use rustc_data_structures::graph; use rustc_index::IndexVec; use rustc_middle::ty::RegionVid; use crate::constraints::{OutlivesConstraint, OutlivesConstraintIndex, OutlivesConstraintSet}; /// The construct graph organizes the constraints by their end-points. /// It can be used to view a `R1: R2` constraint as either an edge `R1 /// -> R2` or `R2 -> R1` depending on the direction type `D`. pub(crate) struct ConstraintGraph { _direction: D, first_constraints: IndexVec>, next_constraints: IndexVec>, } pub(crate) type NormalConstraintGraph = ConstraintGraph; pub(crate) type ReverseConstraintGraph = ConstraintGraph; /// Marker trait that controls whether a `R1: R2` constraint /// represents an edge `R1 -> R2` or `R2 -> R1`. pub(crate) trait ConstraintGraphDirection: Copy + 'static { fn start_region(sup: RegionVid, sub: RegionVid) -> RegionVid; fn end_region(sup: RegionVid, sub: RegionVid) -> RegionVid; fn is_normal() -> bool; } /// In normal mode, a `R1: R2` constraint results in an edge `R1 -> /// R2`. This is what we use when constructing the SCCs for /// inference. This is because we compute the value of R1 by union'ing /// all the things that it relies on. #[derive(Copy, Clone, Debug)] pub(crate) struct Normal; impl ConstraintGraphDirection for Normal { fn start_region(sup: RegionVid, _sub: RegionVid) -> RegionVid { sup } fn end_region(_sup: RegionVid, sub: RegionVid) -> RegionVid { sub } fn is_normal() -> bool { true } } /// In reverse mode, a `R1: R2` constraint results in an edge `R2 -> /// R1`. We use this for optimizing liveness computation, because then /// we wish to iterate from a region (e.g., R2) to all the regions /// that will outlive it (e.g., R1). #[derive(Copy, Clone, Debug)] pub(crate) struct Reverse; impl ConstraintGraphDirection for Reverse { fn start_region(_sup: RegionVid, sub: RegionVid) -> RegionVid { sub } fn end_region(sup: RegionVid, _sub: RegionVid) -> RegionVid { sup } fn is_normal() -> bool { false } } impl ConstraintGraph { /// Creates a "dependency graph" where each region constraint `R1: /// R2` is treated as an edge `R1 -> R2`. We use this graph to /// construct SCCs for region inference but also for error /// reporting. pub(crate) fn new( direction: D, set: &OutlivesConstraintSet<'_>, num_region_vars: usize, ) -> Self { let mut first_constraints = IndexVec::from_elem_n(None, num_region_vars); let mut next_constraints = IndexVec::from_elem(None, &set.outlives); for (idx, constraint) in set.outlives.iter_enumerated().rev() { let head = &mut first_constraints[D::start_region(constraint.sup, constraint.sub)]; let next = &mut next_constraints[idx]; debug_assert!(next.is_none()); *next = *head; *head = Some(idx); } Self { _direction: direction, first_constraints, next_constraints } } /// Given the constraint set from which this graph was built /// creates a region graph so that you can iterate over *regions* /// and not constraints. pub(crate) fn region_graph<'a, 'tcx>( &'a self, set: &'a OutlivesConstraintSet<'tcx>, static_region: RegionVid, ) -> RegionGraph<'a, 'tcx, D> { RegionGraph::new(set, self, static_region) } pub(crate) fn is_normal(&self) -> bool { D::is_normal() } /// Given a region `R`, iterate over all constraints `R: R1`. pub(crate) fn outgoing_edges_from_graph<'a, 'tcx>( &'a self, region_sup: RegionVid, constraints: &'a OutlivesConstraintSet<'tcx>, ) -> EdgesFromGraph<'a, 'tcx, D> { EdgesFromGraph { graph: self, constraints, pointer: self.first_constraints[region_sup] } } /// Returns all regions (#53178). pub(crate) fn outgoing_edges_from_static(&self) -> EdgesFromStatic { EdgesFromStatic { next_static_idx: 0, end_static_idx: self.first_constraints.len() } } } pub(crate) struct EdgesFromGraph<'a, 'tcx, D: ConstraintGraphDirection> { graph: &'a ConstraintGraph, constraints: &'a OutlivesConstraintSet<'tcx>, pointer: Option, } impl<'a, 'tcx, D: ConstraintGraphDirection> Iterator for EdgesFromGraph<'a, 'tcx, D> { type Item = &'a OutlivesConstraint<'tcx>; fn next(&mut self) -> Option { if let Some(p) = self.pointer { self.pointer = self.graph.next_constraints[p]; Some(&self.constraints[p]) } else { None } } } pub(crate) struct EdgesFromStatic { next_static_idx: usize, end_static_idx: usize, } impl Iterator for EdgesFromStatic { type Item = RegionVid; fn next(&mut self) -> Option { if self.next_static_idx < self.end_static_idx { let ret = RegionVid::from_usize(self.next_static_idx); self.next_static_idx += 1; Some(ret) } else { None } } } /// This struct brings together a constraint set and a (normal, not /// reverse) constraint graph. It implements the graph traits and is /// usd for doing the SCC computation. pub(crate) struct RegionGraph<'a, 'tcx, D: ConstraintGraphDirection> { set: &'a OutlivesConstraintSet<'tcx>, constraint_graph: &'a ConstraintGraph, static_region: RegionVid, } impl<'a, 'tcx, D: ConstraintGraphDirection> RegionGraph<'a, 'tcx, D> { /// Creates a "dependency graph" where each region constraint `R1: /// R2` is treated as an edge `R1 -> R2`. We use this graph to /// construct SCCs for region inference but also for error /// reporting. pub(crate) fn new( set: &'a OutlivesConstraintSet<'tcx>, constraint_graph: &'a ConstraintGraph, static_region: RegionVid, ) -> Self { Self { set, constraint_graph, static_region } } /// Given a region `R`, iterate over all regions `R1` such that /// there exists a constraint `R: R1`. pub(crate) fn outgoing_regions(&self, region_sup: RegionVid) -> Successors<'a, 'tcx, D> { // If this is the `'static` region and the graph's direction is normal, // then setup the Edges iterator to return all regions (#53178). if region_sup == self.static_region && D::is_normal() { Successors::FromStatic(self.constraint_graph.outgoing_edges_from_static()) } else { // Otherwise, just setup the iterator as normal. Successors::FromGraph( self.constraint_graph.outgoing_edges_from_graph(region_sup, self.set), ) } } } pub(crate) enum Successors<'a, 'tcx, D: ConstraintGraphDirection> { FromStatic(EdgesFromStatic), FromGraph(EdgesFromGraph<'a, 'tcx, D>), } impl<'a, 'tcx, D: ConstraintGraphDirection> Iterator for Successors<'a, 'tcx, D> { type Item = RegionVid; fn next(&mut self) -> Option { match self { Successors::FromStatic(edges) => { // No `D::end_region` call needed here: static successors are only possible when // the direction is `Normal`, so we can directly use what would be the `sub` value. edges.next() } Successors::FromGraph(edges) => { edges.next().map(|constraint| D::end_region(constraint.sup, constraint.sub)) } } } } impl<'a, 'tcx, D: ConstraintGraphDirection> graph::DirectedGraph for RegionGraph<'a, 'tcx, D> { type Node = RegionVid; fn num_nodes(&self) -> usize { self.constraint_graph.first_constraints.len() } } impl<'a, 'tcx, D: ConstraintGraphDirection> graph::Successors for RegionGraph<'a, 'tcx, D> { fn successors(&self, node: Self::Node) -> impl Iterator { self.outgoing_regions(node) } }