summary refs log tree commit diff
path: root/tests/codegen-llvm/transmute-scalar.rs
diff options
context:
space:
mode:
Diffstat (limited to 'tests/codegen-llvm/transmute-scalar.rs')
-rw-r--r--tests/codegen-llvm/transmute-scalar.rs143
1 files changed, 143 insertions, 0 deletions
diff --git a/tests/codegen-llvm/transmute-scalar.rs b/tests/codegen-llvm/transmute-scalar.rs
new file mode 100644
index 00000000000..ce1b0558b2e
--- /dev/null
+++ b/tests/codegen-llvm/transmute-scalar.rs
@@ -0,0 +1,143 @@
+//@ add-core-stubs
+//@ compile-flags: -C opt-level=0 -C no-prepopulate-passes
+
+#![crate_type = "lib"]
+#![feature(no_core, repr_simd, arm_target_feature, mips_target_feature, s390x_target_feature)]
+#![no_core]
+extern crate minicore;
+
+use minicore::*;
+
+// With opaque ptrs in LLVM, `transmute` can load/store any `alloca` as any type,
+// without needing to pointercast, and SRoA will turn that into a `bitcast`.
+// Thus memory-to-memory transmutes don't need to generate them ourselves.
+
+// However, `bitcast`s and `ptrtoint`s and `inttoptr`s are still worth doing when
+// that allows us to avoid the `alloca`s entirely; see `rvalue_creates_operand`.
+
+// CHECK-LABEL: define{{.*}}i32 @f32_to_bits(float %x)
+// CHECK: %_0 = bitcast float %x to i32
+// CHECK-NEXT: ret i32 %_0
+#[no_mangle]
+pub fn f32_to_bits(x: f32) -> u32 {
+    unsafe { mem::transmute(x) }
+}
+
+// CHECK-LABEL: define{{.*}}i8 @bool_to_byte(i1 zeroext %b)
+// CHECK: %_0 = zext i1 %b to i8
+// CHECK-NEXT: ret i8 %_0
+#[no_mangle]
+pub fn bool_to_byte(b: bool) -> u8 {
+    unsafe { mem::transmute(b) }
+}
+
+// CHECK-LABEL: define{{.*}}zeroext i1 @byte_to_bool(i8{{.*}} %byte)
+// CHECK: %_0 = trunc{{( nuw)?}} i8 %byte to i1
+// CHECK-NEXT: ret i1 %_0
+#[no_mangle]
+pub unsafe fn byte_to_bool(byte: u8) -> bool {
+    mem::transmute(byte)
+}
+
+// CHECK-LABEL: define{{.*}}ptr @ptr_to_ptr(ptr %p)
+// CHECK: ret ptr %p
+#[no_mangle]
+pub fn ptr_to_ptr(p: *mut u16) -> *mut u8 {
+    unsafe { mem::transmute(p) }
+}
+
+// CHECK: define{{.*}}[[USIZE:i[0-9]+]] @ptr_to_int(ptr %p)
+// CHECK: %_0 = ptrtoint ptr %p to [[USIZE]]
+// CHECK-NEXT: ret [[USIZE]] %_0
+#[no_mangle]
+pub fn ptr_to_int(p: *mut u16) -> usize {
+    unsafe { mem::transmute(p) }
+}
+
+// CHECK: define{{.*}}ptr @int_to_ptr([[USIZE]] %i)
+// CHECK: %_0 = getelementptr i8, ptr null, [[USIZE]] %i
+// CHECK-NEXT: ret ptr %_0
+#[no_mangle]
+pub fn int_to_ptr(i: usize) -> *mut u16 {
+    unsafe { mem::transmute(i) }
+}
+
+// This is the one case where signedness matters to transmuting:
+// the LLVM type is `i8` here because of `repr(i8)`,
+// whereas below with the `repr(u8)` it's `i1` in LLVM instead.
+#[repr(i8)]
+pub enum FakeBoolSigned {
+    False = 0,
+    True = 1,
+}
+
+// CHECK-LABEL: define{{.*}}i8 @bool_to_fake_bool_signed(i1 zeroext %b)
+// CHECK: %_0 = zext i1 %b to i8
+// CHECK-NEXT: ret i8 %_0
+#[no_mangle]
+pub fn bool_to_fake_bool_signed(b: bool) -> FakeBoolSigned {
+    unsafe { mem::transmute(b) }
+}
+
+// CHECK-LABEL: define{{.*}}i1 @fake_bool_signed_to_bool(i8 %b)
+// CHECK: %_0 = trunc nuw i8 %b to i1
+// CHECK-NEXT: ret i1 %_0
+#[no_mangle]
+pub fn fake_bool_signed_to_bool(b: FakeBoolSigned) -> bool {
+    unsafe { mem::transmute(b) }
+}
+
+#[repr(u8)]
+pub enum FakeBoolUnsigned {
+    False = 0,
+    True = 1,
+}
+
+// CHECK-LABEL: define{{.*}}i1 @bool_to_fake_bool_unsigned(i1 zeroext %b)
+// CHECK: ret i1 %b
+#[no_mangle]
+pub fn bool_to_fake_bool_unsigned(b: bool) -> FakeBoolUnsigned {
+    unsafe { mem::transmute(b) }
+}
+
+// CHECK-LABEL: define{{.*}}i1 @fake_bool_unsigned_to_bool(i1 zeroext %b)
+// CHECK: ret i1 %b
+#[no_mangle]
+pub fn fake_bool_unsigned_to_bool(b: FakeBoolUnsigned) -> bool {
+    unsafe { mem::transmute(b) }
+}
+
+#[repr(simd)]
+struct S([i64; 1]);
+
+// CHECK-LABEL: define{{.*}}i64 @single_element_simd_to_scalar(<1 x i64> %b)
+// CHECK-NEXT: start:
+// CHECK-NEXT: %[[RET:.+]] = alloca [8 x i8]
+// CHECK-NEXT: store <1 x i64> %b, ptr %[[RET]]
+// CHECK-NEXT: %[[TEMP:.+]] = load i64, ptr %[[RET]]
+// CHECK-NEXT: ret i64 %[[TEMP]]
+#[no_mangle]
+#[cfg_attr(target_family = "wasm", target_feature(enable = "simd128"))]
+#[cfg_attr(target_arch = "arm", target_feature(enable = "neon"))]
+#[cfg_attr(target_arch = "x86", target_feature(enable = "sse"))]
+#[cfg_attr(target_arch = "mips", target_feature(enable = "msa"))]
+#[cfg_attr(target_arch = "s390x", target_feature(enable = "vector"))]
+pub extern "C" fn single_element_simd_to_scalar(b: S) -> i64 {
+    unsafe { mem::transmute(b) }
+}
+
+// CHECK-LABEL: define{{.*}}<1 x i64> @scalar_to_single_element_simd(i64 %b)
+// CHECK-NEXT: start:
+// CHECK-NEXT: %[[RET:.+]] = alloca [8 x i8]
+// CHECK-NEXT: store i64 %b, ptr %[[RET]]
+// CHECK-NEXT: %[[TEMP:.+]] = load <1 x i64>, ptr %[[RET]]
+// CHECK-NEXT: ret <1 x i64> %[[TEMP]]
+#[no_mangle]
+#[cfg_attr(target_family = "wasm", target_feature(enable = "simd128"))]
+#[cfg_attr(target_arch = "arm", target_feature(enable = "neon"))]
+#[cfg_attr(target_arch = "x86", target_feature(enable = "sse"))]
+#[cfg_attr(target_arch = "mips", target_feature(enable = "msa"))]
+#[cfg_attr(target_arch = "s390x", target_feature(enable = "vector"))]
+pub extern "C" fn scalar_to_single_element_simd(b: i64) -> S {
+    unsafe { mem::transmute(b) }
+}