| Age | Commit message (Collapse) | Author | Lines |
|
Rollup of 17 pull requests
- Successful merges: #48706, #48875, #48892, #48922, #48957, #48959, #48961, #48965, #49007, #49024, #49042, #49050, #48853, #48990, #49037, #49049, #48972
- Failed merges:
|
|
|
|
Stabilize inclusive range (`..=`)
Stabilize the followings:
* `inclusive_range` — The `std::ops::RangeInclusive` and `std::ops::RangeInclusiveTo` types, except its fields (tracked by #49022 separately).
* `inclusive_range_syntax` — The `a..=b` and `..=b` expression syntax
* `dotdoteq_in_patterns` — Using `a..=b` in a pattern
cc #28237
r? @rust-lang/lang
|
|
|
|
Stabilize the syntax `a..=b` and `..=b`.
|
|
|
|
|
|
Required moving all fulldeps tests depending on `rand` to different locations as
now there's multiple `rand` crates that can't be implicitly linked against.
|
|
https://github.com/rust-lang/rust/issues/41891
|
|
|
|
Add slice::ExactChunks and ::ExactChunksMut iterators
These guarantee that always the requested slice size will be returned
and any leftoever elements at the end will be ignored. It allows llvm to
get rid of bounds checks in the code using the iterator.
This is inspired by the same iterators provided by ndarray.
Fixes https://github.com/rust-lang/rust/issues/47115
I'll add unit tests for all this if the general idea and behaviour makes sense for everybody.
Also see https://github.com/rust-lang/rust/issues/47115#issuecomment-354715511 for an example what this improves.
|
|
These are basically modified copies of the chunks/chunks_mut tests.
|
|
This way more useful information is printed if the test ever fails.
|
|
Deprecate [T]::rotate in favor of [T]::rotate_{left,right}.
Background
==========
Slices currently have an **unstable** [`rotate`] method which rotates
elements in the slice to the _left_ N positions. [Here][tracking] is the
tracking issue for this unstable feature.
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
```
Proposal
========
Deprecate the [`rotate`] method and introduce `rotate_left` and
`rotate_right` methods.
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate_left(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
```
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate_right(2);
assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
```
Justification
=============
I used this method today for my first time and (probably because I’m a
naive westerner who reads LTR) was surprised when the docs mentioned that
elements get rotated in a left-ward direction. I was in a situation
where I needed to shift elements in a right-ward direction and had to
context switch from the main problem I was working on and think how much
to rotate left in order to accomplish the right-ward rotation I needed.
Ruby’s `Array.rotate` shifts left-ward, Python’s `deque.rotate` shifts
right-ward. Both of their implementations allow passing negative numbers
to shift in the opposite direction respectively. The current `rotate`
implementation takes an unsigned integer argument which doesn't allow
the negative number behavior.
Introducing `rotate_left` and `rotate_right` would:
- remove ambiguity about direction (alleviating need to read docs 😉)
- make it easier for people who need to rotate right
[`rotate`]: https://doc.rust-lang.org/std/primitive.slice.html#method.rotate
[tracking]: https://github.com/rust-lang/rust/issues/41891
|
|
|
|
Background
==========
Slices currently have an unstable [`rotate`] method which rotates
elements in the slice to the _left_ N positions. [Here][tracking] is the
tracking issue for this unstable feature.
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
```
Proposal
========
Deprecate the [`rotate`] method and introduce `rotate_left` and
`rotate_right` methods.
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate_left(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
```
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate_right(2);
assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
```
Justification
=============
I used this method today for my first time and (probably because I’m a
naive westerner who reads LTR) was surprised when the docs mentioned that
elements get rotated in a left-ward direction. I was in a situation
where I needed to shift elements in a right-ward direction and had to
context switch from the main problem I was working on and think how much
to rotate left in order to accomplish the right-ward rotation I needed.
Ruby’s `Array.rotate` shifts left-ward, Python’s `deque.rotate` shifts
right-ward. Both of their implementations allow passing negative numbers
to shift in the opposite direction respectively.
Introducing `rotate_left` and `rotate_right` would:
- remove ambiguity about direction (alleviating need to read docs 😉)
- make it easier for people who need to rotate right
[`rotate`]: https://doc.rust-lang.org/std/primitive.slice.html#method.rotate
[tracking]: https://github.com/rust-lang/rust/issues/41891
|
|
Relates to rust-lang/rfcs#2140 - drain_filter for all collections
`drain_filter` is implemented instead of `LinkedList::remove_if` based
on review feedback.
|
|
allocators: don’t assume MIN_ALIGN for small sizes
See individual commit messages.
|
|
|
|
See previous commit’s message for what is expected of allocators
in general, and https://github.com/jemalloc/jemalloc/issues/1072
for discussion of what jemalloc does specifically.
|
|
The GNU C library (glibc) is documented to always allocate with an alignment
of at least 8 or 16 bytes, on 32-bit or 64-bit platforms:
https://www.gnu.org/software/libc/manual/html_node/Aligned-Memory-Blocks.html
This matches our use of `MIN_ALIGN` before this commit.
However, even when libc is glibc, the program might be linked
with another allocator that redefines the `malloc` symbol and friends.
(The `alloc_jemalloc` crate does, in some cases.)
So `alloc_system` doesn’t know which allocator it calls,
and needs to be conservative in assumptions it makes.
The C standard says:
https://port70.net/%7Ensz/c/c11/n1570.html#7.22.3
> The pointer returned if the allocation succeeds is suitably aligned
> so that it may be assigned to a pointer to any type of object
> with a fundamental alignment requirement
https://port70.net/~nsz/c/c11/n1570.html#6.2.8p2
> A fundamental alignment is represented by an alignment less than
> or equal to the greatest alignment supported by the implementation
> in all contexts, which is equal to `_Alignof (max_align_t)`.
`_Alignof (max_align_t)` depends on the ABI and doesn’t seem to have
a clear definition, but it seems to match our `MIN_ALIGN` in practice.
However, the size of objects is rounded up to the next multiple
of their alignment (since that size is also the stride used in arrays).
Conversely, the alignment of a non-zero-size object is at most its size.
So for example it seems ot be legal for `malloc(8)` to return a pointer
that’s only 8-bytes-aligned, even if `_Alignof (max_align_t)` is 16.
|
|
This commit removes the `rand` crate from the standard library facade as
well as the `__rand` module in the standard library. Neither of these
were used in any meaningful way in the standard library itself. The only
need for randomness in libstd is to initialize the thread-local keys of
a `HashMap`, and that unconditionally used `OsRng` defined in the
standard library anyway.
The cruft of the `rand` crate and the extra `rand` support in the
standard library makes libstd slightly more difficult to port to new
platforms, namely WebAssembly which doesn't have any randomness at all
(without interfacing with JS). The purpose of this commit is to clarify
and streamline randomness in libstd, focusing on how it's only required
in one location, hashmap seeds.
Note that the `rand` crate out of tree has almost always been a drop-in
replacement for the `rand` crate in-tree, so any usage (accidental or
purposeful) of the crate in-tree should switch to the `rand` crate on
crates.io. This then also has the further benefit of avoiding
duplication (mostly) between the two crates!
|
|
Many AsciiExt imports have become useless thanks to the inherent ascii
methods added in the last commits. These were removed. In some places, I
fully specified the ascii method being called to enforce usage of the
AsciiExt trait. Note that some imports are not removed but tagged with
a `#[cfg(stage0)]` attribute. This is necessary, because certain ascii
methods are not yet available in stage0. All those imports will be
removed later.
Additionally, failing tests were fixed. The test suite should exit
successfully now.
|
|
Add ..= to the parser
Add ..= to libproc_macro
Add ..= to ICH
Highlight ..= in rustdoc
Update impl Debug for RangeInclusive to ..=
Replace `...` to `..=` in range docs
Make the dotdoteq warning point to the ...
Add warning for ... in expressions
Updated more tests to the ..= syntax
Updated even more tests to the ..= syntax
Updated the inclusive_range entry in unstable book
|
|
|
|
|
|
Remove Splice struct return value from String::splice
The implementation is now almost identical to the one in the RFC.
Fixes #44038
cc #32310
|
|
|
|
|
|
Add Vec::drain_filter
This implements the API proposed in #43244.
So I spent like half a day figuring out how to implement this in some awesome super-optimized unsafe way, which had me very confident this was worth putting into the stdlib.
Then I looked at the impl for `retain`, and was like "oh dang". I compared the two and they basically ended up being the same speed. And the `retain` impl probably translates to DoubleEndedIter a lot more cleanly if we ever want that.
So now I'm not totally confident this needs to go in the stdlib, but I've got two implementations and an amazingly robust test suite, so I figured I might as well toss it over the fence for discussion.
|
|
Add method `String::retain`
Behaves like `Vec::retain`, accepting a predicate `FnMut(char) -> bool`
and reducing the string to only characters for which the predicate
returns `true`.
|
|
Behaves like `Vec::retain`, accepting a predicate `FnMut(char) -> bool`
and reducing the string to only characters for which the predicate
returns `true`.
|
|
Stabilizes:
* `Utf8Error::error_len`
Closes #40494
|
|
Stabilized
* `<str>::get`
* `<str>::get_mut`
* `<str>::get_unchecked`
* `<str>::get_unchecked_mut`
Closes #39932
|
|
|
|
Document unintuitive argument order for Vec::dedup_by relation
When trying to use `dedup_by` to merge some auxiliary information from removed elements into kept elements, I was surprised to observe that `vec.dedup_by(same_bucket)` calls `same_bucket(a, b)` where `b` appears before `a` in the vector, and discards `a` when true is returned. This argument order is probably a bug, but since it has already been stabilized, I guess we should document it as a feature and move on.
(`Vec::dedup` also uses `==` with this unexpected argument order, but I figure that’s not important since `==` is expected to be symmetric with no side effects.)
|
|
When trying to use dedup_by to merge some auxiliary information from
removed elements into kept elements, I was surprised to observe that
vec.dedup_by(same_bucket) calls same_bucket(a, b) where b appears
before a in the vector, and discards a when true is returned. This
argument order is probably a bug, but since it has already been
stabilized, I guess we should document it as a feature and move on.
(Vec::dedup also uses == with this unexpected argument order, but I
figure that’s not important since == is expected to be symmetric with
no side effects.)
Signed-off-by: Anders Kaseorg <andersk@mit.edu>
|
|
Replacement: 41439
Deprecation: 42310 for 1.19
Fixes 41477
|
|
|
|
|