use std::fmt::Write; use ast::{ForLoopKind, MatchKind}; use itertools::{Itertools, Position}; use rustc_ast::util::classify; use rustc_ast::util::literal::escape_byte_str_symbol; use rustc_ast::util::parser::{self, ExprPrecedence, Fixity}; use rustc_ast::{ self as ast, BinOpKind, BlockCheckMode, FormatAlignment, FormatArgPosition, FormatArgsPiece, FormatCount, FormatDebugHex, FormatSign, FormatTrait, YieldKind, token, }; use crate::pp::Breaks::Inconsistent; use crate::pprust::state::fixup::FixupContext; use crate::pprust::state::{AnnNode, INDENT_UNIT, PrintState, State}; impl<'a> State<'a> { fn print_else(&mut self, els: Option<&ast::Expr>) { if let Some(_else) = els { match &_else.kind { // Another `else if` block. ast::ExprKind::If(i, then, e) => { let cb = self.cbox(0); let ib = self.ibox(0); self.word(" else if "); self.print_expr_as_cond(i); self.space(); self.print_block(then, cb, ib); self.print_else(e.as_deref()) } // Final `else` block. ast::ExprKind::Block(b, None) => { let cb = self.cbox(0); let ib = self.ibox(0); self.word(" else "); self.print_block(b, cb, ib) } // Constraints would be great here! _ => { panic!("print_if saw if with weird alternative"); } } } } fn print_if(&mut self, test: &ast::Expr, blk: &ast::Block, elseopt: Option<&ast::Expr>) { let cb = self.cbox(0); let ib = self.ibox(0); self.word_nbsp("if"); self.print_expr_as_cond(test); self.space(); self.print_block(blk, cb, ib); self.print_else(elseopt) } fn print_call_post(&mut self, args: &[Box]) { self.popen(); self.commasep_exprs(Inconsistent, args); self.pclose() } /// Prints an expr using syntax that's acceptable in a condition position, such as the `cond` in /// `if cond { ... }`. fn print_expr_as_cond(&mut self, expr: &ast::Expr) { self.print_expr_cond_paren(expr, Self::cond_needs_par(expr), FixupContext::new_cond()) } /// Does `expr` need parentheses when printed in a condition position? /// /// These cases need parens due to the parse error observed in #26461: `if return {}` /// parses as the erroneous construct `if (return {})`, not `if (return) {}`. fn cond_needs_par(expr: &ast::Expr) -> bool { match expr.kind { ast::ExprKind::Break(..) | ast::ExprKind::Closure(..) | ast::ExprKind::Ret(..) | ast::ExprKind::Yeet(..) => true, _ => parser::contains_exterior_struct_lit(expr), } } /// Prints `expr` or `(expr)` when `needs_par` holds. pub(super) fn print_expr_cond_paren( &mut self, expr: &ast::Expr, needs_par: bool, mut fixup: FixupContext, ) { if needs_par { self.popen(); // If we are surrounding the whole cond in parentheses, such as: // // if (return Struct {}) {} // // then there is no need for parenthesizing the individual struct // expressions within. On the other hand if the whole cond is not // parenthesized, then print_expr must parenthesize exterior struct // literals. // // if x == (Struct {}) {} // fixup = FixupContext::default(); } self.print_expr(expr, fixup); if needs_par { self.pclose(); } } fn print_expr_vec(&mut self, exprs: &[Box]) { let ib = self.ibox(INDENT_UNIT); self.word("["); self.commasep_exprs(Inconsistent, exprs); self.word("]"); self.end(ib); } pub(super) fn print_expr_anon_const( &mut self, expr: &ast::AnonConst, attrs: &[ast::Attribute], ) { let ib = self.ibox(INDENT_UNIT); self.word("const"); self.nbsp(); if let ast::ExprKind::Block(block, None) = &expr.value.kind { let cb = self.cbox(0); let ib = self.ibox(0); self.print_block_with_attrs(block, attrs, cb, ib); } else { self.print_expr(&expr.value, FixupContext::default()); } self.end(ib); } fn print_expr_repeat(&mut self, element: &ast::Expr, count: &ast::AnonConst) { let ib = self.ibox(INDENT_UNIT); self.word("["); self.print_expr(element, FixupContext::default()); self.word_space(";"); self.print_expr(&count.value, FixupContext::default()); self.word("]"); self.end(ib); } fn print_expr_struct( &mut self, qself: &Option>, path: &ast::Path, fields: &[ast::ExprField], rest: &ast::StructRest, ) { if let Some(qself) = qself { self.print_qpath(path, qself, true); } else { self.print_path(path, true, 0); } self.nbsp(); self.word("{"); let has_rest = match rest { ast::StructRest::Base(_) | ast::StructRest::Rest(_) => true, ast::StructRest::None => false, }; if fields.is_empty() && !has_rest { self.word("}"); return; } let cb = self.cbox(0); for (pos, field) in fields.iter().with_position() { let is_first = matches!(pos, Position::First | Position::Only); let is_last = matches!(pos, Position::Last | Position::Only); self.maybe_print_comment(field.span.hi()); self.print_outer_attributes(&field.attrs); if is_first { self.space_if_not_bol(); } if !field.is_shorthand { self.print_ident(field.ident); self.word_nbsp(":"); } self.print_expr(&field.expr, FixupContext::default()); if !is_last || has_rest { self.word_space(","); } else { self.trailing_comma_or_space(); } } if has_rest { if fields.is_empty() { self.space(); } self.word(".."); if let ast::StructRest::Base(expr) = rest { self.print_expr(expr, FixupContext::default()); } self.space(); } self.offset(-INDENT_UNIT); self.end(cb); self.word("}"); } fn print_expr_tup(&mut self, exprs: &[Box]) { self.popen(); self.commasep_exprs(Inconsistent, exprs); if exprs.len() == 1 { self.word(","); } self.pclose() } fn print_expr_call(&mut self, func: &ast::Expr, args: &[Box], fixup: FixupContext) { // Independent of parenthesization related to precedence, we must // parenthesize `func` if this is a statement context in which without // parentheses, a statement boundary would occur inside `func` or // immediately after `func`. // // Suppose `func` represents `match () { _ => f }`. We must produce: // // (match () { _ => f })(); // // instead of: // // match () { _ => f } (); // // because the latter is valid syntax but with the incorrect meaning. // It's a match-expression followed by tuple-expression, not a function // call. let func_fixup = fixup.leftmost_subexpression_with_operator(true); let needs_paren = match func.kind { // In order to call a named field, needs parens: `(self.fun)()` // But not for an unnamed field: `self.0()` ast::ExprKind::Field(_, name) => !name.is_numeric(), _ => func_fixup.precedence(func) < ExprPrecedence::Unambiguous, }; self.print_expr_cond_paren(func, needs_paren, func_fixup); self.print_call_post(args) } fn print_expr_method_call( &mut self, segment: &ast::PathSegment, receiver: &ast::Expr, base_args: &[Box], fixup: FixupContext, ) { // The fixup here is different than in `print_expr_call` because // statement boundaries never occur in front of a `.` (or `?`) token. // // Needs parens: // // (loop { break x; })(); // // Does not need parens: // // loop { break x; }.method(); // self.print_expr_cond_paren( receiver, receiver.precedence() < ExprPrecedence::Unambiguous, fixup.leftmost_subexpression_with_dot(), ); self.word("."); self.print_ident(segment.ident); if let Some(args) = &segment.args { self.print_generic_args(args, true); } self.print_call_post(base_args) } fn print_expr_binary( &mut self, op: ast::BinOpKind, lhs: &ast::Expr, rhs: &ast::Expr, fixup: FixupContext, ) { let operator_can_begin_expr = match op { | BinOpKind::Sub // -x | BinOpKind::Mul // *x | BinOpKind::And // &&x | BinOpKind::Or // || x | BinOpKind::BitAnd // &x | BinOpKind::BitOr // |x| x | BinOpKind::Shl // <::Type as Trait>::CONST | BinOpKind::Lt // ::CONST => true, _ => false, }; let left_fixup = fixup.leftmost_subexpression_with_operator(operator_can_begin_expr); let binop_prec = op.precedence(); let left_prec = left_fixup.precedence(lhs); let right_prec = fixup.precedence(rhs); let (mut left_needs_paren, right_needs_paren) = match op.fixity() { Fixity::Left => (left_prec < binop_prec, right_prec <= binop_prec), Fixity::Right => (left_prec <= binop_prec, right_prec < binop_prec), Fixity::None => (left_prec <= binop_prec, right_prec <= binop_prec), }; match (&lhs.kind, op) { // These cases need parens: `x as i32 < y` has the parser thinking that `i32 < y` is // the beginning of a path type. It starts trying to parse `x as (i32 < y ...` instead // of `(x as i32) < ...`. We need to convince it _not_ to do that. (&ast::ExprKind::Cast { .. }, ast::BinOpKind::Lt | ast::BinOpKind::Shl) => { left_needs_paren = true; } // We are given `(let _ = a) OP b`. // // - When `OP <= LAnd` we should print `let _ = a OP b` to avoid redundant parens // as the parser will interpret this as `(let _ = a) OP b`. // // - Otherwise, e.g. when we have `(let a = b) < c` in AST, // parens are required since the parser would interpret `let a = b < c` as // `let a = (b < c)`. To achieve this, we force parens. (&ast::ExprKind::Let { .. }, _) if !parser::needs_par_as_let_scrutinee(binop_prec) => { left_needs_paren = true; } _ => {} } self.print_expr_cond_paren(lhs, left_needs_paren, left_fixup); self.space(); self.word_space(op.as_str()); self.print_expr_cond_paren(rhs, right_needs_paren, fixup.rightmost_subexpression()); } fn print_expr_unary(&mut self, op: ast::UnOp, expr: &ast::Expr, fixup: FixupContext) { self.word(op.as_str()); self.print_expr_cond_paren( expr, fixup.precedence(expr) < ExprPrecedence::Prefix, fixup.rightmost_subexpression(), ); } fn print_expr_addr_of( &mut self, kind: ast::BorrowKind, mutability: ast::Mutability, expr: &ast::Expr, fixup: FixupContext, ) { self.word("&"); match kind { ast::BorrowKind::Ref => self.print_mutability(mutability, false), ast::BorrowKind::Raw => { self.word_nbsp("raw"); self.print_mutability(mutability, true); } ast::BorrowKind::Pin => { self.word_nbsp("pin"); self.print_mutability(mutability, true); } } self.print_expr_cond_paren( expr, fixup.precedence(expr) < ExprPrecedence::Prefix, fixup.rightmost_subexpression(), ); } pub(super) fn print_expr(&mut self, expr: &ast::Expr, fixup: FixupContext) { self.print_expr_outer_attr_style(expr, true, fixup) } pub(super) fn print_expr_outer_attr_style( &mut self, expr: &ast::Expr, is_inline: bool, mut fixup: FixupContext, ) { self.maybe_print_comment(expr.span.lo()); let attrs = &expr.attrs; if is_inline { self.print_outer_attributes_inline(attrs); } else { self.print_outer_attributes(attrs); } let ib = self.ibox(INDENT_UNIT); let needs_par = { // The Match subexpression in `match x {} - 1` must be parenthesized // if it is the leftmost subexpression in a statement: // // (match x {}) - 1; // // But not otherwise: // // let _ = match x {} - 1; // // Same applies to a small set of other expression kinds which // eagerly terminate a statement which opens with them. fixup.would_cause_statement_boundary(expr) } || { // If a binary operation ends up with an attribute, such as // resulting from the following macro expansion, then parentheses // are required so that the attribute encompasses the right // subexpression and not just the left one. // // #![feature(stmt_expr_attributes)] // // macro_rules! add_attr { // ($e:expr) => { #[attr] $e }; // } // // let _ = add_attr!(1 + 1); // // We must pretty-print `#[attr] (1 + 1)` not `#[attr] 1 + 1`. !attrs.is_empty() && matches!( expr.kind, ast::ExprKind::Binary(..) | ast::ExprKind::Cast(..) | ast::ExprKind::Assign(..) | ast::ExprKind::AssignOp(..) | ast::ExprKind::Range(..) ) }; if needs_par { self.popen(); fixup = FixupContext::default(); } self.ann.pre(self, AnnNode::Expr(expr)); match &expr.kind { ast::ExprKind::Array(exprs) => { self.print_expr_vec(exprs); } ast::ExprKind::ConstBlock(anon_const) => { self.print_expr_anon_const(anon_const, attrs); } ast::ExprKind::Repeat(element, count) => { self.print_expr_repeat(element, count); } ast::ExprKind::Struct(se) => { self.print_expr_struct(&se.qself, &se.path, &se.fields, &se.rest); } ast::ExprKind::Tup(exprs) => { self.print_expr_tup(exprs); } ast::ExprKind::Call(func, args) => { self.print_expr_call(func, args, fixup); } ast::ExprKind::MethodCall(box ast::MethodCall { seg, receiver, args, .. }) => { self.print_expr_method_call(seg, receiver, args, fixup); } ast::ExprKind::Binary(op, lhs, rhs) => { self.print_expr_binary(op.node, lhs, rhs, fixup); } ast::ExprKind::Unary(op, expr) => { self.print_expr_unary(*op, expr, fixup); } ast::ExprKind::AddrOf(k, m, expr) => { self.print_expr_addr_of(*k, *m, expr, fixup); } ast::ExprKind::Lit(token_lit) => { self.print_token_literal(*token_lit, expr.span); } ast::ExprKind::IncludedBytes(byte_sym) => { let lit = token::Lit::new( token::ByteStr, escape_byte_str_symbol(byte_sym.as_byte_str()), None, ); self.print_token_literal(lit, expr.span) } ast::ExprKind::Cast(expr, ty) => { self.print_expr_cond_paren( expr, expr.precedence() < ExprPrecedence::Cast, fixup.leftmost_subexpression(), ); self.space(); self.word_space("as"); self.print_type(ty); } ast::ExprKind::Type(expr, ty) => { self.word("builtin # type_ascribe"); self.popen(); let ib = self.ibox(0); self.print_expr(expr, FixupContext::default()); self.word(","); self.space_if_not_bol(); self.print_type(ty); self.end(ib); self.pclose(); } ast::ExprKind::Let(pat, scrutinee, _, _) => { self.print_let(pat, scrutinee, fixup); } ast::ExprKind::If(test, blk, elseopt) => self.print_if(test, blk, elseopt.as_deref()), ast::ExprKind::While(test, blk, opt_label) => { if let Some(label) = opt_label { self.print_ident(label.ident); self.word_space(":"); } let cb = self.cbox(0); let ib = self.ibox(0); self.word_nbsp("while"); self.print_expr_as_cond(test); self.space(); self.print_block_with_attrs(blk, attrs, cb, ib); } ast::ExprKind::ForLoop { pat, iter, body, label, kind } => { if let Some(label) = label { self.print_ident(label.ident); self.word_space(":"); } let cb = self.cbox(0); let ib = self.ibox(0); self.word_nbsp("for"); if kind == &ForLoopKind::ForAwait { self.word_nbsp("await"); } self.print_pat(pat); self.space(); self.word_space("in"); self.print_expr_as_cond(iter); self.space(); self.print_block_with_attrs(body, attrs, cb, ib); } ast::ExprKind::Loop(blk, opt_label, _) => { let cb = self.cbox(0); let ib = self.ibox(0); if let Some(label) = opt_label { self.print_ident(label.ident); self.word_space(":"); } self.word_nbsp("loop"); self.print_block_with_attrs(blk, attrs, cb, ib); } ast::ExprKind::Match(expr, arms, match_kind) => { let cb = self.cbox(0); let ib = self.ibox(0); match match_kind { MatchKind::Prefix => { self.word_nbsp("match"); self.print_expr_as_cond(expr); self.space(); } MatchKind::Postfix => { self.print_expr_cond_paren( expr, expr.precedence() < ExprPrecedence::Unambiguous, fixup.leftmost_subexpression_with_dot(), ); self.word_nbsp(".match"); } } self.bopen(ib); self.print_inner_attributes_no_trailing_hardbreak(attrs); for arm in arms { self.print_arm(arm); } let empty = attrs.is_empty() && arms.is_empty(); self.bclose(expr.span, empty, cb); } ast::ExprKind::Closure(box ast::Closure { binder, capture_clause, constness, coroutine_kind, movability, fn_decl, body, fn_decl_span: _, fn_arg_span: _, }) => { self.print_closure_binder(binder); self.print_constness(*constness); self.print_movability(*movability); coroutine_kind.map(|coroutine_kind| self.print_coroutine_kind(coroutine_kind)); self.print_capture_clause(*capture_clause); self.print_fn_params_and_ret(fn_decl, true); self.space(); self.print_expr(body, FixupContext::default()); } ast::ExprKind::Block(blk, opt_label) => { if let Some(label) = opt_label { self.print_ident(label.ident); self.word_space(":"); } // containing cbox, will be closed by print-block at } let cb = self.cbox(0); // head-box, will be closed by print-block after { let ib = self.ibox(0); self.print_block_with_attrs(blk, attrs, cb, ib); } ast::ExprKind::Gen(capture_clause, blk, kind, _decl_span) => { self.word_nbsp(kind.modifier()); self.print_capture_clause(*capture_clause); // cbox/ibox in analogy to the `ExprKind::Block` arm above let cb = self.cbox(0); let ib = self.ibox(0); self.print_block_with_attrs(blk, attrs, cb, ib); } ast::ExprKind::Await(expr, _) => { self.print_expr_cond_paren( expr, expr.precedence() < ExprPrecedence::Unambiguous, fixup.leftmost_subexpression_with_dot(), ); self.word(".await"); } ast::ExprKind::Use(expr, _) => { self.print_expr_cond_paren( expr, expr.precedence() < ExprPrecedence::Unambiguous, fixup, ); self.word(".use"); } ast::ExprKind::Assign(lhs, rhs, _) => { self.print_expr_cond_paren( lhs, // Ranges are allowed on the right-hand side of assignment, // but not the left. `(a..b) = c` needs parentheses. lhs.precedence() <= ExprPrecedence::Range, fixup.leftmost_subexpression(), ); self.space(); self.word_space("="); self.print_expr_cond_paren( rhs, fixup.precedence(rhs) < ExprPrecedence::Assign, fixup.rightmost_subexpression(), ); } ast::ExprKind::AssignOp(op, lhs, rhs) => { self.print_expr_cond_paren( lhs, lhs.precedence() <= ExprPrecedence::Range, fixup.leftmost_subexpression(), ); self.space(); self.word_space(op.node.as_str()); self.print_expr_cond_paren( rhs, fixup.precedence(rhs) < ExprPrecedence::Assign, fixup.rightmost_subexpression(), ); } ast::ExprKind::Field(expr, ident) => { self.print_expr_cond_paren( expr, expr.precedence() < ExprPrecedence::Unambiguous, fixup.leftmost_subexpression_with_dot(), ); self.word("."); self.print_ident(*ident); } ast::ExprKind::Index(expr, index, _) => { let expr_fixup = fixup.leftmost_subexpression_with_operator(true); self.print_expr_cond_paren( expr, expr_fixup.precedence(expr) < ExprPrecedence::Unambiguous, expr_fixup, ); self.word("["); self.print_expr(index, FixupContext::default()); self.word("]"); } ast::ExprKind::Range(start, end, limits) => { // Special case for `Range`. `AssocOp` claims that `Range` has higher precedence // than `Assign`, but `x .. x = x` gives a parse error instead of `x .. (x = x)`. // Here we use a fake precedence value so that any child with lower precedence than // a "normal" binop gets parenthesized. (`LOr` is the lowest-precedence binop.) let fake_prec = ExprPrecedence::LOr; if let Some(e) = start { let start_fixup = fixup.leftmost_subexpression_with_operator(true); self.print_expr_cond_paren( e, start_fixup.precedence(e) < fake_prec, start_fixup, ); } match limits { ast::RangeLimits::HalfOpen => self.word(".."), ast::RangeLimits::Closed => self.word("..="), } if let Some(e) = end { self.print_expr_cond_paren( e, fixup.precedence(e) < fake_prec, fixup.rightmost_subexpression(), ); } } ast::ExprKind::Underscore => self.word("_"), ast::ExprKind::Path(None, path) => self.print_path(path, true, 0), ast::ExprKind::Path(Some(qself), path) => self.print_qpath(path, qself, true), ast::ExprKind::Break(opt_label, opt_expr) => { self.word("break"); if let Some(label) = opt_label { self.space(); self.print_ident(label.ident); } if let Some(expr) = opt_expr { self.space(); self.print_expr_cond_paren( expr, // Parenthesize `break 'inner: loop { break 'inner 1 } + 1` // ^---------------------------------^ opt_label.is_none() && classify::leading_labeled_expr(expr), fixup.rightmost_subexpression(), ); } } ast::ExprKind::Continue(opt_label) => { self.word("continue"); if let Some(label) = opt_label { self.space(); self.print_ident(label.ident); } } ast::ExprKind::Ret(result) => { self.word("return"); if let Some(expr) = result { self.word(" "); self.print_expr(expr, fixup.rightmost_subexpression()); } } ast::ExprKind::Yeet(result) => { self.word("do"); self.word(" "); self.word("yeet"); if let Some(expr) = result { self.word(" "); self.print_expr(expr, fixup.rightmost_subexpression()); } } ast::ExprKind::Become(result) => { self.word("become"); self.word(" "); self.print_expr(result, fixup.rightmost_subexpression()); } ast::ExprKind::InlineAsm(a) => { // FIXME: Print `builtin # asm` once macro `asm` uses `builtin_syntax`. self.word("asm!"); self.print_inline_asm(a); } ast::ExprKind::FormatArgs(fmt) => { // FIXME: Print `builtin # format_args` once macro `format_args` uses `builtin_syntax`. self.word("format_args!"); self.popen(); let ib = self.ibox(0); self.word(reconstruct_format_args_template_string(&fmt.template)); for arg in fmt.arguments.all_args() { self.word_space(","); self.print_expr(&arg.expr, FixupContext::default()); } self.end(ib); self.pclose(); } ast::ExprKind::OffsetOf(container, fields) => { self.word("builtin # offset_of"); self.popen(); let ib = self.ibox(0); self.print_type(container); self.word(","); self.space(); if let Some((&first, rest)) = fields.split_first() { self.print_ident(first); for &field in rest { self.word("."); self.print_ident(field); } } self.end(ib); self.pclose(); } ast::ExprKind::MacCall(m) => self.print_mac(m), ast::ExprKind::Paren(e) => { self.popen(); self.print_expr(e, FixupContext::default()); self.pclose(); } ast::ExprKind::Yield(YieldKind::Prefix(e)) => { self.word("yield"); if let Some(expr) = e { self.space(); self.print_expr(expr, fixup.rightmost_subexpression()); } } ast::ExprKind::Yield(YieldKind::Postfix(e)) => { self.print_expr_cond_paren( e, e.precedence() < ExprPrecedence::Unambiguous, fixup.leftmost_subexpression_with_dot(), ); self.word(".yield"); } ast::ExprKind::Try(e) => { self.print_expr_cond_paren( e, e.precedence() < ExprPrecedence::Unambiguous, fixup.leftmost_subexpression_with_dot(), ); self.word("?") } ast::ExprKind::TryBlock(blk) => { let cb = self.cbox(0); let ib = self.ibox(0); self.word_nbsp("try"); self.print_block_with_attrs(blk, attrs, cb, ib) } ast::ExprKind::UnsafeBinderCast(kind, expr, ty) => { self.word("builtin # "); match kind { ast::UnsafeBinderCastKind::Wrap => self.word("wrap_binder"), ast::UnsafeBinderCastKind::Unwrap => self.word("unwrap_binder"), } self.popen(); let ib = self.ibox(0); self.print_expr(expr, FixupContext::default()); if let Some(ty) = ty { self.word(","); self.space(); self.print_type(ty); } self.end(ib); self.pclose(); } ast::ExprKind::Err(_) => { self.popen(); self.word("/*ERROR*/"); self.pclose() } ast::ExprKind::Dummy => { self.popen(); self.word("/*DUMMY*/"); self.pclose(); } } self.ann.post(self, AnnNode::Expr(expr)); if needs_par { self.pclose(); } self.end(ib); } fn print_arm(&mut self, arm: &ast::Arm) { // Note, I have no idea why this check is necessary, but here it is. if arm.attrs.is_empty() { self.space(); } let cb = self.cbox(INDENT_UNIT); let ib = self.ibox(0); self.maybe_print_comment(arm.pat.span.lo()); self.print_outer_attributes(&arm.attrs); self.print_pat(&arm.pat); self.space(); if let Some(e) = &arm.guard { self.word_space("if"); self.print_expr(e, FixupContext::default()); self.space(); } if let Some(body) = &arm.body { self.word_space("=>"); match &body.kind { ast::ExprKind::Block(blk, opt_label) => { if let Some(label) = opt_label { self.print_ident(label.ident); self.word_space(":"); } self.print_block_unclosed_indent(blk, ib); // If it is a user-provided unsafe block, print a comma after it. if let BlockCheckMode::Unsafe(ast::UserProvided) = blk.rules { self.word(","); } } _ => { self.end(ib); self.print_expr(body, FixupContext::new_match_arm()); self.word(","); } } } else { self.end(ib); self.word(","); } self.end(cb); } fn print_closure_binder(&mut self, binder: &ast::ClosureBinder) { match binder { ast::ClosureBinder::NotPresent => {} ast::ClosureBinder::For { generic_params, .. } => { self.print_formal_generic_params(generic_params) } } } fn print_movability(&mut self, movability: ast::Movability) { match movability { ast::Movability::Static => self.word_space("static"), ast::Movability::Movable => {} } } fn print_capture_clause(&mut self, capture_clause: ast::CaptureBy) { match capture_clause { ast::CaptureBy::Value { .. } => self.word_space("move"), ast::CaptureBy::Use { .. } => self.word_space("use"), ast::CaptureBy::Ref => {} } } } fn reconstruct_format_args_template_string(pieces: &[FormatArgsPiece]) -> String { let mut template = "\"".to_string(); for piece in pieces { match piece { FormatArgsPiece::Literal(s) => { for c in s.as_str().chars() { template.extend(c.escape_debug()); if let '{' | '}' = c { template.push(c); } } } FormatArgsPiece::Placeholder(p) => { template.push('{'); let (Ok(n) | Err(n)) = p.argument.index; write!(template, "{n}").unwrap(); if p.format_options != Default::default() || p.format_trait != FormatTrait::Display { template.push(':'); } if let Some(fill) = p.format_options.fill { template.push(fill); } match p.format_options.alignment { Some(FormatAlignment::Left) => template.push('<'), Some(FormatAlignment::Right) => template.push('>'), Some(FormatAlignment::Center) => template.push('^'), None => {} } match p.format_options.sign { Some(FormatSign::Plus) => template.push('+'), Some(FormatSign::Minus) => template.push('-'), None => {} } if p.format_options.alternate { template.push('#'); } if p.format_options.zero_pad { template.push('0'); } if let Some(width) = &p.format_options.width { match width { FormatCount::Literal(n) => write!(template, "{n}").unwrap(), FormatCount::Argument(FormatArgPosition { index: Ok(n) | Err(n), .. }) => { write!(template, "{n}$").unwrap(); } } } if let Some(precision) = &p.format_options.precision { template.push('.'); match precision { FormatCount::Literal(n) => write!(template, "{n}").unwrap(), FormatCount::Argument(FormatArgPosition { index: Ok(n) | Err(n), .. }) => { write!(template, "{n}$").unwrap(); } } } match p.format_options.debug_hex { Some(FormatDebugHex::Lower) => template.push('x'), Some(FormatDebugHex::Upper) => template.push('X'), None => {} } template.push_str(match p.format_trait { FormatTrait::Display => "", FormatTrait::Debug => "?", FormatTrait::LowerExp => "e", FormatTrait::UpperExp => "E", FormatTrait::Octal => "o", FormatTrait::Pointer => "p", FormatTrait::Binary => "b", FormatTrait::LowerHex => "x", FormatTrait::UpperHex => "X", }); template.push('}'); } } } template.push('"'); template }