// Coherence phase // // The job of the coherence phase of typechecking is to ensure that // each trait has at most one implementation for each type. This is // done by the orphan and overlap modules. Then we build up various // mappings. That mapping code resides here. use rustc_errors::codes::*; use rustc_errors::struct_span_code_err; use rustc_hir::LangItem; use rustc_hir::def_id::{DefId, LocalDefId}; use rustc_middle::query::Providers; use rustc_middle::ty::{self, TyCtxt, TypeVisitableExt, elaborate}; use rustc_session::parse::feature_err; use rustc_span::{ErrorGuaranteed, sym}; use tracing::debug; use crate::check::always_applicable; use crate::errors; mod builtin; mod inherent_impls; mod inherent_impls_overlap; mod orphan; mod unsafety; fn check_impl<'tcx>( tcx: TyCtxt<'tcx>, impl_def_id: LocalDefId, trait_ref: ty::TraitRef<'tcx>, trait_def: &'tcx ty::TraitDef, polarity: ty::ImplPolarity, ) -> Result<(), ErrorGuaranteed> { debug!( "(checking implementation) adding impl for trait '{:?}', item '{}'", trait_ref, tcx.def_path_str(impl_def_id) ); // Skip impls where one of the self type is an error type. // This occurs with e.g., resolve failures (#30589). if trait_ref.references_error() { return Ok(()); } enforce_trait_manually_implementable(tcx, impl_def_id, trait_ref.def_id, trait_def) .and(enforce_empty_impls_for_marker_traits(tcx, impl_def_id, trait_ref.def_id, trait_def)) .and(always_applicable::check_negative_auto_trait_impl( tcx, impl_def_id, trait_ref, polarity, )) } fn enforce_trait_manually_implementable( tcx: TyCtxt<'_>, impl_def_id: LocalDefId, trait_def_id: DefId, trait_def: &ty::TraitDef, ) -> Result<(), ErrorGuaranteed> { let impl_header_span = tcx.def_span(impl_def_id); if tcx.is_lang_item(trait_def_id, LangItem::Freeze) && !tcx.features().freeze_impls() { feature_err( &tcx.sess, sym::freeze_impls, impl_header_span, "explicit impls for the `Freeze` trait are not permitted", ) .with_span_label(impl_header_span, format!("impl of `Freeze` not allowed")) .emit(); } // Disallow *all* explicit impls of traits marked `#[rustc_deny_explicit_impl]` if trait_def.deny_explicit_impl { let trait_name = tcx.item_name(trait_def_id); let mut err = struct_span_code_err!( tcx.dcx(), impl_header_span, E0322, "explicit impls for the `{trait_name}` trait are not permitted" ); err.span_label(impl_header_span, format!("impl of `{trait_name}` not allowed")); // Maintain explicit error code for `Unsize`, since it has a useful // explanation about using `CoerceUnsized` instead. if tcx.is_lang_item(trait_def_id, LangItem::Unsize) { err.code(E0328); } return Err(err.emit()); } if let ty::trait_def::TraitSpecializationKind::AlwaysApplicable = trait_def.specialization_kind { if !tcx.features().specialization() && !tcx.features().min_specialization() && !impl_header_span.allows_unstable(sym::specialization) && !impl_header_span.allows_unstable(sym::min_specialization) { return Err(tcx.dcx().emit_err(errors::SpecializationTrait { span: impl_header_span })); } } Ok(()) } /// We allow impls of marker traits to overlap, so they can't override impls /// as that could make it ambiguous which associated item to use. fn enforce_empty_impls_for_marker_traits( tcx: TyCtxt<'_>, impl_def_id: LocalDefId, trait_def_id: DefId, trait_def: &ty::TraitDef, ) -> Result<(), ErrorGuaranteed> { if !trait_def.is_marker { return Ok(()); } if tcx.associated_item_def_ids(trait_def_id).is_empty() { return Ok(()); } Err(struct_span_code_err!( tcx.dcx(), tcx.def_span(impl_def_id), E0715, "impls for marker traits cannot contain items" ) .emit()) } pub(crate) fn provide(providers: &mut Providers) { use self::builtin::coerce_unsized_info; use self::inherent_impls::{ crate_incoherent_impls, crate_inherent_impls, crate_inherent_impls_validity_check, inherent_impls, }; use self::inherent_impls_overlap::crate_inherent_impls_overlap_check; use self::orphan::orphan_check_impl; *providers = Providers { coherent_trait, crate_inherent_impls, crate_incoherent_impls, inherent_impls, crate_inherent_impls_validity_check, crate_inherent_impls_overlap_check, coerce_unsized_info, orphan_check_impl, ..*providers }; } fn coherent_trait(tcx: TyCtxt<'_>, def_id: DefId) -> Result<(), ErrorGuaranteed> { let impls = tcx.local_trait_impls(def_id); // If there are no impls for the trait, then "all impls" are trivially coherent and we won't check anything // anyway. Thus we bail out even before the specialization graph, avoiding the dep_graph edge. if impls.is_empty() { return Ok(()); } // Trigger building the specialization graph for the trait. This will detect and report any // overlap errors. let mut res = tcx.ensure_ok().specialization_graph_of(def_id); for &impl_def_id in impls { let impl_header = tcx.impl_trait_header(impl_def_id).unwrap(); let trait_ref = impl_header.trait_ref.instantiate_identity(); let trait_def = tcx.trait_def(trait_ref.def_id); res = res .and(check_impl(tcx, impl_def_id, trait_ref, trait_def, impl_header.polarity)) .and(check_object_overlap(tcx, impl_def_id, trait_ref)) .and(unsafety::check_item(tcx, impl_def_id, impl_header, trait_def)) .and(tcx.ensure_ok().orphan_check_impl(impl_def_id)) .and(builtin::check_trait(tcx, def_id, impl_def_id, impl_header)); } res } /// Checks whether an impl overlaps with the automatic `impl Trait for dyn Trait`. fn check_object_overlap<'tcx>( tcx: TyCtxt<'tcx>, impl_def_id: LocalDefId, trait_ref: ty::TraitRef<'tcx>, ) -> Result<(), ErrorGuaranteed> { let trait_def_id = trait_ref.def_id; if trait_ref.references_error() { debug!("coherence: skipping impl {:?} with error {:?}", impl_def_id, trait_ref); return Ok(()); } // check for overlap with the automatic `impl Trait for dyn Trait` if let ty::Dynamic(data, ..) = trait_ref.self_ty().kind() { // This is something like `impl Trait1 for Trait2`. Illegal if // Trait1 is a supertrait of Trait2 or Trait2 is not dyn compatible. let component_def_ids = data.iter().flat_map(|predicate| { match predicate.skip_binder() { ty::ExistentialPredicate::Trait(tr) => Some(tr.def_id), ty::ExistentialPredicate::AutoTrait(def_id) => Some(def_id), // An associated type projection necessarily comes with // an additional `Trait` requirement. ty::ExistentialPredicate::Projection(..) => None, } }); for component_def_id in component_def_ids { if !tcx.is_dyn_compatible(component_def_id) { // This is a WF error tested by `coherence-impl-trait-for-trait-dyn-compatible.rs`. } else { let mut supertrait_def_ids = elaborate::supertrait_def_ids(tcx, component_def_id); if supertrait_def_ids .any(|d| d == trait_def_id && tcx.trait_def(d).implement_via_object) { let span = tcx.def_span(impl_def_id); return Err(struct_span_code_err!( tcx.dcx(), span, E0371, "the object type `{}` automatically implements the trait `{}`", trait_ref.self_ty(), tcx.def_path_str(trait_def_id) ) .with_span_label( span, format!( "`{}` automatically implements trait `{}`", trait_ref.self_ty(), tcx.def_path_str(trait_def_id) ), ) .emit()); } } } } Ok(()) }