use crate::const_eval::{CompileTimeEvalContext, CompileTimeInterpreter, InterpretationResult}; use crate::interpret::{MemPlaceMeta, MemoryKind}; use rustc_hir::def_id::LocalDefId; use rustc_middle::mir; use rustc_middle::mir::interpret::{Allocation, InterpResult, Pointer}; use rustc_middle::ty::layout::TyAndLayout; use rustc_middle::ty::{ self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor, }; use std::ops::ControlFlow; use super::{InterpCx, MPlaceTy}; /// Checks whether a type contains generic parameters which must be instantiated. /// /// In case it does, returns a `TooGeneric` const eval error. Note that due to polymorphization /// types may be "concrete enough" even though they still contain generic parameters in /// case these parameters are unused. pub(crate) fn ensure_monomorphic_enough<'tcx, T>(tcx: TyCtxt<'tcx>, ty: T) -> InterpResult<'tcx> where T: TypeVisitable>, { debug!("ensure_monomorphic_enough: ty={:?}", ty); if !ty.has_param() { return Ok(()); } struct FoundParam; struct UsedParamsNeedInstantiationVisitor<'tcx> { tcx: TyCtxt<'tcx>, } impl<'tcx> TypeVisitor> for UsedParamsNeedInstantiationVisitor<'tcx> { type Result = ControlFlow; fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result { if !ty.has_param() { return ControlFlow::Continue(()); } match *ty.kind() { ty::Param(_) => ControlFlow::Break(FoundParam), ty::Closure(def_id, args) | ty::CoroutineClosure(def_id, args, ..) | ty::Coroutine(def_id, args, ..) | ty::FnDef(def_id, args) => { let instance = ty::InstanceDef::Item(def_id); let unused_params = self.tcx.unused_generic_params(instance); for (index, arg) in args.into_iter().enumerate() { let index = index .try_into() .expect("more generic parameters than can fit into a `u32`"); // Only recurse when generic parameters in fns, closures and coroutines // are used and have to be instantiated. // // Just in case there are closures or coroutines within this arg, // recurse. if unused_params.is_used(index) && arg.has_param() { return arg.visit_with(self); } } ControlFlow::Continue(()) } _ => ty.super_visit_with(self), } } fn visit_const(&mut self, c: ty::Const<'tcx>) -> Self::Result { match c.kind() { ty::ConstKind::Param(..) => ControlFlow::Break(FoundParam), _ => c.super_visit_with(self), } } } let mut vis = UsedParamsNeedInstantiationVisitor { tcx }; if matches!(ty.visit_with(&mut vis), ControlFlow::Break(FoundParam)) { throw_inval!(TooGeneric); } else { Ok(()) } } impl<'tcx> InterpretationResult<'tcx> for mir::interpret::ConstAllocation<'tcx> { fn make_result<'mir>( mplace: MPlaceTy<'tcx>, ecx: &mut InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>, ) -> Self { let alloc_id = mplace.ptr().provenance.unwrap().alloc_id(); let alloc = ecx.memory.alloc_map.swap_remove(&alloc_id).unwrap().1; ecx.tcx.mk_const_alloc(alloc) } } pub(crate) fn create_static_alloc<'mir, 'tcx: 'mir>( ecx: &mut CompileTimeEvalContext<'mir, 'tcx>, static_def_id: LocalDefId, layout: TyAndLayout<'tcx>, ) -> InterpResult<'tcx, MPlaceTy<'tcx>> { let alloc = Allocation::try_uninit(layout.size, layout.align.abi)?; let alloc_id = ecx.tcx.reserve_and_set_static_alloc(static_def_id.into()); assert_eq!(ecx.machine.static_root_ids, None); ecx.machine.static_root_ids = Some((alloc_id, static_def_id)); assert!(ecx.memory.alloc_map.insert(alloc_id, (MemoryKind::Stack, alloc)).is_none()); Ok(ecx.ptr_with_meta_to_mplace(Pointer::from(alloc_id).into(), MemPlaceMeta::None, layout)) }