//! This file builds up the `ScopeTree`, which describes //! the parent links in the region hierarchy. //! //! For more information about how MIR-based region-checking works, //! see the [rustc dev guide]. //! //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/borrow_check.html use std::mem; use rustc_data_structures::fx::FxHashMap; use rustc_hir as hir; use rustc_hir::def::{CtorKind, DefKind, Res}; use rustc_hir::def_id::DefId; use rustc_hir::intravisit::{self, Visitor}; use rustc_hir::{Arm, Block, Expr, LetStmt, Pat, PatKind, Stmt}; use rustc_index::Idx; use rustc_middle::middle::region::*; use rustc_middle::ty::TyCtxt; use rustc_session::lint; use rustc_span::source_map; use tracing::debug; #[derive(Debug, Copy, Clone)] struct Context { /// The scope that contains any new variables declared. var_parent: Option, /// Region parent of expressions, etc. parent: Option, } struct ScopeResolutionVisitor<'tcx> { tcx: TyCtxt<'tcx>, // The generated scope tree. scope_tree: ScopeTree, cx: Context, extended_super_lets: FxHashMap>, } /// Records the lifetime of a local variable as `cx.var_parent` fn record_var_lifetime(visitor: &mut ScopeResolutionVisitor<'_>, var_id: hir::ItemLocalId) { match visitor.cx.var_parent { None => { // this can happen in extern fn declarations like // // extern fn isalnum(c: c_int) -> c_int } Some(parent_scope) => visitor.scope_tree.record_var_scope(var_id, parent_scope), } } fn resolve_block<'tcx>( visitor: &mut ScopeResolutionVisitor<'tcx>, blk: &'tcx hir::Block<'tcx>, terminating: bool, ) { debug!("resolve_block(blk.hir_id={:?})", blk.hir_id); let prev_cx = visitor.cx; // We treat the tail expression in the block (if any) somewhat // differently from the statements. The issue has to do with // temporary lifetimes. Consider the following: // // quux({ // let inner = ... (&bar()) ...; // // (... (&foo()) ...) // (the tail expression) // }, other_argument()); // // Each of the statements within the block is a terminating // scope, and thus a temporary (e.g., the result of calling // `bar()` in the initializer expression for `let inner = ...;`) // will be cleaned up immediately after its corresponding // statement (i.e., `let inner = ...;`) executes. // // On the other hand, temporaries associated with evaluating the // tail expression for the block are assigned lifetimes so that // they will be cleaned up as part of the terminating scope // *surrounding* the block expression. Here, the terminating // scope for the block expression is the `quux(..)` call; so // those temporaries will only be cleaned up *after* both // `other_argument()` has run and also the call to `quux(..)` // itself has returned. visitor.enter_node_scope_with_dtor(blk.hir_id.local_id, terminating); visitor.cx.var_parent = visitor.cx.parent; { // This block should be kept approximately in sync with // `intravisit::walk_block`. (We manually walk the block, rather // than call `walk_block`, in order to maintain precise // index information.) for (i, statement) in blk.stmts.iter().enumerate() { match statement.kind { hir::StmtKind::Let(LetStmt { els: Some(els), .. }) => { // Let-else has a special lexical structure for variables. // First we take a checkpoint of the current scope context here. let mut prev_cx = visitor.cx; visitor.enter_scope(Scope { local_id: blk.hir_id.local_id, data: ScopeData::Remainder(FirstStatementIndex::new(i)), }); visitor.cx.var_parent = visitor.cx.parent; visitor.visit_stmt(statement); // We need to back out temporarily to the last enclosing scope // for the `else` block, so that even the temporaries receiving // extended lifetime will be dropped inside this block. // We are visiting the `else` block in this order so that // the sequence of visits agree with the order in the default // `hir::intravisit` visitor. mem::swap(&mut prev_cx, &mut visitor.cx); resolve_block(visitor, els, true); // From now on, we continue normally. visitor.cx = prev_cx; } hir::StmtKind::Let(..) => { // Each declaration introduces a subscope for bindings // introduced by the declaration; this subscope covers a // suffix of the block. Each subscope in a block has the // previous subscope in the block as a parent, except for // the first such subscope, which has the block itself as a // parent. visitor.enter_scope(Scope { local_id: blk.hir_id.local_id, data: ScopeData::Remainder(FirstStatementIndex::new(i)), }); visitor.cx.var_parent = visitor.cx.parent; visitor.visit_stmt(statement) } hir::StmtKind::Item(..) => { // Don't create scopes for items, since they won't be // lowered to THIR and MIR. } hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => visitor.visit_stmt(statement), } } if let Some(tail_expr) = blk.expr { let local_id = tail_expr.hir_id.local_id; let edition = blk.span.edition(); let terminating = edition.at_least_rust_2024(); if !terminating && !visitor .tcx .lints_that_dont_need_to_run(()) .contains(&lint::LintId::of(lint::builtin::TAIL_EXPR_DROP_ORDER)) { // If this temporary scope will be changing once the codebase adopts Rust 2024, // and we are linting about possible semantic changes that would result, // then record this node-id in the field `backwards_incompatible_scope` // for future reference. visitor .scope_tree .backwards_incompatible_scope .insert(local_id, Scope { local_id, data: ScopeData::Node }); } resolve_expr(visitor, tail_expr, terminating); } } visitor.cx = prev_cx; } /// Resolve a condition from an `if` expression or match guard so that it is a terminating scope /// if it doesn't contain `let` expressions. fn resolve_cond<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, cond: &'tcx hir::Expr<'tcx>) { let terminate = match cond.kind { // Temporaries for `let` expressions must live into the success branch. hir::ExprKind::Let(_) => false, // Logical operator chains are handled in `resolve_expr`. Since logical operator chains in // conditions are lowered to control-flow rather than boolean temporaries, there's no // temporary to drop for logical operators themselves. `resolve_expr` will also recursively // wrap any operands in terminating scopes, other than `let` expressions (which we shouldn't // terminate) and other logical operators (which don't need a terminating scope, since their // operands will be terminated). Any temporaries that would need to be dropped will be // dropped before we leave this operator's scope; terminating them here would be redundant. hir::ExprKind::Binary( source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. }, _, _, ) => false, // Otherwise, conditions should always drop their temporaries. _ => true, }; resolve_expr(visitor, cond, terminate); } fn resolve_arm<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, arm: &'tcx hir::Arm<'tcx>) { let prev_cx = visitor.cx; visitor.enter_node_scope_with_dtor(arm.hir_id.local_id, true); visitor.cx.var_parent = visitor.cx.parent; resolve_pat(visitor, arm.pat); if let Some(guard) = arm.guard { // We introduce a new scope to contain bindings and temporaries from `if let` guards, to // ensure they're dropped before the arm's pattern's bindings. This extends to the end of // the arm body and is the scope of its locals as well. visitor.enter_scope(Scope { local_id: arm.hir_id.local_id, data: ScopeData::MatchGuard }); visitor.cx.var_parent = visitor.cx.parent; resolve_cond(visitor, guard); } resolve_expr(visitor, arm.body, false); visitor.cx = prev_cx; } #[tracing::instrument(level = "debug", skip(visitor))] fn resolve_pat<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, pat: &'tcx hir::Pat<'tcx>) { // If this is a binding then record the lifetime of that binding. if let PatKind::Binding(..) = pat.kind { record_var_lifetime(visitor, pat.hir_id.local_id); } intravisit::walk_pat(visitor, pat); } fn resolve_stmt<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, stmt: &'tcx hir::Stmt<'tcx>) { let stmt_id = stmt.hir_id.local_id; debug!("resolve_stmt(stmt.id={:?})", stmt_id); if let hir::StmtKind::Let(LetStmt { super_: Some(_), .. }) = stmt.kind { // `super let` statement does not start a new scope, such that // // { super let x = identity(&temp()); &x }.method(); // // behaves exactly as // // (&identity(&temp()).method(); intravisit::walk_stmt(visitor, stmt); } else { // Every statement will clean up the temporaries created during // execution of that statement. Therefore each statement has an // associated destruction scope that represents the scope of the // statement plus its destructors, and thus the scope for which // regions referenced by the destructors need to survive. let prev_parent = visitor.cx.parent; visitor.enter_node_scope_with_dtor(stmt_id, true); intravisit::walk_stmt(visitor, stmt); visitor.cx.parent = prev_parent; } } #[tracing::instrument(level = "debug", skip(visitor))] fn resolve_expr<'tcx>( visitor: &mut ScopeResolutionVisitor<'tcx>, expr: &'tcx hir::Expr<'tcx>, terminating: bool, ) { let prev_cx = visitor.cx; visitor.enter_node_scope_with_dtor(expr.hir_id.local_id, terminating); match expr.kind { // Conditional or repeating scopes are always terminating // scopes, meaning that temporaries cannot outlive them. // This ensures fixed size stacks. hir::ExprKind::Binary( source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. }, left, right, ) => { // expr is a short circuiting operator (|| or &&). As its // functionality can't be overridden by traits, it always // processes bool sub-expressions. bools are Copy and thus we // can drop any temporaries in evaluation (read) order // (with the exception of potentially failing let expressions). // We achieve this by enclosing the operands in a terminating // scope, both the LHS and the RHS. // We optimize this a little in the presence of chains. // Chains like a && b && c get lowered to AND(AND(a, b), c). // In here, b and c are RHS, while a is the only LHS operand in // that chain. This holds true for longer chains as well: the // leading operand is always the only LHS operand that is not a // binop itself. Putting a binop like AND(a, b) into a // terminating scope is not useful, thus we only put the LHS // into a terminating scope if it is not a binop. let terminate_lhs = match left.kind { // let expressions can create temporaries that live on hir::ExprKind::Let(_) => false, // binops already drop their temporaries, so there is no // need to put them into a terminating scope. // This is purely an optimization to reduce the number of // terminating scopes. hir::ExprKind::Binary( source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. }, .., ) => false, // otherwise: mark it as terminating _ => true, }; // `Let` expressions (in a let-chain) shouldn't be terminating, as their temporaries // should live beyond the immediate expression let terminate_rhs = !matches!(right.kind, hir::ExprKind::Let(_)); resolve_expr(visitor, left, terminate_lhs); resolve_expr(visitor, right, terminate_rhs); } // Manually recurse over closures, because they are nested bodies // that share the parent environment. We handle const blocks in // `visit_inline_const`. hir::ExprKind::Closure(&hir::Closure { body, .. }) => { let body = visitor.tcx.hir_body(body); visitor.visit_body(body); } // Ordinarily, we can rely on the visit order of HIR intravisit // to correspond to the actual execution order of statements. // However, there's a weird corner case with compound assignment // operators (e.g. `a += b`). The evaluation order depends on whether // or not the operator is overloaded (e.g. whether or not a trait // like AddAssign is implemented). // // For primitive types (which, despite having a trait impl, don't actually // end up calling it), the evaluation order is right-to-left. For example, // the following code snippet: // // let y = &mut 0; // *{println!("LHS!"); y} += {println!("RHS!"); 1}; // // will print: // // RHS! // LHS! // // However, if the operator is used on a non-primitive type, // the evaluation order will be left-to-right, since the operator // actually get desugared to a method call. For example, this // nearly identical code snippet: // // let y = &mut String::new(); // *{println!("LHS String"); y} += {println!("RHS String"); "hi"}; // // will print: // LHS String // RHS String // // To determine the actual execution order, we need to perform // trait resolution. Fortunately, we don't need to know the actual execution order. hir::ExprKind::AssignOp(_, left_expr, right_expr) => { visitor.visit_expr(right_expr); visitor.visit_expr(left_expr); } hir::ExprKind::If(cond, then, Some(otherwise)) => { let expr_cx = visitor.cx; let data = if expr.span.at_least_rust_2024() { ScopeData::IfThenRescope } else { ScopeData::IfThen }; visitor.enter_scope(Scope { local_id: then.hir_id.local_id, data }); visitor.cx.var_parent = visitor.cx.parent; resolve_cond(visitor, cond); resolve_expr(visitor, then, true); visitor.cx = expr_cx; resolve_expr(visitor, otherwise, true); } hir::ExprKind::If(cond, then, None) => { let expr_cx = visitor.cx; let data = if expr.span.at_least_rust_2024() { ScopeData::IfThenRescope } else { ScopeData::IfThen }; visitor.enter_scope(Scope { local_id: then.hir_id.local_id, data }); visitor.cx.var_parent = visitor.cx.parent; resolve_cond(visitor, cond); resolve_expr(visitor, then, true); visitor.cx = expr_cx; } hir::ExprKind::Loop(body, _, _, _) => { resolve_block(visitor, body, true); } hir::ExprKind::DropTemps(expr) => { // `DropTemps(expr)` does not denote a conditional scope. // Rather, we want to achieve the same behavior as `{ let _t = expr; _t }`. resolve_expr(visitor, expr, true); } _ => intravisit::walk_expr(visitor, expr), } visitor.cx = prev_cx; } #[derive(Copy, Clone, PartialEq, Eq, Debug)] enum LetKind { Regular, Super, } fn resolve_local<'tcx>( visitor: &mut ScopeResolutionVisitor<'tcx>, pat: Option<&'tcx hir::Pat<'tcx>>, init: Option<&'tcx hir::Expr<'tcx>>, let_kind: LetKind, ) { debug!("resolve_local(pat={:?}, init={:?}, let_kind={:?})", pat, init, let_kind); // As an exception to the normal rules governing temporary // lifetimes, initializers in a let have a temporary lifetime // of the enclosing block. This means that e.g., a program // like the following is legal: // // let ref x = HashMap::new(); // // Because the hash map will be freed in the enclosing block. // // We express the rules more formally based on 3 grammars (defined // fully in the helpers below that implement them): // // 1. `E&`, which matches expressions like `&` that // own a pointer into the stack. // // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref // y)` that produce ref bindings into the value they are // matched against or something (at least partially) owned by // the value they are matched against. (By partially owned, // I mean that creating a binding into a ref-counted or managed value // would still count.) // // 3. `ET`, which matches both rvalues like `foo()` as well as places // based on rvalues like `foo().x[2].y`. // // A subexpression `` that appears in a let initializer // `let pat [: ty] = expr` has an extended temporary lifetime if // any of the following conditions are met: // // A. `pat` matches `P&` and `expr` matches `ET` // (covers cases where `pat` creates ref bindings into an rvalue // produced by `expr`) // B. `ty` is a borrowed pointer and `expr` matches `ET` // (covers cases where coercion creates a borrow) // C. `expr` matches `E&` // (covers cases `expr` borrows an rvalue that is then assigned // to memory (at least partially) owned by the binding) // // Here are some examples hopefully giving an intuition where each // rule comes into play and why: // // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)` // would have an extended lifetime, but not `foo()`. // // Rule B. `let x = &foo().x`. The rvalue `foo()` would have extended // lifetime. // // In some cases, multiple rules may apply (though not to the same // rvalue). For example: // // let ref x = [&a(), &b()]; // // Here, the expression `[...]` has an extended lifetime due to rule // A, but the inner rvalues `a()` and `b()` have an extended lifetime // due to rule C. let extend_initializer = match let_kind { LetKind::Regular => true, LetKind::Super if let Some(scope) = visitor.extended_super_lets.remove(&pat.unwrap().hir_id.local_id) => { // This expression was lifetime-extended by a parent let binding. E.g. // // let a = { // super let b = temp(); // &b // }; // // (Which needs to behave exactly as: let a = &temp();) // // Processing of `let a` will have already decided to extend the lifetime of this // `super let` to its own var_scope. We use that scope. visitor.cx.var_parent = scope; // Extend temporaries to live in the same scope as the parent `let`'s bindings. true } LetKind::Super => { // This `super let` is not subject to lifetime extension from a parent let binding. E.g. // // identity({ super let x = temp(); &x }).method(); // // (Which needs to behave exactly as: identity(&temp()).method();) // // Iterate up to the enclosing destruction scope to find the same scope that will also // be used for the result of the block itself. if let Some(inner_scope) = visitor.cx.var_parent { (visitor.cx.var_parent, _) = visitor.scope_tree.default_temporary_scope(inner_scope) } // Don't lifetime-extend child `super let`s or block tail expressions' temporaries in // the initializer when this `super let` is not itself extended by a parent `let` // (#145784). Block tail expressions are temporary drop scopes in Editions 2024 and // later, their temps shouldn't outlive the block in e.g. `f(pin!({ &temp() }))`. false } }; if let Some(expr) = init && extend_initializer { record_rvalue_scope_if_borrow_expr(visitor, expr, visitor.cx.var_parent); if let Some(pat) = pat { if is_binding_pat(pat) { visitor.scope_tree.record_rvalue_candidate( expr.hir_id, RvalueCandidate { target: expr.hir_id.local_id, lifetime: visitor.cx.var_parent, }, ); } } } // Make sure we visit the initializer first. // The correct order, as shared between drop_ranges and intravisitor, // is to walk initializer, followed by pattern bindings, finally followed by the `else` block. if let Some(expr) = init { visitor.visit_expr(expr); } if let Some(pat) = pat { visitor.visit_pat(pat); } /// Returns `true` if `pat` match the `P&` non-terminal. /// /// ```text /// P& = ref X /// | StructName { ..., P&, ... } /// | VariantName(..., P&, ...) /// | [ ..., P&, ... ] /// | ( ..., P&, ... ) /// | ... "|" P& "|" ... /// | box P& /// | P& if ... /// ``` fn is_binding_pat(pat: &hir::Pat<'_>) -> bool { // Note that the code below looks for *explicit* refs only, that is, it won't // know about *implicit* refs as introduced in #42640. // // This is not a problem. For example, consider // // let (ref x, ref y) = (Foo { .. }, Bar { .. }); // // Due to the explicit refs on the left hand side, the below code would signal // that the temporary value on the right hand side should live until the end of // the enclosing block (as opposed to being dropped after the let is complete). // // To create an implicit ref, however, you must have a borrowed value on the RHS // already, as in this example (which won't compile before #42640): // // let Foo { x, .. } = &Foo { x: ..., ... }; // // in place of // // let Foo { ref x, .. } = Foo { ... }; // // In the former case (the implicit ref version), the temporary is created by the // & expression, and its lifetime would be extended to the end of the block (due // to a different rule, not the below code). match pat.kind { PatKind::Binding(hir::BindingMode(hir::ByRef::Yes(_), _), ..) => true, PatKind::Struct(_, field_pats, _) => field_pats.iter().any(|fp| is_binding_pat(fp.pat)), PatKind::Slice(pats1, pats2, pats3) => { pats1.iter().any(|p| is_binding_pat(p)) || pats2.iter().any(|p| is_binding_pat(p)) || pats3.iter().any(|p| is_binding_pat(p)) } PatKind::Or(subpats) | PatKind::TupleStruct(_, subpats, _) | PatKind::Tuple(subpats, _) => subpats.iter().any(|p| is_binding_pat(p)), PatKind::Box(subpat) | PatKind::Deref(subpat) | PatKind::Guard(subpat, _) => { is_binding_pat(subpat) } PatKind::Ref(_, _) | PatKind::Binding(hir::BindingMode(hir::ByRef::No, _), ..) | PatKind::Missing | PatKind::Wild | PatKind::Never | PatKind::Expr(_) | PatKind::Range(_, _, _) | PatKind::Err(_) => false, } } /// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate: /// /// ```text /// E& = & ET /// | StructName { ..., f: E&, ... } /// | [ ..., E&, ... ] /// | ( ..., E&, ... ) /// | {...; E&} /// | { super let ... = E&; ... } /// | if _ { ...; E& } else { ...; E& } /// | match _ { ..., _ => E&, ... } /// | box E& /// | E& as ... /// | ( E& ) /// ``` fn record_rvalue_scope_if_borrow_expr<'tcx>( visitor: &mut ScopeResolutionVisitor<'tcx>, expr: &hir::Expr<'_>, blk_id: Option, ) { match expr.kind { hir::ExprKind::AddrOf(_, _, subexpr) => { record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id); visitor.scope_tree.record_rvalue_candidate( subexpr.hir_id, RvalueCandidate { target: subexpr.hir_id.local_id, lifetime: blk_id }, ); } hir::ExprKind::Struct(_, fields, _) => { for field in fields { record_rvalue_scope_if_borrow_expr(visitor, field.expr, blk_id); } } hir::ExprKind::Array(subexprs) | hir::ExprKind::Tup(subexprs) => { for subexpr in subexprs { record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id); } } hir::ExprKind::Cast(subexpr, _) => { record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id) } hir::ExprKind::Block(block, _) => { if let Some(subexpr) = block.expr { record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id); } for stmt in block.stmts { if let hir::StmtKind::Let(local) = stmt.kind && let Some(_) = local.super_ { visitor.extended_super_lets.insert(local.pat.hir_id.local_id, blk_id); } } } hir::ExprKind::If(_, then_block, else_block) => { record_rvalue_scope_if_borrow_expr(visitor, then_block, blk_id); if let Some(else_block) = else_block { record_rvalue_scope_if_borrow_expr(visitor, else_block, blk_id); } } hir::ExprKind::Match(_, arms, _) => { for arm in arms { record_rvalue_scope_if_borrow_expr(visitor, arm.body, blk_id); } } hir::ExprKind::Call(func, args) => { // Recurse into tuple constructors, such as `Some(&temp())`. // // That way, there is no difference between `Some(..)` and `Some { 0: .. }`, // even though the former is syntactically a function call. if let hir::ExprKind::Path(path) = &func.kind && let hir::QPath::Resolved(None, path) = path && let Res::SelfCtor(_) | Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) = path.res { for arg in args { record_rvalue_scope_if_borrow_expr(visitor, arg, blk_id); } } } _ => {} } } } impl<'tcx> ScopeResolutionVisitor<'tcx> { /// Records the current parent (if any) as the parent of `child_scope`. fn record_child_scope(&mut self, child_scope: Scope) { let parent = self.cx.parent; self.scope_tree.record_scope_parent(child_scope, parent); } /// Records the current parent (if any) as the parent of `child_scope`, /// and sets `child_scope` as the new current parent. fn enter_scope(&mut self, child_scope: Scope) { self.record_child_scope(child_scope); self.cx.parent = Some(child_scope); } fn enter_node_scope_with_dtor(&mut self, id: hir::ItemLocalId, terminating: bool) { // If node was previously marked as a terminating scope during the // recursive visit of its parent node in the HIR, then we need to // account for the destruction scope representing the scope of // the destructors that run immediately after it completes. if terminating { self.enter_scope(Scope { local_id: id, data: ScopeData::Destruction }); } self.enter_scope(Scope { local_id: id, data: ScopeData::Node }); } fn enter_body(&mut self, hir_id: hir::HirId, f: impl FnOnce(&mut Self)) { let outer_cx = self.cx; self.enter_scope(Scope { local_id: hir_id.local_id, data: ScopeData::CallSite }); self.enter_scope(Scope { local_id: hir_id.local_id, data: ScopeData::Arguments }); f(self); // Restore context we had at the start. self.cx = outer_cx; } } impl<'tcx> Visitor<'tcx> for ScopeResolutionVisitor<'tcx> { fn visit_block(&mut self, b: &'tcx Block<'tcx>) { resolve_block(self, b, false); } fn visit_body(&mut self, body: &hir::Body<'tcx>) { let body_id = body.id(); let owner_id = self.tcx.hir_body_owner_def_id(body_id); debug!( "visit_body(id={:?}, span={:?}, body.id={:?}, cx.parent={:?})", owner_id, self.tcx.sess.source_map().span_to_diagnostic_string(body.value.span), body_id, self.cx.parent ); self.enter_body(body.value.hir_id, |this| { if this.tcx.hir_body_owner_kind(owner_id).is_fn_or_closure() { // The arguments and `self` are parented to the fn. this.cx.var_parent = this.cx.parent; for param in body.params { this.visit_pat(param.pat); } // The body of the every fn is a root scope. resolve_expr(this, body.value, true); } else { // Only functions have an outer terminating (drop) scope, while // temporaries in constant initializers may be 'static, but only // according to rvalue lifetime semantics, using the same // syntactical rules used for let initializers. // // e.g., in `let x = &f();`, the temporary holding the result from // the `f()` call lives for the entirety of the surrounding block. // // Similarly, `const X: ... = &f();` would have the result of `f()` // live for `'static`, implying (if Drop restrictions on constants // ever get lifted) that the value *could* have a destructor, but // it'd get leaked instead of the destructor running during the // evaluation of `X` (if at all allowed by CTFE). // // However, `const Y: ... = g(&f());`, like `let y = g(&f());`, // would *not* let the `f()` temporary escape into an outer scope // (i.e., `'static`), which means that after `g` returns, it drops, // and all the associated destruction scope rules apply. this.cx.var_parent = None; this.enter_scope(Scope { local_id: body.value.hir_id.local_id, data: ScopeData::Destruction, }); resolve_local(this, None, Some(body.value), LetKind::Regular); } }) } fn visit_arm(&mut self, a: &'tcx Arm<'tcx>) { resolve_arm(self, a); } fn visit_pat(&mut self, p: &'tcx Pat<'tcx>) { resolve_pat(self, p); } fn visit_stmt(&mut self, s: &'tcx Stmt<'tcx>) { resolve_stmt(self, s); } fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) { resolve_expr(self, ex, false); } fn visit_local(&mut self, l: &'tcx LetStmt<'tcx>) { let let_kind = match l.super_ { Some(_) => LetKind::Super, None => LetKind::Regular, }; resolve_local(self, Some(l.pat), l.init, let_kind); } fn visit_inline_const(&mut self, c: &'tcx hir::ConstBlock) { let body = self.tcx.hir_body(c.body); self.visit_body(body); } } /// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body; /// in the case of closures, this will be redirected to the enclosing function. /// /// Performance: This is a query rather than a simple function to enable /// re-use in incremental scenarios. We may sometimes need to rerun the /// type checker even when the HIR hasn't changed, and in those cases /// we can avoid reconstructing the region scope tree. pub(crate) fn region_scope_tree(tcx: TyCtxt<'_>, def_id: DefId) -> &ScopeTree { let typeck_root_def_id = tcx.typeck_root_def_id(def_id); if typeck_root_def_id != def_id { return tcx.region_scope_tree(typeck_root_def_id); } let scope_tree = if let Some(body) = tcx.hir_maybe_body_owned_by(def_id.expect_local()) { let mut visitor = ScopeResolutionVisitor { tcx, scope_tree: ScopeTree::default(), cx: Context { parent: None, var_parent: None }, extended_super_lets: Default::default(), }; visitor.scope_tree.root_body = Some(body.value.hir_id); visitor.visit_body(&body); visitor.scope_tree } else { ScopeTree::default() }; tcx.arena.alloc(scope_tree) }