mod bind_instead_of_map; mod bytecount; mod bytes_count_to_len; mod bytes_nth; mod case_sensitive_file_extension_comparisons; mod chars_cmp; mod chars_cmp_with_unwrap; mod chars_last_cmp; mod chars_last_cmp_with_unwrap; mod chars_next_cmp; mod chars_next_cmp_with_unwrap; mod clear_with_drain; mod clone_on_copy; mod clone_on_ref_ptr; mod cloned_instead_of_copied; mod collapsible_str_replace; mod double_ended_iterator_last; mod drain_collect; mod err_expect; mod expect_fun_call; mod extend_with_drain; mod filetype_is_file; mod filter_map; mod filter_map_bool_then; mod filter_map_identity; mod filter_map_next; mod filter_next; mod flat_map_identity; mod flat_map_option; mod format_collect; mod from_iter_instead_of_collect; mod get_first; mod get_last_with_len; mod get_unwrap; mod implicit_clone; mod inefficient_to_string; mod inspect_for_each; mod into_iter_on_ref; mod is_digit_ascii_radix; mod is_empty; mod iter_cloned_collect; mod iter_count; mod iter_filter; mod iter_kv_map; mod iter_next_slice; mod iter_nth; mod iter_nth_zero; mod iter_on_single_or_empty_collections; mod iter_out_of_bounds; mod iter_overeager_cloned; mod iter_skip_next; mod iter_skip_zero; mod iter_with_drain; mod iterator_step_by_zero; mod join_absolute_paths; mod manual_c_str_literals; mod manual_contains; mod manual_inspect; mod manual_is_variant_and; mod manual_next_back; mod manual_ok_or; mod manual_repeat_n; mod manual_saturating_arithmetic; mod manual_str_repeat; mod manual_try_fold; mod map_all_any_identity; mod map_clone; mod map_collect_result_unit; mod map_err_ignore; mod map_flatten; mod map_identity; mod map_unwrap_or; mod map_with_unused_argument_over_ranges; mod mut_mutex_lock; mod needless_as_bytes; mod needless_character_iteration; mod needless_collect; mod needless_option_as_deref; mod needless_option_take; mod no_effect_replace; mod obfuscated_if_else; mod ok_expect; mod open_options; mod option_as_ref_cloned; mod option_as_ref_deref; mod option_map_or_none; mod option_map_unwrap_or; mod or_fun_call; mod or_then_unwrap; mod path_buf_push_overwrite; mod path_ends_with_ext; mod range_zip_with_len; mod read_line_without_trim; mod readonly_write_lock; mod redundant_as_str; mod repeat_once; mod result_map_or_else_none; mod return_and_then; mod search_is_some; mod seek_from_current; mod seek_to_start_instead_of_rewind; mod single_char_add_str; mod single_char_insert_string; mod single_char_push_string; mod skip_while_next; mod sliced_string_as_bytes; mod stable_sort_primitive; mod str_split; mod str_splitn; mod string_extend_chars; mod string_lit_chars_any; mod suspicious_command_arg_space; mod suspicious_map; mod suspicious_splitn; mod suspicious_to_owned; mod type_id_on_box; mod unbuffered_bytes; mod uninit_assumed_init; mod unit_hash; mod unnecessary_fallible_conversions; mod unnecessary_filter_map; mod unnecessary_first_then_check; mod unnecessary_fold; mod unnecessary_get_then_check; mod unnecessary_iter_cloned; mod unnecessary_join; mod unnecessary_lazy_eval; mod unnecessary_literal_unwrap; mod unnecessary_map_or; mod unnecessary_min_or_max; mod unnecessary_result_map_or_else; mod unnecessary_sort_by; mod unnecessary_to_owned; mod unused_enumerate_index; mod unwrap_expect_used; mod useless_asref; mod useless_nonzero_new_unchecked; mod utils; mod vec_resize_to_zero; mod verbose_file_reads; mod waker_clone_wake; mod wrong_self_convention; mod zst_offset; use clippy_config::Conf; use clippy_utils::consts::{ConstEvalCtxt, Constant}; use clippy_utils::diagnostics::{span_lint, span_lint_and_help}; use clippy_utils::macros::FormatArgsStorage; use clippy_utils::msrvs::{self, Msrv}; use clippy_utils::ty::{contains_ty_adt_constructor_opaque, implements_trait, is_copy, is_type_diagnostic_item}; use clippy_utils::{contains_return, is_bool, is_trait_method, iter_input_pats, peel_blocks, return_ty}; pub use path_ends_with_ext::DEFAULT_ALLOWED_DOTFILES; use rustc_abi::ExternAbi; use rustc_data_structures::fx::FxHashSet; use rustc_hir as hir; use rustc_hir::{Expr, ExprKind, Node, Stmt, StmtKind, TraitItem, TraitItemKind}; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_middle::ty::{self, TraitRef, Ty}; use rustc_session::impl_lint_pass; use rustc_span::{Span, sym}; declare_clippy_lint! { /// ### What it does /// Checks for usage of `cloned()` on an `Iterator` or `Option` where /// `copied()` could be used instead. /// /// ### Why is this bad? /// `copied()` is better because it guarantees that the type being cloned /// implements `Copy`. /// /// ### Example /// ```no_run /// [1, 2, 3].iter().cloned(); /// ``` /// Use instead: /// ```no_run /// [1, 2, 3].iter().copied(); /// ``` #[clippy::version = "1.53.0"] pub CLONED_INSTEAD_OF_COPIED, pedantic, "used `cloned` where `copied` could be used instead" } declare_clippy_lint! { /// ### What it does /// Checks for consecutive calls to `str::replace` (2 or more) /// that can be collapsed into a single call. /// /// ### Why is this bad? /// Consecutive `str::replace` calls scan the string multiple times /// with repetitive code. /// /// ### Example /// ```no_run /// let hello = "hesuo worpd" /// .replace('s', "l") /// .replace("u", "l") /// .replace('p', "l"); /// ``` /// Use instead: /// ```no_run /// let hello = "hesuo worpd".replace(['s', 'u', 'p'], "l"); /// ``` #[clippy::version = "1.65.0"] pub COLLAPSIBLE_STR_REPLACE, perf, "collapse consecutive calls to str::replace (2 or more) into a single call" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `_.cloned().()` where call to `.cloned()` can be postponed. /// /// ### Why is this bad? /// It's often inefficient to clone all elements of an iterator, when eventually, only some /// of them will be consumed. /// /// ### Known Problems /// This `lint` removes the side of effect of cloning items in the iterator. /// A code that relies on that side-effect could fail. /// /// ### Examples /// ```no_run /// # let vec = vec!["string".to_string()]; /// vec.iter().cloned().take(10); /// vec.iter().cloned().last(); /// ``` /// /// Use instead: /// ```no_run /// # let vec = vec!["string".to_string()]; /// vec.iter().take(10).cloned(); /// vec.iter().last().cloned(); /// ``` #[clippy::version = "1.60.0"] pub ITER_OVEREAGER_CLONED, perf, "using `cloned()` early with `Iterator::iter()` can lead to some performance inefficiencies" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `Iterator::flat_map()` where `filter_map()` could be /// used instead. /// /// ### Why is this bad? /// `filter_map()` is known to always produce 0 or 1 output items per input item, /// rather than however many the inner iterator type produces. /// Therefore, it maintains the upper bound in `Iterator::size_hint()`, /// and communicates to the reader that the input items are not being expanded into /// multiple output items without their having to notice that the mapping function /// returns an `Option`. /// /// ### Example /// ```no_run /// let nums: Vec = ["1", "2", "whee!"].iter().flat_map(|x| x.parse().ok()).collect(); /// ``` /// Use instead: /// ```no_run /// let nums: Vec = ["1", "2", "whee!"].iter().filter_map(|x| x.parse().ok()).collect(); /// ``` #[clippy::version = "1.53.0"] pub FLAT_MAP_OPTION, pedantic, "used `flat_map` where `filter_map` could be used instead" } declare_clippy_lint! { /// ### What it does /// Checks for `.unwrap()` or `.unwrap_err()` calls on `Result`s and `.unwrap()` call on `Option`s. /// /// ### Why restrict this? /// It is better to handle the `None` or `Err` case, /// or at least call `.expect(_)` with a more helpful message. Still, for a lot of /// quick-and-dirty code, `unwrap` is a good choice, which is why this lint is /// `Allow` by default. /// /// `result.unwrap()` will let the thread panic on `Err` values. /// Normally, you want to implement more sophisticated error handling, /// and propagate errors upwards with `?` operator. /// /// Even if you want to panic on errors, not all `Error`s implement good /// messages on display. Therefore, it may be beneficial to look at the places /// where they may get displayed. Activate this lint to do just that. /// /// ### Examples /// ```no_run /// # let option = Some(1); /// # let result: Result = Ok(1); /// option.unwrap(); /// result.unwrap(); /// ``` /// /// Use instead: /// ```no_run /// # let option = Some(1); /// # let result: Result = Ok(1); /// option.expect("more helpful message"); /// result.expect("more helpful message"); /// ``` /// /// If [expect_used](#expect_used) is enabled, instead: /// ```rust,ignore /// # let option = Some(1); /// # let result: Result = Ok(1); /// option?; /// /// // or /// /// result?; /// ``` #[clippy::version = "1.45.0"] pub UNWRAP_USED, restriction, "using `.unwrap()` on `Result` or `Option`, which should at least get a better message using `expect()`" } declare_clippy_lint! { /// ### What it does /// Checks for `.unwrap()` related calls on `Result`s and `Option`s that are constructed. /// /// ### Why is this bad? /// It is better to write the value directly without the indirection. /// /// ### Examples /// ```no_run /// let val1 = Some(1).unwrap(); /// let val2 = Ok::<_, ()>(1).unwrap(); /// let val3 = Err::<(), _>(1).unwrap_err(); /// ``` /// /// Use instead: /// ```no_run /// let val1 = 1; /// let val2 = 1; /// let val3 = 1; /// ``` #[clippy::version = "1.72.0"] pub UNNECESSARY_LITERAL_UNWRAP, complexity, "using `unwrap()` related calls on `Result` and `Option` constructors" } declare_clippy_lint! { /// ### What it does /// Checks for `.expect()` or `.expect_err()` calls on `Result`s and `.expect()` call on `Option`s. /// /// ### Why restrict this? /// Usually it is better to handle the `None` or `Err` case. /// Still, for a lot of quick-and-dirty code, `expect` is a good choice, which is why /// this lint is `Allow` by default. /// /// `result.expect()` will let the thread panic on `Err` /// values. Normally, you want to implement more sophisticated error handling, /// and propagate errors upwards with `?` operator. /// /// ### Examples /// ```rust,ignore /// # let option = Some(1); /// # let result: Result = Ok(1); /// option.expect("one"); /// result.expect("one"); /// ``` /// /// Use instead: /// ```rust,ignore /// # let option = Some(1); /// # let result: Result = Ok(1); /// option?; /// /// // or /// /// result?; /// ``` #[clippy::version = "1.45.0"] pub EXPECT_USED, restriction, "using `.expect()` on `Result` or `Option`, which might be better handled" } declare_clippy_lint! { /// ### What it does /// Checks for methods that should live in a trait /// implementation of a `std` trait (see [llogiq's blog /// post](http://llogiq.github.io/2015/07/30/traits.html) for further /// information) instead of an inherent implementation. /// /// ### Why is this bad? /// Implementing the traits improve ergonomics for users of /// the code, often with very little cost. Also people seeing a `mul(...)` /// method /// may expect `*` to work equally, so you should have good reason to disappoint /// them. /// /// ### Example /// ```no_run /// struct X; /// impl X { /// fn add(&self, other: &X) -> X { /// // .. /// # X /// } /// } /// ``` #[clippy::version = "pre 1.29.0"] pub SHOULD_IMPLEMENT_TRAIT, style, "defining a method that should be implementing a std trait" } declare_clippy_lint! { /// ### What it does /// Checks for methods with certain name prefixes or suffixes, and which /// do not adhere to standard conventions regarding how `self` is taken. /// The actual rules are: /// /// |Prefix |Postfix |`self` taken | `self` type | /// |-------|------------|-------------------------------|--------------| /// |`as_` | none |`&self` or `&mut self` | any | /// |`from_`| none | none | any | /// |`into_`| none |`self` | any | /// |`is_` | none |`&mut self` or `&self` or none | any | /// |`to_` | `_mut` |`&mut self` | any | /// |`to_` | not `_mut` |`self` | `Copy` | /// |`to_` | not `_mut` |`&self` | not `Copy` | /// /// Note: Clippy doesn't trigger methods with `to_` prefix in: /// - Traits definition. /// Clippy can not tell if a type that implements a trait is `Copy` or not. /// - Traits implementation, when `&self` is taken. /// The method signature is controlled by the trait and often `&self` is required for all types that implement the trait /// (see e.g. the `std::string::ToString` trait). /// /// Clippy allows `Pin<&Self>` and `Pin<&mut Self>` if `&self` and `&mut self` is required. /// /// Please find more info here: /// https://rust-lang.github.io/api-guidelines/naming.html#ad-hoc-conversions-follow-as_-to_-into_-conventions-c-conv /// /// ### Why is this bad? /// Consistency breeds readability. If you follow the /// conventions, your users won't be surprised that they, e.g., need to supply a /// mutable reference to a `as_..` function. /// /// ### Example /// ```no_run /// # struct X; /// impl X { /// fn as_str(self) -> &'static str { /// // .. /// # "" /// } /// } /// ``` /// /// Use instead: /// ```no_run /// # struct X; /// impl X { /// fn as_str(&self) -> &'static str { /// // .. /// # "" /// } /// } /// ``` #[clippy::version = "pre 1.29.0"] pub WRONG_SELF_CONVENTION, style, "defining a method named with an established prefix (like \"into_\") that takes `self` with the wrong convention" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `ok().expect(..)`. /// /// ### Why is this bad? /// Because you usually call `expect()` on the `Result` /// directly to get a better error message. /// /// ### Known problems /// The error type needs to implement `Debug` /// /// ### Example /// ```no_run /// # let x = Ok::<_, ()>(()); /// x.ok().expect("why did I do this again?"); /// ``` /// /// Use instead: /// ```no_run /// # let x = Ok::<_, ()>(()); /// x.expect("why did I do this again?"); /// ``` #[clippy::version = "pre 1.29.0"] pub OK_EXPECT, style, "using `ok().expect()`, which gives worse error messages than calling `expect` directly on the Result" } declare_clippy_lint! { /// ### What it does /// Checks for `.err().expect()` calls on the `Result` type. /// /// ### Why is this bad? /// `.expect_err()` can be called directly to avoid the extra type conversion from `err()`. /// /// ### Example /// ```should_panic /// let x: Result = Ok(10); /// x.err().expect("Testing err().expect()"); /// ``` /// Use instead: /// ```should_panic /// let x: Result = Ok(10); /// x.expect_err("Testing expect_err"); /// ``` #[clippy::version = "1.62.0"] pub ERR_EXPECT, style, r#"using `.err().expect("")` when `.expect_err("")` can be used"# } declare_clippy_lint! { /// ### What it does /// Checks for usages of the following functions with an argument that constructs a default value /// (e.g., `Default::default` or `String::new`): /// - `unwrap_or` /// - `unwrap_or_else` /// - `or_insert` /// - `or_insert_with` /// /// ### Why is this bad? /// Readability. Using `unwrap_or_default` in place of `unwrap_or`/`unwrap_or_else`, or `or_default` /// in place of `or_insert`/`or_insert_with`, is simpler and more concise. /// /// ### Known problems /// In some cases, the argument of `unwrap_or`, etc. is needed for type inference. The lint uses a /// heuristic to try to identify such cases. However, the heuristic can produce false negatives. /// /// ### Examples /// ```no_run /// # let x = Some(1); /// # let mut map = std::collections::HashMap::::new(); /// x.unwrap_or(Default::default()); /// map.entry(42).or_insert_with(String::new); /// ``` /// /// Use instead: /// ```no_run /// # let x = Some(1); /// # let mut map = std::collections::HashMap::::new(); /// x.unwrap_or_default(); /// map.entry(42).or_default(); /// ``` #[clippy::version = "1.56.0"] pub UNWRAP_OR_DEFAULT, style, "using `.unwrap_or`, etc. with an argument that constructs a default value" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `option.map(_).unwrap_or(_)` or `option.map(_).unwrap_or_else(_)` or /// `result.map(_).unwrap_or_else(_)`. /// /// ### Why is this bad? /// Readability, these can be written more concisely (resp.) as /// `option.map_or(_, _)`, `option.map_or_else(_, _)` and `result.map_or_else(_, _)`. /// /// ### Known problems /// The order of the arguments is not in execution order /// /// ### Examples /// ```no_run /// # let option = Some(1); /// # let result: Result = Ok(1); /// # fn some_function(foo: ()) -> usize { 1 } /// option.map(|a| a + 1).unwrap_or(0); /// option.map(|a| a > 10).unwrap_or(false); /// result.map(|a| a + 1).unwrap_or_else(some_function); /// ``` /// /// Use instead: /// ```no_run /// # let option = Some(1); /// # let result: Result = Ok(1); /// # fn some_function(foo: ()) -> usize { 1 } /// option.map_or(0, |a| a + 1); /// option.is_some_and(|a| a > 10); /// result.map_or_else(some_function, |a| a + 1); /// ``` #[clippy::version = "1.45.0"] pub MAP_UNWRAP_OR, pedantic, "using `.map(f).unwrap_or(a)` or `.map(f).unwrap_or_else(func)`, which are more succinctly expressed as `map_or(a, f)` or `map_or_else(a, f)`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `_.map_or(None, _)`. /// /// ### Why is this bad? /// Readability, this can be written more concisely as /// `_.and_then(_)`. /// /// ### Known problems /// The order of the arguments is not in execution order. /// /// ### Example /// ```no_run /// # let opt = Some(1); /// opt.map_or(None, |a| Some(a + 1)); /// ``` /// /// Use instead: /// ```no_run /// # let opt = Some(1); /// opt.and_then(|a| Some(a + 1)); /// ``` #[clippy::version = "pre 1.29.0"] pub OPTION_MAP_OR_NONE, style, "using `Option.map_or(None, f)`, which is more succinctly expressed as `and_then(f)`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `_.map_or(None, Some)`. /// /// ### Why is this bad? /// Readability, this can be written more concisely as /// `_.ok()`. /// /// ### Example /// ```no_run /// # let r: Result = Ok(1); /// assert_eq!(Some(1), r.map_or(None, Some)); /// ``` /// /// Use instead: /// ```no_run /// # let r: Result = Ok(1); /// assert_eq!(Some(1), r.ok()); /// ``` #[clippy::version = "1.44.0"] pub RESULT_MAP_OR_INTO_OPTION, style, "using `Result.map_or(None, Some)`, which is more succinctly expressed as `ok()`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `_.and_then(|x| Some(y))`, `_.and_then(|x| Ok(y))` /// or `_.or_else(|x| Err(y))`. /// /// ### Why is this bad? /// This can be written more concisely as `_.map(|x| y)` or `_.map_err(|x| y)`. /// /// ### Example /// ```no_run /// # fn opt() -> Option<&'static str> { Some("42") } /// # fn res() -> Result<&'static str, &'static str> { Ok("42") } /// let _ = opt().and_then(|s| Some(s.len())); /// let _ = res().and_then(|s| if s.len() == 42 { Ok(10) } else { Ok(20) }); /// let _ = res().or_else(|s| if s.len() == 42 { Err(10) } else { Err(20) }); /// ``` /// /// The correct use would be: /// /// ```no_run /// # fn opt() -> Option<&'static str> { Some("42") } /// # fn res() -> Result<&'static str, &'static str> { Ok("42") } /// let _ = opt().map(|s| s.len()); /// let _ = res().map(|s| if s.len() == 42 { 10 } else { 20 }); /// let _ = res().map_err(|s| if s.len() == 42 { 10 } else { 20 }); /// ``` #[clippy::version = "1.45.0"] pub BIND_INSTEAD_OF_MAP, complexity, "using `Option.and_then(|x| Some(y))`, which is more succinctly expressed as `map(|x| y)`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `_.filter(_).next()`. /// /// ### Why is this bad? /// Readability, this can be written more concisely as /// `_.find(_)`. /// /// ### Example /// ```no_run /// # let vec = vec![1]; /// vec.iter().filter(|x| **x == 0).next(); /// ``` /// /// Use instead: /// ```no_run /// # let vec = vec![1]; /// vec.iter().find(|x| **x == 0); /// ``` #[clippy::version = "pre 1.29.0"] pub FILTER_NEXT, complexity, "using `filter(p).next()`, which is more succinctly expressed as `.find(p)`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `_.skip_while(condition).next()`. /// /// ### Why is this bad? /// Readability, this can be written more concisely as /// `_.find(!condition)`. /// /// ### Example /// ```no_run /// # let vec = vec![1]; /// vec.iter().skip_while(|x| **x == 0).next(); /// ``` /// /// Use instead: /// ```no_run /// # let vec = vec![1]; /// vec.iter().find(|x| **x != 0); /// ``` #[clippy::version = "1.42.0"] pub SKIP_WHILE_NEXT, complexity, "using `skip_while(p).next()`, which is more succinctly expressed as `.find(!p)`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `_.map(_).flatten(_)` on `Iterator` and `Option` /// /// ### Why is this bad? /// Readability, this can be written more concisely as /// `_.flat_map(_)` for `Iterator` or `_.and_then(_)` for `Option` /// /// ### Example /// ```no_run /// let vec = vec![vec![1]]; /// let opt = Some(5); /// /// vec.iter().map(|x| x.iter()).flatten(); /// opt.map(|x| Some(x * 2)).flatten(); /// ``` /// /// Use instead: /// ```no_run /// # let vec = vec![vec![1]]; /// # let opt = Some(5); /// vec.iter().flat_map(|x| x.iter()); /// opt.and_then(|x| Some(x * 2)); /// ``` #[clippy::version = "1.31.0"] pub MAP_FLATTEN, complexity, "using combinations of `flatten` and `map` which can usually be written as a single method call" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `_.filter(_).map(_)` that can be written more simply /// as `filter_map(_)`. /// /// ### Why is this bad? /// Redundant code in the `filter` and `map` operations is poor style and /// less performant. /// /// ### Example /// ```no_run /// (0_i32..10) /// .filter(|n| n.checked_add(1).is_some()) /// .map(|n| n.checked_add(1).unwrap()); /// ``` /// /// Use instead: /// ```no_run /// (0_i32..10).filter_map(|n| n.checked_add(1)); /// ``` #[clippy::version = "1.51.0"] pub MANUAL_FILTER_MAP, complexity, "using `_.filter(_).map(_)` in a way that can be written more simply as `filter_map(_)`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `_.find(_).map(_)` that can be written more simply /// as `find_map(_)`. /// /// ### Why is this bad? /// Redundant code in the `find` and `map` operations is poor style and /// less performant. /// /// ### Example /// ```no_run /// (0_i32..10) /// .find(|n| n.checked_add(1).is_some()) /// .map(|n| n.checked_add(1).unwrap()); /// ``` /// /// Use instead: /// ```no_run /// (0_i32..10).find_map(|n| n.checked_add(1)); /// ``` #[clippy::version = "1.51.0"] pub MANUAL_FIND_MAP, complexity, "using `_.find(_).map(_)` in a way that can be written more simply as `find_map(_)`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `_.filter_map(_).next()`. /// /// ### Why is this bad? /// Readability, this can be written more concisely as /// `_.find_map(_)`. /// /// ### Example /// ```no_run /// (0..3).filter_map(|x| if x == 2 { Some(x) } else { None }).next(); /// ``` /// Can be written as /// /// ```no_run /// (0..3).find_map(|x| if x == 2 { Some(x) } else { None }); /// ``` #[clippy::version = "1.36.0"] pub FILTER_MAP_NEXT, pedantic, "using combination of `filter_map` and `next` which can usually be written as a single method call" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `flat_map(|x| x)`. /// /// ### Why is this bad? /// Readability, this can be written more concisely by using `flatten`. /// /// ### Example /// ```no_run /// # let iter = vec![vec![0]].into_iter(); /// iter.flat_map(|x| x); /// ``` /// Can be written as /// ```no_run /// # let iter = vec![vec![0]].into_iter(); /// iter.flatten(); /// ``` #[clippy::version = "1.39.0"] pub FLAT_MAP_IDENTITY, complexity, "call to `flat_map` where `flatten` is sufficient" } declare_clippy_lint! { /// ### What it does /// Checks for an iterator or string search (such as `find()`, /// `position()`, or `rposition()`) followed by a call to `is_some()` or `is_none()`. /// /// ### Why is this bad? /// Readability, this can be written more concisely as: /// * `_.any(_)`, or `_.contains(_)` for `is_some()`, /// * `!_.any(_)`, or `!_.contains(_)` for `is_none()`. /// /// ### Example /// ```no_run /// let vec = vec![1]; /// vec.iter().find(|x| **x == 0).is_some(); /// /// "hello world".find("world").is_none(); /// ``` /// /// Use instead: /// ```no_run /// let vec = vec![1]; /// vec.iter().any(|x| *x == 0); /// /// !"hello world".contains("world"); /// ``` #[clippy::version = "pre 1.29.0"] pub SEARCH_IS_SOME, complexity, "using an iterator or string search followed by `is_some()` or `is_none()`, which is more succinctly expressed as a call to `any()` or `contains()` (with negation in case of `is_none()`)" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.chars().next()` on a `str` to check /// if it starts with a given char. /// /// ### Why is this bad? /// Readability, this can be written more concisely as /// `_.starts_with(_)`. /// /// ### Example /// ```no_run /// let name = "foo"; /// if name.chars().next() == Some('_') {}; /// ``` /// /// Use instead: /// ```no_run /// let name = "foo"; /// if name.starts_with('_') {}; /// ``` #[clippy::version = "pre 1.29.0"] pub CHARS_NEXT_CMP, style, "using `.chars().next()` to check if a string starts with a char" } declare_clippy_lint! { /// ### What it does /// Checks for calls to `.or(foo(..))`, `.unwrap_or(foo(..))`, /// `.or_insert(foo(..))` etc., and suggests to use `.or_else(|| foo(..))`, /// `.unwrap_or_else(|| foo(..))`, `.unwrap_or_default()` or `.or_default()` /// etc. instead. /// /// ### Why is this bad? /// The function will always be called. This is only bad if it allocates or /// does some non-trivial amount of work. /// /// ### Known problems /// If the function has side-effects, not calling it will change the /// semantic of the program, but you shouldn't rely on that. /// /// The lint also cannot figure out whether the function you call is /// actually expensive to call or not. /// /// ### Example /// ```no_run /// # let foo = Some(String::new()); /// foo.unwrap_or(String::from("empty")); /// ``` /// /// Use instead: /// ```no_run /// # let foo = Some(String::new()); /// foo.unwrap_or_else(|| String::from("empty")); /// ``` #[clippy::version = "pre 1.29.0"] pub OR_FUN_CALL, nursery, "using any `*or` method with a function call, which suggests `*or_else`" } declare_clippy_lint! { /// ### What it does /// Checks for `.or(…).unwrap()` calls to Options and Results. /// /// ### Why is this bad? /// You should use `.unwrap_or(…)` instead for clarity. /// /// ### Example /// ```no_run /// # let fallback = "fallback"; /// // Result /// # type Error = &'static str; /// # let result: Result<&str, Error> = Err("error"); /// let value = result.or::(Ok(fallback)).unwrap(); /// /// // Option /// # let option: Option<&str> = None; /// let value = option.or(Some(fallback)).unwrap(); /// ``` /// Use instead: /// ```no_run /// # let fallback = "fallback"; /// // Result /// # let result: Result<&str, &str> = Err("error"); /// let value = result.unwrap_or(fallback); /// /// // Option /// # let option: Option<&str> = None; /// let value = option.unwrap_or(fallback); /// ``` #[clippy::version = "1.61.0"] pub OR_THEN_UNWRAP, complexity, "checks for `.or(…).unwrap()` calls to Options and Results." } declare_clippy_lint! { /// ### What it does /// Checks for calls to `.expect(&format!(...))`, `.expect(foo(..))`, /// etc., and suggests to use `unwrap_or_else` instead /// /// ### Why is this bad? /// The function will always be called. /// /// ### Known problems /// If the function has side-effects, not calling it will /// change the semantics of the program, but you shouldn't rely on that anyway. /// /// ### Example /// ```no_run /// # let foo = Some(String::new()); /// # let err_code = "418"; /// # let err_msg = "I'm a teapot"; /// foo.expect(&format!("Err {}: {}", err_code, err_msg)); /// /// // or /// /// # let foo = Some(String::new()); /// foo.expect(format!("Err {}: {}", err_code, err_msg).as_str()); /// ``` /// /// Use instead: /// ```no_run /// # let foo = Some(String::new()); /// # let err_code = "418"; /// # let err_msg = "I'm a teapot"; /// foo.unwrap_or_else(|| panic!("Err {}: {}", err_code, err_msg)); /// ``` #[clippy::version = "pre 1.29.0"] pub EXPECT_FUN_CALL, perf, "using any `expect` method with a function call" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.clone()` on a `Copy` type. /// /// ### Why is this bad? /// The only reason `Copy` types implement `Clone` is for /// generics, not for using the `clone` method on a concrete type. /// /// ### Example /// ```no_run /// 42u64.clone(); /// ``` #[clippy::version = "pre 1.29.0"] pub CLONE_ON_COPY, complexity, "using `clone` on a `Copy` type" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.clone()` on a ref-counted pointer, /// (`Rc`, `Arc`, `rc::Weak`, or `sync::Weak`), and suggests calling Clone via unified /// function syntax instead (e.g., `Rc::clone(foo)`). /// /// ### Why restrict this? /// Calling `.clone()` on an `Rc`, `Arc`, or `Weak` /// can obscure the fact that only the pointer is being cloned, not the underlying /// data. /// /// ### Example /// ```no_run /// # use std::rc::Rc; /// let x = Rc::new(1); /// /// x.clone(); /// ``` /// /// Use instead: /// ```no_run /// # use std::rc::Rc; /// # let x = Rc::new(1); /// Rc::clone(&x); /// ``` #[clippy::version = "pre 1.29.0"] pub CLONE_ON_REF_PTR, restriction, "using `clone` on a ref-counted pointer" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.to_string()` on an `&&T` where /// `T` implements `ToString` directly (like `&&str` or `&&String`). /// /// ### Why is this bad? /// This bypasses the specialized implementation of /// `ToString` and instead goes through the more expensive string formatting /// facilities. /// /// ### Example /// ```no_run /// // Generic implementation for `T: Display` is used (slow) /// ["foo", "bar"].iter().map(|s| s.to_string()); /// /// // OK, the specialized impl is used /// ["foo", "bar"].iter().map(|&s| s.to_string()); /// ``` #[clippy::version = "1.40.0"] pub INEFFICIENT_TO_STRING, pedantic, "using `to_string` on `&&T` where `T: ToString`" } declare_clippy_lint! { /// ### What it does /// Checks for `new` not returning a type that contains `Self`. /// /// ### Why is this bad? /// As a convention, `new` methods are used to make a new /// instance of a type. /// /// ### Example /// In an impl block: /// ```no_run /// # struct Foo; /// # struct NotAFoo; /// impl Foo { /// fn new() -> NotAFoo { /// # NotAFoo /// } /// } /// ``` /// /// ```no_run /// # struct Foo; /// struct Bar(Foo); /// impl Foo { /// // Bad. The type name must contain `Self` /// fn new() -> Bar { /// # Bar(Foo) /// } /// } /// ``` /// /// ```no_run /// # struct Foo; /// # struct FooError; /// impl Foo { /// // Good. Return type contains `Self` /// fn new() -> Result { /// # Ok(Foo) /// } /// } /// ``` /// /// Or in a trait definition: /// ```no_run /// pub trait Trait { /// // Bad. The type name must contain `Self` /// fn new(); /// } /// ``` /// /// ```no_run /// pub trait Trait { /// // Good. Return type contains `Self` /// fn new() -> Self; /// } /// ``` #[clippy::version = "pre 1.29.0"] pub NEW_RET_NO_SELF, style, "not returning type containing `Self` in a `new` method" } declare_clippy_lint! { /// ### What it does /// Checks for calling `.step_by(0)` on iterators which panics. /// /// ### Why is this bad? /// This very much looks like an oversight. Use `panic!()` instead if you /// actually intend to panic. /// /// ### Example /// ```rust,should_panic /// for x in (0..100).step_by(0) { /// //.. /// } /// ``` #[clippy::version = "pre 1.29.0"] pub ITERATOR_STEP_BY_ZERO, correctness, "using `Iterator::step_by(0)`, which will panic at runtime" } declare_clippy_lint! { /// ### What it does /// Checks for iterators of `Option`s using `.filter(Option::is_some).map(Option::unwrap)` that may /// be replaced with a `.flatten()` call. /// /// ### Why is this bad? /// `Option` is like a collection of 0-1 things, so `flatten` /// automatically does this without suspicious-looking `unwrap` calls. /// /// ### Example /// ```no_run /// let _ = std::iter::empty::>().filter(Option::is_some).map(Option::unwrap); /// ``` /// Use instead: /// ```no_run /// let _ = std::iter::empty::>().flatten(); /// ``` #[clippy::version = "1.53.0"] pub OPTION_FILTER_MAP, complexity, "filtering `Option` for `Some` then force-unwrapping, which can be one type-safe operation" } declare_clippy_lint! { /// ### What it does /// Checks for the use of `iter.nth(0)`. /// /// ### Why is this bad? /// `iter.next()` is equivalent to /// `iter.nth(0)`, as they both consume the next element, /// but is more readable. /// /// ### Example /// ```no_run /// # use std::collections::HashSet; /// # let mut s = HashSet::new(); /// # s.insert(1); /// let x = s.iter().nth(0); /// ``` /// /// Use instead: /// ```no_run /// # use std::collections::HashSet; /// # let mut s = HashSet::new(); /// # s.insert(1); /// let x = s.iter().next(); /// ``` #[clippy::version = "1.42.0"] pub ITER_NTH_ZERO, style, "replace `iter.nth(0)` with `iter.next()`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.iter().nth()`/`.iter_mut().nth()` on standard library types that have /// equivalent `.get()`/`.get_mut()` methods. /// /// ### Why is this bad? /// `.get()` and `.get_mut()` are equivalent but more concise. /// /// ### Example /// ```no_run /// let some_vec = vec![0, 1, 2, 3]; /// let bad_vec = some_vec.iter().nth(3); /// let bad_slice = &some_vec[..].iter().nth(3); /// ``` /// The correct use would be: /// ```no_run /// let some_vec = vec![0, 1, 2, 3]; /// let bad_vec = some_vec.get(3); /// let bad_slice = &some_vec[..].get(3); /// ``` #[clippy::version = "pre 1.29.0"] pub ITER_NTH, style, "using `.iter().nth()` on a standard library type with O(1) element access" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.skip(x).next()` on iterators. /// /// ### Why is this bad? /// `.nth(x)` is cleaner /// /// ### Example /// ```no_run /// let some_vec = vec![0, 1, 2, 3]; /// let bad_vec = some_vec.iter().skip(3).next(); /// let bad_slice = &some_vec[..].iter().skip(3).next(); /// ``` /// The correct use would be: /// ```no_run /// let some_vec = vec![0, 1, 2, 3]; /// let bad_vec = some_vec.iter().nth(3); /// let bad_slice = &some_vec[..].iter().nth(3); /// ``` #[clippy::version = "pre 1.29.0"] pub ITER_SKIP_NEXT, style, "using `.skip(x).next()` on an iterator" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.drain(..)` on `Vec` and `VecDeque` for iteration. /// /// ### Why is this bad? /// `.into_iter()` is simpler with better performance. /// /// ### Example /// ```no_run /// # use std::collections::HashSet; /// let mut foo = vec![0, 1, 2, 3]; /// let bar: HashSet = foo.drain(..).collect(); /// ``` /// Use instead: /// ```no_run /// # use std::collections::HashSet; /// let foo = vec![0, 1, 2, 3]; /// let bar: HashSet = foo.into_iter().collect(); /// ``` #[clippy::version = "1.61.0"] pub ITER_WITH_DRAIN, nursery, "replace `.drain(..)` with `.into_iter()`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `x.get(x.len() - 1)` instead of /// `x.last()`. /// /// ### Why is this bad? /// Using `x.last()` is easier to read and has the same /// result. /// /// Note that using `x[x.len() - 1]` is semantically different from /// `x.last()`. Indexing into the array will panic on out-of-bounds /// accesses, while `x.get()` and `x.last()` will return `None`. /// /// There is another lint (get_unwrap) that covers the case of using /// `x.get(index).unwrap()` instead of `x[index]`. /// /// ### Example /// ```no_run /// let x = vec![2, 3, 5]; /// let last_element = x.get(x.len() - 1); /// ``` /// /// Use instead: /// ```no_run /// let x = vec![2, 3, 5]; /// let last_element = x.last(); /// ``` #[clippy::version = "1.37.0"] pub GET_LAST_WITH_LEN, complexity, "Using `x.get(x.len() - 1)` when `x.last()` is correct and simpler" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.get().unwrap()` (or /// `.get_mut().unwrap`) on a standard library type which implements `Index` /// /// ### Why restrict this? /// Using the Index trait (`[]`) is more clear and more /// concise. /// /// ### Known problems /// Not a replacement for error handling: Using either /// `.unwrap()` or the Index trait (`[]`) carries the risk of causing a `panic` /// if the value being accessed is `None`. If the use of `.get().unwrap()` is a /// temporary placeholder for dealing with the `Option` type, then this does /// not mitigate the need for error handling. If there is a chance that `.get()` /// will be `None` in your program, then it is advisable that the `None` case /// is handled in a future refactor instead of using `.unwrap()` or the Index /// trait. /// /// ### Example /// ```no_run /// let mut some_vec = vec![0, 1, 2, 3]; /// let last = some_vec.get(3).unwrap(); /// *some_vec.get_mut(0).unwrap() = 1; /// ``` /// The correct use would be: /// ```no_run /// let mut some_vec = vec![0, 1, 2, 3]; /// let last = some_vec[3]; /// some_vec[0] = 1; /// ``` #[clippy::version = "pre 1.29.0"] pub GET_UNWRAP, restriction, "using `.get().unwrap()` or `.get_mut().unwrap()` when using `[]` would work instead" } declare_clippy_lint! { /// ### What it does /// Checks for occurrences where one vector gets extended instead of append /// /// ### Why is this bad? /// Using `append` instead of `extend` is more concise and faster /// /// ### Example /// ```no_run /// let mut a = vec![1, 2, 3]; /// let mut b = vec![4, 5, 6]; /// /// a.extend(b.drain(..)); /// ``` /// /// Use instead: /// ```no_run /// let mut a = vec![1, 2, 3]; /// let mut b = vec![4, 5, 6]; /// /// a.append(&mut b); /// ``` #[clippy::version = "1.55.0"] pub EXTEND_WITH_DRAIN, perf, "using vec.append(&mut vec) to move the full range of a vector to another" } declare_clippy_lint! { /// ### What it does /// Checks for the use of `.extend(s.chars())` where s is a /// `&str` or `String`. /// /// ### Why is this bad? /// `.push_str(s)` is clearer /// /// ### Example /// ```no_run /// let abc = "abc"; /// let def = String::from("def"); /// let mut s = String::new(); /// s.extend(abc.chars()); /// s.extend(def.chars()); /// ``` /// The correct use would be: /// ```no_run /// let abc = "abc"; /// let def = String::from("def"); /// let mut s = String::new(); /// s.push_str(abc); /// s.push_str(&def); /// ``` #[clippy::version = "pre 1.29.0"] pub STRING_EXTEND_CHARS, style, "using `x.extend(s.chars())` where s is a `&str` or `String`" } declare_clippy_lint! { /// ### What it does /// Checks for the use of `.cloned().collect()` on slice to /// create a `Vec`. /// /// ### Why is this bad? /// `.to_vec()` is clearer /// /// ### Example /// ```no_run /// let s = [1, 2, 3, 4, 5]; /// let s2: Vec = s[..].iter().cloned().collect(); /// ``` /// The better use would be: /// ```no_run /// let s = [1, 2, 3, 4, 5]; /// let s2: Vec = s.to_vec(); /// ``` #[clippy::version = "pre 1.29.0"] pub ITER_CLONED_COLLECT, style, "using `.cloned().collect()` on slice to create a `Vec`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `_.chars().last()` or /// `_.chars().next_back()` on a `str` to check if it ends with a given char. /// /// ### Why is this bad? /// Readability, this can be written more concisely as /// `_.ends_with(_)`. /// /// ### Example /// ```no_run /// # let name = "_"; /// name.chars().last() == Some('_') || name.chars().next_back() == Some('-'); /// ``` /// /// Use instead: /// ```no_run /// # let name = "_"; /// name.ends_with('_') || name.ends_with('-'); /// ``` #[clippy::version = "pre 1.29.0"] pub CHARS_LAST_CMP, style, "using `.chars().last()` or `.chars().next_back()` to check if a string ends with a char" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.as_ref()` or `.as_mut()` where the /// types before and after the call are the same. /// /// ### Why is this bad? /// The call is unnecessary. /// /// ### Example /// ```no_run /// # fn do_stuff(x: &[i32]) {} /// let x: &[i32] = &[1, 2, 3, 4, 5]; /// do_stuff(x.as_ref()); /// ``` /// The correct use would be: /// ```no_run /// # fn do_stuff(x: &[i32]) {} /// let x: &[i32] = &[1, 2, 3, 4, 5]; /// do_stuff(x); /// ``` #[clippy::version = "pre 1.29.0"] pub USELESS_ASREF, complexity, "using `as_ref` where the types before and after the call are the same" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `fold` when a more succinct alternative exists. /// Specifically, this checks for `fold`s which could be replaced by `any`, `all`, /// `sum` or `product`. /// /// ### Why is this bad? /// Readability. /// /// ### Example /// ```no_run /// (0..3).fold(false, |acc, x| acc || x > 2); /// ``` /// /// Use instead: /// ```no_run /// (0..3).any(|x| x > 2); /// ``` #[clippy::version = "pre 1.29.0"] pub UNNECESSARY_FOLD, style, "using `fold` when a more succinct alternative exists" } declare_clippy_lint! { /// ### What it does /// Checks for `filter_map` calls that could be replaced by `filter` or `map`. /// More specifically it checks if the closure provided is only performing one of the /// filter or map operations and suggests the appropriate option. /// /// ### Why is this bad? /// Complexity. The intent is also clearer if only a single /// operation is being performed. /// /// ### Example /// ```no_run /// let _ = (0..3).filter_map(|x| if x > 2 { Some(x) } else { None }); /// /// // As there is no transformation of the argument this could be written as: /// let _ = (0..3).filter(|&x| x > 2); /// ``` /// /// ```no_run /// let _ = (0..4).filter_map(|x| Some(x + 1)); /// /// // As there is no conditional check on the argument this could be written as: /// let _ = (0..4).map(|x| x + 1); /// ``` #[clippy::version = "1.31.0"] pub UNNECESSARY_FILTER_MAP, complexity, "using `filter_map` when a more succinct alternative exists" } declare_clippy_lint! { /// ### What it does /// Checks for `find_map` calls that could be replaced by `find` or `map`. More /// specifically it checks if the closure provided is only performing one of the /// find or map operations and suggests the appropriate option. /// /// ### Why is this bad? /// Complexity. The intent is also clearer if only a single /// operation is being performed. /// /// ### Example /// ```no_run /// let _ = (0..3).find_map(|x| if x > 2 { Some(x) } else { None }); /// /// // As there is no transformation of the argument this could be written as: /// let _ = (0..3).find(|&x| x > 2); /// ``` /// /// ```no_run /// let _ = (0..4).find_map(|x| Some(x + 1)); /// /// // As there is no conditional check on the argument this could be written as: /// let _ = (0..4).map(|x| x + 1).next(); /// ``` #[clippy::version = "1.61.0"] pub UNNECESSARY_FIND_MAP, complexity, "using `find_map` when a more succinct alternative exists" } declare_clippy_lint! { /// ### What it does /// Checks for `into_iter` calls on references which should be replaced by `iter` /// or `iter_mut`. /// /// ### Why is this bad? /// Readability. Calling `into_iter` on a reference will not move out its /// content into the resulting iterator, which is confusing. It is better just call `iter` or /// `iter_mut` directly. /// /// ### Example /// ```no_run /// # let vec = vec![3, 4, 5]; /// (&vec).into_iter(); /// ``` /// /// Use instead: /// ```no_run /// # let vec = vec![3, 4, 5]; /// (&vec).iter(); /// ``` #[clippy::version = "1.32.0"] pub INTO_ITER_ON_REF, style, "using `.into_iter()` on a reference" } declare_clippy_lint! { /// ### What it does /// Checks for calls to `map` followed by a `count`. /// /// ### Why is this bad? /// It looks suspicious. Maybe `map` was confused with `filter`. /// If the `map` call is intentional, this should be rewritten /// using `inspect`. Or, if you intend to drive the iterator to /// completion, you can just use `for_each` instead. /// /// ### Example /// ```no_run /// let _ = (0..3).map(|x| x + 2).count(); /// ``` #[clippy::version = "1.39.0"] pub SUSPICIOUS_MAP, suspicious, "suspicious usage of map" } declare_clippy_lint! { /// ### What it does /// Checks for `MaybeUninit::uninit().assume_init()`. /// /// ### Why is this bad? /// For most types, this is undefined behavior. /// /// ### Known problems /// For now, we accept empty tuples and tuples / arrays /// of `MaybeUninit`. There may be other types that allow uninitialized /// data, but those are not yet rigorously defined. /// /// ### Example /// ```no_run /// // Beware the UB /// use std::mem::MaybeUninit; /// /// let _: usize = unsafe { MaybeUninit::uninit().assume_init() }; /// ``` /// /// Note that the following is OK: /// /// ```no_run /// use std::mem::MaybeUninit; /// /// let _: [MaybeUninit; 5] = unsafe { /// MaybeUninit::uninit().assume_init() /// }; /// ``` #[clippy::version = "1.39.0"] pub UNINIT_ASSUMED_INIT, correctness, "`MaybeUninit::uninit().assume_init()`" } declare_clippy_lint! { /// ### What it does /// Checks for `.checked_add/sub(x).unwrap_or(MAX/MIN)`. /// /// ### Why is this bad? /// These can be written simply with `saturating_add/sub` methods. /// /// ### Example /// ```no_run /// # let y: u32 = 0; /// # let x: u32 = 100; /// let add = x.checked_add(y).unwrap_or(u32::MAX); /// let sub = x.checked_sub(y).unwrap_or(u32::MIN); /// ``` /// /// can be written using dedicated methods for saturating addition/subtraction as: /// /// ```no_run /// # let y: u32 = 0; /// # let x: u32 = 100; /// let add = x.saturating_add(y); /// let sub = x.saturating_sub(y); /// ``` #[clippy::version = "1.39.0"] pub MANUAL_SATURATING_ARITHMETIC, style, "`.checked_add/sub(x).unwrap_or(MAX/MIN)`" } declare_clippy_lint! { /// ### What it does /// Checks for `offset(_)`, `wrapping_`{`add`, `sub`}, etc. on raw pointers to /// zero-sized types /// /// ### Why is this bad? /// This is a no-op, and likely unintended /// /// ### Example /// ```no_run /// unsafe { (&() as *const ()).offset(1) }; /// ``` #[clippy::version = "1.41.0"] pub ZST_OFFSET, correctness, "Check for offset calculations on raw pointers to zero-sized types" } declare_clippy_lint! { /// ### What it does /// Checks for `FileType::is_file()`. /// /// ### Why restrict this? /// When people testing a file type with `FileType::is_file` /// they are testing whether a path is something they can get bytes from. But /// `is_file` doesn't cover special file types in unix-like systems, and doesn't cover /// symlink in windows. Using `!FileType::is_dir()` is a better way to that intention. /// /// ### Example /// ```no_run /// # || { /// let metadata = std::fs::metadata("foo.txt")?; /// let filetype = metadata.file_type(); /// /// if filetype.is_file() { /// // read file /// } /// # Ok::<_, std::io::Error>(()) /// # }; /// ``` /// /// should be written as: /// /// ```no_run /// # || { /// let metadata = std::fs::metadata("foo.txt")?; /// let filetype = metadata.file_type(); /// /// if !filetype.is_dir() { /// // read file /// } /// # Ok::<_, std::io::Error>(()) /// # }; /// ``` #[clippy::version = "1.42.0"] pub FILETYPE_IS_FILE, restriction, "`FileType::is_file` is not recommended to test for readable file type" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `_.as_ref().map(Deref::deref)` or its aliases (such as String::as_str). /// /// ### Why is this bad? /// Readability, this can be written more concisely as /// `_.as_deref()`. /// /// ### Example /// ```no_run /// # let opt = Some("".to_string()); /// opt.as_ref().map(String::as_str) /// # ; /// ``` /// Can be written as /// ```no_run /// # let opt = Some("".to_string()); /// opt.as_deref() /// # ; /// ``` #[clippy::version = "1.42.0"] pub OPTION_AS_REF_DEREF, complexity, "using `as_ref().map(Deref::deref)`, which is more succinctly expressed as `as_deref()`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `iter().next()` on a Slice or an Array /// /// ### Why is this bad? /// These can be shortened into `.get()` /// /// ### Example /// ```no_run /// # let a = [1, 2, 3]; /// # let b = vec![1, 2, 3]; /// a[2..].iter().next(); /// b.iter().next(); /// ``` /// should be written as: /// ```no_run /// # let a = [1, 2, 3]; /// # let b = vec![1, 2, 3]; /// a.get(2); /// b.get(0); /// ``` #[clippy::version = "1.46.0"] pub ITER_NEXT_SLICE, style, "using `.iter().next()` on a sliced array, which can be shortened to just `.get()`" } declare_clippy_lint! { /// ### What it does /// Warns when using `push_str`/`insert_str` with a single-character string literal /// where `push`/`insert` with a `char` would work fine. /// /// ### Why is this bad? /// It's less clear that we are pushing a single character. /// /// ### Example /// ```no_run /// # let mut string = String::new(); /// string.insert_str(0, "R"); /// string.push_str("R"); /// ``` /// /// Use instead: /// ```no_run /// # let mut string = String::new(); /// string.insert(0, 'R'); /// string.push('R'); /// ``` #[clippy::version = "1.49.0"] pub SINGLE_CHAR_ADD_STR, style, "`push_str()` or `insert_str()` used with a single-character string literal as parameter" } declare_clippy_lint! { /// ### What it does /// As the counterpart to `or_fun_call`, this lint looks for unnecessary /// lazily evaluated closures on `Option` and `Result`. /// /// This lint suggests changing the following functions, when eager evaluation results in /// simpler code: /// - `unwrap_or_else` to `unwrap_or` /// - `and_then` to `and` /// - `or_else` to `or` /// - `get_or_insert_with` to `get_or_insert` /// - `ok_or_else` to `ok_or` /// - `then` to `then_some` (for msrv >= 1.62.0) /// /// ### Why is this bad? /// Using eager evaluation is shorter and simpler in some cases. /// /// ### Known problems /// It is possible, but not recommended for `Deref` and `Index` to have /// side effects. Eagerly evaluating them can change the semantics of the program. /// /// ### Example /// ```no_run /// let opt: Option = None; /// /// opt.unwrap_or_else(|| 42); /// ``` /// Use instead: /// ```no_run /// let opt: Option = None; /// /// opt.unwrap_or(42); /// ``` #[clippy::version = "1.48.0"] pub UNNECESSARY_LAZY_EVALUATIONS, style, "using unnecessary lazy evaluation, which can be replaced with simpler eager evaluation" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `_.map(_).collect::()`. /// /// ### Why is this bad? /// Using `try_for_each` instead is more readable and idiomatic. /// /// ### Example /// ```no_run /// (0..3).map(|t| Err(t)).collect::>(); /// ``` /// Use instead: /// ```no_run /// (0..3).try_for_each(|t| Err(t)); /// ``` #[clippy::version = "1.49.0"] pub MAP_COLLECT_RESULT_UNIT, style, "using `.map(_).collect::()`, which can be replaced with `try_for_each`" } declare_clippy_lint! { /// ### What it does /// Checks for `from_iter()` function calls on types that implement the `FromIterator` /// trait. /// /// ### Why is this bad? /// If it's needed to create a collection from the contents of an iterator, the `Iterator::collect(_)` /// method is preferred. However, when it's needed to specify the container type, /// `Vec::from_iter(_)` can be more readable than using a turbofish (e.g. `_.collect::>()`). See /// [FromIterator documentation](https://doc.rust-lang.org/std/iter/trait.FromIterator.html) /// /// ### Example /// ```no_run /// let five_fives = std::iter::repeat(5).take(5); /// /// let v = Vec::from_iter(five_fives); /// /// assert_eq!(v, vec![5, 5, 5, 5, 5]); /// ``` /// Use instead: /// ```no_run /// let five_fives = std::iter::repeat(5).take(5); /// /// let v: Vec = five_fives.collect(); /// /// assert_eq!(v, vec![5, 5, 5, 5, 5]); /// ``` /// but prefer to use /// ```no_run /// let numbers: Vec = FromIterator::from_iter(1..=5); /// ``` /// instead of /// ```no_run /// let numbers = (1..=5).collect::>(); /// ``` #[clippy::version = "1.49.0"] pub FROM_ITER_INSTEAD_OF_COLLECT, pedantic, "use `.collect()` instead of `::from_iter()`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `inspect().for_each()`. /// /// ### Why is this bad? /// It is the same as performing the computation /// inside `inspect` at the beginning of the closure in `for_each`. /// /// ### Example /// ```no_run /// [1,2,3,4,5].iter() /// .inspect(|&x| println!("inspect the number: {}", x)) /// .for_each(|&x| { /// assert!(x >= 0); /// }); /// ``` /// Can be written as /// ```no_run /// [1,2,3,4,5].iter() /// .for_each(|&x| { /// println!("inspect the number: {}", x); /// assert!(x >= 0); /// }); /// ``` #[clippy::version = "1.51.0"] pub INSPECT_FOR_EACH, complexity, "using `.inspect().for_each()`, which can be replaced with `.for_each()`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `filter_map(|x| x)`. /// /// ### Why is this bad? /// Readability, this can be written more concisely by using `flatten`. /// /// ### Example /// ```no_run /// # let iter = vec![Some(1)].into_iter(); /// iter.filter_map(|x| x); /// ``` /// Use instead: /// ```no_run /// # let iter = vec![Some(1)].into_iter(); /// iter.flatten(); /// ``` #[clippy::version = "1.52.0"] pub FILTER_MAP_IDENTITY, complexity, "call to `filter_map` where `flatten` is sufficient" } declare_clippy_lint! { /// ### What it does /// Checks for instances of `map(f)` where `f` is the identity function. /// /// ### Why is this bad? /// It can be written more concisely without the call to `map`. /// /// ### Example /// ```no_run /// let x = [1, 2, 3]; /// let y: Vec<_> = x.iter().map(|x| x).map(|x| 2*x).collect(); /// ``` /// Use instead: /// ```no_run /// let x = [1, 2, 3]; /// let y: Vec<_> = x.iter().map(|x| 2*x).collect(); /// ``` #[clippy::version = "1.47.0"] pub MAP_IDENTITY, complexity, "using iterator.map(|x| x)" } declare_clippy_lint! { /// ### What it does /// Checks for the use of `.bytes().nth()`. /// /// ### Why is this bad? /// `.as_bytes().get()` is more efficient and more /// readable. /// /// ### Example /// ```no_run /// "Hello".bytes().nth(3); /// ``` /// /// Use instead: /// ```no_run /// "Hello".as_bytes().get(3); /// ``` #[clippy::version = "1.52.0"] pub BYTES_NTH, style, "replace `.bytes().nth()` with `.as_bytes().get()`" } declare_clippy_lint! { /// ### What it does /// Checks for the usage of `_.to_owned()`, `vec.to_vec()`, or similar when calling `_.clone()` would be clearer. /// /// ### Why is this bad? /// These methods do the same thing as `_.clone()` but may be confusing as /// to why we are calling `to_vec` on something that is already a `Vec` or calling `to_owned` on something that is already owned. /// /// ### Example /// ```no_run /// let a = vec![1, 2, 3]; /// let b = a.to_vec(); /// let c = a.to_owned(); /// ``` /// Use instead: /// ```no_run /// let a = vec![1, 2, 3]; /// let b = a.clone(); /// let c = a.clone(); /// ``` #[clippy::version = "1.52.0"] pub IMPLICIT_CLONE, pedantic, "implicitly cloning a value by invoking a function on its dereferenced type" } declare_clippy_lint! { /// ### What it does /// Checks for the use of `.iter().count()`. /// /// ### Why is this bad? /// `.len()` is more efficient and more /// readable. /// /// ### Example /// ```no_run /// let some_vec = vec![0, 1, 2, 3]; /// /// some_vec.iter().count(); /// &some_vec[..].iter().count(); /// ``` /// /// Use instead: /// ```no_run /// let some_vec = vec![0, 1, 2, 3]; /// /// some_vec.len(); /// &some_vec[..].len(); /// ``` #[clippy::version = "1.52.0"] pub ITER_COUNT, complexity, "replace `.iter().count()` with `.len()`" } declare_clippy_lint! { /// ### What it does /// Checks for the usage of `_.to_owned()`, on a `Cow<'_, _>`. /// /// ### Why is this bad? /// Calling `to_owned()` on a `Cow` creates a clone of the `Cow` /// itself, without taking ownership of the `Cow` contents (i.e. /// it's equivalent to calling `Cow::clone`). /// The similarly named `into_owned` method, on the other hand, /// clones the `Cow` contents, effectively turning any `Cow::Borrowed` /// into a `Cow::Owned`. /// /// Given the potential ambiguity, consider replacing `to_owned` /// with `clone` for better readability or, if getting a `Cow::Owned` /// was the original intent, using `into_owned` instead. /// /// ### Example /// ```no_run /// # use std::borrow::Cow; /// let s = "Hello world!"; /// let cow = Cow::Borrowed(s); /// /// let data = cow.to_owned(); /// assert!(matches!(data, Cow::Borrowed(_))) /// ``` /// Use instead: /// ```no_run /// # use std::borrow::Cow; /// let s = "Hello world!"; /// let cow = Cow::Borrowed(s); /// /// let data = cow.clone(); /// assert!(matches!(data, Cow::Borrowed(_))) /// ``` /// or /// ```no_run /// # use std::borrow::Cow; /// let s = "Hello world!"; /// let cow = Cow::Borrowed(s); /// /// let _data: String = cow.into_owned(); /// ``` #[clippy::version = "1.65.0"] pub SUSPICIOUS_TO_OWNED, suspicious, "calls to `to_owned` on a `Cow<'_, _>` might not do what they are expected" } declare_clippy_lint! { /// ### What it does /// Checks for calls to [`splitn`] /// (https://doc.rust-lang.org/std/primitive.str.html#method.splitn) and /// related functions with either zero or one splits. /// /// ### Why is this bad? /// These calls don't actually split the value and are /// likely to be intended as a different number. /// /// ### Example /// ```no_run /// # let s = ""; /// for x in s.splitn(1, ":") { /// // .. /// } /// ``` /// /// Use instead: /// ```no_run /// # let s = ""; /// for x in s.splitn(2, ":") { /// // .. /// } /// ``` #[clippy::version = "1.54.0"] pub SUSPICIOUS_SPLITN, correctness, "checks for `.splitn(0, ..)` and `.splitn(1, ..)`" } declare_clippy_lint! { /// ### What it does /// Checks for manual implementations of `str::repeat` /// /// ### Why is this bad? /// These are both harder to read, as well as less performant. /// /// ### Example /// ```no_run /// let x: String = std::iter::repeat('x').take(10).collect(); /// ``` /// /// Use instead: /// ```no_run /// let x: String = "x".repeat(10); /// ``` #[clippy::version = "1.54.0"] pub MANUAL_STR_REPEAT, perf, "manual implementation of `str::repeat`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `str::splitn(2, _)` /// /// ### Why is this bad? /// `split_once` is both clearer in intent and slightly more efficient. /// /// ### Example /// ```rust,ignore /// let s = "key=value=add"; /// let (key, value) = s.splitn(2, '=').next_tuple()?; /// let value = s.splitn(2, '=').nth(1)?; /// /// let mut parts = s.splitn(2, '='); /// let key = parts.next()?; /// let value = parts.next()?; /// ``` /// /// Use instead: /// ```rust,ignore /// let s = "key=value=add"; /// let (key, value) = s.split_once('=')?; /// let value = s.split_once('=')?.1; /// /// let (key, value) = s.split_once('=')?; /// ``` /// /// ### Limitations /// The multiple statement variant currently only detects `iter.next()?`/`iter.next().unwrap()` /// in two separate `let` statements that immediately follow the `splitn()` #[clippy::version = "1.57.0"] pub MANUAL_SPLIT_ONCE, complexity, "replace `.splitn(2, pat)` with `.split_once(pat)`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `str::splitn` (or `str::rsplitn`) where using `str::split` would be the same. /// ### Why is this bad? /// The function `split` is simpler and there is no performance difference in these cases, considering /// that both functions return a lazy iterator. /// ### Example /// ```no_run /// let str = "key=value=add"; /// let _ = str.splitn(3, '=').next().unwrap(); /// ``` /// /// Use instead: /// ```no_run /// let str = "key=value=add"; /// let _ = str.split('=').next().unwrap(); /// ``` #[clippy::version = "1.59.0"] pub NEEDLESS_SPLITN, complexity, "usages of `str::splitn` that can be replaced with `str::split`" } declare_clippy_lint! { /// ### What it does /// Checks for unnecessary calls to [`ToOwned::to_owned`](https://doc.rust-lang.org/std/borrow/trait.ToOwned.html#tymethod.to_owned) /// and other `to_owned`-like functions. /// /// ### Why is this bad? /// The unnecessary calls result in useless allocations. /// /// ### Known problems /// `unnecessary_to_owned` can falsely trigger if `IntoIterator::into_iter` is applied to an /// owned copy of a resource and the resource is later used mutably. See /// [#8148](https://github.com/rust-lang/rust-clippy/issues/8148). /// /// ### Example /// ```no_run /// let path = std::path::Path::new("x"); /// foo(&path.to_string_lossy().to_string()); /// fn foo(s: &str) {} /// ``` /// Use instead: /// ```no_run /// let path = std::path::Path::new("x"); /// foo(&path.to_string_lossy()); /// fn foo(s: &str) {} /// ``` #[clippy::version = "1.59.0"] pub UNNECESSARY_TO_OWNED, perf, "unnecessary calls to `to_owned`-like functions" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.collect::>().join("")` on iterators. /// /// ### Why is this bad? /// `.collect::()` is more concise and might be more performant /// /// ### Example /// ```no_run /// let vector = vec!["hello", "world"]; /// let output = vector.iter().map(|item| item.to_uppercase()).collect::>().join(""); /// println!("{}", output); /// ``` /// The correct use would be: /// ```no_run /// let vector = vec!["hello", "world"]; /// let output = vector.iter().map(|item| item.to_uppercase()).collect::(); /// println!("{}", output); /// ``` /// ### Known problems /// While `.collect::()` is sometimes more performant, there are cases where /// using `.collect::()` over `.collect::>().join("")` /// will prevent loop unrolling and will result in a negative performance impact. /// /// Additionally, differences have been observed between aarch64 and x86_64 assembly output, /// with aarch64 tending to producing faster assembly in more cases when using `.collect::()` #[clippy::version = "1.61.0"] pub UNNECESSARY_JOIN, pedantic, "using `.collect::>().join(\"\")` on an iterator" } declare_clippy_lint! { /// ### What it does /// Checks for no-op uses of `Option::{as_deref, as_deref_mut}`, /// for example, `Option<&T>::as_deref()` returns the same type. /// /// ### Why is this bad? /// Redundant code and improving readability. /// /// ### Example /// ```no_run /// let a = Some(&1); /// let b = a.as_deref(); // goes from Option<&i32> to Option<&i32> /// ``` /// /// Use instead: /// ```no_run /// let a = Some(&1); /// let b = a; /// ``` #[clippy::version = "1.57.0"] pub NEEDLESS_OPTION_AS_DEREF, complexity, "no-op use of `deref` or `deref_mut` method to `Option`." } declare_clippy_lint! { /// ### What it does /// Finds usages of [`char::is_digit`](https://doc.rust-lang.org/stable/std/primitive.char.html#method.is_digit) that /// can be replaced with [`is_ascii_digit`](https://doc.rust-lang.org/stable/std/primitive.char.html#method.is_ascii_digit) or /// [`is_ascii_hexdigit`](https://doc.rust-lang.org/stable/std/primitive.char.html#method.is_ascii_hexdigit). /// /// ### Why is this bad? /// `is_digit(..)` is slower and requires specifying the radix. /// /// ### Example /// ```no_run /// let c: char = '6'; /// c.is_digit(10); /// c.is_digit(16); /// ``` /// Use instead: /// ```no_run /// let c: char = '6'; /// c.is_ascii_digit(); /// c.is_ascii_hexdigit(); /// ``` #[clippy::version = "1.62.0"] pub IS_DIGIT_ASCII_RADIX, style, "use of `char::is_digit(..)` with literal radix of 10 or 16" } declare_clippy_lint! { /// ### What it does /// Checks for calling `take` function after `as_ref`. /// /// ### Why is this bad? /// Redundant code. `take` writes `None` to its argument. /// In this case the modification is useless as it's a temporary that cannot be read from afterwards. /// /// ### Example /// ```no_run /// let x = Some(3); /// x.as_ref().take(); /// ``` /// Use instead: /// ```no_run /// let x = Some(3); /// x.as_ref(); /// ``` #[clippy::version = "1.62.0"] pub NEEDLESS_OPTION_TAKE, complexity, "using `.as_ref().take()` on a temporary value" } declare_clippy_lint! { /// ### What it does /// Checks for `replace` statements which have no effect. /// /// ### Why is this bad? /// It's either a mistake or confusing. /// /// ### Example /// ```no_run /// "1234".replace("12", "12"); /// "1234".replacen("12", "12", 1); /// ``` #[clippy::version = "1.63.0"] pub NO_EFFECT_REPLACE, suspicious, "replace with no effect" } declare_clippy_lint! { /// ### What it does /// Checks for unnecessary method chains that can be simplified into `if .. else ..`. /// /// ### Why is this bad? /// This can be written more clearly with `if .. else ..` /// /// ### Limitations /// This lint currently only looks for usages of /// `.then_some(..).unwrap_or(..)` and `.then(..).unwrap_or(..)`, but will be expanded /// to account for similar patterns. /// /// ### Example /// ```no_run /// let x = true; /// x.then_some("a").unwrap_or("b"); /// ``` /// Use instead: /// ```no_run /// let x = true; /// if x { "a" } else { "b" }; /// ``` #[clippy::version = "1.64.0"] pub OBFUSCATED_IF_ELSE, style, "use of `.then_some(..).unwrap_or(..)` can be written \ more clearly with `if .. else ..`" } declare_clippy_lint! { /// ### What it does /// /// Checks for calls to `iter`, `iter_mut` or `into_iter` on collections containing a single item /// /// ### Why is this bad? /// /// It is simpler to use the once function from the standard library: /// /// ### Example /// /// ```no_run /// let a = [123].iter(); /// let b = Some(123).into_iter(); /// ``` /// Use instead: /// ```no_run /// use std::iter; /// let a = iter::once(&123); /// let b = iter::once(123); /// ``` /// /// ### Known problems /// /// The type of the resulting iterator might become incompatible with its usage #[clippy::version = "1.65.0"] pub ITER_ON_SINGLE_ITEMS, nursery, "Iterator for array of length 1" } declare_clippy_lint! { /// ### What it does /// /// Checks for calls to `iter`, `iter_mut` or `into_iter` on empty collections /// /// ### Why is this bad? /// /// It is simpler to use the empty function from the standard library: /// /// ### Example /// /// ```no_run /// use std::{slice, option}; /// let a: slice::Iter = [].iter(); /// let f: option::IntoIter = None.into_iter(); /// ``` /// Use instead: /// ```no_run /// use std::iter; /// let a: iter::Empty = iter::empty(); /// let b: iter::Empty = iter::empty(); /// ``` /// /// ### Known problems /// /// The type of the resulting iterator might become incompatible with its usage #[clippy::version = "1.65.0"] pub ITER_ON_EMPTY_COLLECTIONS, nursery, "Iterator for empty array" } declare_clippy_lint! { /// ### What it does /// Checks for naive byte counts /// /// ### Why is this bad? /// The [`bytecount`](https://crates.io/crates/bytecount) /// crate has methods to count your bytes faster, especially for large slices. /// /// ### Known problems /// If you have predominantly small slices, the /// `bytecount::count(..)` method may actually be slower. However, if you can /// ensure that less than 2³²-1 matches arise, the `naive_count_32(..)` can be /// faster in those cases. /// /// ### Example /// ```no_run /// # let vec = vec![1_u8]; /// let count = vec.iter().filter(|x| **x == 0u8).count(); /// ``` /// /// Use instead: /// ```rust,ignore /// # let vec = vec![1_u8]; /// let count = bytecount::count(&vec, 0u8); /// ``` #[clippy::version = "pre 1.29.0"] pub NAIVE_BYTECOUNT, pedantic, "use of naive `.filter(|&x| x == y).count()` to count byte values" } declare_clippy_lint! { /// ### What it does /// It checks for `str::bytes().count()` and suggests replacing it with /// `str::len()`. /// /// ### Why is this bad? /// `str::bytes().count()` is longer and may not be as performant as using /// `str::len()`. /// /// ### Example /// ```no_run /// "hello".bytes().count(); /// String::from("hello").bytes().count(); /// ``` /// Use instead: /// ```no_run /// "hello".len(); /// String::from("hello").len(); /// ``` #[clippy::version = "1.62.0"] pub BYTES_COUNT_TO_LEN, complexity, "Using `bytes().count()` when `len()` performs the same functionality" } declare_clippy_lint! { /// ### What it does /// Checks for calls to `ends_with` with possible file extensions /// and suggests to use a case-insensitive approach instead. /// /// ### Why is this bad? /// `ends_with` is case-sensitive and may not detect files with a valid extension. /// /// ### Example /// ```no_run /// fn is_rust_file(filename: &str) -> bool { /// filename.ends_with(".rs") /// } /// ``` /// Use instead: /// ```no_run /// fn is_rust_file(filename: &str) -> bool { /// let filename = std::path::Path::new(filename); /// filename.extension() /// .map_or(false, |ext| ext.eq_ignore_ascii_case("rs")) /// } /// ``` #[clippy::version = "1.51.0"] pub CASE_SENSITIVE_FILE_EXTENSION_COMPARISONS, pedantic, "Checks for calls to ends_with with case-sensitive file extensions" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `x.get(0)` instead of /// `x.first()` or `x.front()`. /// /// ### Why is this bad? /// Using `x.first()` for `Vec`s and slices or `x.front()` /// for `VecDeque`s is easier to read and has the same result. /// /// ### Example /// ```no_run /// let x = vec![2, 3, 5]; /// let first_element = x.get(0); /// ``` /// /// Use instead: /// ```no_run /// let x = vec![2, 3, 5]; /// let first_element = x.first(); /// ``` #[clippy::version = "1.63.0"] pub GET_FIRST, style, "Using `x.get(0)` when `x.first()` or `x.front()` is simpler" } declare_clippy_lint! { /// ### What it does /// /// Finds patterns that reimplement `Option::ok_or`. /// /// ### Why is this bad? /// /// Concise code helps focusing on behavior instead of boilerplate. /// /// ### Examples /// ```no_run /// let foo: Option = None; /// foo.map_or(Err("error"), |v| Ok(v)); /// ``` /// /// Use instead: /// ```no_run /// let foo: Option = None; /// foo.ok_or("error"); /// ``` #[clippy::version = "1.49.0"] pub MANUAL_OK_OR, style, "finds patterns that can be encoded more concisely with `Option::ok_or`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `map(|x| x.clone())` or /// dereferencing closures for `Copy` types, on `Iterator` or `Option`, /// and suggests `cloned()` or `copied()` instead /// /// ### Why is this bad? /// Readability, this can be written more concisely /// /// ### Example /// ```no_run /// let x = vec![42, 43]; /// let y = x.iter(); /// let z = y.map(|i| *i); /// ``` /// /// The correct use would be: /// /// ```no_run /// let x = vec![42, 43]; /// let y = x.iter(); /// let z = y.cloned(); /// ``` #[clippy::version = "pre 1.29.0"] pub MAP_CLONE, style, "using `iterator.map(|x| x.clone())`, or dereferencing closures for `Copy` types" } declare_clippy_lint! { /// ### What it does /// Checks for instances of `map_err(|_| Some::Enum)` /// /// ### Why restrict this? /// This `map_err` throws away the original error rather than allowing the enum to /// contain and report the cause of the error. /// /// ### Example /// Before: /// ```no_run /// use std::fmt; /// /// #[derive(Debug)] /// enum Error { /// Indivisible, /// Remainder(u8), /// } /// /// impl fmt::Display for Error { /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { /// match self { /// Error::Indivisible => write!(f, "could not divide input by three"), /// Error::Remainder(remainder) => write!( /// f, /// "input is not divisible by three, remainder = {}", /// remainder /// ), /// } /// } /// } /// /// impl std::error::Error for Error {} /// /// fn divisible_by_3(input: &str) -> Result<(), Error> { /// input /// .parse::() /// .map_err(|_| Error::Indivisible) /// .map(|v| v % 3) /// .and_then(|remainder| { /// if remainder == 0 { /// Ok(()) /// } else { /// Err(Error::Remainder(remainder as u8)) /// } /// }) /// } /// ``` /// /// After: /// ```rust /// use std::{fmt, num::ParseIntError}; /// /// #[derive(Debug)] /// enum Error { /// Indivisible(ParseIntError), /// Remainder(u8), /// } /// /// impl fmt::Display for Error { /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { /// match self { /// Error::Indivisible(_) => write!(f, "could not divide input by three"), /// Error::Remainder(remainder) => write!( /// f, /// "input is not divisible by three, remainder = {}", /// remainder /// ), /// } /// } /// } /// /// impl std::error::Error for Error { /// fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { /// match self { /// Error::Indivisible(source) => Some(source), /// _ => None, /// } /// } /// } /// /// fn divisible_by_3(input: &str) -> Result<(), Error> { /// input /// .parse::() /// .map_err(Error::Indivisible) /// .map(|v| v % 3) /// .and_then(|remainder| { /// if remainder == 0 { /// Ok(()) /// } else { /// Err(Error::Remainder(remainder as u8)) /// } /// }) /// } /// ``` #[clippy::version = "1.48.0"] pub MAP_ERR_IGNORE, restriction, "`map_err` should not ignore the original error" } declare_clippy_lint! { /// ### What it does /// Checks for `&mut Mutex::lock` calls /// /// ### Why is this bad? /// `Mutex::lock` is less efficient than /// calling `Mutex::get_mut`. In addition you also have a statically /// guarantee that the mutex isn't locked, instead of just a runtime /// guarantee. /// /// ### Example /// ```no_run /// use std::sync::{Arc, Mutex}; /// /// let mut value_rc = Arc::new(Mutex::new(42_u8)); /// let value_mutex = Arc::get_mut(&mut value_rc).unwrap(); /// /// let mut value = value_mutex.lock().unwrap(); /// *value += 1; /// ``` /// Use instead: /// ```no_run /// use std::sync::{Arc, Mutex}; /// /// let mut value_rc = Arc::new(Mutex::new(42_u8)); /// let value_mutex = Arc::get_mut(&mut value_rc).unwrap(); /// /// let value = value_mutex.get_mut().unwrap(); /// *value += 1; /// ``` #[clippy::version = "1.49.0"] pub MUT_MUTEX_LOCK, style, "`&mut Mutex::lock` does unnecessary locking" } declare_clippy_lint! { /// ### What it does /// Checks for duplicate open options as well as combinations /// that make no sense. /// /// ### Why is this bad? /// In the best case, the code will be harder to read than /// necessary. I don't know the worst case. /// /// ### Example /// ```no_run /// use std::fs::OpenOptions; /// /// OpenOptions::new().read(true).truncate(true); /// ``` #[clippy::version = "pre 1.29.0"] pub NONSENSICAL_OPEN_OPTIONS, correctness, "nonsensical combination of options for opening a file" } declare_clippy_lint! { /// ### What it does /// Checks for the suspicious use of `OpenOptions::create()` /// without an explicit `OpenOptions::truncate()`. /// /// ### Why is this bad? /// `create()` alone will either create a new file or open an /// existing file. If the file already exists, it will be /// overwritten when written to, but the file will not be /// truncated by default. /// If less data is written to the file /// than it already contains, the remainder of the file will /// remain unchanged, and the end of the file will contain old /// data. /// In most cases, one should either use `create_new` to ensure /// the file is created from scratch, or ensure `truncate` is /// called so that the truncation behaviour is explicit. `truncate(true)` /// will ensure the file is entirely overwritten with new data, whereas /// `truncate(false)` will explicitly keep the default behavior. /// /// ### Example /// ```rust,no_run /// use std::fs::OpenOptions; /// /// OpenOptions::new().create(true); /// ``` /// Use instead: /// ```rust,no_run /// use std::fs::OpenOptions; /// /// OpenOptions::new().create(true).truncate(true); /// ``` #[clippy::version = "1.77.0"] pub SUSPICIOUS_OPEN_OPTIONS, suspicious, "suspicious combination of options for opening a file" } declare_clippy_lint! { /// ### What it does ///* Checks for [push](https://doc.rust-lang.org/std/path/struct.PathBuf.html#method.push) /// calls on `PathBuf` that can cause overwrites. /// /// ### Why is this bad? /// Calling `push` with a root path at the start can overwrite the /// previous defined path. /// /// ### Example /// ```no_run /// use std::path::PathBuf; /// /// let mut x = PathBuf::from("/foo"); /// x.push("/bar"); /// assert_eq!(x, PathBuf::from("/bar")); /// ``` /// Could be written: /// /// ```no_run /// use std::path::PathBuf; /// /// let mut x = PathBuf::from("/foo"); /// x.push("bar"); /// assert_eq!(x, PathBuf::from("/foo/bar")); /// ``` #[clippy::version = "1.36.0"] pub PATH_BUF_PUSH_OVERWRITE, nursery, "calling `push` with file system root on `PathBuf` can overwrite it" } declare_clippy_lint! { /// ### What it does /// Checks for zipping a collection with the range of /// `0.._.len()`. /// /// ### Why is this bad? /// The code is better expressed with `.enumerate()`. /// /// ### Example /// ```no_run /// # let x = vec![1]; /// let _ = x.iter().zip(0..x.len()); /// ``` /// /// Use instead: /// ```no_run /// # let x = vec![1]; /// let _ = x.iter().enumerate(); /// ``` #[clippy::version = "pre 1.29.0"] pub RANGE_ZIP_WITH_LEN, complexity, "zipping iterator with a range when `enumerate()` would do" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.repeat(1)` and suggest the following method for each types. /// - `.to_string()` for `str` /// - `.clone()` for `String` /// - `.to_vec()` for `slice` /// /// The lint will evaluate constant expressions and values as arguments of `.repeat(..)` and emit a message if /// they are equivalent to `1`. (Related discussion in [rust-clippy#7306](https://github.com/rust-lang/rust-clippy/issues/7306)) /// /// ### Why is this bad? /// For example, `String.repeat(1)` is equivalent to `.clone()`. If cloning /// the string is the intention behind this, `clone()` should be used. /// /// ### Example /// ```no_run /// fn main() { /// let x = String::from("hello world").repeat(1); /// } /// ``` /// Use instead: /// ```no_run /// fn main() { /// let x = String::from("hello world").clone(); /// } /// ``` #[clippy::version = "1.47.0"] pub REPEAT_ONCE, complexity, "using `.repeat(1)` instead of `String.clone()`, `str.to_string()` or `slice.to_vec()` " } declare_clippy_lint! { /// ### What it does /// When sorting primitive values (integers, bools, chars, as well /// as arrays, slices, and tuples of such items), it is typically better to /// use an unstable sort than a stable sort. /// /// ### Why is this bad? /// Typically, using a stable sort consumes more memory and cpu cycles. /// Because values which compare equal are identical, preserving their /// relative order (the guarantee that a stable sort provides) means /// nothing, while the extra costs still apply. /// /// ### Known problems /// /// As pointed out in /// [issue #8241](https://github.com/rust-lang/rust-clippy/issues/8241), /// a stable sort can instead be significantly faster for certain scenarios /// (eg. when a sorted vector is extended with new data and resorted). /// /// For more information and benchmarking results, please refer to the /// issue linked above. /// /// ### Example /// ```no_run /// let mut vec = vec![2, 1, 3]; /// vec.sort(); /// ``` /// Use instead: /// ```no_run /// let mut vec = vec![2, 1, 3]; /// vec.sort_unstable(); /// ``` #[clippy::version = "1.47.0"] pub STABLE_SORT_PRIMITIVE, pedantic, "use of sort() when sort_unstable() is equivalent" } declare_clippy_lint! { /// ### What it does /// Looks for calls to `.type_id()` on a `Box`. /// /// ### Why is this bad? /// This almost certainly does not do what the user expects and can lead to subtle bugs. /// Calling `.type_id()` on a `Box` returns a fixed `TypeId` of the `Box` itself, /// rather than returning the `TypeId` of the underlying type behind the trait object. /// /// For `Box` specifically (and trait objects that have `Any` as its supertrait), /// this lint will provide a suggestion, which is to dereference the receiver explicitly /// to go from `Box` to `dyn Any`. /// This makes sure that `.type_id()` resolves to a dynamic call on the trait object /// and not on the box. /// /// If the fixed `TypeId` of the `Box` is the intended behavior, it's better to be explicit about it /// and write `TypeId::of::>()`: /// this makes it clear that a fixed `TypeId` is returned and not the `TypeId` of the implementor. /// /// ### Example /// ```rust,ignore /// use std::any::{Any, TypeId}; /// /// let any_box: Box = Box::new(42_i32); /// assert_eq!(any_box.type_id(), TypeId::of::()); // ⚠️ this fails! /// ``` /// Use instead: /// ```no_run /// use std::any::{Any, TypeId}; /// /// let any_box: Box = Box::new(42_i32); /// assert_eq!((*any_box).type_id(), TypeId::of::()); /// // ^ dereference first, to call `type_id` on `dyn Any` /// ``` #[clippy::version = "1.73.0"] pub TYPE_ID_ON_BOX, suspicious, "calling `.type_id()` on a boxed trait object" } declare_clippy_lint! { /// ### What it does /// Detects `().hash(_)`. /// /// ### Why is this bad? /// Hashing a unit value doesn't do anything as the implementation of `Hash` for `()` is a no-op. /// /// ### Example /// ```no_run /// # use std::hash::Hash; /// # use std::collections::hash_map::DefaultHasher; /// # enum Foo { Empty, WithValue(u8) } /// # use Foo::*; /// # let mut state = DefaultHasher::new(); /// # let my_enum = Foo::Empty; /// match my_enum { /// Empty => ().hash(&mut state), /// WithValue(x) => x.hash(&mut state), /// } /// ``` /// Use instead: /// ```no_run /// # use std::hash::Hash; /// # use std::collections::hash_map::DefaultHasher; /// # enum Foo { Empty, WithValue(u8) } /// # use Foo::*; /// # let mut state = DefaultHasher::new(); /// # let my_enum = Foo::Empty; /// match my_enum { /// Empty => 0_u8.hash(&mut state), /// WithValue(x) => x.hash(&mut state), /// } /// ``` #[clippy::version = "1.58.0"] pub UNIT_HASH, correctness, "hashing a unit value, which does nothing" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `Vec::sort_by` passing in a closure /// which compares the two arguments, either directly or indirectly. /// /// ### Why is this bad? /// It is more clear to use `Vec::sort_by_key` (or `Vec::sort` if /// possible) than to use `Vec::sort_by` and a more complicated /// closure. /// /// ### Known problems /// If the suggested `Vec::sort_by_key` uses Reverse and it isn't already /// imported by a use statement, then it will need to be added manually. /// /// ### Example /// ```no_run /// # struct A; /// # impl A { fn foo(&self) {} } /// # let mut vec: Vec = Vec::new(); /// vec.sort_by(|a, b| a.foo().cmp(&b.foo())); /// ``` /// Use instead: /// ```no_run /// # struct A; /// # impl A { fn foo(&self) {} } /// # let mut vec: Vec = Vec::new(); /// vec.sort_by_key(|a| a.foo()); /// ``` #[clippy::version = "1.46.0"] pub UNNECESSARY_SORT_BY, complexity, "Use of `Vec::sort_by` when `Vec::sort_by_key` or `Vec::sort` would be clearer" } declare_clippy_lint! { /// ### What it does /// Finds occurrences of `Vec::resize(0, an_int)` /// /// ### Why is this bad? /// This is probably an argument inversion mistake. /// /// ### Example /// ```no_run /// vec![1, 2, 3, 4, 5].resize(0, 5) /// ``` /// /// Use instead: /// ```no_run /// vec![1, 2, 3, 4, 5].clear() /// ``` #[clippy::version = "1.46.0"] pub VEC_RESIZE_TO_ZERO, correctness, "emptying a vector with `resize(0, an_int)` instead of `clear()` is probably an argument inversion mistake" } declare_clippy_lint! { /// ### What it does /// Checks for usage of File::read_to_end and File::read_to_string. /// /// ### Why restrict this? /// `fs::{read, read_to_string}` provide the same functionality when `buf` is empty with fewer imports and no intermediate values. /// See also: [fs::read docs](https://doc.rust-lang.org/std/fs/fn.read.html), [fs::read_to_string docs](https://doc.rust-lang.org/std/fs/fn.read_to_string.html) /// /// ### Example /// ```rust,no_run /// # use std::io::Read; /// # use std::fs::File; /// let mut f = File::open("foo.txt").unwrap(); /// let mut bytes = Vec::new(); /// f.read_to_end(&mut bytes).unwrap(); /// ``` /// Can be written more concisely as /// ```rust,no_run /// # use std::fs; /// let mut bytes = fs::read("foo.txt").unwrap(); /// ``` #[clippy::version = "1.44.0"] pub VERBOSE_FILE_READS, restriction, "use of `File::read_to_end` or `File::read_to_string`" } declare_clippy_lint! { /// ### What it does /// /// Checks for iterating a map (`HashMap` or `BTreeMap`) and /// ignoring either the keys or values. /// /// ### Why is this bad? /// /// Readability. There are `keys` and `values` methods that /// can be used to express that we only need the keys or the values. /// /// ### Example /// /// ```no_run /// # use std::collections::HashMap; /// let map: HashMap = HashMap::new(); /// let values = map.iter().map(|(_, value)| value).collect::>(); /// ``` /// /// Use instead: /// ```no_run /// # use std::collections::HashMap; /// let map: HashMap = HashMap::new(); /// let values = map.values().collect::>(); /// ``` #[clippy::version = "1.66.0"] pub ITER_KV_MAP, complexity, "iterating on map using `iter` when `keys` or `values` would do" } declare_clippy_lint! { /// ### What it does /// /// Checks if the `seek` method of the `Seek` trait is called with `SeekFrom::Current(0)`, /// and if it is, suggests using `stream_position` instead. /// /// ### Why is this bad? /// /// Readability. Use dedicated method. /// /// ### Example /// /// ```rust,no_run /// use std::fs::File; /// use std::io::{self, Write, Seek, SeekFrom}; /// /// fn main() -> io::Result<()> { /// let mut f = File::create("foo.txt")?; /// f.write_all(b"Hello")?; /// eprintln!("Written {} bytes", f.seek(SeekFrom::Current(0))?); /// /// Ok(()) /// } /// ``` /// Use instead: /// ```rust,no_run /// use std::fs::File; /// use std::io::{self, Write, Seek, SeekFrom}; /// /// fn main() -> io::Result<()> { /// let mut f = File::create("foo.txt")?; /// f.write_all(b"Hello")?; /// eprintln!("Written {} bytes", f.stream_position()?); /// /// Ok(()) /// } /// ``` #[clippy::version = "1.67.0"] pub SEEK_FROM_CURRENT, complexity, "use dedicated method for seek from current position" } declare_clippy_lint! { /// ### What it does /// /// Checks for jumps to the start of a stream that implements `Seek` /// and uses the `seek` method providing `Start` as parameter. /// /// ### Why is this bad? /// /// Readability. There is a specific method that was implemented for /// this exact scenario. /// /// ### Example /// ```no_run /// # use std::io; /// fn foo(t: &mut T) { /// t.seek(io::SeekFrom::Start(0)); /// } /// ``` /// Use instead: /// ```no_run /// # use std::io; /// fn foo(t: &mut T) { /// t.rewind(); /// } /// ``` #[clippy::version = "1.67.0"] pub SEEK_TO_START_INSTEAD_OF_REWIND, complexity, "jumping to the start of stream using `seek` method" } declare_clippy_lint! { /// ### What it does /// Checks for functions collecting an iterator when collect /// is not needed. /// /// ### Why is this bad? /// `collect` causes the allocation of a new data structure, /// when this allocation may not be needed. /// /// ### Example /// ```no_run /// # let iterator = vec![1].into_iter(); /// let len = iterator.collect::>().len(); /// ``` /// Use instead: /// ```no_run /// # let iterator = vec![1].into_iter(); /// let len = iterator.count(); /// ``` #[clippy::version = "1.30.0"] pub NEEDLESS_COLLECT, nursery, "collecting an iterator when collect is not needed" } declare_clippy_lint! { /// ### What it does /// /// Checks for `Command::arg()` invocations that look like they /// should be multiple arguments instead, such as `arg("-t ext2")`. /// /// ### Why is this bad? /// /// `Command::arg()` does not split arguments by space. An argument like `arg("-t ext2")` /// will be passed as a single argument to the command, /// which is likely not what was intended. /// /// ### Example /// ```no_run /// std::process::Command::new("echo").arg("-n hello").spawn().unwrap(); /// ``` /// Use instead: /// ```no_run /// std::process::Command::new("echo").args(["-n", "hello"]).spawn().unwrap(); /// ``` #[clippy::version = "1.69.0"] pub SUSPICIOUS_COMMAND_ARG_SPACE, suspicious, "single command line argument that looks like it should be multiple arguments" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.drain(..)` for the sole purpose of clearing a container. /// /// ### Why is this bad? /// This creates an unnecessary iterator that is dropped immediately. /// /// Calling `.clear()` also makes the intent clearer. /// /// ### Example /// ```no_run /// let mut v = vec![1, 2, 3]; /// v.drain(..); /// ``` /// Use instead: /// ```no_run /// let mut v = vec![1, 2, 3]; /// v.clear(); /// ``` #[clippy::version = "1.70.0"] pub CLEAR_WITH_DRAIN, nursery, "calling `drain` in order to `clear` a container" } declare_clippy_lint! { /// ### What it does /// Checks for `.rev().next()` on a `DoubleEndedIterator` /// /// ### Why is this bad? /// `.next_back()` is cleaner. /// /// ### Example /// ```no_run /// # let foo = [0; 10]; /// foo.iter().rev().next(); /// ``` /// Use instead: /// ```no_run /// # let foo = [0; 10]; /// foo.iter().next_back(); /// ``` #[clippy::version = "1.71.0"] pub MANUAL_NEXT_BACK, style, "manual reverse iteration of `DoubleEndedIterator`" } declare_clippy_lint! { /// ### What it does /// Checks for calls to `.drain()` that clear the collection, immediately followed by a call to `.collect()`. /// /// > "Collection" in this context refers to any type with a `drain` method: /// > `Vec`, `VecDeque`, `BinaryHeap`, `HashSet`,`HashMap`, `String` /// /// ### Why is this bad? /// Using `mem::take` is faster as it avoids the allocation. /// When using `mem::take`, the old collection is replaced with an empty one and ownership of /// the old collection is returned. /// /// ### Known issues /// `mem::take(&mut vec)` is almost equivalent to `vec.drain(..).collect()`, except that /// it also moves the **capacity**. The user might have explicitly written it this way /// to keep the capacity on the original `Vec`. /// /// ### Example /// ```no_run /// fn remove_all(v: &mut Vec) -> Vec { /// v.drain(..).collect() /// } /// ``` /// Use instead: /// ```no_run /// use std::mem; /// fn remove_all(v: &mut Vec) -> Vec { /// mem::take(v) /// } /// ``` #[clippy::version = "1.72.0"] pub DRAIN_COLLECT, perf, "calling `.drain(..).collect()` to move all elements into a new collection" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `Iterator::fold` with a type that implements `Try`. /// /// ### Why is this bad? /// The code should use `try_fold` instead, which short-circuits on failure, thus opening the /// door for additional optimizations not possible with `fold` as rustc can guarantee the /// function is never called on `None`, `Err`, etc., alleviating otherwise necessary checks. It's /// also slightly more idiomatic. /// /// ### Known issues /// This lint doesn't take into account whether a function does something on the failure case, /// i.e., whether short-circuiting will affect behavior. Refactoring to `try_fold` is not /// desirable in those cases. /// /// ### Example /// ```no_run /// vec![1, 2, 3].iter().fold(Some(0i32), |sum, i| sum?.checked_add(*i)); /// ``` /// Use instead: /// ```no_run /// vec![1, 2, 3].iter().try_fold(0i32, |sum, i| sum.checked_add(*i)); /// ``` #[clippy::version = "1.72.0"] pub MANUAL_TRY_FOLD, perf, "checks for usage of `Iterator::fold` with a type that implements `Try`" } declare_clippy_lint! { /// ### What it does /// Looks for calls to [`Stdin::read_line`] to read a line from the standard input /// into a string, then later attempting to use that string for an operation that will never /// work for strings with a trailing newline character in it (e.g. parsing into a `i32`). /// /// ### Why is this bad? /// The operation will always fail at runtime no matter what the user enters, thus /// making it a useless operation. /// /// ### Example /// ```rust,ignore /// let mut input = String::new(); /// std::io::stdin().read_line(&mut input).expect("Failed to read a line"); /// let num: i32 = input.parse().expect("Not a number!"); /// assert_eq!(num, 42); // we never even get here! /// ``` /// Use instead: /// ```rust,ignore /// let mut input = String::new(); /// std::io::stdin().read_line(&mut input).expect("Failed to read a line"); /// let num: i32 = input.trim_end().parse().expect("Not a number!"); /// // ^^^^^^^^^^^ remove the trailing newline /// assert_eq!(num, 42); /// ``` #[clippy::version = "1.73.0"] pub READ_LINE_WITHOUT_TRIM, correctness, "calling `Stdin::read_line`, then trying to parse it without first trimming" } declare_clippy_lint! { /// ### What it does /// Checks for `.chars().any(|i| i == c)`. /// /// ### Why is this bad? /// It's significantly slower than using a pattern instead, like /// `matches!(c, '\\' | '.' | '+')`. /// /// Despite this being faster, this is not `perf` as this is pretty common, and is a rather nice /// way to check if a `char` is any in a set. In any case, this `restriction` lint is available /// for situations where that additional performance is absolutely necessary. /// /// ### Example /// ```no_run /// # let c = 'c'; /// "\\.+*?()|[]{}^$#&-~".chars().any(|x| x == c); /// ``` /// Use instead: /// ```no_run /// # let c = 'c'; /// matches!(c, '\\' | '.' | '+' | '*' | '(' | ')' | '|' | '[' | ']' | '{' | '}' | '^' | '$' | '#' | '&' | '-' | '~'); /// ``` #[clippy::version = "1.73.0"] pub STRING_LIT_CHARS_ANY, restriction, "checks for `.chars().any(|i| i == c)`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.map(|_| format!(..)).collect::()`. /// /// ### Why is this bad? /// This allocates a new string for every element in the iterator. /// This can be done more efficiently by creating the `String` once and appending to it in `Iterator::fold`, /// using either the `write!` macro which supports exactly the same syntax as the `format!` macro, /// or concatenating with `+` in case the iterator yields `&str`/`String`. /// /// Note also that `write!`-ing into a `String` can never fail, despite the return type of `write!` being `std::fmt::Result`, /// so it can be safely ignored or unwrapped. /// /// ### Example /// ```no_run /// fn hex_encode(bytes: &[u8]) -> String { /// bytes.iter().map(|b| format!("{b:02X}")).collect() /// } /// ``` /// Use instead: /// ```no_run /// use std::fmt::Write; /// fn hex_encode(bytes: &[u8]) -> String { /// bytes.iter().fold(String::new(), |mut output, b| { /// let _ = write!(output, "{b:02X}"); /// output /// }) /// } /// ``` #[clippy::version = "1.73.0"] pub FORMAT_COLLECT, pedantic, "`format!`ing every element in a collection, then collecting the strings into a new `String`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.skip(0)` on iterators. /// /// ### Why is this bad? /// This was likely intended to be `.skip(1)` to skip the first element, as `.skip(0)` does /// nothing. If not, the call should be removed. /// /// ### Example /// ```no_run /// let v = vec![1, 2, 3]; /// let x = v.iter().skip(0).collect::>(); /// let y = v.iter().collect::>(); /// assert_eq!(x, y); /// ``` #[clippy::version = "1.73.0"] pub ITER_SKIP_ZERO, correctness, "disallows `.skip(0)`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `bool::then` in `Iterator::filter_map`. /// /// ### Why is this bad? /// This can be written with `filter` then `map` instead, which would reduce nesting and /// separates the filtering from the transformation phase. This comes with no cost to /// performance and is just cleaner. /// /// ### Limitations /// Does not lint `bool::then_some`, as it eagerly evaluates its arguments rather than lazily. /// This can create differing behavior, so better safe than sorry. /// /// ### Example /// ```no_run /// # fn really_expensive_fn(i: i32) -> i32 { i } /// # let v = vec![]; /// _ = v.into_iter().filter_map(|i| (i % 2 == 0).then(|| really_expensive_fn(i))); /// ``` /// Use instead: /// ```no_run /// # fn really_expensive_fn(i: i32) -> i32 { i } /// # let v = vec![]; /// _ = v.into_iter().filter(|i| i % 2 == 0).map(|i| really_expensive_fn(i)); /// ``` #[clippy::version = "1.73.0"] pub FILTER_MAP_BOOL_THEN, style, "checks for usage of `bool::then` in `Iterator::filter_map`" } declare_clippy_lint! { /// ### What it does /// Looks for calls to `RwLock::write` where the lock is only used for reading. /// /// ### Why is this bad? /// The write portion of `RwLock` is exclusive, meaning that no other thread /// can access the lock while this writer is active. /// /// ### Example /// ```no_run /// use std::sync::RwLock; /// fn assert_is_zero(lock: &RwLock) { /// let num = lock.write().unwrap(); /// assert_eq!(*num, 0); /// } /// ``` /// /// Use instead: /// ```no_run /// use std::sync::RwLock; /// fn assert_is_zero(lock: &RwLock) { /// let num = lock.read().unwrap(); /// assert_eq!(*num, 0); /// } /// ``` #[clippy::version = "1.73.0"] pub READONLY_WRITE_LOCK, perf, "acquiring a write lock when a read lock would work" } declare_clippy_lint! { /// ### What it does /// Looks for iterator combinator calls such as `.take(x)` or `.skip(x)` /// where `x` is greater than the amount of items that an iterator will produce. /// /// ### Why is this bad? /// Taking or skipping more items than there are in an iterator either creates an iterator /// with all items from the original iterator or an iterator with no items at all. /// This is most likely not what the user intended to do. /// /// ### Example /// ```no_run /// for _ in [1, 2, 3].iter().take(4) {} /// ``` /// Use instead: /// ```no_run /// for _ in [1, 2, 3].iter() {} /// ``` #[clippy::version = "1.74.0"] pub ITER_OUT_OF_BOUNDS, suspicious, "calls to `.take()` or `.skip()` that are out of bounds" } declare_clippy_lint! { /// ### What it does /// Looks for calls to `Path::ends_with` calls where the argument looks like a file extension. /// /// By default, Clippy has a short list of known filenames that start with a dot /// but aren't necessarily file extensions (e.g. the `.git` folder), which are allowed by default. /// The `allowed-dotfiles` configuration can be used to allow additional /// file extensions that Clippy should not lint. /// /// ### Why is this bad? /// This doesn't actually compare file extensions. Rather, `ends_with` compares the given argument /// to the last **component** of the path and checks if it matches exactly. /// /// ### Known issues /// File extensions are often at most three characters long, so this only lints in those cases /// in an attempt to avoid false positives. /// Any extension names longer than that are assumed to likely be real path components and are /// therefore ignored. /// /// ### Example /// ```no_run /// # use std::path::Path; /// fn is_markdown(path: &Path) -> bool { /// path.ends_with(".md") /// } /// ``` /// Use instead: /// ```no_run /// # use std::path::Path; /// fn is_markdown(path: &Path) -> bool { /// path.extension().is_some_and(|ext| ext == "md") /// } /// ``` #[clippy::version = "1.74.0"] pub PATH_ENDS_WITH_EXT, suspicious, "attempting to compare file extensions using `Path::ends_with`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `as_str()` on a `String` chained with a method available on the `String` itself. /// /// ### Why is this bad? /// The `as_str()` conversion is pointless and can be removed for simplicity and cleanliness. /// /// ### Example /// ```no_run /// let owned_string = "This is a string".to_owned(); /// owned_string.as_str().as_bytes() /// # ; /// ``` /// /// Use instead: /// ```no_run /// let owned_string = "This is a string".to_owned(); /// owned_string.as_bytes() /// # ; /// ``` #[clippy::version = "1.74.0"] pub REDUNDANT_AS_STR, complexity, "`as_str` used to call a method on `str` that is also available on `String`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `waker.clone().wake()` /// /// ### Why is this bad? /// Cloning the waker is not necessary, `wake_by_ref()` enables the same operation /// without extra cloning/dropping. /// /// ### Example /// ```rust,ignore /// waker.clone().wake(); /// ``` /// Should be written /// ```rust,ignore /// waker.wake_by_ref(); /// ``` #[clippy::version = "1.75.0"] pub WAKER_CLONE_WAKE, perf, "cloning a `Waker` only to wake it" } declare_clippy_lint! { /// ### What it does /// Checks for calls to `TryInto::try_into` and `TryFrom::try_from` when their infallible counterparts /// could be used. /// /// ### Why is this bad? /// In those cases, the `TryInto` and `TryFrom` trait implementation is a blanket impl that forwards /// to `Into` or `From`, which always succeeds. /// The returned `Result<_, Infallible>` requires error handling to get the contained value /// even though the conversion can never fail. /// /// ### Example /// ```rust /// let _: Result = 1i32.try_into(); /// let _: Result = <_>::try_from(1i32); /// ``` /// Use `from`/`into` instead: /// ```rust /// let _: i64 = 1i32.into(); /// let _: i64 = <_>::from(1i32); /// ``` #[clippy::version = "1.75.0"] pub UNNECESSARY_FALLIBLE_CONVERSIONS, style, "calling the `try_from` and `try_into` trait methods when `From`/`Into` is implemented" } declare_clippy_lint! { /// ### What it does /// Checks for calls to `Path::join` that start with a path separator (`\\` or `/`). /// /// ### Why is this bad? /// If the argument to `Path::join` starts with a separator, it will overwrite /// the original path. If this is intentional, prefer using `Path::new` instead. /// /// Note the behavior is platform dependent. A leading `\\` will be accepted /// on unix systems as part of the file name /// /// See [`Path::join`](https://doc.rust-lang.org/std/path/struct.Path.html#method.join) /// /// ### Example /// ```rust /// # use std::path::{Path, PathBuf}; /// let path = Path::new("/bin"); /// let joined_path = path.join("/sh"); /// assert_eq!(joined_path, PathBuf::from("/sh")); /// ``` /// /// Use instead; /// ```rust /// # use std::path::{Path, PathBuf}; /// let path = Path::new("/bin"); /// /// // If this was unintentional, remove the leading separator /// let joined_path = path.join("sh"); /// assert_eq!(joined_path, PathBuf::from("/bin/sh")); /// /// // If this was intentional, create a new path instead /// let new = Path::new("/sh"); /// assert_eq!(new, PathBuf::from("/sh")); /// ``` #[clippy::version = "1.76.0"] pub JOIN_ABSOLUTE_PATHS, suspicious, "calls to `Path::join` which will overwrite the original path" } declare_clippy_lint! { /// ### What it does /// Checks for iterators of `Result`s using `.filter(Result::is_ok).map(Result::unwrap)` that may /// be replaced with a `.flatten()` call. /// /// ### Why is this bad? /// `Result` implements `IntoIterator`. This means that `Result` can be flattened /// automatically without suspicious-looking `unwrap` calls. /// /// ### Example /// ```no_run /// let _ = std::iter::empty::>().filter(Result::is_ok).map(Result::unwrap); /// ``` /// Use instead: /// ```no_run /// let _ = std::iter::empty::>().flatten(); /// ``` #[clippy::version = "1.77.0"] pub RESULT_FILTER_MAP, complexity, "filtering `Result` for `Ok` then force-unwrapping, which can be one type-safe operation" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.filter(Option::is_some)` that may be replaced with a `.flatten()` call. /// This lint will require additional changes to the follow-up calls as it affects the type. /// /// ### Why is this bad? /// This pattern is often followed by manual unwrapping of the `Option`. The simplification /// results in more readable and succinct code without the need for manual unwrapping. /// /// ### Example /// ```no_run /// vec![Some(1)].into_iter().filter(Option::is_some); /// /// ``` /// Use instead: /// ```no_run /// vec![Some(1)].into_iter().flatten(); /// ``` #[clippy::version = "1.77.0"] pub ITER_FILTER_IS_SOME, pedantic, "filtering an iterator over `Option`s for `Some` can be achieved with `flatten`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.filter(Result::is_ok)` that may be replaced with a `.flatten()` call. /// This lint will require additional changes to the follow-up calls as it affects the type. /// /// ### Why is this bad? /// This pattern is often followed by manual unwrapping of `Result`. The simplification /// results in more readable and succinct code without the need for manual unwrapping. /// /// ### Example /// ```no_run /// vec![Ok::(1)].into_iter().filter(Result::is_ok); /// /// ``` /// Use instead: /// ```no_run /// vec![Ok::(1)].into_iter().flatten(); /// ``` #[clippy::version = "1.77.0"] pub ITER_FILTER_IS_OK, pedantic, "filtering an iterator over `Result`s for `Ok` can be achieved with `flatten`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `option.map(f).unwrap_or_default()` and `result.map(f).unwrap_or_default()` where f is a function or closure that returns the `bool` type. /// /// ### Why is this bad? /// Readability. These can be written more concisely as `option.is_some_and(f)` and `result.is_ok_and(f)`. /// /// ### Example /// ```no_run /// # let option = Some(1); /// # let result: Result = Ok(1); /// option.map(|a| a > 10).unwrap_or_default(); /// result.map(|a| a > 10).unwrap_or_default(); /// ``` /// Use instead: /// ```no_run /// # let option = Some(1); /// # let result: Result = Ok(1); /// option.is_some_and(|a| a > 10); /// result.is_ok_and(|a| a > 10); /// ``` #[clippy::version = "1.77.0"] pub MANUAL_IS_VARIANT_AND, pedantic, "using `.map(f).unwrap_or_default()`, which is more succinctly expressed as `is_some_and(f)` or `is_ok_and(f)`" } declare_clippy_lint! { /// ### What it does /// /// Checks for usages of `str.trim().split("\n")` and `str.trim().split("\r\n")`. /// /// ### Why is this bad? /// /// Hard-coding the line endings makes the code less compatible. `str.lines` should be used instead. /// /// ### Example /// ```no_run /// "some\ntext\nwith\nnewlines\n".trim().split('\n'); /// ``` /// Use instead: /// ```no_run /// "some\ntext\nwith\nnewlines\n".lines(); /// ``` /// /// ### Known Problems /// /// This lint cannot detect if the split is intentionally restricted to a single type of newline (`"\n"` or /// `"\r\n"`), for example during the parsing of a specific file format in which precisely one newline type is /// valid. #[clippy::version = "1.77.0"] pub STR_SPLIT_AT_NEWLINE, pedantic, "splitting a trimmed string at hard-coded newlines" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.as_ref().cloned()` and `.as_mut().cloned()` on `Option`s /// /// ### Why is this bad? /// This can be written more concisely by cloning the `Option` directly. /// /// ### Example /// ```no_run /// fn foo(bar: &Option>) -> Option> { /// bar.as_ref().cloned() /// } /// ``` /// Use instead: /// ```no_run /// fn foo(bar: &Option>) -> Option> { /// bar.clone() /// } /// ``` #[clippy::version = "1.77.0"] pub OPTION_AS_REF_CLONED, pedantic, "cloning an `Option` via `as_ref().cloned()`" } declare_clippy_lint! { /// ### What it does /// Checks for unnecessary calls to `min()` or `max()` in the following cases /// - Either both side is constant /// - One side is clearly larger than the other, like i32::MIN and an i32 variable /// /// ### Why is this bad? /// /// In the aforementioned cases it is not necessary to call `min()` or `max()` /// to compare values, it may even cause confusion. /// /// ### Example /// ```no_run /// let _ = 0.min(7_u32); /// ``` /// Use instead: /// ```no_run /// let _ = 0; /// ``` #[clippy::version = "1.81.0"] pub UNNECESSARY_MIN_OR_MAX, complexity, "using 'min()/max()' when there is no need for it" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.map_or_else()` "map closure" for `Result` type. /// /// ### Why is this bad? /// This can be written more concisely by using `unwrap_or_else()`. /// /// ### Example /// ```no_run /// # fn handle_error(_: ()) -> u32 { 0 } /// let x: Result = Ok(0); /// let y = x.map_or_else(|err| handle_error(err), |n| n); /// ``` /// Use instead: /// ```no_run /// # fn handle_error(_: ()) -> u32 { 0 } /// let x: Result = Ok(0); /// let y = x.unwrap_or_else(|err| handle_error(err)); /// ``` #[clippy::version = "1.78.0"] pub UNNECESSARY_RESULT_MAP_OR_ELSE, suspicious, "making no use of the \"map closure\" when calling `.map_or_else(|err| handle_error(err), |n| n)`" } declare_clippy_lint! { /// ### What it does /// Checks for the manual creation of C strings (a string with a `NUL` byte at the end), either /// through one of the `CStr` constructor functions, or more plainly by calling `.as_ptr()` /// on a (byte) string literal with a hardcoded `\0` byte at the end. /// /// ### Why is this bad? /// This can be written more concisely using `c"str"` literals and is also less error-prone, /// because the compiler checks for interior `NUL` bytes and the terminating `NUL` byte is inserted automatically. /// /// ### Example /// ```no_run /// # use std::ffi::CStr; /// # mod libc { pub unsafe fn puts(_: *const i8) {} } /// fn needs_cstr(_: &CStr) {} /// /// needs_cstr(CStr::from_bytes_with_nul(b"Hello\0").unwrap()); /// unsafe { libc::puts("World\0".as_ptr().cast()) } /// ``` /// Use instead: /// ```no_run /// # use std::ffi::CStr; /// # mod libc { pub unsafe fn puts(_: *const i8) {} } /// fn needs_cstr(_: &CStr) {} /// /// needs_cstr(c"Hello"); /// unsafe { libc::puts(c"World".as_ptr()) } /// ``` #[clippy::version = "1.78.0"] pub MANUAL_C_STR_LITERALS, complexity, r#"creating a `CStr` through functions when `c""` literals can be used"# } declare_clippy_lint! { /// ### What it does /// Checks the usage of `.get().is_some()` or `.get().is_none()` on std map types. /// /// ### Why is this bad? /// It can be done in one call with `.contains()`/`.contains_key()`. /// /// ### Example /// ```no_run /// # use std::collections::HashSet; /// let s: HashSet = HashSet::new(); /// if s.get("a").is_some() { /// // code /// } /// ``` /// Use instead: /// ```no_run /// # use std::collections::HashSet; /// let s: HashSet = HashSet::new(); /// if s.contains("a") { /// // code /// } /// ``` #[clippy::version = "1.78.0"] pub UNNECESSARY_GET_THEN_CHECK, suspicious, "calling `.get().is_some()` or `.get().is_none()` instead of `.contains()` or `.contains_key()`" } declare_clippy_lint! { /// ### What it does /// It identifies calls to `.is_empty()` on constant values. /// /// ### Why is this bad? /// String literals and constant values are known at compile time. Checking if they /// are empty will always return the same value. This might not be the intention of /// the expression. /// /// ### Example /// ```no_run /// let value = ""; /// if value.is_empty() { /// println!("the string is empty"); /// } /// ``` /// Use instead: /// ```no_run /// println!("the string is empty"); /// ``` #[clippy::version = "1.79.0"] pub CONST_IS_EMPTY, suspicious, "is_empty() called on strings known at compile time" } declare_clippy_lint! { /// ### What it does /// Converts some constructs mapping an Enum value for equality comparison. /// /// ### Why is this bad? /// Calls such as `opt.map_or(false, |val| val == 5)` are needlessly long and cumbersome, /// and can be reduced to, for example, `opt == Some(5)` assuming `opt` implements `PartialEq`. /// Also, calls such as `opt.map_or(true, |val| val == 5)` can be reduced to /// `opt.is_none_or(|val| val == 5)`. /// This lint offers readability and conciseness improvements. /// /// ### Example /// ```no_run /// pub fn a(x: Option) -> (bool, bool) { /// ( /// x.map_or(false, |n| n == 5), /// x.map_or(true, |n| n > 5), /// ) /// } /// ``` /// Use instead: /// ```no_run /// pub fn a(x: Option) -> (bool, bool) { /// ( /// x == Some(5), /// x.is_none_or(|n| n > 5), /// ) /// } /// ``` #[clippy::version = "1.84.0"] pub UNNECESSARY_MAP_OR, style, "reduce unnecessary calls to `.map_or(bool, …)`" } declare_clippy_lint! { /// ### What it does /// Checks if an iterator is used to check if a string is ascii. /// /// ### Why is this bad? /// The `str` type already implements the `is_ascii` method. /// /// ### Example /// ```no_run /// "foo".chars().all(|c| c.is_ascii()); /// ``` /// Use instead: /// ```no_run /// "foo".is_ascii(); /// ``` #[clippy::version = "1.81.0"] pub NEEDLESS_CHARACTER_ITERATION, suspicious, "is_ascii() called on a char iterator" } declare_clippy_lint! { /// ### What it does /// Checks for uses of `map` which return the original item. /// /// ### Why is this bad? /// `inspect` is both clearer in intent and shorter. /// /// ### Example /// ```no_run /// let x = Some(0).map(|x| { println!("{x}"); x }); /// ``` /// Use instead: /// ```no_run /// let x = Some(0).inspect(|x| println!("{x}")); /// ``` #[clippy::version = "1.81.0"] pub MANUAL_INSPECT, complexity, "use of `map` returning the original item" } declare_clippy_lint! { /// ### What it does /// Checks the usage of `.first().is_some()` or `.first().is_none()` to check if a slice is /// empty. /// /// ### Why is this bad? /// Using `.is_empty()` is shorter and better communicates the intention. /// /// ### Example /// ```no_run /// let v = vec![1, 2, 3]; /// if v.first().is_none() { /// // The vector is empty... /// } /// ``` /// Use instead: /// ```no_run /// let v = vec![1, 2, 3]; /// if v.is_empty() { /// // The vector is empty... /// } /// ``` #[clippy::version = "1.83.0"] pub UNNECESSARY_FIRST_THEN_CHECK, complexity, "calling `.first().is_some()` or `.first().is_none()` instead of `.is_empty()`" } declare_clippy_lint! { /// ### What it does /// It detects useless calls to `str::as_bytes()` before calling `len()` or `is_empty()`. /// /// ### Why is this bad? /// The `len()` and `is_empty()` methods are also directly available on strings, and they /// return identical results. In particular, `len()` on a string returns the number of /// bytes. /// /// ### Example /// ``` /// let len = "some string".as_bytes().len(); /// let b = "some string".as_bytes().is_empty(); /// ``` /// Use instead: /// ``` /// let len = "some string".len(); /// let b = "some string".is_empty(); /// ``` #[clippy::version = "1.84.0"] pub NEEDLESS_AS_BYTES, complexity, "detect useless calls to `as_bytes()`" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `.map(…)`, followed by `.all(identity)` or `.any(identity)`. /// /// ### Why is this bad? /// The `.all(…)` or `.any(…)` methods can be called directly in place of `.map(…)`. /// /// ### Example /// ``` /// # let mut v = [""]; /// let e1 = v.iter().map(|s| s.is_empty()).all(|a| a); /// let e2 = v.iter().map(|s| s.is_empty()).any(std::convert::identity); /// ``` /// Use instead: /// ``` /// # let mut v = [""]; /// let e1 = v.iter().all(|s| s.is_empty()); /// let e2 = v.iter().any(|s| s.is_empty()); /// ``` #[clippy::version = "1.84.0"] pub MAP_ALL_ANY_IDENTITY, complexity, "combine `.map(_)` followed by `.all(identity)`/`.any(identity)` into a single call" } declare_clippy_lint! { /// ### What it does /// /// Checks for `Iterator::map` over ranges without using the parameter which /// could be more clearly expressed using `std::iter::repeat(...).take(...)` /// or `std::iter::repeat_n`. /// /// ### Why is this bad? /// /// It expresses the intent more clearly to `take` the correct number of times /// from a generating function than to apply a closure to each number in a /// range only to discard them. /// /// ### Example /// /// ```no_run /// let random_numbers : Vec<_> = (0..10).map(|_| { 3 + 1 }).collect(); /// ``` /// Use instead: /// ```no_run /// let f : Vec<_> = std::iter::repeat( 3 + 1 ).take(10).collect(); /// ``` /// /// ### Known Issues /// /// This lint may suggest replacing a `Map` with a `Take`. /// The former implements some traits that the latter does not, such as /// `DoubleEndedIterator`. #[clippy::version = "1.84.0"] pub MAP_WITH_UNUSED_ARGUMENT_OVER_RANGES, restriction, "map of a trivial closure (not dependent on parameter) over a range" } declare_clippy_lint! { /// ### What it does /// /// Checks for `Iterator::last` being called on a `DoubleEndedIterator`, which can be replaced /// with `DoubleEndedIterator::next_back`. /// /// ### Why is this bad? /// /// `Iterator::last` is implemented by consuming the iterator, which is unnecessary if /// the iterator is a `DoubleEndedIterator`. Since Rust traits do not allow specialization, /// `Iterator::last` cannot be optimized for `DoubleEndedIterator`. /// /// ### Example /// ```no_run /// let last_arg = "echo hello world".split(' ').last(); /// ``` /// Use instead: /// ```no_run /// let last_arg = "echo hello world".split(' ').next_back(); /// ``` #[clippy::version = "1.85.0"] pub DOUBLE_ENDED_ITERATOR_LAST, perf, "using `Iterator::last` on a `DoubleEndedIterator`" } declare_clippy_lint! { /// ### What it does /// /// Checks for `NonZero*::new_unchecked()` being used in a `const` context. /// /// ### Why is this bad? /// /// Using `NonZero*::new_unchecked()` is an `unsafe` function and requires an `unsafe` context. When used in a /// context evaluated at compilation time, `NonZero*::new().unwrap()` will provide the same result with identical /// runtime performances while not requiring `unsafe`. /// /// ### Example /// ```no_run /// use std::num::NonZeroUsize; /// const PLAYERS: NonZeroUsize = unsafe { NonZeroUsize::new_unchecked(3) }; /// ``` /// Use instead: /// ```no_run /// use std::num::NonZeroUsize; /// const PLAYERS: NonZeroUsize = NonZeroUsize::new(3).unwrap(); /// ``` #[clippy::version = "1.86.0"] pub USELESS_NONZERO_NEW_UNCHECKED, complexity, "using `NonZero::new_unchecked()` in a `const` context" } declare_clippy_lint! { /// ### What it does /// /// Checks for `repeat().take()` that can be replaced with `repeat_n()`. /// /// ### Why is this bad? /// /// Using `repeat_n()` is more concise and clearer. Also, `repeat_n()` is sometimes faster than `repeat().take()` when the type of the element is non-trivial to clone because the original value can be reused for the last `.next()` call rather than always cloning. /// /// ### Example /// ```no_run /// let _ = std::iter::repeat(10).take(3); /// ``` /// Use instead: /// ```no_run /// let _ = std::iter::repeat_n(10, 3); /// ``` #[clippy::version = "1.86.0"] pub MANUAL_REPEAT_N, style, "detect `repeat().take()` that can be replaced with `repeat_n()`" } declare_clippy_lint! { /// ### What it does /// Checks for string slices immediately followed by `as_bytes`. /// /// ### Why is this bad? /// It involves doing an unnecessary UTF-8 alignment check which is less efficient, and can cause a panic. /// /// ### Known problems /// In some cases, the UTF-8 validation and potential panic from string slicing may be required for /// the code's correctness. If you need to ensure the slice boundaries fall on valid UTF-8 character /// boundaries, the original form (`s[1..5].as_bytes()`) should be preferred. /// /// ### Example /// ```rust /// let s = "Lorem ipsum"; /// s[1..5].as_bytes(); /// ``` /// Use instead: /// ```rust /// let s = "Lorem ipsum"; /// &s.as_bytes()[1..5]; /// ``` #[clippy::version = "1.86.0"] pub SLICED_STRING_AS_BYTES, perf, "slicing a string and immediately calling as_bytes is less efficient and can lead to panics" } declare_clippy_lint! { /// ### What it does /// /// Detect functions that end with `Option::and_then` or `Result::and_then`, and suggest using a question mark (`?`) instead. /// /// ### Why is this bad? /// /// The `and_then` method is used to chain a computation that returns an `Option` or a `Result`. /// This can be replaced with the `?` operator, which is more concise and idiomatic. /// /// ### Example /// /// ```no_run /// fn test(opt: Option) -> Option { /// opt.and_then(|n| { /// if n > 1 { /// Some(n + 1) /// } else { /// None /// } /// }) /// } /// ``` /// Use instead: /// ```no_run /// fn test(opt: Option) -> Option { /// let n = opt?; /// if n > 1 { /// Some(n + 1) /// } else { /// None /// } /// } /// ``` #[clippy::version = "1.86.0"] pub RETURN_AND_THEN, restriction, "using `Option::and_then` or `Result::and_then` to chain a computation that returns an `Option` or a `Result`" } declare_clippy_lint! { /// ### What it does /// Checks for calls to `Read::bytes` on types which don't implement `BufRead`. /// /// ### Why is this bad? /// The default implementation calls `read` for each byte, which can be very inefficient for data that’s not in memory, such as `File`. /// /// ### Example /// ```no_run /// use std::io::Read; /// use std::fs::File; /// let file = File::open("./bytes.txt").unwrap(); /// file.bytes(); /// ``` /// Use instead: /// ```no_run /// use std::io::{BufReader, Read}; /// use std::fs::File; /// let file = BufReader::new(std::fs::File::open("./bytes.txt").unwrap()); /// file.bytes(); /// ``` #[clippy::version = "1.86.0"] pub UNBUFFERED_BYTES, perf, "calling .bytes() is very inefficient when data is not in memory" } declare_clippy_lint! { /// ### What it does /// Checks for usage of `iter().any()` on slices when it can be replaced with `contains()` and suggests doing so. /// /// ### Why is this bad? /// `contains()` is more concise and idiomatic, sometimes more fast. /// /// ### Example /// ```no_run /// fn foo(values: &[u8]) -> bool { /// values.iter().any(|&v| v == 10) /// } /// ``` /// Use instead: /// ```no_run /// fn foo(values: &[u8]) -> bool { /// values.contains(&10) /// } /// ``` #[clippy::version = "1.86.0"] pub MANUAL_CONTAINS, perf, "unnecessary `iter().any()` on slices that can be replaced with `contains()`" } #[expect(clippy::struct_excessive_bools)] pub struct Methods { avoid_breaking_exported_api: bool, msrv: Msrv, allow_expect_in_tests: bool, allow_unwrap_in_tests: bool, allow_expect_in_consts: bool, allow_unwrap_in_consts: bool, allowed_dotfiles: FxHashSet<&'static str>, format_args: FormatArgsStorage, } impl Methods { pub fn new(conf: &'static Conf, format_args: FormatArgsStorage) -> Self { let mut allowed_dotfiles: FxHashSet<_> = conf.allowed_dotfiles.iter().map(|s| &**s).collect(); allowed_dotfiles.extend(DEFAULT_ALLOWED_DOTFILES); Self { avoid_breaking_exported_api: conf.avoid_breaking_exported_api, msrv: conf.msrv.clone(), allow_expect_in_tests: conf.allow_expect_in_tests, allow_unwrap_in_tests: conf.allow_unwrap_in_tests, allow_expect_in_consts: conf.allow_expect_in_consts, allow_unwrap_in_consts: conf.allow_unwrap_in_consts, allowed_dotfiles, format_args, } } } impl_lint_pass!(Methods => [ UNWRAP_USED, EXPECT_USED, SHOULD_IMPLEMENT_TRAIT, WRONG_SELF_CONVENTION, OK_EXPECT, UNWRAP_OR_DEFAULT, MAP_UNWRAP_OR, RESULT_MAP_OR_INTO_OPTION, OPTION_MAP_OR_NONE, BIND_INSTEAD_OF_MAP, OR_FUN_CALL, OR_THEN_UNWRAP, EXPECT_FUN_CALL, CHARS_NEXT_CMP, CHARS_LAST_CMP, CLONE_ON_COPY, CLONE_ON_REF_PTR, COLLAPSIBLE_STR_REPLACE, CONST_IS_EMPTY, ITER_OVEREAGER_CLONED, CLONED_INSTEAD_OF_COPIED, FLAT_MAP_OPTION, INEFFICIENT_TO_STRING, NEW_RET_NO_SELF, SINGLE_CHAR_ADD_STR, SEARCH_IS_SOME, FILTER_NEXT, SKIP_WHILE_NEXT, FILTER_MAP_IDENTITY, MAP_IDENTITY, MANUAL_FILTER_MAP, MANUAL_FIND_MAP, OPTION_FILTER_MAP, FILTER_MAP_NEXT, FLAT_MAP_IDENTITY, MAP_FLATTEN, ITERATOR_STEP_BY_ZERO, ITER_NEXT_SLICE, ITER_COUNT, ITER_NTH, ITER_NTH_ZERO, BYTES_NTH, ITER_SKIP_NEXT, GET_UNWRAP, GET_LAST_WITH_LEN, STRING_EXTEND_CHARS, ITER_CLONED_COLLECT, ITER_WITH_DRAIN, TYPE_ID_ON_BOX, USELESS_ASREF, UNNECESSARY_FOLD, UNNECESSARY_FILTER_MAP, UNNECESSARY_FIND_MAP, INTO_ITER_ON_REF, SUSPICIOUS_MAP, UNINIT_ASSUMED_INIT, MANUAL_SATURATING_ARITHMETIC, ZST_OFFSET, FILETYPE_IS_FILE, OPTION_AS_REF_DEREF, UNNECESSARY_LAZY_EVALUATIONS, MAP_COLLECT_RESULT_UNIT, FROM_ITER_INSTEAD_OF_COLLECT, INSPECT_FOR_EACH, IMPLICIT_CLONE, SUSPICIOUS_TO_OWNED, SUSPICIOUS_SPLITN, MANUAL_STR_REPEAT, EXTEND_WITH_DRAIN, MANUAL_SPLIT_ONCE, NEEDLESS_SPLITN, UNNECESSARY_TO_OWNED, UNNECESSARY_JOIN, ERR_EXPECT, NEEDLESS_OPTION_AS_DEREF, IS_DIGIT_ASCII_RADIX, NEEDLESS_OPTION_TAKE, NO_EFFECT_REPLACE, OBFUSCATED_IF_ELSE, ITER_ON_SINGLE_ITEMS, ITER_ON_EMPTY_COLLECTIONS, NAIVE_BYTECOUNT, BYTES_COUNT_TO_LEN, CASE_SENSITIVE_FILE_EXTENSION_COMPARISONS, GET_FIRST, MANUAL_OK_OR, MAP_CLONE, MAP_ERR_IGNORE, MUT_MUTEX_LOCK, NONSENSICAL_OPEN_OPTIONS, SUSPICIOUS_OPEN_OPTIONS, PATH_BUF_PUSH_OVERWRITE, RANGE_ZIP_WITH_LEN, REPEAT_ONCE, STABLE_SORT_PRIMITIVE, UNIT_HASH, READ_LINE_WITHOUT_TRIM, UNNECESSARY_SORT_BY, VEC_RESIZE_TO_ZERO, VERBOSE_FILE_READS, ITER_KV_MAP, SEEK_FROM_CURRENT, SEEK_TO_START_INSTEAD_OF_REWIND, NEEDLESS_COLLECT, SUSPICIOUS_COMMAND_ARG_SPACE, CLEAR_WITH_DRAIN, MANUAL_NEXT_BACK, UNNECESSARY_LITERAL_UNWRAP, DRAIN_COLLECT, MANUAL_TRY_FOLD, FORMAT_COLLECT, STRING_LIT_CHARS_ANY, ITER_SKIP_ZERO, FILTER_MAP_BOOL_THEN, READONLY_WRITE_LOCK, ITER_OUT_OF_BOUNDS, PATH_ENDS_WITH_EXT, REDUNDANT_AS_STR, WAKER_CLONE_WAKE, UNNECESSARY_FALLIBLE_CONVERSIONS, JOIN_ABSOLUTE_PATHS, RESULT_FILTER_MAP, ITER_FILTER_IS_SOME, ITER_FILTER_IS_OK, MANUAL_IS_VARIANT_AND, STR_SPLIT_AT_NEWLINE, OPTION_AS_REF_CLONED, UNNECESSARY_RESULT_MAP_OR_ELSE, MANUAL_C_STR_LITERALS, UNNECESSARY_GET_THEN_CHECK, UNNECESSARY_FIRST_THEN_CHECK, NEEDLESS_CHARACTER_ITERATION, MANUAL_INSPECT, UNNECESSARY_MIN_OR_MAX, NEEDLESS_AS_BYTES, MAP_ALL_ANY_IDENTITY, MAP_WITH_UNUSED_ARGUMENT_OVER_RANGES, UNNECESSARY_MAP_OR, DOUBLE_ENDED_ITERATOR_LAST, USELESS_NONZERO_NEW_UNCHECKED, MANUAL_REPEAT_N, SLICED_STRING_AS_BYTES, RETURN_AND_THEN, UNBUFFERED_BYTES, MANUAL_CONTAINS, ]); /// Extracts a method call name, args, and `Span` of the method name. pub fn method_call<'tcx>( recv: &'tcx Expr<'tcx>, ) -> Option<(&'tcx str, &'tcx Expr<'tcx>, &'tcx [Expr<'tcx>], Span, Span)> { if let ExprKind::MethodCall(path, receiver, args, call_span) = recv.kind { if !args.iter().any(|e| e.span.from_expansion()) && !receiver.span.from_expansion() { let name = path.ident.name.as_str(); return Some((name, receiver, args, path.ident.span, call_span)); } } None } impl<'tcx> LateLintPass<'tcx> for Methods { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { if expr.span.from_expansion() { return; } self.check_methods(cx, expr); match expr.kind { ExprKind::Call(func, args) => { from_iter_instead_of_collect::check(cx, expr, args, func); unnecessary_fallible_conversions::check_function(cx, expr, func); manual_c_str_literals::check(cx, expr, func, args, &self.msrv); useless_nonzero_new_unchecked::check(cx, expr, func, args, &self.msrv); }, ExprKind::MethodCall(method_call, receiver, args, _) => { let method_span = method_call.ident.span; or_fun_call::check(cx, expr, method_span, method_call.ident.as_str(), receiver, args); expect_fun_call::check( cx, &self.format_args, expr, method_span, method_call.ident.as_str(), receiver, args, ); clone_on_copy::check(cx, expr, method_call.ident.name, receiver, args); clone_on_ref_ptr::check(cx, expr, method_call.ident.name, receiver, args); inefficient_to_string::check(cx, expr, method_call.ident.name, receiver, args); single_char_add_str::check(cx, expr, receiver, args); into_iter_on_ref::check(cx, expr, method_span, method_call.ident.name, receiver); unnecessary_to_owned::check(cx, expr, method_call.ident.name, receiver, args, &self.msrv); }, ExprKind::Binary(op, lhs, rhs) if op.node == hir::BinOpKind::Eq || op.node == hir::BinOpKind::Ne => { let mut info = BinaryExprInfo { expr, chain: lhs, other: rhs, eq: op.node == hir::BinOpKind::Eq, }; lint_binary_expr_with_method_call(cx, &mut info); }, _ => (), } } #[allow(clippy::too_many_lines)] fn check_impl_item(&mut self, cx: &LateContext<'tcx>, impl_item: &'tcx hir::ImplItem<'_>) { if impl_item.span.in_external_macro(cx.sess().source_map()) { return; } let name = impl_item.ident.name.as_str(); let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id()).def_id; let item = cx.tcx.hir().expect_item(parent); let self_ty = cx.tcx.type_of(item.owner_id).instantiate_identity(); let implements_trait = matches!(item.kind, hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. })); if let hir::ImplItemKind::Fn(ref sig, id) = impl_item.kind { let method_sig = cx.tcx.fn_sig(impl_item.owner_id).instantiate_identity(); let method_sig = cx.tcx.instantiate_bound_regions_with_erased(method_sig); let first_arg_ty_opt = method_sig.inputs().iter().next().copied(); // if this impl block implements a trait, lint in trait definition instead if !implements_trait && cx.effective_visibilities.is_exported(impl_item.owner_id.def_id) { // check missing trait implementations for method_config in &TRAIT_METHODS { if name == method_config.method_name && sig.decl.inputs.len() == method_config.param_count && method_config.output_type.matches(&sig.decl.output) // in case there is no first arg, since we already have checked the number of arguments // it's should be always true && first_arg_ty_opt.is_none_or(|first_arg_ty| method_config .self_kind.matches(cx, self_ty, first_arg_ty) ) && fn_header_equals(method_config.fn_header, sig.header) && method_config.lifetime_param_cond(impl_item) { span_lint_and_help( cx, SHOULD_IMPLEMENT_TRAIT, impl_item.span, format!( "method `{}` can be confused for the standard trait method `{}::{}`", method_config.method_name, method_config.trait_name, method_config.method_name ), None, format!( "consider implementing the trait `{}` or choosing a less ambiguous method name", method_config.trait_name ), ); } } } if sig.decl.implicit_self.has_implicit_self() && !(self.avoid_breaking_exported_api && cx.effective_visibilities.is_exported(impl_item.owner_id.def_id)) && let Some(first_arg) = iter_input_pats(sig.decl, cx.tcx.hir_body(id)).next() && let Some(first_arg_ty) = first_arg_ty_opt { wrong_self_convention::check( cx, name, self_ty, first_arg_ty, first_arg.pat.span, implements_trait, false, ); } } // if this impl block implements a trait, lint in trait definition instead if implements_trait { return; } if let hir::ImplItemKind::Fn(_, _) = impl_item.kind { let ret_ty = return_ty(cx, impl_item.owner_id); if contains_ty_adt_constructor_opaque(cx, ret_ty, self_ty) { return; } if name == "new" && ret_ty != self_ty { span_lint( cx, NEW_RET_NO_SELF, impl_item.span, "methods called `new` usually return `Self`", ); } } } fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx TraitItem<'_>) { if item.span.in_external_macro(cx.tcx.sess.source_map()) { return; } if let TraitItemKind::Fn(ref sig, _) = item.kind && sig.decl.implicit_self.has_implicit_self() && let Some(first_arg_hir_ty) = sig.decl.inputs.first() && let Some(&first_arg_ty) = cx .tcx .fn_sig(item.owner_id) .instantiate_identity() .inputs() .skip_binder() .first() { let self_ty = TraitRef::identity(cx.tcx, item.owner_id.to_def_id()).self_ty(); wrong_self_convention::check( cx, item.ident.name.as_str(), self_ty, first_arg_ty, first_arg_hir_ty.span, false, true, ); } if item.ident.name == sym::new && let TraitItemKind::Fn(_, _) = item.kind && let ret_ty = return_ty(cx, item.owner_id) && let self_ty = TraitRef::identity(cx.tcx, item.owner_id.to_def_id()).self_ty() && !ret_ty.contains(self_ty) { span_lint( cx, NEW_RET_NO_SELF, item.span, "methods called `new` usually return `Self`", ); } } extract_msrv_attr!(LateContext); } impl Methods { #[allow(clippy::too_many_lines)] fn check_methods<'tcx>(&self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { if let Some((name, recv, args, span, call_span)) = method_call(expr) { match (name, args) { ("add" | "offset" | "sub" | "wrapping_offset" | "wrapping_add" | "wrapping_sub", [_arg]) => { zst_offset::check(cx, expr, recv); }, ("all", [arg]) => { unused_enumerate_index::check(cx, expr, recv, arg); needless_character_iteration::check(cx, expr, recv, arg, true); match method_call(recv) { Some(("cloned", recv2, [], _, _)) => { iter_overeager_cloned::check( cx, expr, recv, recv2, iter_overeager_cloned::Op::NeedlessMove(arg), false, ); }, Some(("map", _, [map_arg], _, map_call_span)) => { map_all_any_identity::check(cx, expr, recv, map_call_span, map_arg, call_span, arg, "all"); }, _ => {}, } }, ("and_then", [arg]) => { let biom_option_linted = bind_instead_of_map::check_and_then_some(cx, expr, recv, arg); let biom_result_linted = bind_instead_of_map::check_and_then_ok(cx, expr, recv, arg); if !biom_option_linted && !biom_result_linted { let ule_and_linted = unnecessary_lazy_eval::check(cx, expr, recv, arg, "and"); if !ule_and_linted { return_and_then::check(cx, expr, recv, arg); } } }, ("any", [arg]) => { unused_enumerate_index::check(cx, expr, recv, arg); needless_character_iteration::check(cx, expr, recv, arg, false); match method_call(recv) { Some(("cloned", recv2, [], _, _)) => iter_overeager_cloned::check( cx, expr, recv, recv2, iter_overeager_cloned::Op::NeedlessMove(arg), false, ), Some(("chars", recv, _, _, _)) if let ExprKind::Closure(arg) = arg.kind && let body = cx.tcx.hir_body(arg.body) && let [param] = body.params => { string_lit_chars_any::check(cx, expr, recv, param, peel_blocks(body.value), &self.msrv); }, Some(("map", _, [map_arg], _, map_call_span)) => { map_all_any_identity::check(cx, expr, recv, map_call_span, map_arg, call_span, arg, "any"); }, Some(("iter", iter_recv, ..)) => { manual_contains::check(cx, expr, iter_recv, arg); }, _ => {}, } }, ("arg", [arg]) => { suspicious_command_arg_space::check(cx, recv, arg, span); }, ("as_deref" | "as_deref_mut", []) => { needless_option_as_deref::check(cx, expr, recv, name); }, ("as_bytes", []) => { if let Some(("as_str", recv, [], as_str_span, _)) = method_call(recv) { redundant_as_str::check(cx, expr, recv, as_str_span, span); } sliced_string_as_bytes::check(cx, expr, recv); }, ("as_mut", []) => useless_asref::check(cx, expr, "as_mut", recv), ("as_ptr", []) => manual_c_str_literals::check_as_ptr(cx, expr, recv, &self.msrv), ("as_ref", []) => useless_asref::check(cx, expr, "as_ref", recv), ("assume_init", []) => uninit_assumed_init::check(cx, expr, recv), ("bytes", []) => unbuffered_bytes::check(cx, expr, recv), ("cloned", []) => { cloned_instead_of_copied::check(cx, expr, recv, span, &self.msrv); option_as_ref_cloned::check(cx, recv, span); }, ("collect", []) if is_trait_method(cx, expr, sym::Iterator) => { needless_collect::check(cx, span, expr, recv, call_span); match method_call(recv) { Some((name @ ("cloned" | "copied"), recv2, [], _, _)) => { iter_cloned_collect::check(cx, name, expr, recv2); }, Some(("map", m_recv, [m_arg], m_ident_span, _)) => { map_collect_result_unit::check(cx, expr, m_recv, m_arg); format_collect::check(cx, expr, m_arg, m_ident_span); }, Some(("take", take_self_arg, [take_arg], _, _)) => { if self.msrv.meets(msrvs::STR_REPEAT) { manual_str_repeat::check(cx, expr, recv, take_self_arg, take_arg); } }, Some(("drain", recv, args, ..)) => { drain_collect::check(cx, args, expr, recv); }, _ => {}, } }, ("count", []) if is_trait_method(cx, expr, sym::Iterator) => match method_call(recv) { Some(("cloned", recv2, [], _, _)) => { iter_overeager_cloned::check(cx, expr, recv, recv2, iter_overeager_cloned::Op::RmCloned, false); }, Some((name2 @ ("into_iter" | "iter" | "iter_mut"), recv2, [], _, _)) => { iter_count::check(cx, expr, recv2, name2); }, Some(("map", _, [arg], _, _)) => suspicious_map::check(cx, expr, recv, arg), Some(("filter", recv2, [arg], _, _)) => bytecount::check(cx, expr, recv2, arg), Some(("bytes", recv2, [], _, _)) => bytes_count_to_len::check(cx, expr, recv, recv2), _ => {}, }, ("min" | "max", [arg]) => { unnecessary_min_or_max::check(cx, expr, name, recv, arg); }, ("drain", ..) => { if let Node::Stmt(Stmt { hir_id: _, kind, .. }) = cx.tcx.parent_hir_node(expr.hir_id) && matches!(kind, StmtKind::Semi(_)) && args.len() <= 1 { clear_with_drain::check(cx, expr, recv, span, args.first()); } else if let [arg] = args { iter_with_drain::check(cx, expr, recv, span, arg); } }, ("ends_with", [arg]) => { if let ExprKind::MethodCall(.., span) = expr.kind { case_sensitive_file_extension_comparisons::check(cx, expr, span, recv, arg); } path_ends_with_ext::check(cx, recv, arg, expr, &self.msrv, &self.allowed_dotfiles); }, ("expect", [_]) => { match method_call(recv) { Some(("ok", recv, [], _, _)) => ok_expect::check(cx, expr, recv), Some(("err", recv, [], err_span, _)) => { err_expect::check(cx, expr, recv, span, err_span, &self.msrv); }, _ => unwrap_expect_used::check( cx, expr, recv, false, self.allow_expect_in_consts, self.allow_expect_in_tests, unwrap_expect_used::Variant::Expect, ), } unnecessary_literal_unwrap::check(cx, expr, recv, name, args); }, ("expect_err", [_]) => { unnecessary_literal_unwrap::check(cx, expr, recv, name, args); unwrap_expect_used::check( cx, expr, recv, true, self.allow_expect_in_consts, self.allow_expect_in_tests, unwrap_expect_used::Variant::Expect, ); }, ("extend", [arg]) => { string_extend_chars::check(cx, expr, recv, arg); extend_with_drain::check(cx, expr, recv, arg); }, ("filter", [arg]) => { if let Some(("cloned", recv2, [], _span2, _)) = method_call(recv) { // if `arg` has side-effect, the semantic will change iter_overeager_cloned::check( cx, expr, recv, recv2, iter_overeager_cloned::Op::FixClosure(name, arg), false, ); } if self.msrv.meets(msrvs::ITER_FLATTEN) { // use the sourcemap to get the span of the closure iter_filter::check(cx, expr, arg, span); } }, ("find", [arg]) => { if let Some(("cloned", recv2, [], _span2, _)) = method_call(recv) { // if `arg` has side-effect, the semantic will change iter_overeager_cloned::check( cx, expr, recv, recv2, iter_overeager_cloned::Op::FixClosure(name, arg), false, ); } }, ("filter_map", [arg]) => { unused_enumerate_index::check(cx, expr, recv, arg); unnecessary_filter_map::check(cx, expr, arg, name); filter_map_bool_then::check(cx, expr, arg, call_span); filter_map_identity::check(cx, expr, arg, span); }, ("find_map", [arg]) => { unused_enumerate_index::check(cx, expr, recv, arg); unnecessary_filter_map::check(cx, expr, arg, name); }, ("flat_map", [arg]) => { unused_enumerate_index::check(cx, expr, recv, arg); flat_map_identity::check(cx, expr, arg, span); flat_map_option::check(cx, expr, arg, span); }, ("flatten", []) => match method_call(recv) { Some(("map", recv, [map_arg], map_span, _)) => { map_flatten::check(cx, expr, recv, map_arg, map_span); }, Some(("cloned", recv2, [], _, _)) => iter_overeager_cloned::check( cx, expr, recv, recv2, iter_overeager_cloned::Op::LaterCloned, true, ), _ => {}, }, ("fold", [init, acc]) => { manual_try_fold::check(cx, expr, init, acc, call_span, &self.msrv); unnecessary_fold::check(cx, expr, init, acc, span); }, ("for_each", [arg]) => { unused_enumerate_index::check(cx, expr, recv, arg); match method_call(recv) { Some(("inspect", _, [_], span2, _)) => inspect_for_each::check(cx, expr, span2), Some(("cloned", recv2, [], _, _)) => iter_overeager_cloned::check( cx, expr, recv, recv2, iter_overeager_cloned::Op::NeedlessMove(arg), false, ), _ => {}, } }, ("get", [arg]) => { get_first::check(cx, expr, recv, arg); get_last_with_len::check(cx, expr, recv, arg); }, ("get_or_insert_with", [arg]) => { unnecessary_lazy_eval::check(cx, expr, recv, arg, "get_or_insert"); }, ("hash", [arg]) => { unit_hash::check(cx, expr, recv, arg); }, ("is_empty", []) => { match method_call(recv) { Some((prev_method @ ("as_bytes" | "bytes"), prev_recv, [], _, _)) => { needless_as_bytes::check(cx, prev_method, "is_empty", prev_recv, expr.span); }, Some(("as_str", recv, [], as_str_span, _)) => { redundant_as_str::check(cx, expr, recv, as_str_span, span); }, _ => {}, } is_empty::check(cx, expr, recv); }, ("is_file", []) => filetype_is_file::check(cx, expr, recv), ("is_digit", [radix]) => is_digit_ascii_radix::check(cx, expr, recv, radix, &self.msrv), ("is_none", []) => check_is_some_is_none(cx, expr, recv, call_span, false), ("is_some", []) => check_is_some_is_none(cx, expr, recv, call_span, true), ("iter" | "iter_mut" | "into_iter", []) => { iter_on_single_or_empty_collections::check(cx, expr, name, recv); }, ("join", [join_arg]) => { if let Some(("collect", _, _, span, _)) = method_call(recv) { unnecessary_join::check(cx, expr, recv, join_arg, span); } else { join_absolute_paths::check(cx, recv, join_arg, expr.span); } }, ("last", []) => { if let Some(("cloned", recv2, [], _span2, _)) = method_call(recv) { iter_overeager_cloned::check( cx, expr, recv, recv2, iter_overeager_cloned::Op::LaterCloned, false, ); } double_ended_iterator_last::check(cx, expr, recv, call_span); }, ("len", []) => { if let Some((prev_method @ ("as_bytes" | "bytes"), prev_recv, [], _, _)) = method_call(recv) { needless_as_bytes::check(cx, prev_method, "len", prev_recv, expr.span); } }, ("lock", []) => { mut_mutex_lock::check(cx, expr, recv, span); }, (name @ ("map" | "map_err"), [m_arg]) => { if name == "map" { unused_enumerate_index::check(cx, expr, recv, m_arg); map_clone::check(cx, expr, recv, m_arg, &self.msrv); map_with_unused_argument_over_ranges::check(cx, expr, recv, m_arg, &self.msrv, span); match method_call(recv) { Some((map_name @ ("iter" | "into_iter"), recv2, _, _, _)) => { iter_kv_map::check(cx, map_name, expr, recv2, m_arg, &self.msrv); }, Some(("cloned", recv2, [], _, _)) => iter_overeager_cloned::check( cx, expr, recv, recv2, iter_overeager_cloned::Op::NeedlessMove(m_arg), false, ), _ => {}, } } else { map_err_ignore::check(cx, expr, m_arg); } if let Some((name, recv2, args, span2, _)) = method_call(recv) { match (name, args) { ("as_mut", []) => option_as_ref_deref::check(cx, expr, recv2, m_arg, true, &self.msrv), ("as_ref", []) => option_as_ref_deref::check(cx, expr, recv2, m_arg, false, &self.msrv), ("filter", [f_arg]) => { filter_map::check(cx, expr, recv2, f_arg, span2, recv, m_arg, span, false); }, ("find", [f_arg]) => { filter_map::check(cx, expr, recv2, f_arg, span2, recv, m_arg, span, true); }, _ => {}, } } map_identity::check(cx, expr, recv, m_arg, name, span); manual_inspect::check(cx, expr, m_arg, name, span, &self.msrv); crate::useless_conversion::check_function_application(cx, expr, recv, m_arg); }, ("map_break" | "map_continue", [m_arg]) => { crate::useless_conversion::check_function_application(cx, expr, recv, m_arg); }, ("map_or", [def, map]) => { option_map_or_none::check(cx, expr, recv, def, map); manual_ok_or::check(cx, expr, recv, def, map); unnecessary_map_or::check(cx, expr, recv, def, map, span, &self.msrv); }, ("map_or_else", [def, map]) => { result_map_or_else_none::check(cx, expr, recv, def, map); unnecessary_result_map_or_else::check(cx, expr, recv, def, map); }, ("next", []) => { if let Some((name2, recv2, args2, _, _)) = method_call(recv) { match (name2, args2) { ("cloned", []) => iter_overeager_cloned::check( cx, expr, recv, recv2, iter_overeager_cloned::Op::LaterCloned, false, ), ("filter", [arg]) => filter_next::check(cx, expr, recv2, arg), ("filter_map", [arg]) => filter_map_next::check(cx, expr, recv2, arg, &self.msrv), ("iter", []) => iter_next_slice::check(cx, expr, recv2), ("skip", [arg]) => iter_skip_next::check(cx, expr, recv2, arg), ("skip_while", [_]) => skip_while_next::check(cx, expr), ("rev", []) => manual_next_back::check(cx, expr, recv, recv2), _ => {}, } } }, ("nth", [n_arg]) => match method_call(recv) { Some(("bytes", recv2, [], _, _)) => bytes_nth::check(cx, expr, recv2, n_arg), Some(("cloned", recv2, [], _, _)) => iter_overeager_cloned::check( cx, expr, recv, recv2, iter_overeager_cloned::Op::LaterCloned, false, ), Some((iter_method @ ("iter" | "iter_mut"), iter_recv, [], iter_span, _)) => { if !iter_nth::check(cx, expr, iter_recv, iter_method, iter_span, span) { iter_nth_zero::check(cx, expr, recv, n_arg); } }, _ => iter_nth_zero::check(cx, expr, recv, n_arg), }, ("ok_or_else", [arg]) => { unnecessary_lazy_eval::check(cx, expr, recv, arg, "ok_or"); }, ("open", [_]) => { open_options::check(cx, expr, recv); }, ("or_else", [arg]) => { if !bind_instead_of_map::check_or_else_err(cx, expr, recv, arg) { unnecessary_lazy_eval::check(cx, expr, recv, arg, "or"); } }, ("push", [arg]) => { path_buf_push_overwrite::check(cx, expr, arg); }, ("read_to_end", [_]) => { verbose_file_reads::check(cx, expr, recv, verbose_file_reads::READ_TO_END_MSG); }, ("read_to_string", [_]) => { verbose_file_reads::check(cx, expr, recv, verbose_file_reads::READ_TO_STRING_MSG); }, ("read_line", [arg]) => { read_line_without_trim::check(cx, expr, recv, arg); }, ("repeat", [arg]) => { repeat_once::check(cx, expr, recv, arg); }, (name @ ("replace" | "replacen"), [arg1, arg2] | [arg1, arg2, _]) => { no_effect_replace::check(cx, expr, arg1, arg2); // Check for repeated `str::replace` calls to perform `collapsible_str_replace` lint if self.msrv.meets(msrvs::PATTERN_TRAIT_CHAR_ARRAY) && name == "replace" && let Some(("replace", ..)) = method_call(recv) { collapsible_str_replace::check(cx, expr, arg1, arg2); } }, ("resize", [count_arg, default_arg]) => { vec_resize_to_zero::check(cx, expr, count_arg, default_arg, span); }, ("seek", [arg]) => { if self.msrv.meets(msrvs::SEEK_FROM_CURRENT) { seek_from_current::check(cx, expr, recv, arg); } if self.msrv.meets(msrvs::SEEK_REWIND) { seek_to_start_instead_of_rewind::check(cx, expr, recv, arg, span); } }, ("skip", [arg]) => { iter_skip_zero::check(cx, expr, arg); iter_out_of_bounds::check_skip(cx, expr, recv, arg); if let Some(("cloned", recv2, [], _span2, _)) = method_call(recv) { iter_overeager_cloned::check( cx, expr, recv, recv2, iter_overeager_cloned::Op::LaterCloned, false, ); } }, ("sort", []) => { stable_sort_primitive::check(cx, expr, recv); }, ("sort_by", [arg]) => { unnecessary_sort_by::check(cx, expr, recv, arg, false); }, ("sort_unstable_by", [arg]) => { unnecessary_sort_by::check(cx, expr, recv, arg, true); }, ("split", [arg]) => { str_split::check(cx, expr, recv, arg); }, ("splitn" | "rsplitn", [count_arg, pat_arg]) => { if let Some(Constant::Int(count)) = ConstEvalCtxt::new(cx).eval(count_arg) { suspicious_splitn::check(cx, name, expr, recv, count); str_splitn::check(cx, name, expr, recv, pat_arg, count, &self.msrv); } }, ("splitn_mut" | "rsplitn_mut", [count_arg, _]) => { if let Some(Constant::Int(count)) = ConstEvalCtxt::new(cx).eval(count_arg) { suspicious_splitn::check(cx, name, expr, recv, count); } }, ("step_by", [arg]) => iterator_step_by_zero::check(cx, expr, arg), ("take", [arg]) => { iter_out_of_bounds::check_take(cx, expr, recv, arg); manual_repeat_n::check(cx, expr, recv, arg, &self.msrv); if let Some(("cloned", recv2, [], _span2, _)) = method_call(recv) { iter_overeager_cloned::check( cx, expr, recv, recv2, iter_overeager_cloned::Op::LaterCloned, false, ); } }, ("take", []) => needless_option_take::check(cx, expr, recv), ("then", [arg]) => { if !self.msrv.meets(msrvs::BOOL_THEN_SOME) { return; } unnecessary_lazy_eval::check(cx, expr, recv, arg, "then_some"); }, ("try_into", []) if is_trait_method(cx, expr, sym::TryInto) => { unnecessary_fallible_conversions::check_method(cx, expr); }, ("to_owned", []) => { if !suspicious_to_owned::check(cx, expr, recv) { implicit_clone::check(cx, name, expr, recv); } }, ("to_os_string" | "to_path_buf" | "to_vec", []) => { implicit_clone::check(cx, name, expr, recv); }, ("type_id", []) => { type_id_on_box::check(cx, recv, expr.span); }, ("unwrap", []) => { match method_call(recv) { Some(("get", recv, [get_arg], _, _)) => { get_unwrap::check(cx, expr, recv, get_arg, false); }, Some(("get_mut", recv, [get_arg], _, _)) => { get_unwrap::check(cx, expr, recv, get_arg, true); }, Some(("or", recv, [or_arg], or_span, _)) => { or_then_unwrap::check(cx, expr, recv, or_arg, or_span); }, _ => {}, } unnecessary_literal_unwrap::check(cx, expr, recv, name, args); unwrap_expect_used::check( cx, expr, recv, false, self.allow_unwrap_in_consts, self.allow_unwrap_in_tests, unwrap_expect_used::Variant::Unwrap, ); }, ("unwrap_err", []) => { unnecessary_literal_unwrap::check(cx, expr, recv, name, args); unwrap_expect_used::check( cx, expr, recv, true, self.allow_unwrap_in_consts, self.allow_unwrap_in_tests, unwrap_expect_used::Variant::Unwrap, ); }, ("unwrap_or", [u_arg]) => { match method_call(recv) { Some((arith @ ("checked_add" | "checked_sub" | "checked_mul"), lhs, [rhs], _, _)) => { manual_saturating_arithmetic::check(cx, expr, lhs, rhs, u_arg, &arith["checked_".len()..]); }, Some(("map", m_recv, [m_arg], span, _)) => { option_map_unwrap_or::check(cx, expr, m_recv, m_arg, recv, u_arg, span, &self.msrv); }, Some((then_method @ ("then" | "then_some"), t_recv, [t_arg], _, _)) => { obfuscated_if_else::check(cx, expr, t_recv, t_arg, u_arg, then_method); }, _ => {}, } unnecessary_literal_unwrap::check(cx, expr, recv, name, args); }, ("unwrap_or_default", []) => { if let Some(("map", m_recv, [arg], span, _)) = method_call(recv) { manual_is_variant_and::check(cx, expr, m_recv, arg, span, &self.msrv); } unnecessary_literal_unwrap::check(cx, expr, recv, name, args); }, ("unwrap_unchecked" | "unwrap_err_unchecked", []) => { unnecessary_literal_unwrap::check(cx, expr, recv, name, args); }, ("unwrap_or_else", [u_arg]) => { match method_call(recv) { Some(("map", recv, [map_arg], _, _)) if map_unwrap_or::check(cx, expr, recv, map_arg, u_arg, &self.msrv) => {}, _ => { unnecessary_lazy_eval::check(cx, expr, recv, u_arg, "unwrap_or"); }, } unnecessary_literal_unwrap::check(cx, expr, recv, name, args); }, ("wake", []) => { waker_clone_wake::check(cx, expr, recv); }, ("write", []) => { readonly_write_lock::check(cx, expr, recv); }, ("zip", [arg]) => { if let ExprKind::MethodCall(name, iter_recv, [], _) = recv.kind && name.ident.name == sym::iter { range_zip_with_len::check(cx, expr, iter_recv, arg); } }, _ => {}, } } } } fn check_is_some_is_none(cx: &LateContext<'_>, expr: &Expr<'_>, recv: &Expr<'_>, call_span: Span, is_some: bool) { match method_call(recv) { Some((name @ ("find" | "position" | "rposition"), f_recv, [arg], span, _)) => { search_is_some::check(cx, expr, name, is_some, f_recv, arg, recv, span); }, Some(("get", f_recv, [arg], _, _)) => { unnecessary_get_then_check::check(cx, call_span, recv, f_recv, arg, is_some); }, Some(("first", f_recv, [], _, _)) => { unnecessary_first_then_check::check(cx, call_span, recv, f_recv, is_some); }, _ => {}, } } /// Used for `lint_binary_expr_with_method_call`. #[derive(Copy, Clone)] struct BinaryExprInfo<'a> { expr: &'a Expr<'a>, chain: &'a Expr<'a>, other: &'a Expr<'a>, eq: bool, } /// Checks for the `CHARS_NEXT_CMP` and `CHARS_LAST_CMP` lints. fn lint_binary_expr_with_method_call(cx: &LateContext<'_>, info: &mut BinaryExprInfo<'_>) { macro_rules! lint_with_both_lhs_and_rhs { ($func:expr, $cx:expr, $info:ident) => { if !$func($cx, $info) { ::std::mem::swap(&mut $info.chain, &mut $info.other); if $func($cx, $info) { return; } } }; } lint_with_both_lhs_and_rhs!(chars_next_cmp::check, cx, info); lint_with_both_lhs_and_rhs!(chars_last_cmp::check, cx, info); lint_with_both_lhs_and_rhs!(chars_next_cmp_with_unwrap::check, cx, info); lint_with_both_lhs_and_rhs!(chars_last_cmp_with_unwrap::check, cx, info); } const FN_HEADER: hir::FnHeader = hir::FnHeader { safety: hir::HeaderSafety::Normal(hir::Safety::Safe), constness: hir::Constness::NotConst, asyncness: hir::IsAsync::NotAsync, abi: ExternAbi::Rust, }; struct ShouldImplTraitCase { trait_name: &'static str, method_name: &'static str, param_count: usize, fn_header: hir::FnHeader, // implicit self kind expected (none, self, &self, ...) self_kind: SelfKind, // checks against the output type output_type: OutType, // certain methods with explicit lifetimes can't implement the equivalent trait method lint_explicit_lifetime: bool, } impl ShouldImplTraitCase { const fn new( trait_name: &'static str, method_name: &'static str, param_count: usize, fn_header: hir::FnHeader, self_kind: SelfKind, output_type: OutType, lint_explicit_lifetime: bool, ) -> ShouldImplTraitCase { ShouldImplTraitCase { trait_name, method_name, param_count, fn_header, self_kind, output_type, lint_explicit_lifetime, } } fn lifetime_param_cond(&self, impl_item: &hir::ImplItem<'_>) -> bool { self.lint_explicit_lifetime || !impl_item.generics.params.iter().any(|p| { matches!( p.kind, hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Explicit } ) }) } } #[rustfmt::skip] const TRAIT_METHODS: [ShouldImplTraitCase; 30] = [ ShouldImplTraitCase::new("std::ops::Add", "add", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::convert::AsMut", "as_mut", 1, FN_HEADER, SelfKind::RefMut, OutType::Ref, true), ShouldImplTraitCase::new("std::convert::AsRef", "as_ref", 1, FN_HEADER, SelfKind::Ref, OutType::Ref, true), ShouldImplTraitCase::new("std::ops::BitAnd", "bitand", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::BitOr", "bitor", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::BitXor", "bitxor", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::borrow::Borrow", "borrow", 1, FN_HEADER, SelfKind::Ref, OutType::Ref, true), ShouldImplTraitCase::new("std::borrow::BorrowMut", "borrow_mut", 1, FN_HEADER, SelfKind::RefMut, OutType::Ref, true), ShouldImplTraitCase::new("std::clone::Clone", "clone", 1, FN_HEADER, SelfKind::Ref, OutType::Any, true), ShouldImplTraitCase::new("std::cmp::Ord", "cmp", 2, FN_HEADER, SelfKind::Ref, OutType::Any, true), ShouldImplTraitCase::new("std::default::Default", "default", 0, FN_HEADER, SelfKind::No, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Deref", "deref", 1, FN_HEADER, SelfKind::Ref, OutType::Ref, true), ShouldImplTraitCase::new("std::ops::DerefMut", "deref_mut", 1, FN_HEADER, SelfKind::RefMut, OutType::Ref, true), ShouldImplTraitCase::new("std::ops::Div", "div", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Drop", "drop", 1, FN_HEADER, SelfKind::RefMut, OutType::Unit, true), ShouldImplTraitCase::new("std::cmp::PartialEq", "eq", 2, FN_HEADER, SelfKind::Ref, OutType::Bool, true), ShouldImplTraitCase::new("std::iter::FromIterator", "from_iter", 1, FN_HEADER, SelfKind::No, OutType::Any, true), ShouldImplTraitCase::new("std::str::FromStr", "from_str", 1, FN_HEADER, SelfKind::No, OutType::Any, true), ShouldImplTraitCase::new("std::hash::Hash", "hash", 2, FN_HEADER, SelfKind::Ref, OutType::Unit, true), ShouldImplTraitCase::new("std::ops::Index", "index", 2, FN_HEADER, SelfKind::Ref, OutType::Ref, true), ShouldImplTraitCase::new("std::ops::IndexMut", "index_mut", 2, FN_HEADER, SelfKind::RefMut, OutType::Ref, true), ShouldImplTraitCase::new("std::iter::IntoIterator", "into_iter", 1, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Mul", "mul", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Neg", "neg", 1, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::iter::Iterator", "next", 1, FN_HEADER, SelfKind::RefMut, OutType::Any, false), ShouldImplTraitCase::new("std::ops::Not", "not", 1, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Rem", "rem", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Shl", "shl", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Shr", "shr", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ShouldImplTraitCase::new("std::ops::Sub", "sub", 2, FN_HEADER, SelfKind::Value, OutType::Any, true), ]; #[derive(Clone, Copy, PartialEq, Eq, Debug)] enum SelfKind { Value, Ref, RefMut, No, // When we want the first argument type to be different than `Self` } impl SelfKind { fn matches<'a>(self, cx: &LateContext<'a>, parent_ty: Ty<'a>, ty: Ty<'a>) -> bool { fn matches_value<'a>(cx: &LateContext<'a>, parent_ty: Ty<'a>, ty: Ty<'a>) -> bool { if ty == parent_ty { true } else if let Some(boxed_ty) = ty.boxed_ty() { boxed_ty == parent_ty } else if is_type_diagnostic_item(cx, ty, sym::Rc) || is_type_diagnostic_item(cx, ty, sym::Arc) { if let ty::Adt(_, args) = ty.kind() { args.types().next() == Some(parent_ty) } else { false } } else { false } } fn matches_ref<'a>(cx: &LateContext<'a>, mutability: hir::Mutability, parent_ty: Ty<'a>, ty: Ty<'a>) -> bool { if let ty::Ref(_, t, m) = *ty.kind() { return m == mutability && t == parent_ty; } let trait_sym = match mutability { hir::Mutability::Not => sym::AsRef, hir::Mutability::Mut => sym::AsMut, }; let Some(trait_def_id) = cx.tcx.get_diagnostic_item(trait_sym) else { return false; }; implements_trait(cx, ty, trait_def_id, &[parent_ty.into()]) } fn matches_none<'a>(cx: &LateContext<'a>, parent_ty: Ty<'a>, ty: Ty<'a>) -> bool { !matches_value(cx, parent_ty, ty) && !matches_ref(cx, hir::Mutability::Not, parent_ty, ty) && !matches_ref(cx, hir::Mutability::Mut, parent_ty, ty) } match self { Self::Value => matches_value(cx, parent_ty, ty), Self::Ref => matches_ref(cx, hir::Mutability::Not, parent_ty, ty) || ty == parent_ty && is_copy(cx, ty), Self::RefMut => matches_ref(cx, hir::Mutability::Mut, parent_ty, ty), Self::No => matches_none(cx, parent_ty, ty), } } #[must_use] fn description(self) -> &'static str { match self { Self::Value => "`self` by value", Self::Ref => "`self` by reference", Self::RefMut => "`self` by mutable reference", Self::No => "no `self`", } } } #[derive(Clone, Copy)] enum OutType { Unit, Bool, Any, Ref, } impl OutType { fn matches(self, ty: &hir::FnRetTy<'_>) -> bool { let is_unit = |ty: &hir::Ty<'_>| matches!(ty.kind, hir::TyKind::Tup(&[])); match (self, ty) { (Self::Unit, &hir::FnRetTy::DefaultReturn(_)) => true, (Self::Unit, &hir::FnRetTy::Return(ty)) if is_unit(ty) => true, (Self::Bool, &hir::FnRetTy::Return(ty)) if is_bool(ty) => true, (Self::Any, &hir::FnRetTy::Return(ty)) if !is_unit(ty) => true, (Self::Ref, &hir::FnRetTy::Return(ty)) => matches!(ty.kind, hir::TyKind::Ref(_, _)), _ => false, } } } fn fn_header_equals(expected: hir::FnHeader, actual: hir::FnHeader) -> bool { expected.constness == actual.constness && expected.safety == actual.safety && expected.asyncness == actual.asyncness }