use std::collections::hash_map::Entry::*; use rustc_abi::{CanonAbi, X86Call}; use rustc_ast::expand::allocator::{ALLOCATOR_METHODS, NO_ALLOC_SHIM_IS_UNSTABLE, global_fn_name}; use rustc_data_structures::unord::UnordMap; use rustc_hir::def::DefKind; use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LOCAL_CRATE, LocalDefId}; use rustc_middle::bug; use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags; use rustc_middle::middle::exported_symbols::{ ExportedSymbol, SymbolExportInfo, SymbolExportKind, SymbolExportLevel, }; use rustc_middle::query::LocalCrate; use rustc_middle::ty::{self, GenericArgKind, GenericArgsRef, Instance, SymbolName, Ty, TyCtxt}; use rustc_middle::util::Providers; use rustc_session::config::{CrateType, OomStrategy}; use rustc_symbol_mangling::mangle_internal_symbol; use rustc_target::spec::TlsModel; use tracing::debug; use crate::back::symbol_export; fn threshold(tcx: TyCtxt<'_>) -> SymbolExportLevel { crates_export_threshold(tcx.crate_types()) } fn crate_export_threshold(crate_type: CrateType) -> SymbolExportLevel { match crate_type { CrateType::Executable | CrateType::Staticlib | CrateType::ProcMacro | CrateType::Cdylib => { SymbolExportLevel::C } CrateType::Rlib | CrateType::Dylib | CrateType::Sdylib => SymbolExportLevel::Rust, } } pub fn crates_export_threshold(crate_types: &[CrateType]) -> SymbolExportLevel { if crate_types .iter() .any(|&crate_type| crate_export_threshold(crate_type) == SymbolExportLevel::Rust) { SymbolExportLevel::Rust } else { SymbolExportLevel::C } } fn reachable_non_generics_provider(tcx: TyCtxt<'_>, _: LocalCrate) -> DefIdMap { if !tcx.sess.opts.output_types.should_codegen() && !tcx.is_sdylib_interface_build() { return Default::default(); } // Check to see if this crate is a "special runtime crate". These // crates, implementation details of the standard library, typically // have a bunch of `pub extern` and `#[no_mangle]` functions as the // ABI between them. We don't want their symbols to have a `C` // export level, however, as they're just implementation details. // Down below we'll hardwire all of the symbols to the `Rust` export // level instead. let special_runtime_crate = tcx.is_panic_runtime(LOCAL_CRATE) || tcx.is_compiler_builtins(LOCAL_CRATE); let mut reachable_non_generics: DefIdMap<_> = tcx .reachable_set(()) .items() .filter_map(|&def_id| { // We want to ignore some FFI functions that are not exposed from // this crate. Reachable FFI functions can be lumped into two // categories: // // 1. Those that are included statically via a static library // 2. Those included otherwise (e.g., dynamically or via a framework) // // Although our LLVM module is not literally emitting code for the // statically included symbols, it's an export of our library which // needs to be passed on to the linker and encoded in the metadata. // // As a result, if this id is an FFI item (foreign item) then we only // let it through if it's included statically. if let Some(parent_id) = tcx.opt_local_parent(def_id) && let DefKind::ForeignMod = tcx.def_kind(parent_id) { let library = tcx.native_library(def_id)?; return library.kind.is_statically_included().then_some(def_id); } // Only consider nodes that actually have exported symbols. match tcx.def_kind(def_id) { DefKind::Fn | DefKind::Static { .. } => {} DefKind::AssocFn if tcx.impl_of_assoc(def_id.to_def_id()).is_some() => {} _ => return None, }; let generics = tcx.generics_of(def_id); if generics.requires_monomorphization(tcx) { return None; } if Instance::mono(tcx, def_id.into()).def.requires_inline(tcx) { return None; } if tcx.cross_crate_inlinable(def_id) { None } else { Some(def_id) } }) .map(|def_id| { // We won't link right if this symbol is stripped during LTO. let name = tcx.symbol_name(Instance::mono(tcx, def_id.to_def_id())).name; let used = name == "rust_eh_personality"; let export_level = if special_runtime_crate { SymbolExportLevel::Rust } else { symbol_export_level(tcx, def_id.to_def_id()) }; let codegen_attrs = tcx.codegen_fn_attrs(def_id.to_def_id()); debug!( "EXPORTED SYMBOL (local): {} ({:?})", tcx.symbol_name(Instance::mono(tcx, def_id.to_def_id())), export_level ); let info = SymbolExportInfo { level: export_level, kind: if tcx.is_static(def_id.to_def_id()) { if codegen_attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL) { SymbolExportKind::Tls } else { SymbolExportKind::Data } } else { SymbolExportKind::Text }, used: codegen_attrs.flags.contains(CodegenFnAttrFlags::USED_COMPILER) || codegen_attrs.flags.contains(CodegenFnAttrFlags::USED_LINKER) || used, rustc_std_internal_symbol: codegen_attrs .flags .contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL), }; (def_id.to_def_id(), info) }) .into(); if let Some(id) = tcx.proc_macro_decls_static(()) { reachable_non_generics.insert( id.to_def_id(), SymbolExportInfo { level: SymbolExportLevel::C, kind: SymbolExportKind::Data, used: false, rustc_std_internal_symbol: false, }, ); } reachable_non_generics } fn is_reachable_non_generic_provider_local(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { let export_threshold = threshold(tcx); if let Some(&info) = tcx.reachable_non_generics(LOCAL_CRATE).get(&def_id.to_def_id()) { info.level.is_below_threshold(export_threshold) } else { false } } fn is_reachable_non_generic_provider_extern(tcx: TyCtxt<'_>, def_id: DefId) -> bool { tcx.reachable_non_generics(def_id.krate).contains_key(&def_id) } fn exported_non_generic_symbols_provider_local<'tcx>( tcx: TyCtxt<'tcx>, _: LocalCrate, ) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportInfo)] { if !tcx.sess.opts.output_types.should_codegen() && !tcx.is_sdylib_interface_build() { return &[]; } // FIXME: Sorting this is unnecessary since we are sorting later anyway. // Can we skip the later sorting? let sorted = tcx.with_stable_hashing_context(|hcx| { tcx.reachable_non_generics(LOCAL_CRATE).to_sorted(&hcx, true) }); let mut symbols: Vec<_> = sorted.iter().map(|&(&def_id, &info)| (ExportedSymbol::NonGeneric(def_id), info)).collect(); // Export TLS shims if !tcx.sess.target.dll_tls_export { symbols.extend(sorted.iter().filter_map(|&(&def_id, &info)| { tcx.needs_thread_local_shim(def_id).then(|| { ( ExportedSymbol::ThreadLocalShim(def_id), SymbolExportInfo { level: info.level, kind: SymbolExportKind::Text, used: info.used, rustc_std_internal_symbol: info.rustc_std_internal_symbol, }, ) }) })) } if tcx.entry_fn(()).is_some() { let exported_symbol = ExportedSymbol::NoDefId(SymbolName::new(tcx, tcx.sess.target.entry_name.as_ref())); symbols.push(( exported_symbol, SymbolExportInfo { level: SymbolExportLevel::C, kind: SymbolExportKind::Text, used: false, rustc_std_internal_symbol: false, }, )); } // Sort so we get a stable incr. comp. hash. symbols.sort_by_cached_key(|s| s.0.symbol_name_for_local_instance(tcx)); tcx.arena.alloc_from_iter(symbols) } fn exported_generic_symbols_provider_local<'tcx>( tcx: TyCtxt<'tcx>, _: LocalCrate, ) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportInfo)] { if !tcx.sess.opts.output_types.should_codegen() && !tcx.is_sdylib_interface_build() { return &[]; } let mut symbols: Vec<_> = vec![]; if tcx.local_crate_exports_generics() { use rustc_hir::attrs::Linkage; use rustc_middle::mir::mono::{MonoItem, Visibility}; use rustc_middle::ty::InstanceKind; // Normally, we require that shared monomorphizations are not hidden, // because if we want to re-use a monomorphization from a Rust dylib, it // needs to be exported. // However, on platforms that don't allow for Rust dylibs, having // external linkage is enough for monomorphization to be linked to. let need_visibility = tcx.sess.target.dynamic_linking && !tcx.sess.target.only_cdylib; let cgus = tcx.collect_and_partition_mono_items(()).codegen_units; // Do not export symbols that cannot be instantiated by downstream crates. let reachable_set = tcx.reachable_set(()); let is_local_to_current_crate = |ty: Ty<'_>| { let no_refs = ty.peel_refs(); let root_def_id = match no_refs.kind() { ty::Closure(closure, _) => *closure, ty::FnDef(def_id, _) => *def_id, ty::Coroutine(def_id, _) => *def_id, ty::CoroutineClosure(def_id, _) => *def_id, ty::CoroutineWitness(def_id, _) => *def_id, _ => return false, }; let Some(root_def_id) = root_def_id.as_local() else { return false; }; let is_local = !reachable_set.contains(&root_def_id); is_local }; let is_instantiable_downstream = |did: Option, generic_args: GenericArgsRef<'tcx>| { generic_args .types() .chain(did.into_iter().map(move |did| tcx.type_of(did).skip_binder())) .all(move |arg| { arg.walk().all(|ty| { ty.as_type().map_or(true, |ty| !is_local_to_current_crate(ty)) }) }) }; // The symbols created in this loop are sorted below it #[allow(rustc::potential_query_instability)] for (mono_item, data) in cgus.iter().flat_map(|cgu| cgu.items().iter()) { if data.linkage != Linkage::External { // We can only re-use things with external linkage, otherwise // we'll get a linker error continue; } if need_visibility && data.visibility == Visibility::Hidden { // If we potentially share things from Rust dylibs, they must // not be hidden continue; } if !tcx.sess.opts.share_generics() { if tcx.codegen_fn_attrs(mono_item.def_id()).inline == rustc_hir::attrs::InlineAttr::Never { // this is OK, we explicitly allow sharing inline(never) across crates even // without share-generics. } else { continue; } } // Note: These all set rustc_std_internal_symbol to false as generic functions must not // be marked with this attribute and we are only handling generic functions here. match *mono_item { MonoItem::Fn(Instance { def: InstanceKind::Item(def), args }) => { let has_generics = args.non_erasable_generics().next().is_some(); let should_export = has_generics && is_instantiable_downstream(Some(def), &args); if should_export { let symbol = ExportedSymbol::Generic(def, args); symbols.push(( symbol, SymbolExportInfo { level: SymbolExportLevel::Rust, kind: SymbolExportKind::Text, used: false, rustc_std_internal_symbol: false, }, )); } } MonoItem::Fn(Instance { def: InstanceKind::DropGlue(_, Some(ty)), args }) => { // A little sanity-check assert_eq!(args.non_erasable_generics().next(), Some(GenericArgKind::Type(ty))); // Drop glue did is always going to be non-local outside of libcore, thus we don't need to check it's locality (which includes invoking `type_of` query). let should_export = match ty.kind() { ty::Adt(_, args) => is_instantiable_downstream(None, args), ty::Closure(_, args) => is_instantiable_downstream(None, args), _ => true, }; if should_export { symbols.push(( ExportedSymbol::DropGlue(ty), SymbolExportInfo { level: SymbolExportLevel::Rust, kind: SymbolExportKind::Text, used: false, rustc_std_internal_symbol: false, }, )); } } MonoItem::Fn(Instance { def: InstanceKind::AsyncDropGlueCtorShim(_, ty), args, }) => { // A little sanity-check assert_eq!(args.non_erasable_generics().next(), Some(GenericArgKind::Type(ty))); symbols.push(( ExportedSymbol::AsyncDropGlueCtorShim(ty), SymbolExportInfo { level: SymbolExportLevel::Rust, kind: SymbolExportKind::Text, used: false, rustc_std_internal_symbol: false, }, )); } MonoItem::Fn(Instance { def: InstanceKind::AsyncDropGlue(def, ty), args: _ }) => { symbols.push(( ExportedSymbol::AsyncDropGlue(def, ty), SymbolExportInfo { level: SymbolExportLevel::Rust, kind: SymbolExportKind::Text, used: false, rustc_std_internal_symbol: false, }, )); } _ => { // Any other symbols don't qualify for sharing } } } } // Sort so we get a stable incr. comp. hash. symbols.sort_by_cached_key(|s| s.0.symbol_name_for_local_instance(tcx)); tcx.arena.alloc_from_iter(symbols) } fn upstream_monomorphizations_provider( tcx: TyCtxt<'_>, (): (), ) -> DefIdMap, CrateNum>> { let cnums = tcx.crates(()); let mut instances: DefIdMap> = Default::default(); let drop_in_place_fn_def_id = tcx.lang_items().drop_in_place_fn(); let async_drop_in_place_fn_def_id = tcx.lang_items().async_drop_in_place_fn(); for &cnum in cnums.iter() { for (exported_symbol, _) in tcx.exported_generic_symbols(cnum).iter() { let (def_id, args) = match *exported_symbol { ExportedSymbol::Generic(def_id, args) => (def_id, args), ExportedSymbol::DropGlue(ty) => { if let Some(drop_in_place_fn_def_id) = drop_in_place_fn_def_id { (drop_in_place_fn_def_id, tcx.mk_args(&[ty.into()])) } else { // `drop_in_place` in place does not exist, don't try // to use it. continue; } } ExportedSymbol::AsyncDropGlueCtorShim(ty) => { if let Some(async_drop_in_place_fn_def_id) = async_drop_in_place_fn_def_id { (async_drop_in_place_fn_def_id, tcx.mk_args(&[ty.into()])) } else { continue; } } ExportedSymbol::AsyncDropGlue(def_id, ty) => (def_id, tcx.mk_args(&[ty.into()])), ExportedSymbol::NonGeneric(..) | ExportedSymbol::ThreadLocalShim(..) | ExportedSymbol::NoDefId(..) => unreachable!("{exported_symbol:?}"), }; let args_map = instances.entry(def_id).or_default(); match args_map.entry(args) { Occupied(mut e) => { // If there are multiple monomorphizations available, // we select one deterministically. let other_cnum = *e.get(); if tcx.stable_crate_id(other_cnum) > tcx.stable_crate_id(cnum) { e.insert(cnum); } } Vacant(e) => { e.insert(cnum); } } } } instances } fn upstream_monomorphizations_for_provider( tcx: TyCtxt<'_>, def_id: DefId, ) -> Option<&UnordMap, CrateNum>> { assert!(!def_id.is_local()); tcx.upstream_monomorphizations(()).get(&def_id) } fn upstream_drop_glue_for_provider<'tcx>( tcx: TyCtxt<'tcx>, args: GenericArgsRef<'tcx>, ) -> Option { let def_id = tcx.lang_items().drop_in_place_fn()?; tcx.upstream_monomorphizations_for(def_id)?.get(&args).cloned() } fn upstream_async_drop_glue_for_provider<'tcx>( tcx: TyCtxt<'tcx>, args: GenericArgsRef<'tcx>, ) -> Option { let def_id = tcx.lang_items().async_drop_in_place_fn()?; tcx.upstream_monomorphizations_for(def_id)?.get(&args).cloned() } fn is_unreachable_local_definition_provider(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { !tcx.reachable_set(()).contains(&def_id) } pub(crate) fn provide(providers: &mut Providers) { providers.reachable_non_generics = reachable_non_generics_provider; providers.is_reachable_non_generic = is_reachable_non_generic_provider_local; providers.exported_non_generic_symbols = exported_non_generic_symbols_provider_local; providers.exported_generic_symbols = exported_generic_symbols_provider_local; providers.upstream_monomorphizations = upstream_monomorphizations_provider; providers.is_unreachable_local_definition = is_unreachable_local_definition_provider; providers.upstream_drop_glue_for = upstream_drop_glue_for_provider; providers.upstream_async_drop_glue_for = upstream_async_drop_glue_for_provider; providers.wasm_import_module_map = wasm_import_module_map; providers.extern_queries.is_reachable_non_generic = is_reachable_non_generic_provider_extern; providers.extern_queries.upstream_monomorphizations_for = upstream_monomorphizations_for_provider; } pub(crate) fn allocator_shim_symbols( tcx: TyCtxt<'_>, ) -> impl Iterator { ALLOCATOR_METHODS .iter() .map(move |method| mangle_internal_symbol(tcx, global_fn_name(method.name).as_str())) .chain([ mangle_internal_symbol(tcx, "__rust_alloc_error_handler"), mangle_internal_symbol(tcx, OomStrategy::SYMBOL), mangle_internal_symbol(tcx, NO_ALLOC_SHIM_IS_UNSTABLE), ]) .map(move |symbol_name| { let exported_symbol = ExportedSymbol::NoDefId(SymbolName::new(tcx, &symbol_name)); ( symbol_export::exporting_symbol_name_for_instance_in_crate( tcx, exported_symbol, LOCAL_CRATE, ), SymbolExportKind::Text, ) }) } fn symbol_export_level(tcx: TyCtxt<'_>, sym_def_id: DefId) -> SymbolExportLevel { // We export anything that's not mangled at the "C" layer as it probably has // to do with ABI concerns. We do not, however, apply such treatment to // special symbols in the standard library for various plumbing between // core/std/allocators/etc. For example symbols used to hook up allocation // are not considered for export let codegen_fn_attrs = tcx.codegen_fn_attrs(sym_def_id); let is_extern = codegen_fn_attrs.contains_extern_indicator(); let std_internal = codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL); if is_extern && !std_internal { let target = &tcx.sess.target.llvm_target; // WebAssembly cannot export data symbols, so reduce their export level if target.contains("emscripten") { if let DefKind::Static { .. } = tcx.def_kind(sym_def_id) { return SymbolExportLevel::Rust; } } SymbolExportLevel::C } else { SymbolExportLevel::Rust } } /// This is the symbol name of the given instance instantiated in a specific crate. pub(crate) fn symbol_name_for_instance_in_crate<'tcx>( tcx: TyCtxt<'tcx>, symbol: ExportedSymbol<'tcx>, instantiating_crate: CrateNum, ) -> String { // If this is something instantiated in the local crate then we might // already have cached the name as a query result. if instantiating_crate == LOCAL_CRATE { return symbol.symbol_name_for_local_instance(tcx).to_string(); } // This is something instantiated in an upstream crate, so we have to use // the slower (because uncached) version of computing the symbol name. match symbol { ExportedSymbol::NonGeneric(def_id) => { rustc_symbol_mangling::symbol_name_for_instance_in_crate( tcx, Instance::mono(tcx, def_id), instantiating_crate, ) } ExportedSymbol::Generic(def_id, args) => { rustc_symbol_mangling::symbol_name_for_instance_in_crate( tcx, Instance::new_raw(def_id, args), instantiating_crate, ) } ExportedSymbol::ThreadLocalShim(def_id) => { rustc_symbol_mangling::symbol_name_for_instance_in_crate( tcx, ty::Instance { def: ty::InstanceKind::ThreadLocalShim(def_id), args: ty::GenericArgs::empty(), }, instantiating_crate, ) } ExportedSymbol::DropGlue(ty) => rustc_symbol_mangling::symbol_name_for_instance_in_crate( tcx, Instance::resolve_drop_in_place(tcx, ty), instantiating_crate, ), ExportedSymbol::AsyncDropGlueCtorShim(ty) => { rustc_symbol_mangling::symbol_name_for_instance_in_crate( tcx, Instance::resolve_async_drop_in_place(tcx, ty), instantiating_crate, ) } ExportedSymbol::AsyncDropGlue(def_id, ty) => { rustc_symbol_mangling::symbol_name_for_instance_in_crate( tcx, Instance::resolve_async_drop_in_place_poll(tcx, def_id, ty), instantiating_crate, ) } ExportedSymbol::NoDefId(symbol_name) => symbol_name.to_string(), } } fn calling_convention_for_symbol<'tcx>( tcx: TyCtxt<'tcx>, symbol: ExportedSymbol<'tcx>, ) -> (CanonAbi, &'tcx [rustc_target::callconv::ArgAbi<'tcx, Ty<'tcx>>]) { let instance = match symbol { ExportedSymbol::NonGeneric(def_id) | ExportedSymbol::Generic(def_id, _) if tcx.is_static(def_id) => { None } ExportedSymbol::NonGeneric(def_id) => Some(Instance::mono(tcx, def_id)), ExportedSymbol::Generic(def_id, args) => Some(Instance::new_raw(def_id, args)), // DropGlue always use the Rust calling convention and thus follow the target's default // symbol decoration scheme. ExportedSymbol::DropGlue(..) => None, // AsyncDropGlueCtorShim always use the Rust calling convention and thus follow the // target's default symbol decoration scheme. ExportedSymbol::AsyncDropGlueCtorShim(..) => None, ExportedSymbol::AsyncDropGlue(..) => None, // NoDefId always follow the target's default symbol decoration scheme. ExportedSymbol::NoDefId(..) => None, // ThreadLocalShim always follow the target's default symbol decoration scheme. ExportedSymbol::ThreadLocalShim(..) => None, }; instance .map(|i| { tcx.fn_abi_of_instance( ty::TypingEnv::fully_monomorphized().as_query_input((i, ty::List::empty())), ) .unwrap_or_else(|_| bug!("fn_abi_of_instance({i:?}) failed")) }) .map(|fnabi| (fnabi.conv, &fnabi.args[..])) // FIXME(workingjubilee): why don't we know the convention here? .unwrap_or((CanonAbi::Rust, &[])) } /// This is the symbol name of the given instance as seen by the linker. /// /// On 32-bit Windows symbols are decorated according to their calling conventions. pub(crate) fn linking_symbol_name_for_instance_in_crate<'tcx>( tcx: TyCtxt<'tcx>, symbol: ExportedSymbol<'tcx>, export_kind: SymbolExportKind, instantiating_crate: CrateNum, ) -> String { let mut undecorated = symbol_name_for_instance_in_crate(tcx, symbol, instantiating_crate); // thread local will not be a function call, // so it is safe to return before windows symbol decoration check. if let Some(name) = maybe_emutls_symbol_name(tcx, symbol, &undecorated) { return name; } let target = &tcx.sess.target; if !target.is_like_windows { // Mach-O has a global "_" suffix and `object` crate will handle it. // ELF does not have any symbol decorations. return undecorated; } let prefix = match &target.arch[..] { "x86" => Some('_'), "x86_64" => None, // Only functions are decorated for arm64ec. "arm64ec" if export_kind == SymbolExportKind::Text => Some('#'), // Only x86/64 and arm64ec use symbol decorations. _ => return undecorated, }; let (callconv, args) = calling_convention_for_symbol(tcx, symbol); // Decorate symbols with prefixes, suffixes and total number of bytes of arguments. // Reference: https://docs.microsoft.com/en-us/cpp/build/reference/decorated-names?view=msvc-170 let (prefix, suffix) = match callconv { CanonAbi::X86(X86Call::Fastcall) => ("@", "@"), CanonAbi::X86(X86Call::Stdcall) => ("_", "@"), CanonAbi::X86(X86Call::Vectorcall) => ("", "@@"), _ => { if let Some(prefix) = prefix { undecorated.insert(0, prefix); } return undecorated; } }; let args_in_bytes: u64 = args .iter() .map(|abi| abi.layout.size.bytes().next_multiple_of(target.pointer_width as u64 / 8)) .sum(); format!("{prefix}{undecorated}{suffix}{args_in_bytes}") } pub(crate) fn exporting_symbol_name_for_instance_in_crate<'tcx>( tcx: TyCtxt<'tcx>, symbol: ExportedSymbol<'tcx>, cnum: CrateNum, ) -> String { let undecorated = symbol_name_for_instance_in_crate(tcx, symbol, cnum); maybe_emutls_symbol_name(tcx, symbol, &undecorated).unwrap_or(undecorated) } /// On amdhsa, `gpu-kernel` functions have an associated metadata object with a `.kd` suffix. /// Add it to the symbols list for all kernel functions, so that it is exported in the linked /// object. pub(crate) fn extend_exported_symbols<'tcx>( symbols: &mut Vec<(String, SymbolExportKind)>, tcx: TyCtxt<'tcx>, symbol: ExportedSymbol<'tcx>, instantiating_crate: CrateNum, ) { let (callconv, _) = calling_convention_for_symbol(tcx, symbol); if callconv != CanonAbi::GpuKernel || tcx.sess.target.os != "amdhsa" { return; } let undecorated = symbol_name_for_instance_in_crate(tcx, symbol, instantiating_crate); // Add the symbol for the kernel descriptor (with .kd suffix) // Per https://llvm.org/docs/AMDGPUUsage.html#symbols these will always be `STT_OBJECT` so // export as data. symbols.push((format!("{undecorated}.kd"), SymbolExportKind::Data)); } fn maybe_emutls_symbol_name<'tcx>( tcx: TyCtxt<'tcx>, symbol: ExportedSymbol<'tcx>, undecorated: &str, ) -> Option { if matches!(tcx.sess.tls_model(), TlsModel::Emulated) && let ExportedSymbol::NonGeneric(def_id) = symbol && tcx.is_thread_local_static(def_id) { // When using emutls, LLVM will add the `__emutls_v.` prefix to thread local symbols, // and exported symbol name need to match this. Some(format!("__emutls_v.{undecorated}")) } else { None } } fn wasm_import_module_map(tcx: TyCtxt<'_>, cnum: CrateNum) -> DefIdMap { // Build up a map from DefId to a `NativeLib` structure, where // `NativeLib` internally contains information about // `#[link(wasm_import_module = "...")]` for example. let native_libs = tcx.native_libraries(cnum); let def_id_to_native_lib = native_libs .iter() .filter_map(|lib| lib.foreign_module.map(|id| (id, lib))) .collect::>(); let mut ret = DefIdMap::default(); for (def_id, lib) in tcx.foreign_modules(cnum).iter() { let module = def_id_to_native_lib.get(def_id).and_then(|s| s.wasm_import_module()); let Some(module) = module else { continue }; ret.extend(lib.foreign_items.iter().map(|id| { assert_eq!(id.krate, cnum); (*id, module.to_string()) })); } ret }