| Age | Commit message (Collapse) | Author | Lines |
|
TypeTree support in autodiff
# TypeTrees for Autodiff
## What are TypeTrees?
Memory layout descriptors for Enzyme. Tell Enzyme exactly how types are structured in memory so it can compute derivatives efficiently.
## Structure
```rust
TypeTree(Vec<Type>)
Type {
offset: isize, // byte offset (-1 = everywhere)
size: usize, // size in bytes
kind: Kind, // Float, Integer, Pointer, etc.
child: TypeTree // nested structure
}
```
## Example: `fn compute(x: &f32, data: &[f32]) -> f32`
**Input 0: `x: &f32`**
```rust
TypeTree(vec![Type {
offset: -1, size: 8, kind: Pointer,
child: TypeTree(vec![Type {
offset: -1, size: 4, kind: Float,
child: TypeTree::new()
}])
}])
```
**Input 1: `data: &[f32]`**
```rust
TypeTree(vec![Type {
offset: -1, size: 8, kind: Pointer,
child: TypeTree(vec![Type {
offset: -1, size: 4, kind: Float, // -1 = all elements
child: TypeTree::new()
}])
}])
```
**Output: `f32`**
```rust
TypeTree(vec![Type {
offset: -1, size: 4, kind: Float,
child: TypeTree::new()
}])
```
## Why Needed?
- Enzyme can't deduce complex type layouts from LLVM IR
- Prevents slow memory pattern analysis
- Enables correct derivative computation for nested structures
- Tells Enzyme which bytes are differentiable vs metadata
## What Enzyme Does With This Information:
Without TypeTrees (current state):
```llvm
; Enzyme sees generic LLVM IR:
define float ``@distance(ptr*`` %p1, ptr* %p2) {
; Has to guess what these pointers point to
; Slow analysis of all memory operations
; May miss optimization opportunities
}
```
With TypeTrees (our implementation):
```llvm
define "enzyme_type"="{[]:Float@float}" float ``@distance(``
ptr "enzyme_type"="{[]:Pointer}" %p1,
ptr "enzyme_type"="{[]:Pointer}" %p2
) {
; Enzyme knows exact type layout
; Can generate efficient derivative code directly
}
```
# TypeTrees - Offset and -1 Explained
## Type Structure
```rust
Type {
offset: isize, // WHERE this type starts
size: usize, // HOW BIG this type is
kind: Kind, // WHAT KIND of data (Float, Int, Pointer)
child: TypeTree // WHAT'S INSIDE (for pointers/containers)
}
```
## Offset Values
### Regular Offset (0, 4, 8, etc.)
**Specific byte position within a structure**
```rust
struct Point {
x: f32, // offset 0, size 4
y: f32, // offset 4, size 4
id: i32, // offset 8, size 4
}
```
TypeTree for `&Point` (internal representation):
```rust
TypeTree(vec![
Type { offset: 0, size: 4, kind: Float }, // x at byte 0
Type { offset: 4, size: 4, kind: Float }, // y at byte 4
Type { offset: 8, size: 4, kind: Integer } // id at byte 8
])
```
Generates LLVM:
```llvm
"enzyme_type"="{[]:Float@float}"
```
### Offset -1 (Special: "Everywhere")
**Means "this pattern repeats for ALL elements"**
#### Example 1: Array `[f32; 100]`
```rust
TypeTree(vec![Type {
offset: -1, // ALL positions
size: 4, // each f32 is 4 bytes
kind: Float, // every element is float
}])
```
Instead of listing 100 separate Types with offsets `0,4,8,12...396`
#### Example 2: Slice `&[i32]`
```rust
// Pointer to slice data
TypeTree(vec![Type {
offset: -1, size: 8, kind: Pointer,
child: TypeTree(vec![Type {
offset: -1, // ALL slice elements
size: 4, // each i32 is 4 bytes
kind: Integer
}])
}])
```
#### Example 3: Mixed Structure
```rust
struct Container {
header: i64, // offset 0
data: [f32; 1000], // offset 8, but elements use -1
}
```
```rust
TypeTree(vec![
Type { offset: 0, size: 8, kind: Integer }, // header
Type { offset: 8, size: 4000, kind: Pointer,
child: TypeTree(vec![Type {
offset: -1, size: 4, kind: Float // ALL array elements
}])
}
])
```
|
|
Add an attribute to check the number of lanes in a SIMD vector after monomorphization
Allows std::simd to drop the `LaneCount<N>: SupportedLaneCount` trait and maintain good error messages.
Also, extends rust-lang/rust#145967 by including spans in layout errors for all ADTs.
r? ``@RalfJung``
cc ``@workingjubilee`` ``@programmerjake``
|
|
monomorphization
Unify zero-length and oversized SIMD errors
|
|
Signed-off-by: Karan Janthe <karanjanthe@gmail.com>
|
|
|
|
|
|
Replace ad-hoc type path shortening logic for recursive mono instantiation errors to use `tcx.short_string()` instead.
|
|
such constants as patterns
|
|
|
|
Make it so that every structured error annotated with `#[derive(Diagnostic)]` that has a field of type `Ty<'_>`, the printing of that value into a `String` will look at the thread-local storage `TyCtxt` in order to shorten to a length appropriate with the terminal width. When this happen, the resulting error will have a note with the file where the full type name was written to.
```
error[E0618]: expected function, found `((..., ..., ..., ...), ..., ..., ...)``
--> long.rs:7:5
|
6 | fn foo(x: D) { //~ `x` has type `(...
| - `x` has type `((..., ..., ..., ...), ..., ..., ...)`
7 | x(); //~ ERROR expected function, found `(...
| ^--
| |
| call expression requires function
|
= note: the full name for the type has been written to 'long.long-type-14182675702747116984.txt'
= note: consider using `--verbose` to print the full type name to the console
```
|
|
- group the fluent slugs together
- reword (internal-only) "too generic" error to be more in line with
the other errors
|
|
It's always good to make `rustc_middle` smaller. `rustc_interface` is
the best destination, because it's the only crate that calls
`get_recursive_limit`.
|
|
|
|
|
|
- `check-pass` test for a MRE of #135020
- fail test for #135138
- switch to `TooGeneric` for checking CMSE fn signatures
- switch to `TooGeneric` for compute `SizeSkeleton` (for transmute)
- fix broken tests
|
|
|
|
|
|
The previous commit updated `rustfmt.toml` appropriately. This commit is
the outcome of running `x fmt --all` with the new formatting options.
|
|
|
|
|
|
|
|
|
|
|
|
Because it's almost always static.
This makes `impl IntoDiagnosticArg for DiagnosticArgValue` trivial,
which is nice.
There are a few diagnostics constructed in
`compiler/rustc_mir_build/src/check_unsafety.rs` and
`compiler/rustc_mir_transform/src/errors.rs` that now need symbols
converted to `String` with `to_string` instead of `&str` with `as_str`,
but that' no big deal, and worth it for the simplifications elsewhere.
|
|
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
|
|
also share the code that emits the actual error
|
|
|
|
|
|
It's just a short wrapper used by `tcx.require_lang_item`. Deleting it
gives us a negative diff.
|
|
|
|
|
|
|
|
|
|
Co-authored-by: Michael Goulet <michael@errs.io>
|
|
Also renames:
- sym::AddSubdiagnostic to sym:: Subdiagnostic
- rustc_diagnostic_item = "AddSubdiagnostic" to rustc_diagnostic_item = "Subdiagnostic"
|
|
|
|
|
|
|
|
|
|
|
|
|