| Age | Commit message (Collapse) | Author | Lines |
|
|
|
|
|
|
|
|
|
Implemented modules:
1. alloc
2. os_str
3. env
4. math
Tracking Issue: https://github.com/rust-lang/rust/issues/100499
API Change Proposal: https://github.com/rust-lang/libs-team/issues/87
This was originally part of https://github.com/rust-lang/rust/pull/100316. Since
that PR was becoming too unwieldy and cluttered, and with suggestion
from @dvdhrm, I have extracted a minimal std implementation to this PR.
Signed-off-by: Ayush Singh <ayushsingh1325@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
avoid duplicating TLS state between test std and realstd
This basically re-lands https://github.com/rust-lang/rust/pull/100201 and https://github.com/rust-lang/rust/pull/106638, which got reverted by https://github.com/rust-lang/rust/pull/110861. This works around 2 Miri limitations:
- Miri doesn't support the magic linker section that our Windows TLS support relies on, and instead knows where in std to find the symbol that stores the thread callback.
- For macOS, Miri only supports at most one destructor to be registered per thread.
The 2nd would not be very hard to fix (though the intended destructor order is unclear); the first would be a lot of work to fix. Neither of these is a problem for regular Rust code, but in the std test suite we have essentially 2 copies of the std code and then these both become issues. To avoid that we have the std test crate import the TLS code from the real std instead of having its own copy.
r? ``````@m-ou-se``````
|
|
Remove `all` in target_thread_local cfg
I think it was left there by mistake after the previous refactoring. I just came across it while rebasing to master.
|
|
|
|
|
|
I think it was left there by mistake after previous refactoring.
Signed-off-by: Ayush Singh <ayushsingh1325@gmail.com>
|
|
|
|
Initial support for loongarch64-unknown-linux-gnu
Hi, We hope to add a new port in rust for LoongArch.
LoongArch intro
LoongArch is a RISC style ISA which is independently designed by Loongson
Technology in China. It is divided into two versions, the 32-bit version (LA32)
and the 64-bit version (LA64). LA64 applications have application-level
backward binary compatibility with LA32 applications. LoongArch is composed of
a basic part (Loongson Base) and an expanded part. The expansion part includes
Loongson Binary Translation (LBT), Loongson VirtualiZation (LVZ), Loongson SIMD
EXtension (LSX) and Loongson Advanced SIMD EXtension(LASX).
Currently the LA464 processor core supports LoongArch ISA and the Loongson
3A5000 processor integrates 4 64-bit LA464 cores. LA464 is a four-issue 64-bit
high-performance processor core. It can be used as a single core for high-end
embedded and desktop applications, or as a basic processor core to form an
on-chip multi-core system for server and high-performance machine applications.
Documentations:
ISA:
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html
ABI:
https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html
More docs can be found at:
https://loongson.github.io/LoongArch-Documentation/README-EN.html
Since last year, we have locally adapted two versions of rust, rust1.41 and rust1.57, and completed the test locally.
I'm not sure if I'm submitting all the patches at once, so I split up the patches and here's one of the commits
|
|
|
|
|
|
|
|
This allows removing all the platform-dependent code from `library/std/src/thread/local.rs` and `library/std/src/thread/mod.rs`
Signed-off-by: Ayush Singh <ayushsingh1325@gmail.com>
|
|
Split the __thread_local_inner macro to make it more readable. Also move
everything to crate::sys::common::thread_local.
Signed-off-by: Ayush Singh <ayushsingh1325@gmail.com>
|
|
|
|
|
|
Signed-off-by: Alex Saveau <saveau.alexandre@gmail.com>
|
|
Signed-off-by: codehorseman <cricis@yeah.net>
|
|
|
|
This commit goes through and updates various `#[cfg]` as appropriate to
get the wasm64-unknown-unknown target behaving similarly to the
wasm32-unknown-unknown target. Most of this is just updating various
conditions for `target_arch = "wasm32"` to also account for `target_arch
= "wasm64"` where appropriate. This commit also lists `wasm64` as an
allow-listed architecture to not have the `restricted_std` feature
enabled, enabling experimentation with `-Z build-std` externally.
The main goal of this commit is to enable playing around with
`wasm64-unknown-unknown` externally via `-Z build-std` in a way that's
similar to the `wasm32-unknown-unknown` target. These targets are
effectively the same and only differ in their pointer size, but wasm64
is much newer and has much less ecosystem/library support so it'll still
take time to get wasm64 fully-fledged.
|
|
|
|
|
|
|