//! Structural const qualification. //! //! See the `Qualif` trait for more info. // FIXME(const_trait_impl): This API should be really reworked. It's dangerously general for // having basically only two use-cases that act in different ways. use rustc_errors::ErrorGuaranteed; use rustc_hir::LangItem; use rustc_infer::infer::TyCtxtInferExt; use rustc_middle::mir::*; use rustc_middle::ty::{self, AdtDef, Ty}; use rustc_middle::{bug, mir}; use rustc_trait_selection::traits::{Obligation, ObligationCause, ObligationCtxt}; use tracing::instrument; use super::ConstCx; pub fn in_any_value_of_ty<'tcx>( cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>, tainted_by_errors: Option, ) -> ConstQualifs { ConstQualifs { has_mut_interior: HasMutInterior::in_any_value_of_ty(cx, ty), needs_drop: NeedsDrop::in_any_value_of_ty(cx, ty), needs_non_const_drop: NeedsNonConstDrop::in_any_value_of_ty(cx, ty), tainted_by_errors, } } /// A "qualif"(-ication) is a way to look for something "bad" in the MIR that would disqualify some /// code for promotion or prevent it from evaluating at compile time. /// /// Normally, we would determine what qualifications apply to each type and error when an illegal /// operation is performed on such a type. However, this was found to be too imprecise, especially /// in the presence of `enum`s. If only a single variant of an enum has a certain qualification, we /// needn't reject code unless it actually constructs and operates on the qualified variant. /// /// To accomplish this, const-checking and promotion use a value-based analysis (as opposed to a /// type-based one). Qualifications propagate structurally across variables: If a local (or a /// projection of a local) is assigned a qualified value, that local itself becomes qualified. pub trait Qualif { /// The name of the file used to debug the dataflow analysis that computes this qualif. const ANALYSIS_NAME: &'static str; /// Whether this `Qualif` is cleared when a local is moved from. const IS_CLEARED_ON_MOVE: bool = false; /// Whether this `Qualif` might be evaluated after the promotion and can encounter a promoted. const ALLOW_PROMOTED: bool = false; /// Extracts the field of `ConstQualifs` that corresponds to this `Qualif`. fn in_qualifs(qualifs: &ConstQualifs) -> bool; /// Returns `true` if *any* value of the given type could possibly have this `Qualif`. /// /// This function determines `Qualif`s when we cannot do a value-based analysis. Since qualif /// propagation is context-insensitive, this includes function arguments and values returned /// from a call to another function. /// /// It also determines the `Qualif`s for primitive types. fn in_any_value_of_ty<'tcx>(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool; /// Returns `true` if the `Qualif` is structural in an ADT's fields, i.e. if we may /// recurse into an operand *value* to determine whether it has this `Qualif`. /// /// If this returns false, `in_any_value_of_ty` will be invoked to determine the /// final qualif for this ADT. fn is_structural_in_adt_value<'tcx>(cx: &ConstCx<'_, 'tcx>, adt: AdtDef<'tcx>) -> bool; } /// Constant containing interior mutability (`UnsafeCell`). /// This must be ruled out to make sure that evaluating the constant at compile-time /// and at *any point* during the run-time would produce the same result. In particular, /// promotion of temporaries must not change program behavior; if the promoted could be /// written to, that would be a problem. pub struct HasMutInterior; impl Qualif for HasMutInterior { const ANALYSIS_NAME: &'static str = "flow_has_mut_interior"; fn in_qualifs(qualifs: &ConstQualifs) -> bool { qualifs.has_mut_interior } fn in_any_value_of_ty<'tcx>(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool { // Avoid selecting for simple cases, such as builtin types. if ty.is_trivially_freeze() { return false; } // Avoid selecting for `UnsafeCell` either. if ty.ty_adt_def().is_some_and(|adt| adt.is_unsafe_cell()) { return true; } // We do not use `ty.is_freeze` here, because that requires revealing opaque types, which // requires borrowck, which in turn will invoke mir_const_qualifs again, causing a cycle error. // Instead we invoke an obligation context manually, and provide the opaque type inference settings // that allow the trait solver to just error out instead of cycling. let freeze_def_id = cx.tcx.require_lang_item(LangItem::Freeze, cx.body.span); // FIXME(#132279): Once we've got a typing mode which reveals opaque types using the HIR // typeck results without causing query cycles, we should use this here instead of defining // opaque types. let typing_env = ty::TypingEnv { typing_mode: ty::TypingMode::analysis_in_body( cx.tcx, cx.body.source.def_id().expect_local(), ), param_env: cx.typing_env.param_env, }; let (infcx, param_env) = cx.tcx.infer_ctxt().build_with_typing_env(typing_env); let ocx = ObligationCtxt::new(&infcx); let obligation = Obligation::new( cx.tcx, ObligationCause::dummy_with_span(cx.body.span), param_env, ty::TraitRef::new(cx.tcx, freeze_def_id, [ty::GenericArg::from(ty)]), ); ocx.register_obligation(obligation); let errors = ocx.select_all_or_error(); !errors.is_empty() } fn is_structural_in_adt_value<'tcx>(_cx: &ConstCx<'_, 'tcx>, adt: AdtDef<'tcx>) -> bool { // Exactly one type, `UnsafeCell`, has the `HasMutInterior` qualif inherently. // It arises structurally for all other types. !adt.is_unsafe_cell() } } /// Constant containing an ADT that implements `Drop`. /// This must be ruled out because implicit promotion would remove side-effects /// that occur as part of dropping that value. N.B., the implicit promotion has /// to reject const Drop implementations because even if side-effects are ruled /// out through other means, the execution of the drop could diverge. pub struct NeedsDrop; impl Qualif for NeedsDrop { const ANALYSIS_NAME: &'static str = "flow_needs_drop"; const IS_CLEARED_ON_MOVE: bool = true; const ALLOW_PROMOTED: bool = true; fn in_qualifs(qualifs: &ConstQualifs) -> bool { qualifs.needs_drop } fn in_any_value_of_ty<'tcx>(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool { ty.needs_drop(cx.tcx, cx.typing_env) } fn is_structural_in_adt_value<'tcx>(cx: &ConstCx<'_, 'tcx>, adt: AdtDef<'tcx>) -> bool { !adt.has_dtor(cx.tcx) } } /// Constant containing an ADT that implements non-const `Drop`. /// This must be ruled out because we cannot run `Drop` during compile-time. pub struct NeedsNonConstDrop; impl Qualif for NeedsNonConstDrop { const ANALYSIS_NAME: &'static str = "flow_needs_nonconst_drop"; const IS_CLEARED_ON_MOVE: bool = true; const ALLOW_PROMOTED: bool = true; fn in_qualifs(qualifs: &ConstQualifs) -> bool { qualifs.needs_non_const_drop } #[instrument(level = "trace", skip(cx), ret)] fn in_any_value_of_ty<'tcx>(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool { // If this doesn't need drop at all, then don't select `~const Destruct`. if !ty.needs_drop(cx.tcx, cx.typing_env) { return false; } // We check that the type is `~const Destruct` since that will verify that // the type is both `~const Drop` (if a drop impl exists for the adt), *and* // that the components of this type are also `~const Destruct`. This // amounts to verifying that there are no values in this ADT that may have // a non-const drop. let destruct_def_id = cx.tcx.require_lang_item(LangItem::Destruct, cx.body.span); let (infcx, param_env) = cx.tcx.infer_ctxt().build_with_typing_env(cx.typing_env); let ocx = ObligationCtxt::new(&infcx); ocx.register_obligation(Obligation::new( cx.tcx, ObligationCause::misc(cx.body.span, cx.def_id()), param_env, ty::Binder::dummy(ty::TraitRef::new(cx.tcx, destruct_def_id, [ty])) .to_host_effect_clause( cx.tcx, match cx.const_kind() { rustc_hir::ConstContext::ConstFn => ty::BoundConstness::Maybe, rustc_hir::ConstContext::Static(_) | rustc_hir::ConstContext::Const { .. } => ty::BoundConstness::Const, }, ), )); !ocx.select_all_or_error().is_empty() } fn is_structural_in_adt_value<'tcx>(cx: &ConstCx<'_, 'tcx>, adt: AdtDef<'tcx>) -> bool { // As soon as an ADT has a destructor, then the drop becomes non-structural // in its value since: // 1. The destructor may have `~const` bounds which are not present on the type. // Someone needs to check that those are satisfied. // While this could be instead satisfied by checking that the `~const Drop` // impl holds (i.e. replicating part of the `in_any_value_of_ty` logic above), // even in this case, we have another problem, which is, // 2. The destructor may *modify* the operand being dropped, so even if we // did recurse on the components of the operand, we may not be even dropping // the same values that were present before the custom destructor was invoked. !adt.has_dtor(cx.tcx) } } // FIXME: Use `mir::visit::Visitor` for the `in_*` functions if/when it supports early return. /// Returns `true` if this `Rvalue` contains qualif `Q`. pub fn in_rvalue<'tcx, Q, F>( cx: &ConstCx<'_, 'tcx>, in_local: &mut F, rvalue: &Rvalue<'tcx>, ) -> bool where Q: Qualif, F: FnMut(Local) -> bool, { match rvalue { Rvalue::ThreadLocalRef(_) | Rvalue::NullaryOp(..) => { Q::in_any_value_of_ty(cx, rvalue.ty(cx.body, cx.tcx)) } Rvalue::Discriminant(place) | Rvalue::Len(place) => { in_place::(cx, in_local, place.as_ref()) } Rvalue::CopyForDeref(place) => in_place::(cx, in_local, place.as_ref()), Rvalue::Use(operand) | Rvalue::Repeat(operand, _) | Rvalue::UnaryOp(_, operand) | Rvalue::Cast(_, operand, _) | Rvalue::ShallowInitBox(operand, _) => in_operand::(cx, in_local, operand), Rvalue::BinaryOp(_, box (lhs, rhs)) => { in_operand::(cx, in_local, lhs) || in_operand::(cx, in_local, rhs) } Rvalue::Ref(_, _, place) | Rvalue::RawPtr(_, place) => { // Special-case reborrows to be more like a copy of the reference. if let Some((place_base, ProjectionElem::Deref)) = place.as_ref().last_projection() { let base_ty = place_base.ty(cx.body, cx.tcx).ty; if let ty::Ref(..) = base_ty.kind() { return in_place::(cx, in_local, place_base); } } in_place::(cx, in_local, place.as_ref()) } Rvalue::WrapUnsafeBinder(op, _) => in_operand::(cx, in_local, op), Rvalue::Aggregate(kind, operands) => { // Return early if we know that the struct or enum being constructed is always // qualified. if let AggregateKind::Adt(adt_did, ..) = **kind { let def = cx.tcx.adt_def(adt_did); // Don't do any value-based reasoning for unions. // Also, if the ADT is not structural in its fields, // then we cannot recurse on its fields. Instead, // we fall back to checking the qualif for *any* value // of the ADT. if def.is_union() || !Q::is_structural_in_adt_value(cx, def) { return Q::in_any_value_of_ty(cx, rvalue.ty(cx.body, cx.tcx)); } } // Otherwise, proceed structurally... operands.iter().any(|o| in_operand::(cx, in_local, o)) } } } /// Returns `true` if this `Place` contains qualif `Q`. pub fn in_place<'tcx, Q, F>(cx: &ConstCx<'_, 'tcx>, in_local: &mut F, place: PlaceRef<'tcx>) -> bool where Q: Qualif, F: FnMut(Local) -> bool, { let mut place = place; while let Some((place_base, elem)) = place.last_projection() { match elem { ProjectionElem::Index(index) if in_local(index) => return true, ProjectionElem::Deref | ProjectionElem::Subtype(_) | ProjectionElem::Field(_, _) | ProjectionElem::OpaqueCast(_) | ProjectionElem::ConstantIndex { .. } | ProjectionElem::Subslice { .. } | ProjectionElem::Downcast(_, _) | ProjectionElem::Index(_) | ProjectionElem::UnwrapUnsafeBinder(_) => {} } let base_ty = place_base.ty(cx.body, cx.tcx); let proj_ty = base_ty.projection_ty(cx.tcx, elem).ty; if !Q::in_any_value_of_ty(cx, proj_ty) { return false; } // `Deref` currently unconditionally "qualifies" if `in_any_value_of_ty` returns true, // i.e., we treat all qualifs as non-structural for deref projections. Generally, // we can say very little about `*ptr` even if we know that `ptr` satisfies all // sorts of properties. if matches!(elem, ProjectionElem::Deref) { // We have to assume that this qualifies. return true; } place = place_base; } assert!(place.projection.is_empty()); in_local(place.local) } /// Returns `true` if this `Operand` contains qualif `Q`. pub fn in_operand<'tcx, Q, F>( cx: &ConstCx<'_, 'tcx>, in_local: &mut F, operand: &Operand<'tcx>, ) -> bool where Q: Qualif, F: FnMut(Local) -> bool, { let constant = match operand { Operand::Copy(place) | Operand::Move(place) => { return in_place::(cx, in_local, place.as_ref()); } Operand::Constant(c) => c, }; // Check the qualifs of the value of `const` items. let uneval = match constant.const_ { Const::Ty(_, ct) if matches!( ct.kind(), ty::ConstKind::Param(_) | ty::ConstKind::Error(_) | ty::ConstKind::Value(_) ) => { None } Const::Ty(_, c) => { bug!("expected ConstKind::Param or ConstKind::Value here, found {:?}", c) } Const::Unevaluated(uv, _) => Some(uv), Const::Val(..) => None, }; if let Some(mir::UnevaluatedConst { def, args: _, promoted }) = uneval { // Use qualifs of the type for the promoted. Promoteds in MIR body should be possible // only for `NeedsNonConstDrop` with precise drop checking. This is the only const // check performed after the promotion. Verify that with an assertion. assert!(promoted.is_none() || Q::ALLOW_PROMOTED); // Don't peek inside trait associated constants. if promoted.is_none() && cx.tcx.trait_of_item(def).is_none() { let qualifs = cx.tcx.at(constant.span).mir_const_qualif(def); if !Q::in_qualifs(&qualifs) { return false; } // Just in case the type is more specific than // the definition, e.g., impl associated const // with type parameters, take it into account. } } // Otherwise use the qualifs of the type. Q::in_any_value_of_ty(cx, constant.const_.ty()) }