit) as usize;
-        let n = self.inner.read(&mut buf[..max])?;
-        self.limit -= n as u64;
-        Ok(n)
-    }
-
-    unsafe fn initializer(&self) -> Initializer {
-        self.inner.initializer()
-    }
-
-    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
-        // Pass in a reservation_size closure that respects the current value
-        // of limit for each read. If we hit the read limit, this prevents the
-        // final zero-byte read from allocating again.
-        read_to_end_with_reservation(self, buf, |self_| cmp::min(self_.limit, 32) as usize)
-    }
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<T: BufRead> BufRead for Take<T> {
-    fn fill_buf(&mut self) -> Result<&[u8]> {
-        // Don't call into inner reader at all at EOF because it may still block
-        if self.limit == 0 {
-            return Ok(&[]);
-        }
-
-        let buf = self.inner.fill_buf()?;
-        let cap = cmp::min(buf.len() as u64, self.limit) as usize;
-        Ok(&buf[..cap])
-    }
-
-    fn consume(&mut self, amt: usize) {
-        // Don't let callers reset the limit by passing an overlarge value
-        let amt = cmp::min(amt as u64, self.limit) as usize;
-        self.limit -= amt as u64;
-        self.inner.consume(amt);
-    }
-}
-
-/// An iterator over `u8` values of a reader.
-///
-/// This struct is generally created by calling [`bytes`] on a reader.
-/// Please see the documentation of [`bytes`] for more details.
-///
-/// [`bytes`]: trait.Read.html#method.bytes
-#[stable(feature = "rust1", since = "1.0.0")]
-#[derive(Debug)]
-pub struct Bytes<R> {
-    inner: R,
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<R: Read> Iterator for Bytes<R> {
-    type Item = Result<u8>;
-
-    fn next(&mut self) -> Option<Result<u8>> {
-        let mut byte = 0;
-        loop {
-            return match self.inner.read(slice::from_mut(&mut byte)) {
-                Ok(0) => None,
-                Ok(..) => Some(Ok(byte)),
-                Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
-                Err(e) => Some(Err(e)),
-            };
-        }
-    }
-}
-
-/// An iterator over the contents of an instance of `BufRead` split on a
-/// particular byte.
-///
-/// This struct is generally created by calling [`split`] on a `BufRead`.
-/// Please see the documentation of [`split`] for more details.
-///
-/// [`split`]: trait.BufRead.html#method.split
-#[stable(feature = "rust1", since = "1.0.0")]
-#[derive(Debug)]
-pub struct Split<B> {
-    buf: B,
-    delim: u8,
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<B: BufRead> Iterator for Split<B> {
-    type Item = Result<Vec<u8>>;
-
-    fn next(&mut self) -> Option<Result<Vec<u8>>> {
-        let mut buf = Vec::new();
-        match self.buf.read_until(self.delim, &mut buf) {
-            Ok(0) => None,
-            Ok(_n) => {
-                if buf[buf.len() - 1] == self.delim {
-                    buf.pop();
-                }
-                Some(Ok(buf))
-            }
-            Err(e) => Some(Err(e)),
-        }
-    }
-}
-
-/// An iterator over the lines of an instance of `BufRead`.
-///
-/// This struct is generally created by calling [`lines`] on a `BufRead`.
-/// Please see the documentation of [`lines`] for more details.
-///
-/// [`lines`]: trait.BufRead.html#method.lines
-#[stable(feature = "rust1", since = "1.0.0")]
-#[derive(Debug)]
-pub struct Lines<B> {
-    buf: B,
-}
-
-#[stable(feature = "rust1", since = "1.0.0")]
-impl<B: BufRead> Iterator for Lines<B> {
-    type Item = Result<String>;
-
-    fn next(&mut self) -> Option<Result<String>> {
-        let mut buf = String::new();
-        match self.buf.read_line(&mut buf) {
-            Ok(0) => None,
-            Ok(_n) => {
-                if buf.ends_with('\n') {
-                    buf.pop();
-                    if buf.ends_with('\r') {
-                        buf.pop();
-                    }
-                }
-                Some(Ok(buf))
-            }
-            Err(e) => Some(Err(e)),
-        }
-    }
-}
-
-#[cfg(test)]
-mod tests {
-    use super::{repeat, Cursor, SeekFrom};
-    use crate::cmp::{self, min};
-    use crate::io::prelude::*;
-    use crate::io::{self, IoSlice, IoSliceMut};
-    use crate::ops::Deref;
-
-    #[test]
-    #[cfg_attr(target_os = "emscripten", ignore)]
-    fn read_until() {
-        let mut buf = Cursor::new(&b"12"[..]);
-        let mut v = Vec::new();
-        assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 2);
-        assert_eq!(v, b"12");
-
-        let mut buf = Cursor::new(&b"1233"[..]);
-        let mut v = Vec::new();
-        assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 3);
-        assert_eq!(v, b"123");
-        v.truncate(0);
-        assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 1);
-        assert_eq!(v, b"3");
-        v.truncate(0);
-        assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 0);
-        assert_eq!(v, []);
-    }
-
-    #[test]
-    fn split() {
-        let buf = Cursor::new(&b"12"[..]);
-        let mut s = buf.split(b'3');
-        assert_eq!(s.next().unwrap().unwrap(), vec![b'1', b'2']);
-        assert!(s.next().is_none());
-
-        let buf = Cursor::new(&b"1233"[..]);
-        let mut s = buf.split(b'3');
-        assert_eq!(s.next().unwrap().unwrap(), vec![b'1', b'2']);
-        assert_eq!(s.next().unwrap().unwrap(), vec![]);
-        assert!(s.next().is_none());
-    }
-
-    #[test]
-    fn read_line() {
-        let mut buf = Cursor::new(&b"12"[..]);
-        let mut v = String::new();
-        assert_eq!(buf.read_line(&mut v).unwrap(), 2);
-        assert_eq!(v, "12");
-
-        let mut buf = Cursor::new(&b"12\n\n"[..]);
-        let mut v = String::new();
-        assert_eq!(buf.read_line(&mut v).unwrap(), 3);
-        assert_eq!(v, "12\n");
-        v.truncate(0);
-        assert_eq!(buf.read_line(&mut v).unwrap(), 1);
-        assert_eq!(v, "\n");
-        v.truncate(0);
-        assert_eq!(buf.read_line(&mut v).unwrap(), 0);
-        assert_eq!(v, "");
-    }
-
-    #[test]
-    fn lines() {
-        let buf = Cursor::new(&b"12\r"[..]);
-        let mut s = buf.lines();
-        assert_eq!(s.next().unwrap().unwrap(), "12\r".to_string());
-        assert!(s.next().is_none());
-
-        let buf = Cursor::new(&b"12\r\n\n"[..]);
-        let mut s = buf.lines();
-        assert_eq!(s.next().unwrap().unwrap(), "12".to_string());
-        assert_eq!(s.next().unwrap().unwrap(), "".to_string());
-        assert!(s.next().is_none());
-    }
-
-    #[test]
-    fn read_to_end() {
-        let mut c = Cursor::new(&b""[..]);
-        let mut v = Vec::new();
-        assert_eq!(c.read_to_end(&mut v).unwrap(), 0);
-        assert_eq!(v, []);
-
-        let mut c = Cursor::new(&b"1"[..]);
-        let mut v = Vec::new();
-        assert_eq!(c.read_to_end(&mut v).unwrap(), 1);
-        assert_eq!(v, b"1");
-
-        let cap = 1024 * 1024;
-        let data = (0..cap).map(|i| (i / 3) as u8).collect::<Vec<_>>();
-        let mut v = Vec::new();
-        let (a, b) = data.split_at(data.len() / 2);
-        assert_eq!(Cursor::new(a).read_to_end(&mut v).unwrap(), a.len());
-        assert_eq!(Cursor::new(b).read_to_end(&mut v).unwrap(), b.len());
-        assert_eq!(v, data);
-    }
-
-    #[test]
-    fn read_to_string() {
-        let mut c = Cursor::new(&b""[..]);
-        let mut v = String::new();
-        assert_eq!(c.read_to_string(&mut v).unwrap(), 0);
-        assert_eq!(v, "");
-
-        let mut c = Cursor::new(&b"1"[..]);
-        let mut v = String::new();
-        assert_eq!(c.read_to_string(&mut v).unwrap(), 1);
-        assert_eq!(v, "1");
-
-        let mut c = Cursor::new(&b"\xff"[..]);
-        let mut v = String::new();
-        assert!(c.read_to_string(&mut v).is_err());
-    }
-
-    #[test]
-    fn read_exact() {
-        let mut buf = [0; 4];
-
-        let mut c = Cursor::new(&b""[..]);
-        assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof);
-
-        let mut c = Cursor::new(&b"123"[..]).chain(Cursor::new(&b"456789"[..]));
-        c.read_exact(&mut buf).unwrap();
-        assert_eq!(&buf, b"1234");
-        c.read_exact(&mut buf).unwrap();
-        assert_eq!(&buf, b"5678");
-        assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof);
-    }
-
-    #[test]
-    fn read_exact_slice() {
-        let mut buf = [0; 4];
-
-        let mut c = &b""[..];
-        assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof);
-
-        let mut c = &b"123"[..];
-        assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof);
-        // make sure the optimized (early returning) method is being used
-        assert_eq!(&buf, &[0; 4]);
-
-        let mut c = &b"1234"[..];
-        c.read_exact(&mut buf).unwrap();
-        assert_eq!(&buf, b"1234");
-
-        let mut c = &b"56789"[..];
-        c.read_exact(&mut buf).unwrap();
-        assert_eq!(&buf, b"5678");
-        assert_eq!(c, b"9");
-    }
-
-    #[test]
-    fn take_eof() {
-        struct R;
-
-        impl Read for R {
-            fn read(&mut self, _: &mut [u8]) -> io::Result<usize> {
-                Err(io::Error::new(io::ErrorKind::Other, ""))
-            }
-        }
-        impl BufRead for R {
-            fn fill_buf(&mut self) -> io::Result<&[u8]> {
-                Err(io::Error::new(io::ErrorKind::Other, ""))
-            }
-            fn consume(&mut self, _amt: usize) {}
-        }
-
-        let mut buf = [0; 1];
-        assert_eq!(0, R.take(0).read(&mut buf).unwrap());
-        assert_eq!(b"", R.take(0).fill_buf().unwrap());
-    }
-
-    fn cmp_bufread<Br1: BufRead, Br2: BufRead>(mut br1: Br1, mut br2: Br2, exp: &[u8]) {
-        let mut cat = Vec::new();
-        loop {
-            let consume = {
-                let buf1 = br1.fill_buf().unwrap();
-                let buf2 = br2.fill_buf().unwrap();
-                let minlen = if buf1.len() < buf2.len() { buf1.len() } else { buf2.len() };
-                assert_eq!(buf1[..minlen], buf2[..minlen]);
-                cat.extend_from_slice(&buf1[..minlen]);
-                minlen
-            };
-            if consume == 0 {
-                break;
-            }
-            br1.consume(consume);
-            br2.consume(consume);
-        }
-        assert_eq!(br1.fill_buf().unwrap().len(), 0);
-        assert_eq!(br2.fill_buf().unwrap().len(), 0);
-        assert_eq!(&cat[..], &exp[..])
-    }
-
-    #[test]
-    fn chain_bufread() {
-        let testdata = b"ABCDEFGHIJKL";
-        let chain1 =
-            (&testdata[..3]).chain(&testdata[3..6]).chain(&testdata[6..9]).chain(&testdata[9..]);
-        let chain2 = (&testdata[..4]).chain(&testdata[4..8]).chain(&testdata[8..]);
-        cmp_bufread(chain1, chain2, &testdata[..]);
-    }
-
-    #[test]
-    fn chain_zero_length_read_is_not_eof() {
-        let a = b"A";
-        let b = b"B";
-        let mut s = String::new();
-        let mut chain = (&a[..]).chain(&b[..]);
-        chain.read(&mut []).unwrap();
-        chain.read_to_string(&mut s).unwrap();
-        assert_eq!("AB", s);
-    }
-
-    #[bench]
-    #[cfg_attr(target_os = "emscripten", ignore)]
-    fn bench_read_to_end(b: &mut test::Bencher) {
-        b.iter(|| {
-            let mut lr = repeat(1).take(10000000);
-            let mut vec = Vec::with_capacity(1024);
-            super::read_to_end(&mut lr, &mut vec)
-        });
-    }
-
-    #[test]
-    fn seek_len() -> io::Result<()> {
-        let mut c = Cursor::new(vec![0; 15]);
-        assert_eq!(c.stream_len()?, 15);
-
-        c.seek(SeekFrom::End(0))?;
-        let old_pos = c.stream_position()?;
-        assert_eq!(c.stream_len()?, 15);
-        assert_eq!(c.stream_position()?, old_pos);
-
-        c.seek(SeekFrom::Start(7))?;
-        c.seek(SeekFrom::Current(2))?;
-        let old_pos = c.stream_position()?;
-        assert_eq!(c.stream_len()?, 15);
-        assert_eq!(c.stream_position()?, old_pos);
-
-        Ok(())
-    }
-
-    #[test]
-    fn seek_position() -> io::Result<()> {
-        // All `asserts` are duplicated here to make sure the method does not
-        // change anything about the seek state.
-        let mut c = Cursor::new(vec![0; 15]);
-        assert_eq!(c.stream_position()?, 0);
-        assert_eq!(c.stream_position()?, 0);
-
-        c.seek(SeekFrom::End(0))?;
-        assert_eq!(c.stream_position()?, 15);
-        assert_eq!(c.stream_position()?, 15);
-
-        c.seek(SeekFrom::Start(7))?;
-        c.seek(SeekFrom::Current(2))?;
-        assert_eq!(c.stream_position()?, 9);
-        assert_eq!(c.stream_position()?, 9);
-
-        c.seek(SeekFrom::End(-3))?;
-        c.seek(SeekFrom::Current(1))?;
-        c.seek(SeekFrom::Current(-5))?;
-        assert_eq!(c.stream_position()?, 8);
-        assert_eq!(c.stream_position()?, 8);
-
-        Ok(())
-    }
-
-    // A simple example reader which uses the default implementation of
-    // read_to_end.
-    struct ExampleSliceReader<'a> {
-        slice: &'a [u8],
-    }
-
-    impl<'a> Read for ExampleSliceReader<'a> {
-        fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
-            let len = cmp::min(self.slice.len(), buf.len());
-            buf[..len].copy_from_slice(&self.slice[..len]);
-            self.slice = &self.slice[len..];
-            Ok(len)
-        }
-    }
-
-    #[test]
-    fn test_read_to_end_capacity() -> io::Result<()> {
-        let input = &b"foo"[..];
-
-        // read_to_end() generally needs to over-allocate, both for efficiency
-        // and so that it can distinguish EOF. Assert that this is the case
-        // with this simple ExampleSliceReader struct, which uses the default
-        // implementation of read_to_end. Even though vec1 is allocated with
-        // exactly enough capacity for the read, read_to_end will allocate more
-        // space here.
-        let mut vec1 = Vec::with_capacity(input.len());
-        ExampleSliceReader { slice: input }.read_to_end(&mut vec1)?;
-        assert_eq!(vec1.len(), input.len());
-        assert!(vec1.capacity() > input.len(), "allocated more");
-
-        // However, std::io::Take includes an implementation of read_to_end
-        // that will not allocate when the limit has already been reached. In
-        // this case, vec2 never grows.
-        let mut vec2 = Vec::with_capacity(input.len());
-        ExampleSliceReader { slice: input }.take(input.len() as u64).read_to_end(&mut vec2)?;
-        assert_eq!(vec2.len(), input.len());
-        assert_eq!(vec2.capacity(), input.len(), "did not allocate more");
-
-        Ok(())
-    }
-
-    #[test]
-    fn io_slice_mut_advance() {
-        let mut buf1 = [1; 8];
-        let mut buf2 = [2; 16];
-        let mut buf3 = [3; 8];
-        let mut bufs = &mut [
-            IoSliceMut::new(&mut buf1),
-            IoSliceMut::new(&mut buf2),
-            IoSliceMut::new(&mut buf3),
-        ][..];
-
-        // Only in a single buffer..
-        bufs = IoSliceMut::advance(bufs, 1);
-        assert_eq!(bufs[0].deref(), [1; 7].as_ref());
-        assert_eq!(bufs[1].deref(), [2; 16].as_ref());
-        assert_eq!(bufs[2].deref(), [3; 8].as_ref());
-
-        // Removing a buffer, leaving others as is.
-        bufs = IoSliceMut::advance(bufs, 7);
-        assert_eq!(bufs[0].deref(), [2; 16].as_ref());
-        assert_eq!(bufs[1].deref(), [3; 8].as_ref());
-
-        // Removing a buffer and removing from the next buffer.
-        bufs = IoSliceMut::advance(bufs, 18);
-        assert_eq!(bufs[0].deref(), [3; 6].as_ref());
-    }
-
-    #[test]
-    fn io_slice_mut_advance_empty_slice() {
-        let empty_bufs = &mut [][..];
-        // Shouldn't panic.
-        IoSliceMut::advance(empty_bufs, 1);
-    }
-
-    #[test]
-    fn io_slice_mut_advance_beyond_total_length() {
-        let mut buf1 = [1; 8];
-        let mut bufs = &mut [IoSliceMut::new(&mut buf1)][..];
-
-        // Going beyond the total length should be ok.
-        bufs = IoSliceMut::advance(bufs, 9);
-        assert!(bufs.is_empty());
-    }
-
-    #[test]
-    fn io_slice_advance() {
-        let buf1 = [1; 8];
-        let buf2 = [2; 16];
-        let buf3 = [3; 8];
-        let mut bufs = &mut [IoSlice::new(&buf1), IoSlice::new(&buf2), IoSlice::new(&buf3)][..];
-
-        // Only in a single buffer..
-        bufs = IoSlice::advance(bufs, 1);
-        assert_eq!(bufs[0].deref(), [1; 7].as_ref());
-        assert_eq!(bufs[1].deref(), [2; 16].as_ref());
-        assert_eq!(bufs[2].deref(), [3; 8].as_ref());
-
-        // Removing a buffer, leaving others as is.
-        bufs = IoSlice::advance(bufs, 7);
-        assert_eq!(bufs[0].deref(), [2; 16].as_ref());
-        assert_eq!(bufs[1].deref(), [3; 8].as_ref());
-
-        // Removing a buffer and removing from the next buffer.
-        bufs = IoSlice::advance(bufs, 18);
-        assert_eq!(bufs[0].deref(), [3; 6].as_ref());
-    }
-
-    #[test]
-    fn io_slice_advance_empty_slice() {
-        let empty_bufs = &mut [][..];
-        // Shouldn't panic.
-        IoSlice::advance(empty_bufs, 1);
-    }
-
-    #[test]
-    fn io_slice_advance_beyond_total_length() {
-        let buf1 = [1; 8];
-        let mut bufs = &mut [IoSlice::new(&buf1)][..];
-
-        // Going beyond the total length should be ok.
-        bufs = IoSlice::advance(bufs, 9);
-        assert!(bufs.is_empty());
-    }
-
-    /// Create a new writer that reads from at most `n_bufs` and reads
-    /// `per_call` bytes (in total) per call to write.
-    fn test_writer(n_bufs: usize, per_call: usize) -> TestWriter {
-        TestWriter { n_bufs, per_call, written: Vec::new() }
-    }
-
-    struct TestWriter {
-        n_bufs: usize,
-        per_call: usize,
-        written: Vec<u8>,
-    }
-
-    impl Write for TestWriter {
-        fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
-            self.write_vectored(&[IoSlice::new(buf)])
-        }
-
-        fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
-            let mut left = self.per_call;
-            let mut written = 0;
-            for buf in bufs.iter().take(self.n_bufs) {
-                let n = min(left, buf.len());
-                self.written.extend_from_slice(&buf[0..n]);
-                left -= n;
-                written += n;
-            }
-            Ok(written)
-        }
-
-        fn flush(&mut self) -> io::Result<()> {
-            Ok(())
-        }
-    }
-
-    #[test]
-    fn test_writer_read_from_one_buf() {
-        let mut writer = test_writer(1, 2);
-
-        assert_eq!(writer.write(&[]).unwrap(), 0);
-        assert_eq!(writer.write_vectored(&[]).unwrap(), 0);
-
-        // Read at most 2 bytes.
-        assert_eq!(writer.write(&[1, 1, 1]).unwrap(), 2);
-        let bufs = &[IoSlice::new(&[2, 2, 2])];
-        assert_eq!(writer.write_vectored(bufs).unwrap(), 2);
-
-        // Only read from first buf.
-        let bufs = &[IoSlice::new(&[3]), IoSlice::new(&[4, 4])];
-        assert_eq!(writer.write_vectored(bufs).unwrap(), 1);
-
-        assert_eq!(writer.written, &[1, 1, 2, 2, 3]);
-    }
-
-    #[test]
-    fn test_writer_read_from_multiple_bufs() {
-        let mut writer = test_writer(3, 3);
-
-        // Read at most 3 bytes from two buffers.
-        let bufs = &[IoSlice::new(&[1]), IoSlice::new(&[2, 2, 2])];
-        assert_eq!(writer.write_vectored(bufs).unwrap(), 3);
-
-        // Read at most 3 bytes from three buffers.
-        let bufs = &[IoSlice::new(&[3]), IoSlice::new(&[4]), IoSlice::new(&[5, 5])];
-        assert_eq!(writer.write_vectored(bufs).unwrap(), 3);
-
-        assert_eq!(writer.written, &[1, 2, 2, 3, 4, 5]);
-    }
-
-    #[test]
-    fn test_write_all_vectored() {
-        #[rustfmt::skip] // Becomes unreadable otherwise.
-        let tests: Vec<(_, &'static [u8])> = vec![
-            (vec![], &[]),
-            (vec![IoSlice::new(&[]), IoSlice::new(&[])], &[]),
-            (vec![IoSlice::new(&[1])], &[1]),
-            (vec![IoSlice::new(&[1, 2])], &[1, 2]),
-            (vec![IoSlice::new(&[1, 2, 3])], &[1, 2, 3]),
-            (vec![IoSlice::new(&[1, 2, 3, 4])], &[1, 2, 3, 4]),
-            (vec![IoSlice::new(&[1, 2, 3, 4, 5])], &[1, 2, 3, 4, 5]),
-            (vec![IoSlice::new(&[1]), IoSlice::new(&[2])], &[1, 2]),
-            (vec![IoSlice::new(&[1]), IoSlice::new(&[2, 2])], &[1, 2, 2]),
-            (vec![IoSlice::new(&[1, 1]), IoSlice::new(&[2, 2])], &[1, 1, 2, 2]),
-            (vec![IoSlice::new(&[1, 1]), IoSlice::new(&[2, 2, 2])], &[1, 1, 2, 2, 2]),
-            (vec![IoSlice::new(&[1, 1]), IoSlice::new(&[2, 2, 2])], &[1, 1, 2, 2, 2]),
-            (vec![IoSlice::new(&[1, 1, 1]), IoSlice::new(&[2, 2, 2])], &[1, 1, 1, 2, 2, 2]),
-            (vec![IoSlice::new(&[1, 1, 1]), IoSlice::new(&[2, 2, 2, 2])], &[1, 1, 1, 2, 2, 2, 2]),
-            (vec![IoSlice::new(&[1, 1, 1, 1]), IoSlice::new(&[2, 2, 2, 2])], &[1, 1, 1, 1, 2, 2, 2, 2]),
-            (vec![IoSlice::new(&[1]), IoSlice::new(&[2]), IoSlice::new(&[3])], &[1, 2, 3]),
-            (vec![IoSlice::new(&[1, 1]), IoSlice::new(&[2, 2]), IoSlice::new(&[3, 3])], &[1, 1, 2, 2, 3, 3]),
-            (vec![IoSlice::new(&[1]), IoSlice::new(&[2, 2]), IoSlice::new(&[3, 3, 3])], &[1, 2, 2, 3, 3, 3]),
-            (vec![IoSlice::new(&[1, 1, 1]), IoSlice::new(&[2, 2, 2]), IoSlice::new(&[3, 3, 3])], &[1, 1, 1, 2, 2, 2, 3, 3, 3]),
-        ];
-
-        let writer_configs = &[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)];
-
-        for (n_bufs, per_call) in writer_configs.iter().copied() {
-            for (mut input, wanted) in tests.clone().into_iter() {
-                let mut writer = test_writer(n_bufs, per_call);
-                assert!(writer.write_all_vectored(&mut *input).is_ok());
-                assert_eq!(&*writer.written, &*wanted);
-            }
-        }
-    }
-}