use std::sync::atomic::Ordering::Relaxed; use either::{Left, Right}; use rustc_abi::{self as abi, BackendRepr}; use rustc_errors::E0080; use rustc_hir::def::DefKind; use rustc_middle::mir::interpret::{AllocId, ErrorHandled, InterpErrorInfo, ReportedErrorInfo}; use rustc_middle::mir::{self, ConstAlloc, ConstValue}; use rustc_middle::query::TyCtxtAt; use rustc_middle::ty::layout::HasTypingEnv; use rustc_middle::ty::print::with_no_trimmed_paths; use rustc_middle::ty::{self, Ty, TyCtxt}; use rustc_middle::{bug, throw_inval}; use rustc_span::def_id::LocalDefId; use rustc_span::{DUMMY_SP, Span}; use tracing::{debug, instrument, trace}; use super::{CanAccessMutGlobal, CompileTimeInterpCx, CompileTimeMachine}; use crate::const_eval::CheckAlignment; use crate::interpret::{ CtfeValidationMode, GlobalId, Immediate, InternError, InternKind, InterpCx, InterpErrorKind, InterpResult, MPlaceTy, MemoryKind, OpTy, RefTracking, ReturnContinuation, create_static_alloc, intern_const_alloc_recursive, interp_ok, throw_exhaust, }; use crate::{CTRL_C_RECEIVED, errors}; // Returns a pointer to where the result lives #[instrument(level = "trace", skip(ecx, body))] fn eval_body_using_ecx<'tcx, R: InterpretationResult<'tcx>>( ecx: &mut CompileTimeInterpCx<'tcx>, cid: GlobalId<'tcx>, body: &'tcx mir::Body<'tcx>, ) -> InterpResult<'tcx, R> { let tcx = *ecx.tcx; assert!( cid.promoted.is_some() || matches!( ecx.tcx.def_kind(cid.instance.def_id()), DefKind::Const | DefKind::Static { .. } | DefKind::ConstParam | DefKind::AnonConst | DefKind::InlineConst | DefKind::AssocConst ), "Unexpected DefKind: {:?}", ecx.tcx.def_kind(cid.instance.def_id()) ); let layout = ecx.layout_of(body.bound_return_ty().instantiate(tcx, cid.instance.args))?; assert!(layout.is_sized()); let intern_kind = if cid.promoted.is_some() { InternKind::Promoted } else { match tcx.static_mutability(cid.instance.def_id()) { Some(m) => InternKind::Static(m), None => InternKind::Constant, } }; let ret = if let InternKind::Static(_) = intern_kind { create_static_alloc(ecx, cid.instance.def_id().expect_local(), layout)? } else { ecx.allocate(layout, MemoryKind::Stack)? }; trace!( "eval_body_using_ecx: pushing stack frame for global: {}{}", with_no_trimmed_paths!(ecx.tcx.def_path_str(cid.instance.def_id())), cid.promoted.map_or_else(String::new, |p| format!("::{p:?}")) ); // This can't use `init_stack_frame` since `body` is not a function, // so computing its ABI would fail. It's also not worth it since there are no arguments to pass. ecx.push_stack_frame_raw( cid.instance, body, &ret.clone().into(), ReturnContinuation::Stop { cleanup: false }, )?; ecx.storage_live_for_always_live_locals()?; // The main interpreter loop. while ecx.step()? { if CTRL_C_RECEIVED.load(Relaxed) { throw_exhaust!(Interrupted); } } // Intern the result let intern_result = intern_const_alloc_recursive(ecx, intern_kind, &ret); // Since evaluation had no errors, validate the resulting constant. const_validate_mplace(ecx, &ret, cid)?; // Only report this after validation, as validation produces much better diagnostics. // FIXME: ensure validation always reports this and stop making interning care about it. match intern_result { Ok(()) => {} Err(InternError::DanglingPointer) => { throw_inval!(AlreadyReported(ReportedErrorInfo::non_const_eval_error( ecx.tcx .dcx() .emit_err(errors::DanglingPtrInFinal { span: ecx.tcx.span, kind: intern_kind }), ))); } Err(InternError::BadMutablePointer) => { throw_inval!(AlreadyReported(ReportedErrorInfo::non_const_eval_error( ecx.tcx .dcx() .emit_err(errors::MutablePtrInFinal { span: ecx.tcx.span, kind: intern_kind }), ))); } Err(InternError::ConstAllocNotGlobal) => { throw_inval!(AlreadyReported(ReportedErrorInfo::non_const_eval_error( ecx.tcx.dcx().emit_err(errors::ConstHeapPtrInFinal { span: ecx.tcx.span }), ))); } Err(InternError::PartialPointer) => { throw_inval!(AlreadyReported(ReportedErrorInfo::non_const_eval_error( ecx.tcx .dcx() .emit_err(errors::PartialPtrInFinal { span: ecx.tcx.span, kind: intern_kind }), ))); } } interp_ok(R::make_result(ret, ecx)) } /// The `InterpCx` is only meant to be used to do field and index projections into constants for /// `simd_shuffle` and const patterns in match arms. /// /// This should *not* be used to do any actual interpretation. In particular, alignment checks are /// turned off! /// /// The function containing the `match` that is currently being analyzed may have generic bounds /// that inform us about the generic bounds of the constant. E.g., using an associated constant /// of a function's generic parameter will require knowledge about the bounds on the generic /// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument. pub(crate) fn mk_eval_cx_to_read_const_val<'tcx>( tcx: TyCtxt<'tcx>, root_span: Span, typing_env: ty::TypingEnv<'tcx>, can_access_mut_global: CanAccessMutGlobal, ) -> CompileTimeInterpCx<'tcx> { debug!("mk_eval_cx: {:?}", typing_env); InterpCx::new( tcx, root_span, typing_env, CompileTimeMachine::new(can_access_mut_global, CheckAlignment::No), ) } /// Create an interpreter context to inspect the given `ConstValue`. /// Returns both the context and an `OpTy` that represents the constant. pub fn mk_eval_cx_for_const_val<'tcx>( tcx: TyCtxtAt<'tcx>, typing_env: ty::TypingEnv<'tcx>, val: mir::ConstValue, ty: Ty<'tcx>, ) -> Option<(CompileTimeInterpCx<'tcx>, OpTy<'tcx>)> { let ecx = mk_eval_cx_to_read_const_val(tcx.tcx, tcx.span, typing_env, CanAccessMutGlobal::No); // FIXME: is it a problem to discard the error here? let op = ecx.const_val_to_op(val, ty, None).discard_err()?; Some((ecx, op)) } /// This function converts an interpreter value into a MIR constant. /// /// The `for_diagnostics` flag turns the usual rules for returning `ConstValue::Scalar` into a /// best-effort attempt. This is not okay for use in const-eval sine it breaks invariants rustc /// relies on, but it is okay for diagnostics which will just give up gracefully when they /// encounter an `Indirect` they cannot handle. #[instrument(skip(ecx), level = "debug")] pub(super) fn op_to_const<'tcx>( ecx: &CompileTimeInterpCx<'tcx>, op: &OpTy<'tcx>, for_diagnostics: bool, ) -> ConstValue { // Handle ZST consistently and early. if op.layout.is_zst() { return ConstValue::ZeroSized; } // All scalar types should be stored as `ConstValue::Scalar`. This is needed to make // `ConstValue::try_to_scalar` efficient; we want that to work for *all* constants of scalar // type (it's used throughout the compiler and having it work just on literals is not enough) // and we want it to be fast (i.e., don't go to an `Allocation` and reconstruct the `Scalar` // from its byte-serialized form). let force_as_immediate = match op.layout.backend_repr { BackendRepr::Scalar(abi::Scalar::Initialized { .. }) => true, // We don't *force* `ConstValue::Slice` for `ScalarPair`. This has the advantage that if the // input `op` is a place, then turning it into a `ConstValue` and back into a `OpTy` will // not have to generate any duplicate allocations (we preserve the original `AllocId` in // `ConstValue::Indirect`). It means accessing the contents of a slice can be slow (since // they can be stored as `ConstValue::Indirect`), but that's not relevant since we barely // ever have to do this. (`try_get_slice_bytes_for_diagnostics` exists to provide this // functionality.) _ => false, }; let immediate = if force_as_immediate { match ecx.read_immediate(op).report_err() { Ok(imm) => Right(imm), Err(err) => { if for_diagnostics { // This discard the error, but for diagnostics that's okay. op.as_mplace_or_imm() } else { panic!("normalization works on validated constants: {err:?}") } } } } else { op.as_mplace_or_imm() }; debug!(?immediate); match immediate { Left(ref mplace) => { let (prov, offset) = mplace.ptr().into_pointer_or_addr().unwrap().prov_and_relative_offset(); let alloc_id = prov.alloc_id(); ConstValue::Indirect { alloc_id, offset } } // see comment on `let force_as_immediate` above Right(imm) => match *imm { Immediate::Scalar(x) => ConstValue::Scalar(x), Immediate::ScalarPair(a, b) => { debug!("ScalarPair(a: {:?}, b: {:?})", a, b); // This codepath solely exists for `valtree_to_const_value` to not need to generate // a `ConstValue::Indirect` for wide references, so it is tightly restricted to just // that case. let pointee_ty = imm.layout.ty.builtin_deref(false).unwrap(); // `false` = no raw ptrs debug_assert!( matches!( ecx.tcx.struct_tail_for_codegen(pointee_ty, ecx.typing_env()).kind(), ty::Str | ty::Slice(..), ), "`ConstValue::Slice` is for slice-tailed types only, but got {}", imm.layout.ty, ); let msg = "`op_to_const` on an immediate scalar pair must only be used on slice references to the beginning of an actual allocation"; let ptr = a.to_pointer(ecx).expect(msg); let (prov, offset) = ptr.into_pointer_or_addr().expect(msg).prov_and_relative_offset(); let alloc_id = prov.alloc_id(); assert!(offset == abi::Size::ZERO, "{}", msg); let meta = b.to_target_usize(ecx).expect(msg); ConstValue::Slice { alloc_id, meta } } Immediate::Uninit => bug!("`Uninit` is not a valid value for {}", op.layout.ty), }, } } #[instrument(skip(tcx), level = "debug", ret)] pub(crate) fn turn_into_const_value<'tcx>( tcx: TyCtxt<'tcx>, constant: ConstAlloc<'tcx>, key: ty::PseudoCanonicalInput<'tcx, GlobalId<'tcx>>, ) -> ConstValue { let cid = key.value; let def_id = cid.instance.def.def_id(); let is_static = tcx.is_static(def_id); // This is just accessing an already computed constant, so no need to check alignment here. let ecx = mk_eval_cx_to_read_const_val( tcx, tcx.def_span(key.value.instance.def_id()), key.typing_env, CanAccessMutGlobal::from(is_static), ); let mplace = ecx.raw_const_to_mplace(constant).expect( "can only fail if layout computation failed, \ which should have given a good error before ever invoking this function", ); assert!( !is_static || cid.promoted.is_some(), "the `eval_to_const_value_raw` query should not be used for statics, use `eval_to_allocation` instead" ); // Turn this into a proper constant. op_to_const(&ecx, &mplace.into(), /* for diagnostics */ false) } #[instrument(skip(tcx), level = "debug")] pub fn eval_to_const_value_raw_provider<'tcx>( tcx: TyCtxt<'tcx>, key: ty::PseudoCanonicalInput<'tcx, GlobalId<'tcx>>, ) -> ::rustc_middle::mir::interpret::EvalToConstValueResult<'tcx> { tcx.eval_to_allocation_raw(key).map(|val| turn_into_const_value(tcx, val, key)) } #[instrument(skip(tcx), level = "debug")] pub fn eval_static_initializer_provider<'tcx>( tcx: TyCtxt<'tcx>, def_id: LocalDefId, ) -> ::rustc_middle::mir::interpret::EvalStaticInitializerRawResult<'tcx> { assert!(tcx.is_static(def_id.to_def_id())); let instance = ty::Instance::mono(tcx, def_id.to_def_id()); let cid = rustc_middle::mir::interpret::GlobalId { instance, promoted: None }; eval_in_interpreter(tcx, cid, ty::TypingEnv::fully_monomorphized()) } pub trait InterpretationResult<'tcx> { /// This function takes the place where the result of the evaluation is stored /// and prepares it for returning it in the appropriate format needed by the specific /// evaluation query. fn make_result( mplace: MPlaceTy<'tcx>, ecx: &mut InterpCx<'tcx, CompileTimeMachine<'tcx>>, ) -> Self; } impl<'tcx> InterpretationResult<'tcx> for ConstAlloc<'tcx> { fn make_result( mplace: MPlaceTy<'tcx>, _ecx: &mut InterpCx<'tcx, CompileTimeMachine<'tcx>>, ) -> Self { ConstAlloc { alloc_id: mplace.ptr().provenance.unwrap().alloc_id(), ty: mplace.layout.ty } } } #[instrument(skip(tcx), level = "debug")] pub fn eval_to_allocation_raw_provider<'tcx>( tcx: TyCtxt<'tcx>, key: ty::PseudoCanonicalInput<'tcx, GlobalId<'tcx>>, ) -> ::rustc_middle::mir::interpret::EvalToAllocationRawResult<'tcx> { // This shouldn't be used for statics, since statics are conceptually places, // not values -- so what we do here could break pointer identity. assert!(key.value.promoted.is_some() || !tcx.is_static(key.value.instance.def_id())); // Const eval always happens in PostAnalysis mode . See the comment in // `InterpCx::new` for more details. debug_assert_eq!(key.typing_env.typing_mode, ty::TypingMode::PostAnalysis); if cfg!(debug_assertions) { // Make sure we format the instance even if we do not print it. // This serves as a regression test against an ICE on printing. // The next two lines concatenated contain some discussion: // https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/ // subject/anon_const_instance_printing/near/135980032 let instance = with_no_trimmed_paths!(key.value.instance.to_string()); trace!("const eval: {:?} ({})", key, instance); } eval_in_interpreter(tcx, key.value, key.typing_env) } fn eval_in_interpreter<'tcx, R: InterpretationResult<'tcx>>( tcx: TyCtxt<'tcx>, cid: GlobalId<'tcx>, typing_env: ty::TypingEnv<'tcx>, ) -> Result { let def = cid.instance.def.def_id(); let is_static = tcx.is_static(def); let mut ecx = InterpCx::new( tcx, tcx.def_span(def), typing_env, // Statics (and promoteds inside statics) may access mutable global memory, because unlike consts // they do not have to behave "as if" they were evaluated at runtime. // For consts however we want to ensure they behave "as if" they were evaluated at runtime, // so we have to reject reading mutable global memory. CompileTimeMachine::new(CanAccessMutGlobal::from(is_static), CheckAlignment::Error), ); let res = ecx.load_mir(cid.instance.def, cid.promoted); res.and_then(|body| eval_body_using_ecx(&mut ecx, cid, body)) .report_err() .map_err(|error| report_eval_error(&ecx, cid, error)) } #[inline(always)] fn const_validate_mplace<'tcx>( ecx: &mut InterpCx<'tcx, CompileTimeMachine<'tcx>>, mplace: &MPlaceTy<'tcx>, cid: GlobalId<'tcx>, ) -> Result<(), ErrorHandled> { let alloc_id = mplace.ptr().provenance.unwrap().alloc_id(); let mut ref_tracking = RefTracking::new(mplace.clone()); let mut inner = false; while let Some((mplace, path)) = ref_tracking.next() { let mode = match ecx.tcx.static_mutability(cid.instance.def_id()) { _ if cid.promoted.is_some() => CtfeValidationMode::Promoted, Some(mutbl) => CtfeValidationMode::Static { mutbl }, // a `static` None => { // This is a normal `const` (not promoted). // The outermost allocation is always only copied, so having `UnsafeCell` in there // is okay despite them being in immutable memory. CtfeValidationMode::Const { allow_immutable_unsafe_cell: !inner } } }; ecx.const_validate_operand(&mplace.into(), path, &mut ref_tracking, mode) .report_err() // Instead of just reporting the `InterpError` via the usual machinery, we give a more targeted // error about the validation failure. .map_err(|error| report_validation_error(&ecx, cid, error, alloc_id))?; inner = true; } Ok(()) } #[inline(never)] fn report_eval_error<'tcx>( ecx: &InterpCx<'tcx, CompileTimeMachine<'tcx>>, cid: GlobalId<'tcx>, error: InterpErrorInfo<'tcx>, ) -> ErrorHandled { let (error, backtrace) = error.into_parts(); backtrace.print_backtrace(); let instance = with_no_trimmed_paths!(cid.instance.to_string()); super::report( ecx, error, DUMMY_SP, || super::get_span_and_frames(ecx.tcx, ecx.stack()), |diag, span, frames| { let num_frames = frames.len(); // FIXME(oli-obk): figure out how to use structured diagnostics again. diag.code(E0080); diag.span_label(span, crate::fluent_generated::const_eval_error); for frame in frames { diag.subdiagnostic(frame); } // Add after the frame rendering above, as it adds its own `instance` args. diag.arg("instance", instance); diag.arg("num_frames", num_frames); }, ) } #[inline(never)] fn report_validation_error<'tcx>( ecx: &InterpCx<'tcx, CompileTimeMachine<'tcx>>, cid: GlobalId<'tcx>, error: InterpErrorInfo<'tcx>, alloc_id: AllocId, ) -> ErrorHandled { if !matches!(error.kind(), InterpErrorKind::UndefinedBehavior(_)) { // Some other error happened during validation, e.g. an unsupported operation. return report_eval_error(ecx, cid, error); } let (error, backtrace) = error.into_parts(); backtrace.print_backtrace(); let bytes = ecx.print_alloc_bytes_for_diagnostics(alloc_id); let info = ecx.get_alloc_info(alloc_id); let raw_bytes = errors::RawBytesNote { size: info.size.bytes(), align: info.align.bytes(), bytes }; crate::const_eval::report( ecx, error, DUMMY_SP, || crate::const_eval::get_span_and_frames(ecx.tcx, ecx.stack()), move |diag, span, frames| { // FIXME(oli-obk): figure out how to use structured diagnostics again. diag.code(E0080); diag.span_label(span, crate::fluent_generated::const_eval_validation_failure); diag.note(crate::fluent_generated::const_eval_validation_failure_note); for frame in frames { diag.subdiagnostic(frame); } diag.subdiagnostic(raw_bytes); }, ) }