use rustc_abi::{Align, BackendRepr, Endian, HasDataLayout, Primitive, Size, TyAndLayout}; use rustc_codegen_ssa::MemFlags; use rustc_codegen_ssa::common::IntPredicate; use rustc_codegen_ssa::mir::operand::OperandRef; use rustc_codegen_ssa::traits::{ BaseTypeCodegenMethods, BuilderMethods, ConstCodegenMethods, LayoutTypeCodegenMethods, }; use rustc_middle::ty::Ty; use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf}; use crate::builder::Builder; use crate::type_::Type; use crate::type_of::LayoutLlvmExt; use crate::value::Value; fn round_up_to_alignment<'ll>( bx: &mut Builder<'_, 'll, '_>, mut value: &'ll Value, align: Align, ) -> &'ll Value { value = bx.add(value, bx.cx().const_i32(align.bytes() as i32 - 1)); return bx.and(value, bx.cx().const_i32(-(align.bytes() as i32))); } fn round_pointer_up_to_alignment<'ll>( bx: &mut Builder<'_, 'll, '_>, addr: &'ll Value, align: Align, ptr_ty: &'ll Type, ) -> &'ll Value { let ptr = bx.inbounds_ptradd(addr, bx.const_i32(align.bytes() as i32 - 1)); bx.call_intrinsic( "llvm.ptrmask", &[ptr_ty, bx.type_i32()], &[ptr, bx.const_int(bx.isize_ty, -(align.bytes() as isize) as i64)], ) } fn emit_direct_ptr_va_arg<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, list: OperandRef<'tcx, &'ll Value>, size: Size, align: Align, slot_size: Align, allow_higher_align: bool, force_right_adjust: bool, ) -> (&'ll Value, Align) { let va_list_ty = bx.type_ptr(); let va_list_addr = list.immediate(); let ptr_align_abi = bx.tcx().data_layout.pointer_align().abi; let ptr = bx.load(va_list_ty, va_list_addr, ptr_align_abi); let (addr, addr_align) = if allow_higher_align && align > slot_size { (round_pointer_up_to_alignment(bx, ptr, align, bx.type_ptr()), align) } else { (ptr, slot_size) }; let aligned_size = size.align_to(slot_size).bytes() as i32; let full_direct_size = bx.cx().const_i32(aligned_size); let next = bx.inbounds_ptradd(addr, full_direct_size); bx.store(next, va_list_addr, ptr_align_abi); if size.bytes() < slot_size.bytes() && bx.tcx().sess.target.endian == Endian::Big && force_right_adjust { let adjusted_size = bx.cx().const_i32((slot_size.bytes() - size.bytes()) as i32); let adjusted = bx.inbounds_ptradd(addr, adjusted_size); (adjusted, addr_align) } else { (addr, addr_align) } } enum PassMode { Direct, Indirect, } enum SlotSize { Bytes8 = 8, Bytes4 = 4, } enum AllowHigherAlign { No, Yes, } enum ForceRightAdjust { No, Yes, } fn emit_ptr_va_arg<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, list: OperandRef<'tcx, &'ll Value>, target_ty: Ty<'tcx>, pass_mode: PassMode, slot_size: SlotSize, allow_higher_align: AllowHigherAlign, force_right_adjust: ForceRightAdjust, ) -> &'ll Value { let indirect = matches!(pass_mode, PassMode::Indirect); let allow_higher_align = matches!(allow_higher_align, AllowHigherAlign::Yes); let force_right_adjust = matches!(force_right_adjust, ForceRightAdjust::Yes); let slot_size = Align::from_bytes(slot_size as u64).unwrap(); let layout = bx.cx.layout_of(target_ty); let (llty, size, align) = if indirect { ( bx.cx.layout_of(Ty::new_imm_ptr(bx.cx.tcx, target_ty)).llvm_type(bx.cx), bx.cx.data_layout().pointer_size(), bx.cx.data_layout().pointer_align(), ) } else { (layout.llvm_type(bx.cx), layout.size, layout.align) }; let (addr, addr_align) = emit_direct_ptr_va_arg( bx, list, size, align.abi, slot_size, allow_higher_align, force_right_adjust, ); if indirect { let tmp_ret = bx.load(llty, addr, addr_align); bx.load(bx.cx.layout_of(target_ty).llvm_type(bx.cx), tmp_ret, align.abi) } else { bx.load(llty, addr, addr_align) } } fn emit_aapcs_va_arg<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, list: OperandRef<'tcx, &'ll Value>, target_ty: Ty<'tcx>, ) -> &'ll Value { let dl = bx.cx.data_layout(); // Implementation of the AAPCS64 calling convention for va_args see // https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst // // typedef struct va_list { // void * stack; // next stack param // void * gr_top; // end of GP arg reg save area // void * vr_top; // end of FP/SIMD arg reg save area // int gr_offs; // offset from gr_top to next GP register arg // int vr_offs; // offset from vr_top to next FP/SIMD register arg // } va_list; let va_list_addr = list.immediate(); // There is no padding between fields since `void*` is size=8 align=8, `int` is size=4 align=4. // See https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst // Table 1, Byte size and byte alignment of fundamental data types // Table 3, Mapping of C & C++ built-in data types let ptr_offset = 8; let i32_offset = 4; let gr_top = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(ptr_offset)); let vr_top = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(2 * ptr_offset)); let gr_offs = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(3 * ptr_offset)); let vr_offs = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(3 * ptr_offset + i32_offset)); let layout = bx.cx.layout_of(target_ty); let maybe_reg = bx.append_sibling_block("va_arg.maybe_reg"); let in_reg = bx.append_sibling_block("va_arg.in_reg"); let on_stack = bx.append_sibling_block("va_arg.on_stack"); let end = bx.append_sibling_block("va_arg.end"); let zero = bx.const_i32(0); let offset_align = Align::from_bytes(4).unwrap(); let gr_type = target_ty.is_any_ptr() || target_ty.is_integral(); let (reg_off, reg_top, slot_size) = if gr_type { let nreg = layout.size.bytes().div_ceil(8); (gr_offs, gr_top, nreg * 8) } else { let nreg = layout.size.bytes().div_ceil(16); (vr_offs, vr_top, nreg * 16) }; // if the offset >= 0 then the value will be on the stack let mut reg_off_v = bx.load(bx.type_i32(), reg_off, offset_align); let use_stack = bx.icmp(IntPredicate::IntSGE, reg_off_v, zero); bx.cond_br(use_stack, on_stack, maybe_reg); // The value at this point might be in a register, but there is a chance that // it could be on the stack so we have to update the offset and then check // the offset again. bx.switch_to_block(maybe_reg); if gr_type && layout.align.abi.bytes() > 8 { reg_off_v = bx.add(reg_off_v, bx.const_i32(15)); reg_off_v = bx.and(reg_off_v, bx.const_i32(-16)); } let new_reg_off_v = bx.add(reg_off_v, bx.const_i32(slot_size as i32)); bx.store(new_reg_off_v, reg_off, offset_align); // Check to see if we have overflowed the registers as a result of this. // If we have then we need to use the stack for this value let use_stack = bx.icmp(IntPredicate::IntSGT, new_reg_off_v, zero); bx.cond_br(use_stack, on_stack, in_reg); bx.switch_to_block(in_reg); let top_type = bx.type_ptr(); let top = bx.load(top_type, reg_top, dl.pointer_align().abi); // reg_value = *(@top + reg_off_v); let mut reg_addr = bx.ptradd(top, reg_off_v); if bx.tcx().sess.target.endian == Endian::Big && layout.size.bytes() != slot_size { // On big-endian systems the value is right-aligned in its slot. let offset = bx.const_i32((slot_size - layout.size.bytes()) as i32); reg_addr = bx.ptradd(reg_addr, offset); } let reg_type = layout.llvm_type(bx); let reg_value = bx.load(reg_type, reg_addr, layout.align.abi); bx.br(end); // On Stack block bx.switch_to_block(on_stack); let stack_value = emit_ptr_va_arg( bx, list, target_ty, PassMode::Direct, SlotSize::Bytes8, AllowHigherAlign::Yes, ForceRightAdjust::No, ); bx.br(end); bx.switch_to_block(end); let val = bx.phi(layout.immediate_llvm_type(bx), &[reg_value, stack_value], &[in_reg, on_stack]); val } fn emit_powerpc_va_arg<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, list: OperandRef<'tcx, &'ll Value>, target_ty: Ty<'tcx>, ) -> &'ll Value { let dl = bx.cx.data_layout(); // struct __va_list_tag { // unsigned char gpr; // unsigned char fpr; // unsigned short reserved; // void *overflow_arg_area; // void *reg_save_area; // }; let va_list_addr = list.immediate(); // Peel off any newtype wrappers. let layout = { let mut layout = bx.cx.layout_of(target_ty); while let Some((_, inner)) = layout.non_1zst_field(bx.cx) { layout = inner; } layout }; // Rust does not currently support any powerpc softfloat targets. let target = &bx.cx.tcx.sess.target; let is_soft_float_abi = target.abi == "softfloat"; assert!(!is_soft_float_abi); // All instances of VaArgSafe are passed directly. let is_indirect = false; let (is_i64, is_int, is_f64) = match layout.layout.backend_repr() { BackendRepr::Scalar(scalar) => match scalar.primitive() { rustc_abi::Primitive::Int(integer, _) => (integer.size().bits() == 64, true, false), rustc_abi::Primitive::Float(float) => (false, false, float.size().bits() == 64), rustc_abi::Primitive::Pointer(_) => (false, true, false), }, _ => unreachable!("all instances of VaArgSafe are represented as scalars"), }; let num_regs_addr = if is_int || is_soft_float_abi { va_list_addr // gpr } else { bx.inbounds_ptradd(va_list_addr, bx.const_usize(1)) // fpr }; let mut num_regs = bx.load(bx.type_i8(), num_regs_addr, dl.i8_align.abi); // "Align" the register count when the type is passed as `i64`. if is_i64 || (is_f64 && is_soft_float_abi) { num_regs = bx.add(num_regs, bx.const_u8(1)); num_regs = bx.and(num_regs, bx.const_u8(0b1111_1110)); } let max_regs = 8u8; let use_regs = bx.icmp(IntPredicate::IntULT, num_regs, bx.const_u8(max_regs)); let ptr_align_abi = bx.tcx().data_layout.pointer_align().abi; let in_reg = bx.append_sibling_block("va_arg.in_reg"); let in_mem = bx.append_sibling_block("va_arg.in_mem"); let end = bx.append_sibling_block("va_arg.end"); bx.cond_br(use_regs, in_reg, in_mem); let reg_addr = { bx.switch_to_block(in_reg); let reg_safe_area_ptr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(1 + 1 + 2 + 4)); let mut reg_addr = bx.load(bx.type_ptr(), reg_safe_area_ptr, ptr_align_abi); // Floating-point registers start after the general-purpose registers. if !is_int && !is_soft_float_abi { reg_addr = bx.inbounds_ptradd(reg_addr, bx.cx.const_usize(32)) } // Get the address of the saved value by scaling the number of // registers we've used by the number of. let reg_size = if is_int || is_soft_float_abi { 4 } else { 8 }; let reg_offset = bx.mul(num_regs, bx.cx().const_u8(reg_size)); let reg_addr = bx.inbounds_ptradd(reg_addr, reg_offset); // Increase the used-register count. let reg_incr = if is_i64 || (is_f64 && is_soft_float_abi) { 2 } else { 1 }; let new_num_regs = bx.add(num_regs, bx.cx.const_u8(reg_incr)); bx.store(new_num_regs, num_regs_addr, dl.i8_align.abi); bx.br(end); reg_addr }; let mem_addr = { bx.switch_to_block(in_mem); bx.store(bx.const_u8(max_regs), num_regs_addr, dl.i8_align.abi); // Everything in the overflow area is rounded up to a size of at least 4. let overflow_area_align = Align::from_bytes(4).unwrap(); let size = if !is_indirect { layout.layout.size.align_to(overflow_area_align) } else { dl.pointer_size() }; let overflow_area_ptr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(1 + 1 + 2)); let mut overflow_area = bx.load(bx.type_ptr(), overflow_area_ptr, ptr_align_abi); // Round up address of argument to alignment if layout.layout.align.abi > overflow_area_align { overflow_area = round_pointer_up_to_alignment( bx, overflow_area, layout.layout.align.abi, bx.type_ptr(), ); } let mem_addr = overflow_area; // Increase the overflow area. overflow_area = bx.inbounds_ptradd(overflow_area, bx.const_usize(size.bytes())); bx.store(overflow_area, overflow_area_ptr, ptr_align_abi); bx.br(end); mem_addr }; // Return the appropriate result. bx.switch_to_block(end); let val_addr = bx.phi(bx.type_ptr(), &[reg_addr, mem_addr], &[in_reg, in_mem]); let val_type = layout.llvm_type(bx); let val_addr = if is_indirect { bx.load(bx.cx.type_ptr(), val_addr, ptr_align_abi) } else { val_addr }; bx.load(val_type, val_addr, layout.align.abi) } fn emit_s390x_va_arg<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, list: OperandRef<'tcx, &'ll Value>, target_ty: Ty<'tcx>, ) -> &'ll Value { let dl = bx.cx.data_layout(); // Implementation of the s390x ELF ABI calling convention for va_args see // https://github.com/IBM/s390x-abi (chapter 1.2.4) // // typedef struct __va_list_tag { // long __gpr; // long __fpr; // void *__overflow_arg_area; // void *__reg_save_area; // } va_list[1]; let va_list_addr = list.immediate(); // There is no padding between fields since `long` and `void*` both have size=8 align=8. // https://github.com/IBM/s390x-abi (Table 1.1.: Scalar types) let i64_offset = 8; let ptr_offset = 8; let gpr = va_list_addr; let fpr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(i64_offset)); let overflow_arg_area = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(2 * i64_offset)); let reg_save_area = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(2 * i64_offset + ptr_offset)); let layout = bx.cx.layout_of(target_ty); let in_reg = bx.append_sibling_block("va_arg.in_reg"); let in_mem = bx.append_sibling_block("va_arg.in_mem"); let end = bx.append_sibling_block("va_arg.end"); let ptr_align_abi = dl.pointer_align().abi; // FIXME: vector ABI not yet supported. let target_ty_size = bx.cx.size_of(target_ty).bytes(); let indirect: bool = target_ty_size > 8 || !target_ty_size.is_power_of_two(); let unpadded_size = if indirect { 8 } else { target_ty_size }; let padded_size = 8; let padding = padded_size - unpadded_size; let gpr_type = indirect || !layout.is_single_fp_element(bx.cx); let (max_regs, reg_count, reg_save_index, reg_padding) = if gpr_type { (5, gpr, 2, padding) } else { (4, fpr, 16, 0) }; // Check whether the value was passed in a register or in memory. let reg_count_v = bx.load(bx.type_i64(), reg_count, Align::from_bytes(8).unwrap()); let use_regs = bx.icmp(IntPredicate::IntULT, reg_count_v, bx.const_u64(max_regs)); bx.cond_br(use_regs, in_reg, in_mem); // Emit code to load the value if it was passed in a register. bx.switch_to_block(in_reg); // Work out the address of the value in the register save area. let reg_ptr_v = bx.load(bx.type_ptr(), reg_save_area, ptr_align_abi); let scaled_reg_count = bx.mul(reg_count_v, bx.const_u64(8)); let reg_off = bx.add(scaled_reg_count, bx.const_u64(reg_save_index * 8 + reg_padding)); let reg_addr = bx.ptradd(reg_ptr_v, reg_off); // Update the register count. let new_reg_count_v = bx.add(reg_count_v, bx.const_u64(1)); bx.store(new_reg_count_v, reg_count, Align::from_bytes(8).unwrap()); bx.br(end); // Emit code to load the value if it was passed in memory. bx.switch_to_block(in_mem); // Work out the address of the value in the argument overflow area. let arg_ptr_v = bx.load(bx.type_ptr(), overflow_arg_area, ptr_align_abi); let arg_off = bx.const_u64(padding); let mem_addr = bx.ptradd(arg_ptr_v, arg_off); // Update the argument overflow area pointer. let arg_size = bx.cx().const_u64(padded_size); let new_arg_ptr_v = bx.inbounds_ptradd(arg_ptr_v, arg_size); bx.store(new_arg_ptr_v, overflow_arg_area, ptr_align_abi); bx.br(end); // Return the appropriate result. bx.switch_to_block(end); let val_addr = bx.phi(bx.type_ptr(), &[reg_addr, mem_addr], &[in_reg, in_mem]); let val_type = layout.llvm_type(bx); let val_addr = if indirect { bx.load(bx.cx.type_ptr(), val_addr, ptr_align_abi) } else { val_addr }; bx.load(val_type, val_addr, layout.align.abi) } fn emit_x86_64_sysv64_va_arg<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, list: OperandRef<'tcx, &'ll Value>, target_ty: Ty<'tcx>, ) -> &'ll Value { let dl = bx.cx.data_layout(); // Implementation of the systemv x86_64 ABI calling convention for va_args, see // https://gitlab.com/x86-psABIs/x86-64-ABI (section 3.5.7). This implementation is heavily // based on the one in clang. // We're able to take some shortcuts because the return type of `va_arg` must implement the // `VaArgSafe` trait. Currently, only pointers, f64, i32, u32, i64 and u64 implement this trait. // typedef struct __va_list_tag { // unsigned int gp_offset; // unsigned int fp_offset; // void *overflow_arg_area; // void *reg_save_area; // } va_list[1]; let va_list_addr = list.immediate(); // Peel off any newtype wrappers. // // The "C" ABI does not unwrap newtypes (see `ReprOptions::inhibit_newtype_abi_optimization`). // Here, we do actually want the unwrapped representation, because that is how LLVM/Clang // pass such types to variadic functions. // // An example of a type that must be unwrapped is `Foo` below. Without the unwrapping, it has // `BackendRepr::Memory`, but we need it to be `BackendRepr::Scalar` to generate correct code. // // ``` // #[repr(C)] // struct Empty; // // #[repr(C)] // struct Foo([Empty; 8], i32); // ``` let layout = { let mut layout = bx.cx.layout_of(target_ty); while let Some((_, inner)) = layout.non_1zst_field(bx.cx) { layout = inner; } layout }; // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed // in the registers. If not go to step 7. // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of // general purpose registers needed to pass type and num_fp to hold // the number of floating point registers needed. let mut num_gp_registers = 0; let mut num_fp_registers = 0; let mut registers_for_primitive = |p| match p { Primitive::Int(integer, _is_signed) => { num_gp_registers += integer.size().bytes().div_ceil(8) as u32; } Primitive::Float(float) => { num_fp_registers += float.size().bytes().div_ceil(16) as u32; } Primitive::Pointer(_) => { num_gp_registers += 1; } }; match layout.layout.backend_repr() { BackendRepr::Scalar(scalar) => { registers_for_primitive(scalar.primitive()); } BackendRepr::ScalarPair(scalar1, scalar2) => { registers_for_primitive(scalar1.primitive()); registers_for_primitive(scalar2.primitive()); } BackendRepr::SimdVector { .. } => { // Because no instance of VaArgSafe uses a non-scalar `BackendRepr`. unreachable!( "No x86-64 SysV va_arg implementation for {:?}", layout.layout.backend_repr() ) } BackendRepr::Memory { .. } => { let mem_addr = x86_64_sysv64_va_arg_from_memory(bx, va_list_addr, layout); return bx.load(layout.llvm_type(bx), mem_addr, layout.align.abi); } }; // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into // registers. In the case: l->gp_offset > 48 - num_gp * 8 or // l->fp_offset > 176 - num_fp * 16 go to step 7. let unsigned_int_offset = 4; let ptr_offset = 8; let gp_offset_ptr = va_list_addr; let fp_offset_ptr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(unsigned_int_offset)); let gp_offset_v = bx.load(bx.type_i32(), gp_offset_ptr, Align::from_bytes(8).unwrap()); let fp_offset_v = bx.load(bx.type_i32(), fp_offset_ptr, Align::from_bytes(4).unwrap()); let mut use_regs = bx.const_bool(false); if num_gp_registers > 0 { let max_offset_val = 48u32 - num_gp_registers * 8; let fits_in_gp = bx.icmp(IntPredicate::IntULE, gp_offset_v, bx.const_u32(max_offset_val)); use_regs = fits_in_gp; } if num_fp_registers > 0 { let max_offset_val = 176u32 - num_fp_registers * 16; let fits_in_fp = bx.icmp(IntPredicate::IntULE, fp_offset_v, bx.const_u32(max_offset_val)); use_regs = if num_gp_registers > 0 { bx.and(use_regs, fits_in_fp) } else { fits_in_fp }; } let in_reg = bx.append_sibling_block("va_arg.in_reg"); let in_mem = bx.append_sibling_block("va_arg.in_mem"); let end = bx.append_sibling_block("va_arg.end"); bx.cond_br(use_regs, in_reg, in_mem); // Emit code to load the value if it was passed in a register. bx.switch_to_block(in_reg); // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with // an offset of l->gp_offset and/or l->fp_offset. This may require // copying to a temporary location in case the parameter is passed // in different register classes or requires an alignment greater // than 8 for general purpose registers and 16 for XMM registers. // // FIXME(llvm): This really results in shameful code when we end up needing to // collect arguments from different places; often what should result in a // simple assembling of a structure from scattered addresses has many more // loads than necessary. Can we clean this up? let reg_save_area_ptr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(2 * unsigned_int_offset + ptr_offset)); let reg_save_area_v = bx.load(bx.type_ptr(), reg_save_area_ptr, dl.pointer_align().abi); let reg_addr = match layout.layout.backend_repr() { BackendRepr::Scalar(scalar) => match scalar.primitive() { Primitive::Int(_, _) | Primitive::Pointer(_) => { let reg_addr = bx.inbounds_ptradd(reg_save_area_v, gp_offset_v); // Copy into a temporary if the type is more aligned than the register save area. let gp_align = Align::from_bytes(8).unwrap(); copy_to_temporary_if_more_aligned(bx, reg_addr, layout, gp_align) } Primitive::Float(_) => bx.inbounds_ptradd(reg_save_area_v, fp_offset_v), }, BackendRepr::ScalarPair(scalar1, scalar2) => { let ty_lo = bx.cx().scalar_pair_element_backend_type(layout, 0, false); let ty_hi = bx.cx().scalar_pair_element_backend_type(layout, 1, false); let align_lo = layout.field(bx.cx, 0).layout.align().abi; let align_hi = layout.field(bx.cx, 1).layout.align().abi; match (scalar1.primitive(), scalar2.primitive()) { (Primitive::Float(_), Primitive::Float(_)) => { // SSE registers are spaced 16 bytes apart in the register save // area, we need to collect the two eightbytes together. // The ABI isn't explicit about this, but it seems reasonable // to assume that the slots are 16-byte aligned, since the stack is // naturally 16-byte aligned and the prologue is expected to store // all the SSE registers to the RSA. let reg_lo_addr = bx.inbounds_ptradd(reg_save_area_v, fp_offset_v); let reg_hi_addr = bx.inbounds_ptradd(reg_lo_addr, bx.const_i32(16)); let align = layout.layout.align().abi; let tmp = bx.alloca(layout.layout.size(), align); let reg_lo = bx.load(ty_lo, reg_lo_addr, align_lo); let reg_hi = bx.load(ty_hi, reg_hi_addr, align_hi); let offset = scalar1.size(bx.cx).align_to(align_hi).bytes(); let field0 = tmp; let field1 = bx.inbounds_ptradd(tmp, bx.const_u32(offset as u32)); bx.store(reg_lo, field0, align); bx.store(reg_hi, field1, align); tmp } (Primitive::Float(_), _) | (_, Primitive::Float(_)) => { let gp_addr = bx.inbounds_ptradd(reg_save_area_v, gp_offset_v); let fp_addr = bx.inbounds_ptradd(reg_save_area_v, fp_offset_v); let (reg_lo_addr, reg_hi_addr) = match scalar1.primitive() { Primitive::Float(_) => (fp_addr, gp_addr), Primitive::Int(_, _) | Primitive::Pointer(_) => (gp_addr, fp_addr), }; let tmp = bx.alloca(layout.layout.size(), layout.layout.align().abi); let reg_lo = bx.load(ty_lo, reg_lo_addr, align_lo); let reg_hi = bx.load(ty_hi, reg_hi_addr, align_hi); let offset = scalar1.size(bx.cx).align_to(align_hi).bytes(); let field0 = tmp; let field1 = bx.inbounds_ptradd(tmp, bx.const_u32(offset as u32)); bx.store(reg_lo, field0, align_lo); bx.store(reg_hi, field1, align_hi); tmp } (_, _) => { // Two integer/pointer values are just contiguous in memory. let reg_addr = bx.inbounds_ptradd(reg_save_area_v, gp_offset_v); // Copy into a temporary if the type is more aligned than the register save area. let gp_align = Align::from_bytes(8).unwrap(); copy_to_temporary_if_more_aligned(bx, reg_addr, layout, gp_align) } } } // The Previous match on `BackendRepr` means control flow already escaped. BackendRepr::SimdVector { .. } | BackendRepr::Memory { .. } => unreachable!(), }; // AMD64-ABI 3.5.7p5: Step 5. Set: // l->gp_offset = l->gp_offset + num_gp * 8 if num_gp_registers > 0 { let offset = bx.const_u32(num_gp_registers * 8); let sum = bx.add(gp_offset_v, offset); // An alignment of 8 because `__va_list_tag` is 8-aligned and this is its first field. bx.store(sum, gp_offset_ptr, Align::from_bytes(8).unwrap()); } // l->fp_offset = l->fp_offset + num_fp * 16. if num_fp_registers > 0 { let offset = bx.const_u32(num_fp_registers * 16); let sum = bx.add(fp_offset_v, offset); bx.store(sum, fp_offset_ptr, Align::from_bytes(4).unwrap()); } bx.br(end); bx.switch_to_block(in_mem); let mem_addr = x86_64_sysv64_va_arg_from_memory(bx, va_list_addr, layout); bx.br(end); bx.switch_to_block(end); let val_type = layout.llvm_type(bx); let val_addr = bx.phi(bx.type_ptr(), &[reg_addr, mem_addr], &[in_reg, in_mem]); bx.load(val_type, val_addr, layout.align.abi) } /// Copy into a temporary if the type is more aligned than the register save area. fn copy_to_temporary_if_more_aligned<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, reg_addr: &'ll Value, layout: TyAndLayout<'tcx, Ty<'tcx>>, src_align: Align, ) -> &'ll Value { if layout.layout.align.abi > src_align { let tmp = bx.alloca(layout.layout.size(), layout.layout.align().abi); bx.memcpy( tmp, layout.layout.align.abi, reg_addr, src_align, bx.const_u32(layout.layout.size().bytes() as u32), MemFlags::empty(), ); tmp } else { reg_addr } } fn x86_64_sysv64_va_arg_from_memory<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, va_list_addr: &'ll Value, layout: TyAndLayout<'tcx, Ty<'tcx>>, ) -> &'ll Value { let dl = bx.cx.data_layout(); let ptr_align_abi = dl.data_layout().pointer_align().abi; let overflow_arg_area_ptr = bx.inbounds_ptradd(va_list_addr, bx.const_usize(8)); let overflow_arg_area_v = bx.load(bx.type_ptr(), overflow_arg_area_ptr, ptr_align_abi); // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 // byte boundary if alignment needed by type exceeds 8 byte boundary. // It isn't stated explicitly in the standard, but in practice we use // alignment greater than 16 where necessary. if layout.layout.align.abi.bytes() > 8 { unreachable!("all instances of VaArgSafe have an alignment <= 8"); } // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. let mem_addr = overflow_arg_area_v; // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: // l->overflow_arg_area + sizeof(type). // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to // an 8 byte boundary. let size_in_bytes = layout.layout.size().bytes(); let offset = bx.const_i32(size_in_bytes.next_multiple_of(8) as i32); let overflow_arg_area = bx.inbounds_ptradd(overflow_arg_area_v, offset); bx.store(overflow_arg_area, overflow_arg_area_ptr, ptr_align_abi); mem_addr } fn emit_xtensa_va_arg<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, list: OperandRef<'tcx, &'ll Value>, target_ty: Ty<'tcx>, ) -> &'ll Value { // Implementation of va_arg for Xtensa. There doesn't seem to be an authoritative source for // this, other than "what GCC does". // // The va_list type has three fields: // struct __va_list_tag { // int32_t *va_stk; // Arguments passed on the stack // int32_t *va_reg; // Arguments passed in registers, saved to memory by the prologue. // int32_t va_ndx; // Offset into the arguments, in bytes // }; // // The first 24 bytes (equivalent to 6 registers) come from va_reg, the rest from va_stk. // Thus if va_ndx is less than 24, the next va_arg *may* read from va_reg, // otherwise it must come from va_stk. // // Primitive arguments are never split between registers and the stack. For example, if loading an 8 byte // primitive value and va_ndx = 20, we instead bump the offset and read everything from va_stk. let va_list_addr = list.immediate(); // FIXME: handle multi-field structs that split across regsave/stack? let layout = bx.cx.layout_of(target_ty); let from_stack = bx.append_sibling_block("va_arg.from_stack"); let from_regsave = bx.append_sibling_block("va_arg.from_regsave"); let end = bx.append_sibling_block("va_arg.end"); let ptr_align_abi = bx.tcx().data_layout.pointer_align().abi; // (*va).va_ndx let va_reg_offset = 4; let va_ndx_offset = va_reg_offset + 4; let offset_ptr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(va_ndx_offset)); let offset = bx.load(bx.type_i32(), offset_ptr, bx.tcx().data_layout.i32_align.abi); let offset = round_up_to_alignment(bx, offset, layout.align.abi); let slot_size = layout.size.align_to(Align::from_bytes(4).unwrap()).bytes() as i32; // Update the offset in va_list, by adding the slot's size. let offset_next = bx.add(offset, bx.const_i32(slot_size)); // Figure out where to look for our value. We do that by checking the end of our slot (offset_next). // If that is within the regsave area, then load from there. Otherwise load from the stack area. let regsave_size = bx.const_i32(24); let use_regsave = bx.icmp(IntPredicate::IntULE, offset_next, regsave_size); bx.cond_br(use_regsave, from_regsave, from_stack); bx.switch_to_block(from_regsave); // update va_ndx bx.store(offset_next, offset_ptr, ptr_align_abi); // (*va).va_reg let regsave_area_ptr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(va_reg_offset)); let regsave_area = bx.load(bx.type_ptr(), regsave_area_ptr, ptr_align_abi); let regsave_value_ptr = bx.inbounds_ptradd(regsave_area, offset); bx.br(end); bx.switch_to_block(from_stack); // The first time we switch from regsave to stack we needs to adjust our offsets a bit. // va_stk is set up such that the first stack argument is always at va_stk + 32. // The corrected offset is written back into the va_list struct. // let offset_corrected = cmp::max(offset, 32); let stack_offset_start = bx.const_i32(32); let needs_correction = bx.icmp(IntPredicate::IntULE, offset, stack_offset_start); let offset_corrected = bx.select(needs_correction, stack_offset_start, offset); // let offset_next_corrected = offset_corrected + slot_size; // va_ndx = offset_next_corrected; let offset_next_corrected = bx.add(offset_next, bx.const_i32(slot_size)); // update va_ndx bx.store(offset_next_corrected, offset_ptr, ptr_align_abi); // let stack_value_ptr = unsafe { (*va).va_stk.byte_add(offset_corrected) }; let stack_area_ptr = bx.inbounds_ptradd(va_list_addr, bx.cx.const_usize(0)); let stack_area = bx.load(bx.type_ptr(), stack_area_ptr, ptr_align_abi); let stack_value_ptr = bx.inbounds_ptradd(stack_area, offset_corrected); bx.br(end); bx.switch_to_block(end); // On big-endian, for values smaller than the slot size we'd have to align the read to the end // of the slot rather than the start. While the ISA and GCC support big-endian, all the Xtensa // targets supported by rustc are little-endian so don't worry about it. // if from_regsave { // unsafe { *regsave_value_ptr } // } else { // unsafe { *stack_value_ptr } // } assert!(bx.tcx().sess.target.endian == Endian::Little); let value_ptr = bx.phi(bx.type_ptr(), &[regsave_value_ptr, stack_value_ptr], &[from_regsave, from_stack]); return bx.load(layout.llvm_type(bx), value_ptr, layout.align.abi); } pub(super) fn emit_va_arg<'ll, 'tcx>( bx: &mut Builder<'_, 'll, 'tcx>, addr: OperandRef<'tcx, &'ll Value>, target_ty: Ty<'tcx>, ) -> &'ll Value { // Determine the va_arg implementation to use. The LLVM va_arg instruction // is lacking in some instances, so we should only use it as a fallback. let target = &bx.cx.tcx.sess.target; match &*target.arch { "x86" => emit_ptr_va_arg( bx, addr, target_ty, PassMode::Direct, SlotSize::Bytes4, if target.is_like_windows { AllowHigherAlign::No } else { AllowHigherAlign::Yes }, ForceRightAdjust::No, ), "aarch64" | "arm64ec" if target.is_like_windows || target.is_like_darwin => { emit_ptr_va_arg( bx, addr, target_ty, PassMode::Direct, SlotSize::Bytes8, if target.is_like_windows { AllowHigherAlign::No } else { AllowHigherAlign::Yes }, ForceRightAdjust::No, ) } "aarch64" => emit_aapcs_va_arg(bx, addr, target_ty), "arm" => { // Types wider than 16 bytes are not currently supported. Clang has special logic for // such types, but `VaArgSafe` is not implemented for any type that is this large. assert!(bx.cx.size_of(target_ty).bytes() <= 16); emit_ptr_va_arg( bx, addr, target_ty, PassMode::Direct, SlotSize::Bytes4, AllowHigherAlign::Yes, ForceRightAdjust::No, ) } "s390x" => emit_s390x_va_arg(bx, addr, target_ty), "powerpc" => emit_powerpc_va_arg(bx, addr, target_ty), "powerpc64" | "powerpc64le" => emit_ptr_va_arg( bx, addr, target_ty, PassMode::Direct, SlotSize::Bytes8, AllowHigherAlign::Yes, match &*target.arch { "powerpc64" => ForceRightAdjust::Yes, _ => ForceRightAdjust::No, }, ), // Windows x86_64 "x86_64" if target.is_like_windows => { let target_ty_size = bx.cx.size_of(target_ty).bytes(); emit_ptr_va_arg( bx, addr, target_ty, if target_ty_size > 8 || !target_ty_size.is_power_of_two() { PassMode::Indirect } else { PassMode::Direct }, SlotSize::Bytes8, AllowHigherAlign::No, ForceRightAdjust::No, ) } // This includes `target.is_like_darwin`, which on x86_64 targets is like sysv64. "x86_64" => emit_x86_64_sysv64_va_arg(bx, addr, target_ty), "xtensa" => emit_xtensa_va_arg(bx, addr, target_ty), // For all other architecture/OS combinations fall back to using // the LLVM va_arg instruction. // https://llvm.org/docs/LangRef.html#va-arg-instruction _ => bx.va_arg(addr.immediate(), bx.cx.layout_of(target_ty).llvm_type(bx.cx)), } }