use super::operand::{OperandRef, OperandValue}; use super::place::PlaceRef; use super::{FunctionCx, LocalRef}; use crate::base; use crate::common::{self, IntPredicate, RealPredicate}; use crate::traits::*; use crate::MemFlags; use rustc_apfloat::{ieee, Float, Round, Status}; use rustc_hir::lang_items::LangItem; use rustc_middle::mir; use rustc_middle::ty::cast::{CastTy, IntTy}; use rustc_middle::ty::layout::HasTyCtxt; use rustc_middle::ty::{self, adjustment::PointerCast, Instance, Ty, TyCtxt}; use rustc_span::source_map::{Span, DUMMY_SP}; use rustc_target::abi::{Abi, Int, LayoutOf, Variants}; impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> { pub fn codegen_rvalue( &mut self, mut bx: Bx, dest: PlaceRef<'tcx, Bx::Value>, rvalue: &mir::Rvalue<'tcx>, ) -> Bx { debug!("codegen_rvalue(dest.llval={:?}, rvalue={:?})", dest.llval, rvalue); match *rvalue { mir::Rvalue::Use(ref operand) => { let cg_operand = self.codegen_operand(&mut bx, operand); // FIXME: consider not copying constants through stack. (Fixable by codegen'ing // constants into `OperandValue::Ref`; why don’t we do that yet if we don’t?) cg_operand.val.store(&mut bx, dest); bx } mir::Rvalue::Cast(mir::CastKind::Pointer(PointerCast::Unsize), ref source, _) => { // The destination necessarily contains a fat pointer, so if // it's a scalar pair, it's a fat pointer or newtype thereof. if bx.cx().is_backend_scalar_pair(dest.layout) { // Into-coerce of a thin pointer to a fat pointer -- just // use the operand path. let (mut bx, temp) = self.codegen_rvalue_operand(bx, rvalue); temp.val.store(&mut bx, dest); return bx; } // Unsize of a nontrivial struct. I would prefer for // this to be eliminated by MIR building, but // `CoerceUnsized` can be passed by a where-clause, // so the (generic) MIR may not be able to expand it. let operand = self.codegen_operand(&mut bx, source); match operand.val { OperandValue::Pair(..) | OperandValue::Immediate(_) => { // Unsize from an immediate structure. We don't // really need a temporary alloca here, but // avoiding it would require us to have // `coerce_unsized_into` use `extractvalue` to // index into the struct, and this case isn't // important enough for it. debug!("codegen_rvalue: creating ugly alloca"); let scratch = PlaceRef::alloca(&mut bx, operand.layout); scratch.storage_live(&mut bx); operand.val.store(&mut bx, scratch); base::coerce_unsized_into(&mut bx, scratch, dest); scratch.storage_dead(&mut bx); } OperandValue::Ref(llref, None, align) => { let source = PlaceRef::new_sized_aligned(llref, operand.layout, align); base::coerce_unsized_into(&mut bx, source, dest); } OperandValue::Ref(_, Some(_), _) => { bug!("unsized coercion on an unsized rvalue"); } } bx } mir::Rvalue::Repeat(ref elem, count) => { let cg_elem = self.codegen_operand(&mut bx, elem); // Do not generate the loop for zero-sized elements or empty arrays. if dest.layout.is_zst() { return bx; } if let OperandValue::Immediate(v) = cg_elem.val { let zero = bx.const_usize(0); let start = dest.project_index(&mut bx, zero).llval; let size = bx.const_usize(dest.layout.size.bytes()); // Use llvm.memset.p0i8.* to initialize all zero arrays if bx.cx().const_to_opt_uint(v) == Some(0) { let fill = bx.cx().const_u8(0); bx.memset(start, fill, size, dest.align, MemFlags::empty()); return bx; } // Use llvm.memset.p0i8.* to initialize byte arrays let v = bx.from_immediate(v); if bx.cx().val_ty(v) == bx.cx().type_i8() { bx.memset(start, v, size, dest.align, MemFlags::empty()); return bx; } } let count = self.monomorphize(count).eval_usize(bx.cx().tcx(), ty::ParamEnv::reveal_all()); bx.write_operand_repeatedly(cg_elem, count, dest) } mir::Rvalue::Aggregate(ref kind, ref operands) => { let (dest, active_field_index) = match **kind { mir::AggregateKind::Adt(adt_def, variant_index, _, _, active_field_index) => { dest.codegen_set_discr(&mut bx, variant_index); if adt_def.is_enum() { (dest.project_downcast(&mut bx, variant_index), active_field_index) } else { (dest, active_field_index) } } _ => (dest, None), }; for (i, operand) in operands.iter().enumerate() { let op = self.codegen_operand(&mut bx, operand); // Do not generate stores and GEPis for zero-sized fields. if !op.layout.is_zst() { let field_index = active_field_index.unwrap_or(i); let field = dest.project_field(&mut bx, field_index); op.val.store(&mut bx, field); } } bx } _ => { assert!(self.rvalue_creates_operand(rvalue, DUMMY_SP)); let (mut bx, temp) = self.codegen_rvalue_operand(bx, rvalue); temp.val.store(&mut bx, dest); bx } } } pub fn codegen_rvalue_unsized( &mut self, mut bx: Bx, indirect_dest: PlaceRef<'tcx, Bx::Value>, rvalue: &mir::Rvalue<'tcx>, ) -> Bx { debug!( "codegen_rvalue_unsized(indirect_dest.llval={:?}, rvalue={:?})", indirect_dest.llval, rvalue ); match *rvalue { mir::Rvalue::Use(ref operand) => { let cg_operand = self.codegen_operand(&mut bx, operand); cg_operand.val.store_unsized(&mut bx, indirect_dest); bx } _ => bug!("unsized assignment other than `Rvalue::Use`"), } } pub fn codegen_rvalue_operand( &mut self, mut bx: Bx, rvalue: &mir::Rvalue<'tcx>, ) -> (Bx, OperandRef<'tcx, Bx::Value>) { assert!( self.rvalue_creates_operand(rvalue, DUMMY_SP), "cannot codegen {:?} to operand", rvalue, ); match *rvalue { mir::Rvalue::Cast(ref kind, ref source, mir_cast_ty) => { let operand = self.codegen_operand(&mut bx, source); debug!("cast operand is {:?}", operand); let cast = bx.cx().layout_of(self.monomorphize(mir_cast_ty)); let val = match *kind { mir::CastKind::Pointer(PointerCast::ReifyFnPointer) => { match *operand.layout.ty.kind() { ty::FnDef(def_id, substs) => { let instance = ty::Instance::resolve_for_fn_ptr( bx.tcx(), ty::ParamEnv::reveal_all(), def_id, substs, ) .unwrap() .polymorphize(bx.cx().tcx()); OperandValue::Immediate(bx.get_fn_addr(instance)) } _ => bug!("{} cannot be reified to a fn ptr", operand.layout.ty), } } mir::CastKind::Pointer(PointerCast::ClosureFnPointer(_)) => { match *operand.layout.ty.kind() { ty::Closure(def_id, substs) => { let instance = Instance::resolve_closure( bx.cx().tcx(), def_id, substs, ty::ClosureKind::FnOnce, ) .polymorphize(bx.cx().tcx()); OperandValue::Immediate(bx.cx().get_fn_addr(instance)) } _ => bug!("{} cannot be cast to a fn ptr", operand.layout.ty), } } mir::CastKind::Pointer(PointerCast::UnsafeFnPointer) => { // This is a no-op at the LLVM level. operand.val } mir::CastKind::Pointer(PointerCast::Unsize) => { assert!(bx.cx().is_backend_scalar_pair(cast)); let (lldata, llextra) = match operand.val { OperandValue::Pair(lldata, llextra) => { // unsize from a fat pointer -- this is a // "trait-object-to-supertrait" coercion. (lldata, Some(llextra)) } OperandValue::Immediate(lldata) => { // "standard" unsize (lldata, None) } OperandValue::Ref(..) => { bug!("by-ref operand {:?} in `codegen_rvalue_operand`", operand); } }; let (lldata, llextra) = base::unsize_ptr(&mut bx, lldata, operand.layout.ty, cast.ty, llextra); OperandValue::Pair(lldata, llextra) } mir::CastKind::Pointer(PointerCast::MutToConstPointer) | mir::CastKind::Misc if bx.cx().is_backend_scalar_pair(operand.layout) => { if let OperandValue::Pair(data_ptr, meta) = operand.val { if bx.cx().is_backend_scalar_pair(cast) { let data_cast = bx.pointercast( data_ptr, bx.cx().scalar_pair_element_backend_type(cast, 0, true), ); OperandValue::Pair(data_cast, meta) } else { // cast to thin-ptr // Cast of fat-ptr to thin-ptr is an extraction of data-ptr and // pointer-cast of that pointer to desired pointer type. let llcast_ty = bx.cx().immediate_backend_type(cast); let llval = bx.pointercast(data_ptr, llcast_ty); OperandValue::Immediate(llval) } } else { bug!("unexpected non-pair operand"); } } mir::CastKind::Pointer( PointerCast::MutToConstPointer | PointerCast::ArrayToPointer, ) | mir::CastKind::Misc => { assert!(bx.cx().is_backend_immediate(cast)); let ll_t_out = bx.cx().immediate_backend_type(cast); if operand.layout.abi.is_uninhabited() { let val = OperandValue::Immediate(bx.cx().const_undef(ll_t_out)); return (bx, OperandRef { val, layout: cast }); } let r_t_in = CastTy::from_ty(operand.layout.ty).expect("bad input type for cast"); let r_t_out = CastTy::from_ty(cast.ty).expect("bad output type for cast"); let ll_t_in = bx.cx().immediate_backend_type(operand.layout); match operand.layout.variants { Variants::Single { index } => { if let Some(discr) = operand.layout.ty.discriminant_for_variant(bx.tcx(), index) { let discr_layout = bx.cx().layout_of(discr.ty); let discr_t = bx.cx().immediate_backend_type(discr_layout); let discr_val = bx.cx().const_uint_big(discr_t, discr.val); let discr_val = bx.intcast(discr_val, ll_t_out, discr.ty.is_signed()); return ( bx, OperandRef { val: OperandValue::Immediate(discr_val), layout: cast, }, ); } } Variants::Multiple { .. } => {} } let llval = operand.immediate(); let mut signed = false; if let Abi::Scalar(ref scalar) = operand.layout.abi { if let Int(_, s) = scalar.value { // We use `i1` for bytes that are always `0` or `1`, // e.g., `#[repr(i8)] enum E { A, B }`, but we can't // let LLVM interpret the `i1` as signed, because // then `i1 1` (i.e., E::B) is effectively `i8 -1`. signed = !scalar.is_bool() && s; let er = scalar.valid_range_exclusive(bx.cx()); if er.end != er.start && scalar.valid_range.end >= scalar.valid_range.start { // We want `table[e as usize ± k]` to not // have bound checks, and this is the most // convenient place to put the `assume`s. if scalar.valid_range.start > 0 { let enum_value_lower_bound = bx .cx() .const_uint_big(ll_t_in, scalar.valid_range.start); let cmp_start = bx.icmp( IntPredicate::IntUGE, llval, enum_value_lower_bound, ); bx.assume(cmp_start); } let enum_value_upper_bound = bx.cx().const_uint_big(ll_t_in, scalar.valid_range.end); let cmp_end = bx.icmp( IntPredicate::IntULE, llval, enum_value_upper_bound, ); bx.assume(cmp_end); } } } let newval = match (r_t_in, r_t_out) { (CastTy::Int(_), CastTy::Int(_)) => bx.intcast(llval, ll_t_out, signed), (CastTy::Float, CastTy::Float) => { let srcsz = bx.cx().float_width(ll_t_in); let dstsz = bx.cx().float_width(ll_t_out); if dstsz > srcsz { bx.fpext(llval, ll_t_out) } else if srcsz > dstsz { bx.fptrunc(llval, ll_t_out) } else { llval } } (CastTy::Int(_), CastTy::Float) => { if signed { bx.sitofp(llval, ll_t_out) } else { bx.uitofp(llval, ll_t_out) } } (CastTy::Ptr(_) | CastTy::FnPtr, CastTy::Ptr(_)) => { bx.pointercast(llval, ll_t_out) } (CastTy::Ptr(_) | CastTy::FnPtr, CastTy::Int(_)) => { bx.ptrtoint(llval, ll_t_out) } (CastTy::Int(_), CastTy::Ptr(_)) => { let usize_llval = bx.intcast(llval, bx.cx().type_isize(), signed); bx.inttoptr(usize_llval, ll_t_out) } (CastTy::Float, CastTy::Int(IntTy::I)) => { cast_float_to_int(&mut bx, true, llval, ll_t_in, ll_t_out) } (CastTy::Float, CastTy::Int(_)) => { cast_float_to_int(&mut bx, false, llval, ll_t_in, ll_t_out) } _ => bug!("unsupported cast: {:?} to {:?}", operand.layout.ty, cast.ty), }; OperandValue::Immediate(newval) } }; (bx, OperandRef { val, layout: cast }) } mir::Rvalue::Ref(_, bk, place) => { let mk_ref = move |tcx: TyCtxt<'tcx>, ty: Ty<'tcx>| { tcx.mk_ref( tcx.lifetimes.re_erased, ty::TypeAndMut { ty, mutbl: bk.to_mutbl_lossy() }, ) }; self.codegen_place_to_pointer(bx, place, mk_ref) } mir::Rvalue::AddressOf(mutability, place) => { let mk_ptr = move |tcx: TyCtxt<'tcx>, ty: Ty<'tcx>| { tcx.mk_ptr(ty::TypeAndMut { ty, mutbl: mutability }) }; self.codegen_place_to_pointer(bx, place, mk_ptr) } mir::Rvalue::Len(place) => { let size = self.evaluate_array_len(&mut bx, place); let operand = OperandRef { val: OperandValue::Immediate(size), layout: bx.cx().layout_of(bx.tcx().types.usize), }; (bx, operand) } mir::Rvalue::BinaryOp(op, box (ref lhs, ref rhs)) => { let lhs = self.codegen_operand(&mut bx, lhs); let rhs = self.codegen_operand(&mut bx, rhs); let llresult = match (lhs.val, rhs.val) { ( OperandValue::Pair(lhs_addr, lhs_extra), OperandValue::Pair(rhs_addr, rhs_extra), ) => self.codegen_fat_ptr_binop( &mut bx, op, lhs_addr, lhs_extra, rhs_addr, rhs_extra, lhs.layout.ty, ), (OperandValue::Immediate(lhs_val), OperandValue::Immediate(rhs_val)) => { self.codegen_scalar_binop(&mut bx, op, lhs_val, rhs_val, lhs.layout.ty) } _ => bug!(), }; let operand = OperandRef { val: OperandValue::Immediate(llresult), layout: bx.cx().layout_of(op.ty(bx.tcx(), lhs.layout.ty, rhs.layout.ty)), }; (bx, operand) } mir::Rvalue::CheckedBinaryOp(op, box (ref lhs, ref rhs)) => { let lhs = self.codegen_operand(&mut bx, lhs); let rhs = self.codegen_operand(&mut bx, rhs); let result = self.codegen_scalar_checked_binop( &mut bx, op, lhs.immediate(), rhs.immediate(), lhs.layout.ty, ); let val_ty = op.ty(bx.tcx(), lhs.layout.ty, rhs.layout.ty); let operand_ty = bx.tcx().intern_tup(&[val_ty, bx.tcx().types.bool]); let operand = OperandRef { val: result, layout: bx.cx().layout_of(operand_ty) }; (bx, operand) } mir::Rvalue::UnaryOp(op, ref operand) => { let operand = self.codegen_operand(&mut bx, operand); let lloperand = operand.immediate(); let is_float = operand.layout.ty.is_floating_point(); let llval = match op { mir::UnOp::Not => bx.not(lloperand), mir::UnOp::Neg => { if is_float { bx.fneg(lloperand) } else { bx.neg(lloperand) } } }; (bx, OperandRef { val: OperandValue::Immediate(llval), layout: operand.layout }) } mir::Rvalue::Discriminant(ref place) => { let discr_ty = rvalue.ty(self.mir, bx.tcx()); let discr_ty = self.monomorphize(discr_ty); let discr = self .codegen_place(&mut bx, place.as_ref()) .codegen_get_discr(&mut bx, discr_ty); ( bx, OperandRef { val: OperandValue::Immediate(discr), layout: self.cx.layout_of(discr_ty), }, ) } mir::Rvalue::NullaryOp(mir::NullOp::SizeOf, ty) => { let ty = self.monomorphize(ty); assert!(bx.cx().type_is_sized(ty)); let val = bx.cx().const_usize(bx.cx().layout_of(ty).size.bytes()); let tcx = self.cx.tcx(); ( bx, OperandRef { val: OperandValue::Immediate(val), layout: self.cx.layout_of(tcx.types.usize), }, ) } mir::Rvalue::NullaryOp(mir::NullOp::Box, content_ty) => { let content_ty = self.monomorphize(content_ty); let content_layout = bx.cx().layout_of(content_ty); let llsize = bx.cx().const_usize(content_layout.size.bytes()); let llalign = bx.cx().const_usize(content_layout.align.abi.bytes()); let box_layout = bx.cx().layout_of(bx.tcx().mk_box(content_ty)); let llty_ptr = bx.cx().backend_type(box_layout); // Allocate space: let def_id = match bx.tcx().lang_items().require(LangItem::ExchangeMalloc) { Ok(id) => id, Err(s) => { bx.cx().sess().fatal(&format!("allocation of `{}` {}", box_layout.ty, s)); } }; let instance = ty::Instance::mono(bx.tcx(), def_id); let r = bx.cx().get_fn_addr(instance); let ty = bx.type_func(&[bx.type_isize(), bx.type_isize()], bx.type_i8p()); let call = bx.call(ty, r, &[llsize, llalign], None); let val = bx.pointercast(call, llty_ptr); let operand = OperandRef { val: OperandValue::Immediate(val), layout: box_layout }; (bx, operand) } mir::Rvalue::ThreadLocalRef(def_id) => { assert!(bx.cx().tcx().is_static(def_id)); let static_ = bx.get_static(def_id); let layout = bx.layout_of(bx.cx().tcx().static_ptr_ty(def_id)); let operand = OperandRef::from_immediate_or_packed_pair(&mut bx, static_, layout); (bx, operand) } mir::Rvalue::Use(ref operand) => { let operand = self.codegen_operand(&mut bx, operand); (bx, operand) } mir::Rvalue::Repeat(..) | mir::Rvalue::Aggregate(..) => { // According to `rvalue_creates_operand`, only ZST // aggregate rvalues are allowed to be operands. let ty = rvalue.ty(self.mir, self.cx.tcx()); let operand = OperandRef::new_zst(&mut bx, self.cx.layout_of(self.monomorphize(ty))); (bx, operand) } } } fn evaluate_array_len(&mut self, bx: &mut Bx, place: mir::Place<'tcx>) -> Bx::Value { // ZST are passed as operands and require special handling // because codegen_place() panics if Local is operand. if let Some(index) = place.as_local() { if let LocalRef::Operand(Some(op)) = self.locals[index] { if let ty::Array(_, n) = op.layout.ty.kind() { let n = n.eval_usize(bx.cx().tcx(), ty::ParamEnv::reveal_all()); return bx.cx().const_usize(n); } } } // use common size calculation for non zero-sized types let cg_value = self.codegen_place(bx, place.as_ref()); cg_value.len(bx.cx()) } /// Codegen an `Rvalue::AddressOf` or `Rvalue::Ref` fn codegen_place_to_pointer( &mut self, mut bx: Bx, place: mir::Place<'tcx>, mk_ptr_ty: impl FnOnce(TyCtxt<'tcx>, Ty<'tcx>) -> Ty<'tcx>, ) -> (Bx, OperandRef<'tcx, Bx::Value>) { let cg_place = self.codegen_place(&mut bx, place.as_ref()); let ty = cg_place.layout.ty; // Note: places are indirect, so storing the `llval` into the // destination effectively creates a reference. let val = if !bx.cx().type_has_metadata(ty) { OperandValue::Immediate(cg_place.llval) } else { OperandValue::Pair(cg_place.llval, cg_place.llextra.unwrap()) }; (bx, OperandRef { val, layout: self.cx.layout_of(mk_ptr_ty(self.cx.tcx(), ty)) }) } pub fn codegen_scalar_binop( &mut self, bx: &mut Bx, op: mir::BinOp, lhs: Bx::Value, rhs: Bx::Value, input_ty: Ty<'tcx>, ) -> Bx::Value { let is_float = input_ty.is_floating_point(); let is_signed = input_ty.is_signed(); match op { mir::BinOp::Add => { if is_float { bx.fadd(lhs, rhs) } else { bx.add(lhs, rhs) } } mir::BinOp::Sub => { if is_float { bx.fsub(lhs, rhs) } else { bx.sub(lhs, rhs) } } mir::BinOp::Mul => { if is_float { bx.fmul(lhs, rhs) } else { bx.mul(lhs, rhs) } } mir::BinOp::Div => { if is_float { bx.fdiv(lhs, rhs) } else if is_signed { bx.sdiv(lhs, rhs) } else { bx.udiv(lhs, rhs) } } mir::BinOp::Rem => { if is_float { bx.frem(lhs, rhs) } else if is_signed { bx.srem(lhs, rhs) } else { bx.urem(lhs, rhs) } } mir::BinOp::BitOr => bx.or(lhs, rhs), mir::BinOp::BitAnd => bx.and(lhs, rhs), mir::BinOp::BitXor => bx.xor(lhs, rhs), mir::BinOp::Offset => { let pointee_type = input_ty .builtin_deref(true) .unwrap_or_else(|| bug!("deref of non-pointer {:?}", input_ty)) .ty; let llty = bx.cx().backend_type(bx.cx().layout_of(pointee_type)); bx.inbounds_gep(llty, lhs, &[rhs]) } mir::BinOp::Shl => common::build_unchecked_lshift(bx, lhs, rhs), mir::BinOp::Shr => common::build_unchecked_rshift(bx, input_ty, lhs, rhs), mir::BinOp::Ne | mir::BinOp::Lt | mir::BinOp::Gt | mir::BinOp::Eq | mir::BinOp::Le | mir::BinOp::Ge => { if is_float { bx.fcmp(base::bin_op_to_fcmp_predicate(op.to_hir_binop()), lhs, rhs) } else { bx.icmp(base::bin_op_to_icmp_predicate(op.to_hir_binop(), is_signed), lhs, rhs) } } } } pub fn codegen_fat_ptr_binop( &mut self, bx: &mut Bx, op: mir::BinOp, lhs_addr: Bx::Value, lhs_extra: Bx::Value, rhs_addr: Bx::Value, rhs_extra: Bx::Value, _input_ty: Ty<'tcx>, ) -> Bx::Value { match op { mir::BinOp::Eq => { let lhs = bx.icmp(IntPredicate::IntEQ, lhs_addr, rhs_addr); let rhs = bx.icmp(IntPredicate::IntEQ, lhs_extra, rhs_extra); bx.and(lhs, rhs) } mir::BinOp::Ne => { let lhs = bx.icmp(IntPredicate::IntNE, lhs_addr, rhs_addr); let rhs = bx.icmp(IntPredicate::IntNE, lhs_extra, rhs_extra); bx.or(lhs, rhs) } mir::BinOp::Le | mir::BinOp::Lt | mir::BinOp::Ge | mir::BinOp::Gt => { // a OP b ~ a.0 STRICT(OP) b.0 | (a.0 == b.0 && a.1 OP a.1) let (op, strict_op) = match op { mir::BinOp::Lt => (IntPredicate::IntULT, IntPredicate::IntULT), mir::BinOp::Le => (IntPredicate::IntULE, IntPredicate::IntULT), mir::BinOp::Gt => (IntPredicate::IntUGT, IntPredicate::IntUGT), mir::BinOp::Ge => (IntPredicate::IntUGE, IntPredicate::IntUGT), _ => bug!(), }; let lhs = bx.icmp(strict_op, lhs_addr, rhs_addr); let and_lhs = bx.icmp(IntPredicate::IntEQ, lhs_addr, rhs_addr); let and_rhs = bx.icmp(op, lhs_extra, rhs_extra); let rhs = bx.and(and_lhs, and_rhs); bx.or(lhs, rhs) } _ => { bug!("unexpected fat ptr binop"); } } } pub fn codegen_scalar_checked_binop( &mut self, bx: &mut Bx, op: mir::BinOp, lhs: Bx::Value, rhs: Bx::Value, input_ty: Ty<'tcx>, ) -> OperandValue { // This case can currently arise only from functions marked // with #[rustc_inherit_overflow_checks] and inlined from // another crate (mostly core::num generic/#[inline] fns), // while the current crate doesn't use overflow checks. if !bx.cx().check_overflow() { let val = self.codegen_scalar_binop(bx, op, lhs, rhs, input_ty); return OperandValue::Pair(val, bx.cx().const_bool(false)); } let (val, of) = match op { // These are checked using intrinsics mir::BinOp::Add | mir::BinOp::Sub | mir::BinOp::Mul => { let oop = match op { mir::BinOp::Add => OverflowOp::Add, mir::BinOp::Sub => OverflowOp::Sub, mir::BinOp::Mul => OverflowOp::Mul, _ => unreachable!(), }; bx.checked_binop(oop, input_ty, lhs, rhs) } mir::BinOp::Shl | mir::BinOp::Shr => { let lhs_llty = bx.cx().val_ty(lhs); let rhs_llty = bx.cx().val_ty(rhs); let invert_mask = common::shift_mask_val(bx, lhs_llty, rhs_llty, true); let outer_bits = bx.and(rhs, invert_mask); let of = bx.icmp(IntPredicate::IntNE, outer_bits, bx.cx().const_null(rhs_llty)); let val = self.codegen_scalar_binop(bx, op, lhs, rhs, input_ty); (val, of) } _ => bug!("Operator `{:?}` is not a checkable operator", op), }; OperandValue::Pair(val, of) } } impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> { pub fn rvalue_creates_operand(&self, rvalue: &mir::Rvalue<'tcx>, span: Span) -> bool { match *rvalue { mir::Rvalue::Ref(..) | mir::Rvalue::AddressOf(..) | mir::Rvalue::Len(..) | mir::Rvalue::Cast(..) | // (*) mir::Rvalue::BinaryOp(..) | mir::Rvalue::CheckedBinaryOp(..) | mir::Rvalue::UnaryOp(..) | mir::Rvalue::Discriminant(..) | mir::Rvalue::NullaryOp(..) | mir::Rvalue::ThreadLocalRef(_) | mir::Rvalue::Use(..) => // (*) true, mir::Rvalue::Repeat(..) | mir::Rvalue::Aggregate(..) => { let ty = rvalue.ty(self.mir, self.cx.tcx()); let ty = self.monomorphize(ty); self.cx.spanned_layout_of(ty, span).is_zst() } } // (*) this is only true if the type is suitable } } fn cast_float_to_int<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>( bx: &mut Bx, signed: bool, x: Bx::Value, float_ty: Bx::Type, int_ty: Bx::Type, ) -> Bx::Value { if let Some(false) = bx.cx().sess().opts.debugging_opts.saturating_float_casts { return if signed { bx.fptosi(x, int_ty) } else { bx.fptoui(x, int_ty) }; } let try_sat_result = if signed { bx.fptosi_sat(x, int_ty) } else { bx.fptoui_sat(x, int_ty) }; if let Some(try_sat_result) = try_sat_result { return try_sat_result; } let int_width = bx.cx().int_width(int_ty); let float_width = bx.cx().float_width(float_ty); // LLVM's fpto[su]i returns undef when the input x is infinite, NaN, or does not fit into the // destination integer type after rounding towards zero. This `undef` value can cause UB in // safe code (see issue #10184), so we implement a saturating conversion on top of it: // Semantically, the mathematical value of the input is rounded towards zero to the next // mathematical integer, and then the result is clamped into the range of the destination // integer type. Positive and negative infinity are mapped to the maximum and minimum value of // the destination integer type. NaN is mapped to 0. // // Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to // a value representable in int_ty. // They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits. // Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two. // int_ty::MIN, however, is either zero or a negative power of two and is thus exactly // representable. Note that this only works if float_ty's exponent range is sufficiently large. // f16 or 256 bit integers would break this property. Right now the smallest float type is f32 // with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127. // On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because // we're rounding towards zero, we just get float_ty::MAX (which is always an integer). // This already happens today with u128::MAX = 2^128 - 1 > f32::MAX. let int_max = |signed: bool, int_width: u64| -> u128 { let shift_amount = 128 - int_width; if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount } }; let int_min = |signed: bool, int_width: u64| -> i128 { if signed { i128::MIN >> (128 - int_width) } else { 0 } }; let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) { let rounded_min = ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero); assert_eq!(rounded_min.status, Status::OK); let rounded_max = ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero); assert!(rounded_max.value.is_finite()); (rounded_min.value.to_bits(), rounded_max.value.to_bits()) }; let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) { let rounded_min = ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero); assert_eq!(rounded_min.status, Status::OK); let rounded_max = ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero); assert!(rounded_max.value.is_finite()); (rounded_min.value.to_bits(), rounded_max.value.to_bits()) }; let mut float_bits_to_llval = |bits| { let bits_llval = match float_width { 32 => bx.cx().const_u32(bits as u32), 64 => bx.cx().const_u64(bits as u64), n => bug!("unsupported float width {}", n), }; bx.bitcast(bits_llval, float_ty) }; let (f_min, f_max) = match float_width { 32 => compute_clamp_bounds_single(signed, int_width), 64 => compute_clamp_bounds_double(signed, int_width), n => bug!("unsupported float width {}", n), }; let f_min = float_bits_to_llval(f_min); let f_max = float_bits_to_llval(f_max); // To implement saturation, we perform the following steps: // // 1. Cast x to an integer with fpto[su]i. This may result in undef. // 2. Compare x to f_min and f_max, and use the comparison results to select: // a) int_ty::MIN if x < f_min or x is NaN // b) int_ty::MAX if x > f_max // c) the result of fpto[su]i otherwise // 3. If x is NaN, return 0.0, otherwise return the result of step 2. // // This avoids resulting undef because values in range [f_min, f_max] by definition fit into the // destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of // undef does not introduce any non-determinism either. // More importantly, the above procedure correctly implements saturating conversion. // Proof (sketch): // If x is NaN, 0 is returned by definition. // Otherwise, x is finite or infinite and thus can be compared with f_min and f_max. // This yields three cases to consider: // (1) if x in [f_min, f_max], the result of fpto[su]i is returned, which agrees with // saturating conversion for inputs in that range. // (2) if x > f_max, then x is larger than int_ty::MAX. This holds even if f_max is rounded // (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger // than int_ty::MAX. Because x is larger than int_ty::MAX, the return value of int_ty::MAX // is correct. // (3) if x < f_min, then x is smaller than int_ty::MIN. As shown earlier, f_min exactly equals // int_ty::MIN and therefore the return value of int_ty::MIN is correct. // QED. let int_max = bx.cx().const_uint_big(int_ty, int_max(signed, int_width)); let int_min = bx.cx().const_uint_big(int_ty, int_min(signed, int_width) as u128); let zero = bx.cx().const_uint(int_ty, 0); // Step 1 ... let fptosui_result = if signed { bx.fptosi(x, int_ty) } else { bx.fptoui(x, int_ty) }; let less_or_nan = bx.fcmp(RealPredicate::RealULT, x, f_min); let greater = bx.fcmp(RealPredicate::RealOGT, x, f_max); // Step 2: We use two comparisons and two selects, with %s1 being the // result: // %less_or_nan = fcmp ult %x, %f_min // %greater = fcmp olt %x, %f_max // %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result // %s1 = select %greater, int_ty::MAX, %s0 // Note that %less_or_nan uses an *unordered* comparison. This // comparison is true if the operands are not comparable (i.e., if x is // NaN). The unordered comparison ensures that s1 becomes int_ty::MIN if // x is NaN. // // Performance note: Unordered comparison can be lowered to a "flipped" // comparison and a negation, and the negation can be merged into the // select. Therefore, it not necessarily any more expensive than an // ordered ("normal") comparison. Whether these optimizations will be // performed is ultimately up to the backend, but at least x86 does // perform them. let s0 = bx.select(less_or_nan, int_min, fptosui_result); let s1 = bx.select(greater, int_max, s0); // Step 3: NaN replacement. // For unsigned types, the above step already yielded int_ty::MIN == 0 if x is NaN. // Therefore we only need to execute this step for signed integer types. if signed { // LLVM has no isNaN predicate, so we use (x == x) instead let cmp = bx.fcmp(RealPredicate::RealOEQ, x, x); bx.select(cmp, s1, zero) } else { s1 } }