use rustc_index::{Idx, IndexVec}; use crate::graph::{DirectedGraph, NumEdges, Predecessors, Successors}; #[cfg(test)] mod tests; /// A directed graph, efficient for cases where node indices are pre-existing. /// /// If `BR` is true, the graph will store back-references, allowing you to get predecessors. pub struct VecGraph { // This is basically a `HashMap, If>)>` -- a map from a node index, to // a list of targets of outgoing edges and (if enabled) a list of sources of incoming edges. // // However, it is condensed into two arrays as an optimization. // // `node_starts[n]` is the start of the list of targets of outgoing edges for node `n`. // So you can get node's successors with `edge_targets[node_starts[n]..node_starts[n + 1]]`. // // If `BR` is true (back references are enabled), then `node_starts[n + edge_count]` is the // start of the list of *sources* of incoming edges. You can get predecessors of a node // similarly to its successors but offsetting by `edge_count`. `edge_count` is // `edge_targets.len()/2` (again, in case BR is true) because half of the vec is back refs. // // All of this might be confusing, so here is an example graph and its representation: // // n3 ----+ // ^ | (if BR = true) // | v outgoing edges incoming edges // n0 -> n1 -> n2 ______________ __________________ // / \ / \ // node indices[1]: n0, n1, n2, n3, n0, n1, n2, n3, n/a // vec indices: n0, n1, n2, n3, n4, n5, n6, n7, n8 // node_starts: [0, 1, 3, 4 4, 4, 5, 7, 8] // | | | | | | | | | // | | +---+ +---+ | +---+ | // | | | | | | | // v v v v v v v // edge_targets: [n1, n2, n3, n2 n0, n1, n3, n1] // / \____/ | | \____/ \ // n0->n1 / | | \ n3<-n1 // / n3->n2 [2] n1<-n0 [2] \ // n1->n2, n1->n3 n2<-n1, n2<-n3 // // The incoming edges are basically stored in the same way as outgoing edges, but offset and // the graph they store is the inverse of the original. Last index in the `node_starts` array // always points to one-past-the-end, so that we don't need to bound check `node_starts[n + 1]` // // [1]: "node indices" are the indices a user of `VecGraph` might use, // note that they are different from "vec indices", // which are the real indices you need to index `node_starts` // // [2]: Note that even though n2 also points to here, // the next index also points here, so n2 has no // successors (`edge_targets[3..3] = []`). // Similarly with n0 and incoming edges // // If this is still confusing... then sorry :( // /// Indices into `edge_targets` that signify a start of list of edges. node_starts: IndexVec, /// Targets (or sources for back refs) of edges edge_targets: Vec, } impl VecGraph { pub fn new(num_nodes: usize, mut edge_pairs: Vec<(N, N)>) -> Self { let num_edges = edge_pairs.len(); let nodes_cap = match BR { // +1 for special entry at the end, pointing one past the end of `edge_targets` false => num_nodes + 1, // *2 for back references true => (num_nodes * 2) + 1, }; let edges_cap = match BR { false => num_edges, // *2 for back references true => num_edges * 2, }; let mut node_starts = IndexVec::with_capacity(nodes_cap); let mut edge_targets = Vec::with_capacity(edges_cap); // Sort the edges by the source -- this is important. edge_pairs.sort(); // Fill forward references create_index( num_nodes, &mut edge_pairs.iter().map(|&(src, _)| src), &mut edge_pairs.iter().map(|&(_, tgt)| tgt), &mut edge_targets, &mut node_starts, ); // Fill back references if BR { // Pop the special "last" entry, it will be replaced by first back ref node_starts.pop(); // Re-sort the edges so that they are sorted by target edge_pairs.sort_by_key(|&(src, tgt)| (tgt, src)); create_index( // Back essentially double the number of nodes num_nodes * 2, // NB: the source/target are switched here too // NB: we double the key index, so that we can later use *2 to get the back references &mut edge_pairs.iter().map(|&(_, tgt)| N::new(tgt.index() + num_nodes)), &mut edge_pairs.iter().map(|&(src, _)| src), &mut edge_targets, &mut node_starts, ); } Self { node_starts, edge_targets } } /// Gets the successors for `source` as a slice. pub fn successors(&self, source: N) -> &[N] { assert!(source.index() < self.num_nodes()); let start_index = self.node_starts[source]; let end_index = self.node_starts[source.plus(1)]; &self.edge_targets[start_index..end_index] } } impl VecGraph { /// Gets the predecessors for `target` as a slice. pub fn predecessors(&self, target: N) -> &[N] { assert!(target.index() < self.num_nodes()); let target = N::new(target.index() + self.num_nodes()); let start_index = self.node_starts[target]; let end_index = self.node_starts[target.plus(1)]; &self.edge_targets[start_index..end_index] } } /// Creates/initializes the index for the [`VecGraph`]. A helper for [`VecGraph::new`]. /// /// - `num_nodes` is the target number of nodes in the graph /// - `sorted_edge_sources` are the edge sources, sorted /// - `associated_edge_targets` are the edge *targets* in the same order as sources /// - `edge_targets` is the vec of targets to be extended /// - `node_starts` is the index to be filled fn create_index( num_nodes: usize, sorted_edge_sources: &mut dyn Iterator, associated_edge_targets: &mut dyn Iterator, edge_targets: &mut Vec, node_starts: &mut IndexVec, ) { let offset = edge_targets.len(); // Store the *target* of each edge into `edge_targets`. edge_targets.extend(associated_edge_targets); // Create the *edge starts* array. We are iterating over the // (sorted) edge pairs. We maintain the invariant that the // length of the `node_starts` array is enough to store the // current source node -- so when we see that the source node // for an edge is greater than the current length, we grow the // edge-starts array by just enough. for (index, source) in sorted_edge_sources.enumerate() { // If we have a list like `[(0, x), (2, y)]`: // // - Start out with `node_starts` of `[]` // - Iterate to `(0, x)` at index 0: // - Push one entry because `node_starts.len()` (0) is <= the source (0) // - Leaving us with `node_starts` of `[0]` // - Iterate to `(2, y)` at index 1: // - Push one entry because `node_starts.len()` (1) is <= the source (2) // - Push one entry because `node_starts.len()` (2) is <= the source (2) // - Leaving us with `node_starts` of `[0, 1, 1]` // - Loop terminates while node_starts.len() <= source.index() { node_starts.push(index + offset); } } // Pad out the `node_starts` array so that it has `num_nodes + // 1` entries. Continuing our example above, if `num_nodes` is // be `3`, we would push one more index: `[0, 1, 1, 2]`. // // Interpretation of that vector: // // [0, 1, 1, 2] // ---- range for N=2 // ---- range for N=1 // ---- range for N=0 while node_starts.len() <= num_nodes { node_starts.push(edge_targets.len()); } assert_eq!(node_starts.len(), num_nodes + 1); } impl DirectedGraph for VecGraph { type Node = N; fn num_nodes(&self) -> usize { match BR { false => self.node_starts.len() - 1, // If back refs are enabled, half of the array is said back refs true => (self.node_starts.len() - 1) / 2, } } } impl NumEdges for VecGraph { fn num_edges(&self) -> usize { match BR { false => self.edge_targets.len(), // If back refs are enabled, half of the array is reversed edges for them true => self.edge_targets.len() / 2, } } } impl Successors for VecGraph { fn successors(&self, node: N) -> impl Iterator { self.successors(node).iter().cloned() } } impl Predecessors for VecGraph { fn predecessors(&self, node: Self::Node) -> impl Iterator { self.predecessors(node).iter().cloned() } }