| Age | Commit message (Collapse) | Author | Lines |
|
|
|
r=workingjubilee
c-variadic: allow c-variadic inherent and trait methods
tracking issue: https://github.com/rust-lang/rust/issues/44930
Continuing the work of https://github.com/rust-lang/rust/pull/146342, allow inherent and trait methods to be c-variadic. However, a trait that contains a c-variadic method is no longer dyn-compatible.
There is, presumably, some way to make c-variadic methods dyn-compatible. However currently, we don't have confidence that it'll work reliably: when methods from a `dyn` object are cast to a function pointer, a `ReifyShim` is created. If that shim is c-variadic, it would need to forward the C variable argument list.
That does appear to work, because the `va_list` is not represented in MIR at all in this case, so the registers from the call site are untouched by the shim and can be read by the actual implementation. That just does not seem like a solid implementation.
Also, intuitively, why would c-variadic function, primarily needed for FFI, need to be used with `dyn` objects at all? We can revisit this limitation if a need arises.
r? `@workingjubilee`
|
|
When writing something like the expression `|_: ...| {}`, we now detect the `...` during parsing explicitly instead of relying on the detection in `parse_ty_common` so that we don't talk about "nested `...` are not supported".
```
error: unexpected `...`
--> $DIR/no-closure.rs:6:35
|
LL | const F: extern "C" fn(...) = |_: ...| {};
| ^^^
|
= note: only `extern "C"` and `extern "C-unwind"` functions may have a C variable argument list
```
|
|
|
|
|
|
|
|
|
|
but a C-variadic method makes a trait dyn-incompatible. That is because
methods from dyn traits, when cast to a function pointer, create a shim.
That shim can't really forward the c-variadic arguments.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stabilize c-style varargs for sysv64, win64, efiapi, aapcs
This has been split up so the PR now only contains the extended_varargs_abi_support stabilization; "system" has been moved to https://github.com/rust-lang/rust/pull/145954.
**Previous (combined) PR description:**
This stabilizes extern block declarations of variadic functions with the system, sysv64, win64, efiapi, aapcs ABIs. This corresponds to the extended_varargs_abi_support and extern_system_varargs feature gates.
The feature gates were split up since it seemed like there might be further discussion needed for what exactly "system" ABI variadic functions should do, but a [consensus](https://github.com/rust-lang/rust/issues/136946#issuecomment-2967847553) has meanwhile been reached: they shall behave like "C" functions. IOW, the ABI of a "system" function is (bold part is new in this PR):
- "stdcall" for win32 targets **for non-variadic functions**
- "C" for everything else
This had been previously stabilized *without FCP* in https://github.com/rust-lang/rust/pull/116161, which got reverted in https://github.com/rust-lang/rust/pull/136897. There was also a "fun" race condition involved with the system ABI being [added](https://github.com/rust-lang/rust/pull/119587) to the list of variadic-supporting ABIs between the creation and merge of rust-lang/rust#116161.
There was a question raised [here](https://github.com/rust-lang/rust/pull/116161#issuecomment-1983829513) whether t-lang even needs to be involved for a change like this. Not sure if that has meanwhile been clarified? The behavior of the "system" ABI (a Rust-specific ABI) definitely feels like t-lang territory to me.
Fixes rust-lang/rust#100189
Cc `@rust-lang/lang`
# Stabilization report
> ## General design
> ### What is the RFC for this feature and what changes have occurred to the user-facing design since the RFC was finalized?
AFAIK there is no RFC. The tracking issues are
- https://github.com/rust-lang/rust/issues/100189
- https://github.com/rust-lang/rust/issues/136946
> ### What behavior are we committing to that has been controversial? Summarize the major arguments pro/con.
The only controversial point is whether "system" ABI functions should support variadics.
- Pro: This allows crates like windows-rs to consistently use "system", see e.g. https://github.com/microsoft/windows-rs/issues/3626.
- Cons: `@workingjubilee` had some implementation concerns, but I think those have been [resolved](https://github.com/rust-lang/rust/issues/136946#issuecomment-2967847553). EDIT: turns out Jubilee still has concerns (she mentioned that in a DM); I'll let her express those.
Note that "system" is already a magic ABI we introduced to "do the right thing". This just makes it do the right thing in more cases. In particular, it means that on Windows one can almost always just do
```rust
extern "system" {
// put all the things here
}
```
and it'll do the right thing, rather than having to split imports into non-varargs and varargs, with the varargs in a separate `extern "C"` block (and risking accidentally putting a non-vararg there).
(I am saying "almost" always because some Windows API functions actually use cdecl, not stdcall, on x86. Those of course need to go in `extern "C"` blocks.)
> ### Are there extensions to this feature that remain unstable? How do we know that we are not accidentally committing to those?
Actually defining variadic functions in Rust remains unstable, under the [c_variadic feature gate](https://github.com/rust-lang/rust/issues/44930).
> ## Has a Call for Testing period been conducted? If so, what feedback was received?
>
> Does any OSS nightly users use this feature? For instance, a useful indication might be "search <grep.app> for `#![feature(FEATURE_NAME)]` and had `N` results".
There was no call for testing.
A search brings up https://github.com/rust-osdev/uefi-rs/blob/main/uefi-raw/src/table/boot.rs using this for "efiapi". This doesn't seem widely used, but it is an "obvious" gap in our support for c-variadics.
> ## Implementation quality
All rustc does here is forward the ABI to LLVM so there's lot a lot to say here...
> ### Summarize the major parts of the implementation and provide links into the code (or to PRs)
>
> An example for async closures: <https://rustc-dev-guide.rust-lang.org/coroutine-closures.html>.
The check for allowed variadic ABIs is [here](https://github.com/rust-lang/rust/blob/9c870d30e2d6434c9e9a004b450c5ccffdf3d844/compiler/rustc_hir_analysis/src/lib.rs#L109-L126).
The special handling of "system" is [here](https://github.com/rust-lang/rust/blob/c24914ec8329b22ec7bcaa6ab534a784b2bd8ab9/compiler/rustc_target/src/spec/abi_map.rs#L82-L85).
> ### Summarize existing test coverage of this feature
>
> Consider what the "edges" of this feature are. We're particularly interested in seeing tests that assure us about exactly what nearby things we're not stabilizing.
>
> Within each test, include a comment at the top describing the purpose of the test and what set of invariants it intends to demonstrate. This is a great help to those reviewing the tests at stabilization time.
>
> - What does the test coverage landscape for this feature look like?
> - Tests for compiler errors when you use the feature wrongly or make mistakes?
> - Tests for the feature itself:
> - Limits of the feature (so failing compilation)
> - Exercises of edge cases of the feature
> - Tests that checks the feature works as expected (where applicable, `//@ run-pass`).
> - Are there any intentional gaps in test coverage?
>
> Link to test folders or individual tests (ui/codegen/assembly/run-make tests, etc.).
Prior PRs add a codegen test for all ABIs and tests actually calling extern variadic functions for sysv64 and win64:
- https://github.com/rust-lang/rust/pull/144359
- https://github.com/rust-lang/rust/pull/144379
We don't have a way of executing uefi target code in the test suite, so it's unclear how to fully test efiapi. aapcs could probably be done? (But note that we have hardly an such actually-calling-functions tests for ABI things, we almost entirely rely on codegen tests.)
The test ensuring that we do *not* stabilize *defining* c-variadic functions is `tests/ui/feature-gates/feature-gate-c_variadic.rs`.
> ### What outstanding bugs in the issue tracker involve this feature? Are they stabilization-blocking?
None that I am aware of.
> ### What FIXMEs are still in the code for that feature and why is it ok to leave them there?
None that I am aware of.
> ### Summarize contributors to the feature by name for recognition and assuredness that people involved in the feature agree with stabilization
`@Soveu` added sysv64, win64, efiapi, aapcs to the list of ABIs that allow variadics, `@beepster4096` added system. `@workingjubilee` recently refactored the ABI handling in the compiler, also affecting this feature.
> ### Which tools need to be adjusted to support this feature. Has this work been done?
>
> Consider rustdoc, clippy, rust-analyzer, rustfmt, rustup, docs.rs.
Maybe RA needs to be taught about the new allowed ABIs? No idea how precisely they mirror what exactly rustc accepts and rejects here.
> ## Type system and execution rules
> ### What compilation-time checks are done that are needed to prevent undefined behavior?
>
> (Be sure to link to tests demonstrating that these tests are being done.)
Nothing new here, this just expands the existing support for calling variadic functions to more ABIs.
> ### Does the feature's implementation need checks to prevent UB or is it sound by default and needs opt in in places to perform the dangerous/unsafe operations? If it is not sound by default, what is the rationale?
Nothing new here, this just expands the existing support for calling variadic functions to more ABIs.
> ### Can users use this feature to introduce undefined behavior, or use this feature to break the abstraction of Rust and expose the underlying assembly-level implementation? (Describe.)
Nothing new here, this just expands the existing support for calling variadic functions to more ABIs.
> ### What updates are needed to the reference/specification? (link to PRs when they exist)
- https://github.com/rust-lang/reference/pull/1936
> ## Common interactions
> ### Does this feature introduce new expressions and can they produce temporaries? What are the lifetimes of those temporaries?
No.
> ### What other unstable features may be exposed by this feature?
None.
|
|
|
|
|
|
|
|
|
|
r=RalfJung
test using multiple c-variadic ABIs in the same program
tracking issue: https://github.com/rust-lang/rust/issues/100189
Check that multiple c-variadic calling conventions can be used in the same program.
Clang and gcc reject defining functions with a non-default calling convention and a variable
argument list, so C programs that use multiple c-variadic calling conventions are unlikely
to come up. Here we validate that our codegen backends do in fact generate correct code.
(CI will not run this test because it runs on aarch64, I would like to at least test that this runs on windows)
try-job: `x86_64-gnu`
try-job: `x86_64-msvc-*`
try-job: `x86_64-apple-2`
|
|
|
|
tests)
|
|
|
|
|
|
Otherwise this test will include a future incompatibility warning
on some targets but not others.
|
|
|
|
minicore makes it much easier to add new language items to all of the
existing `no_core` tests.
|
|
|
|
|
|
|
|
After the stabilization PR was opened, `extern "system"` functions were
added to `extended_varargs_abi_support`. This has a number of questions
regarding it that were not discussed and were somewhat surprising.
It deserves to be considered as its own feature, separate from
`extended_varargs_abi_support`.
|
|
This reverts commit 685f189b4307435b83d625fea397ef36dff4e955.
|
|
```
error[E0610]: `{integer}` is a primitive type and therefore doesn't have fields
--> $DIR/attempted-access-non-fatal.rs:7:15
|
LL | let _ = 2.l;
| ^
|
help: if intended to be a floating point literal, consider adding a `0` after the period and a `f64` suffix
|
LL - let _ = 2.l;
LL + let _ = 2.0f64;
|
```
|
|
|
|
The SCCs of the region graph are not a reliable heuristic to use for blaming an interesting
constraint for diagnostics. For region errors, if the outlived region is `'static`, or the involved
types are invariant in their lifetiems, there will be cycles in the constraint graph containing both
the target region and the most interesting constraints to blame. To get better diagnostics in these
cases, this commit removes that heuristic.
|
|
dev-ardi:simplify-hir_typeck_pass_to_variadic_function, r=compiler-errors
Simplify hir_typeck_pass_to_variadic_function
r? ``@compiler-errors``
This reworks a bit how the diagnostic is generated so that it does the same as #133538
The `help` is useless now so I removed it
|
|
Stabilize `extended_varargs_abi_support`
I think that is everything? If there is any documentation regarding `extern` and/or varargs to correct, let me know, some quick greps suggest that there might be none.
Tracking issue: https://github.com/rust-lang/rust/issues/100189
|
|
|
|
|
|
|
|
This check was previously only performed on functions not function pointers.
Co-authored-by: Folkert <folkert@folkertdev.nl>
|
|
Fix error message
Fix tests
Format
|
|
|
|
|
|
|
|
r=Nilstrieb
Suggest Upgrading Compiler for Gated Features
This PR addresses #117318
I have a few questions:
1. Do we want to specify the current version and release date of the compiler? I have added this in via environment variables, which I found in the code for the rustc cli where it handles the `--version` flag
a. How can I handle the changing message in the tests?
3. Do we want to only show this message when the compiler is old?
a. How can we determine when the compiler is old?
I'll wait until we figure out the message to bless the tests
|
|
Update tests
|
|
|
|
On borrow return type, suggest borrowing from arg or owned return type
When we encounter a function with a return type that has an anonymous lifetime with no argument to borrow from, besides suggesting the `'static` lifetime we now also suggest changing the arguments to be borrows or changing the return type to be an owned type.
```
error[E0106]: missing lifetime specifier
--> $DIR/variadic-ffi-6.rs:7:6
|
LL | ) -> &usize {
| ^ expected named lifetime parameter
|
= help: this function's return type contains a borrowed value, but there is no value for it to be borrowed from
help: consider using the `'static` lifetime, but this is uncommon unless you're returning a borrowed value from a `const` or a `static`
|
LL | ) -> &'static usize {
| +++++++
help: instead, you are more likely to want to change one of the arguments to be borrowed...
|
LL | x: &usize,
| +
help: ...or alternatively, to want to return an owned value
|
LL - ) -> &usize {
LL + ) -> usize {
|
```
Fix #85843.
|
|
Co-authored-by: Adrian <adrian.iosdev@gmail.com>
|