| Age | Commit message (Collapse) | Author | Lines |
|
A part of #20038
This is just the beginning of what needs to be done, but it's some of it.
/cc @aturon
|
|
|
|
|
|
A part of #20038
|
|
|
|
|
|
|
|
Instead, just pass everything through as a Vec<u8> to get worried about later.
Closes #20091
|
|
|
|
|
|
|
|
The [final step](https://github.com/rust-lang/rust/pull/19654) of
runtime removal changes the threading/process model so that the process
shuts down when the main thread exits. But several shared resources,
like the helper thread for timeouts, are shut down when the main thread
exits (but before the process ends), and they are not prepared to be
used after shut down, but other threads may try to access them during
the shutdown sequence of the main thread.
As an interim solution, the `at_exit` cleanup routine is simply skipped.
Ultimately, these resources should be made to safely handle asynchronous
shutdown, usually by panicking if called from a detached thread when the
main thread is ending.
See issue for details https://github.com/rust-lang/rust/issues/20012
This is a [breaking-change] for anyone relying on `at_exit`.
|
|
|
|
This flag is somewhat tied to the `unwind` module rather than the `thread_info`
module, so this commit moves it into that module as well as allowing the same OS
thread to call `unwind::try` multiple times. Previously once a thread panicked
its panic flag was never reset, even after exiting the panic handler.
|
|
The current implementations use `std::sync` primitives, but these primitives
currently end up relying on `thread_info` and a local `Thread` being available
(mainly for checking the panicking flag).
To get around this, this commit lowers the abstractions used by the windows
thread_local implementation as well as the at_exit_imp module. Both of these
modules now use a `sys::Mutex` and a `static mut` and manage the
allocation/locking manually.
|
|
This commit is part of a series that introduces a `std::thread` API to
replace `std::task`.
In the new API, `spawn` returns a `JoinGuard`, which by default will
join the spawned thread when dropped. It can also be used to join
explicitly at any time, returning the thread's result. Alternatively,
the spawned thread can be explicitly detached (so no join takes place).
As part of this change, Rust processes now terminate when the main
thread exits, even if other detached threads are still running, moving
Rust closer to standard threading models. This new behavior may break code
that was relying on the previously implicit join-all.
In addition to the above, the new thread API also offers some built-in
support for building blocking abstractions in user space; see the module
doc for details.
Closes #18000
[breaking-change]
|
|
|
|
|
|
We need to be sure to init thread_info before we init args for example because
args is grabbing locks which may entail looking at the local thread eventually.
|
|
|
|
|
|
|
|
|
|
|
|
Also removes:
* `std::task`
* `std::rt::task`
* `std::rt::thread`
Notes for the new API are in a follow-up commit.
Closes #18000
|
|
This commit removes the runtime bookkeeping previously used to ensure
that all Rust tasks were joined before the runtime was shut down.
This functionality will be replaced by an RAII style `Thread` API, that
will also offer a detached mode.
Since this changes the semantics of shutdown, it is a:
[breaking-change]
|
|
|
|
|
|
This commit merges the `rustrt` crate into `std`, undoing part of the
facade. This merger continues the paring down of the runtime system.
Code relying on the public API of `rustrt` will break; some of this API
is now available through `std::rt`, but is likely to change and/or be
removed very soon.
[breaking-change]
|
|
followed by a semicolon.
This allows code like `vec![1i, 2, 3].len();` to work.
This breaks code that uses macros as statements without putting
semicolons after them, such as:
fn main() {
...
assert!(a == b)
assert!(c == d)
println(...);
}
It also breaks code that uses macros as items without semicolons:
local_data_key!(foo)
fn main() {
println("hello world")
}
Add semicolons to fix this code. Those two examples can be fixed as
follows:
fn main() {
...
assert!(a == b);
assert!(c == d);
println(...);
}
local_data_key!(foo);
fn main() {
println("hello world")
}
RFC #378.
Closes #18635.
[breaking-change]
---
Rebased version of #18958
r? @alexcrichton
cc @pcwalton
|
|
followed by a semicolon.
This allows code like `vec![1i, 2, 3].len();` to work.
This breaks code that uses macros as statements without putting
semicolons after them, such as:
fn main() {
...
assert!(a == b)
assert!(c == d)
println(...);
}
It also breaks code that uses macros as items without semicolons:
local_data_key!(foo)
fn main() {
println("hello world")
}
Add semicolons to fix this code. Those two examples can be fixed as
follows:
fn main() {
...
assert!(a == b);
assert!(c == d);
println(...);
}
local_data_key!(foo);
fn main() {
println("hello world")
}
RFC #378.
Closes #18635.
[breaking-change]
|
|
Windows dbghelp strips leading underscores from symbols, and I could not find a way to turn this off. So let's accept "ZN...E" form too.
Also, print PC displacement from symbols. This is helpful in gauging whether the PC was indeed within the function displayed in the backtrace, or whether it just happened to be the closest public symbol in the module.
|
|
|
|
This commit collapses the various prelude traits for slices into just one trait:
* SlicePrelude/SliceAllocPrelude => SliceExt
* CloneSlicePrelude/CloneSliceAllocPrelude => CloneSliceExt
* OrdSlicePrelude/OrdSliceAllocPrelude => OrdSliceExt
* PartialEqSlicePrelude => PartialEqSliceExt
|
|
boxed `FnOnce` closures.
|
|
"ZN...E" form too.
Also, print PC displacement from symbols.
|
|
Now that we have an overloaded comparison (`==`) operator, and that `Vec`/`String` deref to `[T]`/`str` on method calls, many `as_slice()`/`as_mut_slice()`/`to_string()` calls have become redundant. This patch removes them. These were the most common patterns:
- `assert_eq(test_output.as_slice(), "ground truth")` -> `assert_eq(test_output, "ground truth")`
- `assert_eq(test_output, "ground truth".to_string())` -> `assert_eq(test_output, "ground truth")`
- `vec.as_mut_slice().sort()` -> `vec.sort()`
- `vec.as_slice().slice(from, to)` -> `vec.slice(from_to)`
---
Note that e.g. `a_string.push_str(b_string.as_slice())` has been left untouched in this PR, since we first need to settle down whether we want to favor the `&*b_string` or the `b_string[]` notation.
This is rebased on top of #19167
cc @alexcrichton @aturon
|
|
|
|
In regards to:
https://github.com/rust-lang/rust/issues/19253#issuecomment-64836729
This commit:
* Changes the #deriving code so that it generates code that utilizes fewer
reexports (in particur Option::* and Result::*), which is necessary to
remove those reexports in the future
* Changes other areas of the codebase so that fewer reexports are utilized
|
|
|
|
|
|
|
|
Sister pull request of https://github.com/rust-lang/rust/pull/19288, but
for the other style of block doc comment.
|
|
Implements RFC 438.
Fixes #19092.
This is a [breaking-change]: change types like `&Foo+Send` or `&'a mut Foo+'a` to `&(Foo+Send)` and `&'a mut (Foo+'a)`, respectively.
r? @brson
|
|
This is an initial pass at stabilizing the `iter` module. The module is
fairly large, but is also pretty polished, so most of the stabilization
leaves things as they are.
Some changes:
* Due to the new object safety rules, various traits needs to be split
into object-safe traits and extension traits. This includes `Iterator`
itself. While splitting up the traits adds some complexity, it will
also increase flexbility: once we have automatic impls of `Trait` for
trait objects over `Trait`, then things like the iterator adapters
will all work with trait objects.
* Iterator adapters that use up the entire iterator now take it by
value, which makes the semantics more clear and helps catch bugs. Due
to the splitting of Iterator, this does not affect trait objects. If
the underlying iterator is still desired for some reason, `by_ref` can
be used. (Note: this change had no fallout in the Rust distro except
for the useless mut lint.)
* In general, extension traits new and old are following an [in-progress
convention](rust-lang/rfcs#445). As such, they
are marked `unstable`.
* As usual, anything involving closures is `unstable` pending unboxed
closures.
* A few of the more esoteric/underdeveloped iterator forms (like
`RandomAccessIterator` and `MutableDoubleEndedIterator`, along with
various unfolds) are left experimental for now.
* The `order` submodule is left `experimental` because it will hopefully
be replaced by generalized comparison traits.
* "Leaf" iterators (like `Repeat` and `Counter`) are uniformly
constructed by free fns at the module level. That's because the types
are not otherwise of any significance (if we had `impl Trait`, you
wouldn't want to define a type at all).
Closes #17701
Due to renamings and splitting of traits, this is a:
[breaking-change]
|
|
|
|
|
|
|
|
'Numeric' is the proper name of the unicode character class,
and this frees up the word 'digit' for ascii use in libcore.
Since I'm going to rename `Char::is_digit_radix` to
`is_digit`, I am not leaving a deprecated method in place,
because that would just cause name clashes, as both
`Char` and `UnicodeChar` are in the prelude.
[breaking-change]
|
|
Previously, the entire runtime API surface was publicly exposed, but
that is neither necessary nor desirable. This commit hides most of the
module, using librustrt directly as needed. The arrangement will need to
be revisited when rustrt is pulled into std.
[breaking-change]
|