//! Some lints that are only useful in the compiler or crates that use compiler internals, such as //! Clippy. use rustc_hir::def::Res; use rustc_hir::def_id::DefId; use rustc_hir::{Expr, ExprKind, HirId}; use rustc_middle::ty::{self, GenericArgsRef, PredicatePolarity, Ty}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::hygiene::{ExpnKind, MacroKind}; use rustc_span::{Span, sym}; use tracing::debug; use {rustc_ast as ast, rustc_hir as hir}; use crate::lints::{ BadOptAccessDiag, DefaultHashTypesDiag, DiagOutOfImpl, LintPassByHand, NonGlobImportTypeIrInherent, QueryInstability, QueryUntracked, SpanUseEqCtxtDiag, SymbolInternStringLiteralDiag, TyQualified, TykindDiag, TykindKind, TypeIrDirectUse, TypeIrInherentUsage, TypeIrTraitUsage, UntranslatableDiag, }; use crate::{EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext}; declare_tool_lint! { /// The `default_hash_type` lint detects use of [`std::collections::HashMap`] and /// [`std::collections::HashSet`], suggesting the use of `FxHashMap`/`FxHashSet`. /// /// This can help as `FxHasher` can perform better than the default hasher. DOS protection is /// not required as input is assumed to be trusted. pub rustc::DEFAULT_HASH_TYPES, Allow, "forbid HashMap and HashSet and suggest the FxHash* variants", report_in_external_macro: true } declare_lint_pass!(DefaultHashTypes => [DEFAULT_HASH_TYPES]); impl LateLintPass<'_> for DefaultHashTypes { fn check_path(&mut self, cx: &LateContext<'_>, path: &hir::Path<'_>, hir_id: HirId) { let Res::Def(rustc_hir::def::DefKind::Struct, def_id) = path.res else { return }; if matches!( cx.tcx.hir_node(hir_id), hir::Node::Item(hir::Item { kind: hir::ItemKind::Use(..), .. }) ) { // Don't lint imports, only actual usages. return; } let preferred = match cx.tcx.get_diagnostic_name(def_id) { Some(sym::HashMap) => "FxHashMap", Some(sym::HashSet) => "FxHashSet", _ => return, }; cx.emit_span_lint( DEFAULT_HASH_TYPES, path.span, DefaultHashTypesDiag { preferred, used: cx.tcx.item_name(def_id) }, ); } } declare_tool_lint! { /// The `potential_query_instability` lint detects use of methods which can lead to /// potential query instability, such as iterating over a `HashMap`. /// /// Due to the [incremental compilation](https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html) model, /// queries must return deterministic, stable results. `HashMap` iteration order can change /// between compilations, and will introduce instability if query results expose the order. pub rustc::POTENTIAL_QUERY_INSTABILITY, Allow, "require explicit opt-in when using potentially unstable methods or functions", report_in_external_macro: true } declare_tool_lint! { /// The `untracked_query_information` lint detects use of methods which leak information not /// tracked by the query system, such as whether a `Steal` value has already been stolen. In /// order not to break incremental compilation, such methods must be used very carefully or not /// at all. pub rustc::UNTRACKED_QUERY_INFORMATION, Allow, "require explicit opt-in when accessing information not tracked by the query system", report_in_external_macro: true } declare_lint_pass!(QueryStability => [POTENTIAL_QUERY_INSTABILITY, UNTRACKED_QUERY_INFORMATION]); impl<'tcx> LateLintPass<'tcx> for QueryStability { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'tcx>) { if let Some((callee_def_id, span, generic_args, _recv, _args)) = get_callee_span_generic_args_and_args(cx, expr) && let Ok(Some(instance)) = ty::Instance::try_resolve(cx.tcx, cx.typing_env(), callee_def_id, generic_args) { let def_id = instance.def_id(); if cx.tcx.has_attr(def_id, sym::rustc_lint_query_instability) { cx.emit_span_lint( POTENTIAL_QUERY_INSTABILITY, span, QueryInstability { query: cx.tcx.item_name(def_id) }, ); } else if has_unstable_into_iter_predicate(cx, callee_def_id, generic_args) { let call_span = span.with_hi(expr.span.hi()); cx.emit_span_lint( POTENTIAL_QUERY_INSTABILITY, call_span, QueryInstability { query: sym::into_iter }, ); } if cx.tcx.has_attr(def_id, sym::rustc_lint_untracked_query_information) { cx.emit_span_lint( UNTRACKED_QUERY_INFORMATION, span, QueryUntracked { method: cx.tcx.item_name(def_id) }, ); } } } } fn has_unstable_into_iter_predicate<'tcx>( cx: &LateContext<'tcx>, callee_def_id: DefId, generic_args: GenericArgsRef<'tcx>, ) -> bool { let Some(into_iterator_def_id) = cx.tcx.get_diagnostic_item(sym::IntoIterator) else { return false; }; let Some(into_iter_fn_def_id) = cx.tcx.lang_items().into_iter_fn() else { return false; }; let predicates = cx.tcx.predicates_of(callee_def_id).instantiate(cx.tcx, generic_args); for (predicate, _) in predicates { let Some(trait_pred) = predicate.as_trait_clause() else { continue; }; if trait_pred.def_id() != into_iterator_def_id || trait_pred.polarity() != PredicatePolarity::Positive { continue; } // `IntoIterator::into_iter` has no additional method args. let into_iter_fn_args = cx.tcx.instantiate_bound_regions_with_erased(trait_pred).trait_ref.args; let Ok(Some(instance)) = ty::Instance::try_resolve( cx.tcx, cx.typing_env(), into_iter_fn_def_id, into_iter_fn_args, ) else { continue; }; // Does the input type's `IntoIterator` implementation have the // `rustc_lint_query_instability` attribute on its `into_iter` method? if cx.tcx.has_attr(instance.def_id(), sym::rustc_lint_query_instability) { return true; } } false } /// Checks whether an expression is a function or method call and, if so, returns its `DefId`, /// `Span`, `GenericArgs`, and arguments. This is a slight augmentation of a similarly named Clippy /// function, `get_callee_generic_args_and_args`. fn get_callee_span_generic_args_and_args<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx Expr<'tcx>, ) -> Option<(DefId, Span, GenericArgsRef<'tcx>, Option<&'tcx Expr<'tcx>>, &'tcx [Expr<'tcx>])> { if let ExprKind::Call(callee, args) = expr.kind && let callee_ty = cx.typeck_results().expr_ty(callee) && let ty::FnDef(callee_def_id, generic_args) = callee_ty.kind() { return Some((*callee_def_id, callee.span, generic_args, None, args)); } if let ExprKind::MethodCall(segment, recv, args, _) = expr.kind && let Some(method_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id) { let generic_args = cx.typeck_results().node_args(expr.hir_id); return Some((method_def_id, segment.ident.span, generic_args, Some(recv), args)); } None } declare_tool_lint! { /// The `usage_of_ty_tykind` lint detects usages of `ty::TyKind::`, /// where `ty::` would suffice. pub rustc::USAGE_OF_TY_TYKIND, Allow, "usage of `ty::TyKind` outside of the `ty::sty` module", report_in_external_macro: true } declare_tool_lint! { /// The `usage_of_qualified_ty` lint detects usages of `ty::TyKind`, /// where `Ty` should be used instead. pub rustc::USAGE_OF_QUALIFIED_TY, Allow, "using `ty::{Ty,TyCtxt}` instead of importing it", report_in_external_macro: true } declare_lint_pass!(TyTyKind => [ USAGE_OF_TY_TYKIND, USAGE_OF_QUALIFIED_TY, ]); impl<'tcx> LateLintPass<'tcx> for TyTyKind { fn check_path( &mut self, cx: &LateContext<'tcx>, path: &rustc_hir::Path<'tcx>, _: rustc_hir::HirId, ) { if let Some(segment) = path.segments.iter().nth_back(1) && lint_ty_kind_usage(cx, &segment.res) { let span = path.span.with_hi(segment.args.map_or(segment.ident.span, |a| a.span_ext).hi()); cx.emit_span_lint(USAGE_OF_TY_TYKIND, path.span, TykindKind { suggestion: span }); } } fn check_ty(&mut self, cx: &LateContext<'_>, ty: &'tcx hir::Ty<'tcx, hir::AmbigArg>) { match &ty.kind { hir::TyKind::Path(hir::QPath::Resolved(_, path)) => { if lint_ty_kind_usage(cx, &path.res) { let span = match cx.tcx.parent_hir_node(ty.hir_id) { hir::Node::PatExpr(hir::PatExpr { kind: hir::PatExprKind::Path(qpath), .. }) | hir::Node::Pat(hir::Pat { kind: hir::PatKind::TupleStruct(qpath, ..) | hir::PatKind::Struct(qpath, ..), .. }) | hir::Node::Expr( hir::Expr { kind: hir::ExprKind::Path(qpath), .. } | &hir::Expr { kind: hir::ExprKind::Struct(qpath, ..), .. }, ) => { if let hir::QPath::TypeRelative(qpath_ty, ..) = qpath && qpath_ty.hir_id == ty.hir_id { Some(path.span) } else { None } } _ => None, }; match span { Some(span) => { cx.emit_span_lint( USAGE_OF_TY_TYKIND, path.span, TykindKind { suggestion: span }, ); } None => cx.emit_span_lint(USAGE_OF_TY_TYKIND, path.span, TykindDiag), } } else if !ty.span.from_expansion() && path.segments.len() > 1 && let Some(ty) = is_ty_or_ty_ctxt(cx, path) { cx.emit_span_lint( USAGE_OF_QUALIFIED_TY, path.span, TyQualified { ty, suggestion: path.span }, ); } } _ => {} } } } fn lint_ty_kind_usage(cx: &LateContext<'_>, res: &Res) -> bool { if let Some(did) = res.opt_def_id() { cx.tcx.is_diagnostic_item(sym::TyKind, did) || cx.tcx.is_diagnostic_item(sym::IrTyKind, did) } else { false } } fn is_ty_or_ty_ctxt(cx: &LateContext<'_>, path: &hir::Path<'_>) -> Option { match &path.res { Res::Def(_, def_id) => { if let Some(name @ (sym::Ty | sym::TyCtxt)) = cx.tcx.get_diagnostic_name(*def_id) { return Some(format!("{}{}", name, gen_args(path.segments.last().unwrap()))); } } // Only lint on `&Ty` and `&TyCtxt` if it is used outside of a trait. Res::SelfTyAlias { alias_to: did, is_trait_impl: false, .. } => { if let ty::Adt(adt, args) = cx.tcx.type_of(did).instantiate_identity().kind() && let Some(name @ (sym::Ty | sym::TyCtxt)) = cx.tcx.get_diagnostic_name(adt.did()) { return Some(format!("{}<{}>", name, args[0])); } } _ => (), } None } fn gen_args(segment: &hir::PathSegment<'_>) -> String { if let Some(args) = &segment.args { let lifetimes = args .args .iter() .filter_map(|arg| { if let hir::GenericArg::Lifetime(lt) = arg { Some(lt.ident.to_string()) } else { None } }) .collect::>(); if !lifetimes.is_empty() { return format!("<{}>", lifetimes.join(", ")); } } String::new() } declare_tool_lint! { /// The `non_glob_import_of_type_ir_inherent_item` lint detects /// non-glob imports of module `rustc_type_ir::inherent`. pub rustc::NON_GLOB_IMPORT_OF_TYPE_IR_INHERENT, Allow, "non-glob import of `rustc_type_ir::inherent`", report_in_external_macro: true } declare_tool_lint! { /// The `usage_of_type_ir_inherent` lint detects usage of `rustc_type_ir::inherent`. /// /// This module should only be used within the trait solver. pub rustc::USAGE_OF_TYPE_IR_INHERENT, Allow, "usage `rustc_type_ir::inherent` outside of trait system", report_in_external_macro: true } declare_tool_lint! { /// The `usage_of_type_ir_traits` lint detects usage of `rustc_type_ir::Interner`, /// or `rustc_infer::InferCtxtLike`. /// /// Methods of this trait should only be used within the type system abstraction layer, /// and in the generic next trait solver implementation. Look for an analogously named /// method on `TyCtxt` or `InferCtxt` (respectively). pub rustc::USAGE_OF_TYPE_IR_TRAITS, Allow, "usage `rustc_type_ir`-specific abstraction traits outside of trait system", report_in_external_macro: true } declare_tool_lint! { /// The `direct_use_of_rustc_type_ir` lint detects usage of `rustc_type_ir`. /// /// This module should only be used within the trait solver and some desirable /// crates like rustc_middle. pub rustc::DIRECT_USE_OF_RUSTC_TYPE_IR, Allow, "usage `rustc_type_ir` abstraction outside of trait system", report_in_external_macro: true } declare_lint_pass!(TypeIr => [DIRECT_USE_OF_RUSTC_TYPE_IR, NON_GLOB_IMPORT_OF_TYPE_IR_INHERENT, USAGE_OF_TYPE_IR_INHERENT, USAGE_OF_TYPE_IR_TRAITS]); impl<'tcx> LateLintPass<'tcx> for TypeIr { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) { let res_def_id = match expr.kind { hir::ExprKind::Path(hir::QPath::Resolved(_, path)) => path.res.opt_def_id(), hir::ExprKind::Path(hir::QPath::TypeRelative(..)) | hir::ExprKind::MethodCall(..) => { cx.typeck_results().type_dependent_def_id(expr.hir_id) } _ => return, }; let Some(res_def_id) = res_def_id else { return; }; if let Some(assoc_item) = cx.tcx.opt_associated_item(res_def_id) && let Some(trait_def_id) = assoc_item.trait_container(cx.tcx) && (cx.tcx.is_diagnostic_item(sym::type_ir_interner, trait_def_id) | cx.tcx.is_diagnostic_item(sym::type_ir_infer_ctxt_like, trait_def_id)) { cx.emit_span_lint(USAGE_OF_TYPE_IR_TRAITS, expr.span, TypeIrTraitUsage); } } fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) { let rustc_hir::ItemKind::Use(path, kind) = item.kind else { return }; let is_mod_inherent = |res: Res| { res.opt_def_id() .is_some_and(|def_id| cx.tcx.is_diagnostic_item(sym::type_ir_inherent, def_id)) }; // Path segments except for the final. if let Some(seg) = path.segments.iter().find(|seg| is_mod_inherent(seg.res)) { cx.emit_span_lint(USAGE_OF_TYPE_IR_INHERENT, seg.ident.span, TypeIrInherentUsage); } // Final path resolutions, like `use rustc_type_ir::inherent` else if let Some(type_ns) = path.res.type_ns && is_mod_inherent(type_ns) { cx.emit_span_lint( USAGE_OF_TYPE_IR_INHERENT, path.segments.last().unwrap().ident.span, TypeIrInherentUsage, ); } let (lo, hi, snippet) = match path.segments { [.., penultimate, segment] if is_mod_inherent(penultimate.res) => { (segment.ident.span, item.kind.ident().unwrap().span, "*") } [.., segment] if let Some(type_ns) = path.res.type_ns && is_mod_inherent(type_ns) && let rustc_hir::UseKind::Single(ident) = kind => { let (lo, snippet) = match cx.tcx.sess.source_map().span_to_snippet(path.span).as_deref() { Ok("self") => (path.span, "*"), _ => (segment.ident.span.shrink_to_hi(), "::*"), }; (lo, if segment.ident == ident { lo } else { ident.span }, snippet) } _ => return, }; cx.emit_span_lint( NON_GLOB_IMPORT_OF_TYPE_IR_INHERENT, path.span, NonGlobImportTypeIrInherent { suggestion: lo.eq_ctxt(hi).then(|| lo.to(hi)), snippet }, ); } fn check_path( &mut self, cx: &LateContext<'tcx>, path: &rustc_hir::Path<'tcx>, _: rustc_hir::HirId, ) { if let Some(seg) = path.segments.iter().find(|seg| { seg.res .opt_def_id() .is_some_and(|def_id| cx.tcx.is_diagnostic_item(sym::type_ir, def_id)) }) { cx.emit_span_lint(DIRECT_USE_OF_RUSTC_TYPE_IR, seg.ident.span, TypeIrDirectUse); } } } declare_tool_lint! { /// The `lint_pass_impl_without_macro` detects manual implementations of a lint /// pass, without using [`declare_lint_pass`] or [`impl_lint_pass`]. pub rustc::LINT_PASS_IMPL_WITHOUT_MACRO, Allow, "`impl LintPass` without the `declare_lint_pass!` or `impl_lint_pass!` macros" } declare_lint_pass!(LintPassImpl => [LINT_PASS_IMPL_WITHOUT_MACRO]); impl EarlyLintPass for LintPassImpl { fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) { if let ast::ItemKind::Impl(ast::Impl { of_trait: Some(of_trait), .. }) = &item.kind && let Some(last) = of_trait.trait_ref.path.segments.last() && last.ident.name == sym::LintPass { let expn_data = of_trait.trait_ref.path.span.ctxt().outer_expn_data(); let call_site = expn_data.call_site; if expn_data.kind != ExpnKind::Macro(MacroKind::Bang, sym::impl_lint_pass) && call_site.ctxt().outer_expn_data().kind != ExpnKind::Macro(MacroKind::Bang, sym::declare_lint_pass) { cx.emit_span_lint( LINT_PASS_IMPL_WITHOUT_MACRO, of_trait.trait_ref.path.span, LintPassByHand, ); } } } } declare_tool_lint! { /// The `untranslatable_diagnostic` lint detects messages passed to functions with `impl /// Into<{D,Subd}iagMessage` parameters without using translatable Fluent strings. /// /// More details on translatable diagnostics can be found /// [here](https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html). pub rustc::UNTRANSLATABLE_DIAGNOSTIC, Allow, "prevent creation of diagnostics which cannot be translated", report_in_external_macro: true, @eval_always = true } declare_tool_lint! { /// The `diagnostic_outside_of_impl` lint detects calls to functions annotated with /// `#[rustc_lint_diagnostics]` that are outside an `Diagnostic`, `Subdiagnostic`, or /// `LintDiagnostic` impl (either hand-written or derived). /// /// More details on diagnostics implementations can be found /// [here](https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-structs.html). pub rustc::DIAGNOSTIC_OUTSIDE_OF_IMPL, Allow, "prevent diagnostic creation outside of `Diagnostic`/`Subdiagnostic`/`LintDiagnostic` impls", report_in_external_macro: true, @eval_always = true } declare_lint_pass!(Diagnostics => [UNTRANSLATABLE_DIAGNOSTIC, DIAGNOSTIC_OUTSIDE_OF_IMPL]); impl LateLintPass<'_> for Diagnostics { fn check_expr<'tcx>(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) { let collect_args_tys_and_spans = |args: &[hir::Expr<'_>], reserve_one_extra: bool| { let mut result = Vec::with_capacity(args.len() + usize::from(reserve_one_extra)); result.extend(args.iter().map(|arg| (cx.typeck_results().expr_ty(arg), arg.span))); result }; // Only check function calls and method calls. let Some((def_id, span, fn_gen_args, recv, args)) = get_callee_span_generic_args_and_args(cx, expr) else { return; }; let mut arg_tys_and_spans = collect_args_tys_and_spans(args, recv.is_some()); if let Some(recv) = recv { arg_tys_and_spans.insert(0, (cx.tcx.types.self_param, recv.span)); // dummy inserted for `self` } Self::diagnostic_outside_of_impl(cx, span, expr.hir_id, def_id, fn_gen_args); Self::untranslatable_diagnostic(cx, def_id, &arg_tys_and_spans); } } impl Diagnostics { // Is the type `{D,Subd}iagMessage`? fn is_diag_message<'cx>(cx: &LateContext<'cx>, ty: Ty<'cx>) -> bool { if let Some(adt_def) = ty.ty_adt_def() && let Some(name) = cx.tcx.get_diagnostic_name(adt_def.did()) && matches!(name, sym::DiagMessage | sym::SubdiagMessage) { true } else { false } } fn untranslatable_diagnostic<'cx>( cx: &LateContext<'cx>, def_id: DefId, arg_tys_and_spans: &[(Ty<'cx>, Span)], ) { let fn_sig = cx.tcx.fn_sig(def_id).instantiate_identity().skip_binder(); let predicates = cx.tcx.predicates_of(def_id).instantiate_identity(cx.tcx).predicates; for (i, ¶m_ty) in fn_sig.inputs().iter().enumerate() { if let ty::Param(sig_param) = param_ty.kind() { // It is a type parameter. Check if it is `impl Into<{D,Subd}iagMessage>`. for pred in predicates.iter() { if let Some(trait_pred) = pred.as_trait_clause() && let trait_ref = trait_pred.skip_binder().trait_ref && trait_ref.self_ty() == param_ty // correct predicate for the param? && cx.tcx.is_diagnostic_item(sym::Into, trait_ref.def_id) && let ty1 = trait_ref.args.type_at(1) && Self::is_diag_message(cx, ty1) { // Calls to methods with an `impl Into<{D,Subd}iagMessage>` parameter must be passed an arg // with type `{D,Subd}iagMessage` or `impl Into<{D,Subd}iagMessage>`. Otherwise, emit an // `UNTRANSLATABLE_DIAGNOSTIC` lint. let (arg_ty, arg_span) = arg_tys_and_spans[i]; // Is the arg type `{Sub,D}iagMessage`or `impl Into<{Sub,D}iagMessage>`? let is_translatable = Self::is_diag_message(cx, arg_ty) || matches!(arg_ty.kind(), ty::Param(arg_param) if arg_param.name == sig_param.name); if !is_translatable { cx.emit_span_lint( UNTRANSLATABLE_DIAGNOSTIC, arg_span, UntranslatableDiag, ); } } } } } } fn diagnostic_outside_of_impl<'cx>( cx: &LateContext<'cx>, span: Span, current_id: HirId, def_id: DefId, fn_gen_args: GenericArgsRef<'cx>, ) { // Is the callee marked with `#[rustc_lint_diagnostics]`? let Some(inst) = ty::Instance::try_resolve(cx.tcx, cx.typing_env(), def_id, fn_gen_args).ok().flatten() else { return; }; let has_attr = cx.tcx.has_attr(inst.def_id(), sym::rustc_lint_diagnostics); if !has_attr { return; }; for (hir_id, _parent) in cx.tcx.hir_parent_iter(current_id) { if let Some(owner_did) = hir_id.as_owner() && cx.tcx.has_attr(owner_did, sym::rustc_lint_diagnostics) { // The parent method is marked with `#[rustc_lint_diagnostics]` return; } } // Calls to `#[rustc_lint_diagnostics]`-marked functions should only occur: // - inside an impl of `Diagnostic`, `Subdiagnostic`, or `LintDiagnostic`, or // - inside a parent function that is itself marked with `#[rustc_lint_diagnostics]`. // // Otherwise, emit a `DIAGNOSTIC_OUTSIDE_OF_IMPL` lint. let mut is_inside_appropriate_impl = false; for (_hir_id, parent) in cx.tcx.hir_parent_iter(current_id) { debug!(?parent); if let hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(impl_), .. }) = parent && let Some(of_trait) = impl_.of_trait && let Some(def_id) = of_trait.trait_ref.trait_def_id() && let Some(name) = cx.tcx.get_diagnostic_name(def_id) && matches!(name, sym::Diagnostic | sym::Subdiagnostic | sym::LintDiagnostic) { is_inside_appropriate_impl = true; break; } } debug!(?is_inside_appropriate_impl); if !is_inside_appropriate_impl { cx.emit_span_lint(DIAGNOSTIC_OUTSIDE_OF_IMPL, span, DiagOutOfImpl); } } } declare_tool_lint! { /// The `bad_opt_access` lint detects accessing options by field instead of /// the wrapper function. pub rustc::BAD_OPT_ACCESS, Deny, "prevent using options by field access when there is a wrapper function", report_in_external_macro: true } declare_lint_pass!(BadOptAccess => [BAD_OPT_ACCESS]); impl LateLintPass<'_> for BadOptAccess { fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) { let hir::ExprKind::Field(base, target) = expr.kind else { return }; let Some(adt_def) = cx.typeck_results().expr_ty(base).ty_adt_def() else { return }; // Skip types without `#[rustc_lint_opt_ty]` - only so that the rest of the lint can be // avoided. if !cx.tcx.has_attr(adt_def.did(), sym::rustc_lint_opt_ty) { return; } for field in adt_def.all_fields() { if field.name == target.name && let Some(attr) = cx.tcx.get_attr(field.did, sym::rustc_lint_opt_deny_field_access) && let Some(items) = attr.meta_item_list() && let Some(item) = items.first() && let Some(lit) = item.lit() && let ast::LitKind::Str(val, _) = lit.kind { cx.emit_span_lint( BAD_OPT_ACCESS, expr.span, BadOptAccessDiag { msg: val.as_str() }, ); } } } } declare_tool_lint! { pub rustc::SPAN_USE_EQ_CTXT, Allow, "forbid uses of `==` with `Span::ctxt`, suggest `Span::eq_ctxt` instead", report_in_external_macro: true } declare_lint_pass!(SpanUseEqCtxt => [SPAN_USE_EQ_CTXT]); impl<'tcx> LateLintPass<'tcx> for SpanUseEqCtxt { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) { if let hir::ExprKind::Binary( hir::BinOp { node: hir::BinOpKind::Eq | hir::BinOpKind::Ne, .. }, lhs, rhs, ) = expr.kind { if is_span_ctxt_call(cx, lhs) && is_span_ctxt_call(cx, rhs) { cx.emit_span_lint(SPAN_USE_EQ_CTXT, expr.span, SpanUseEqCtxtDiag); } } } } fn is_span_ctxt_call(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool { match &expr.kind { hir::ExprKind::MethodCall(..) => cx .typeck_results() .type_dependent_def_id(expr.hir_id) .is_some_and(|call_did| cx.tcx.is_diagnostic_item(sym::SpanCtxt, call_did)), _ => false, } } declare_tool_lint! { /// The `symbol_intern_string_literal` detects `Symbol::intern` being called on a string literal pub rustc::SYMBOL_INTERN_STRING_LITERAL, // rustc_driver crates out of the compiler can't/shouldn't add preinterned symbols; // bootstrap will deny this manually Allow, "Forbid uses of string literals in `Symbol::intern`, suggesting preinterning instead", report_in_external_macro: true } declare_lint_pass!(SymbolInternStringLiteral => [SYMBOL_INTERN_STRING_LITERAL]); impl<'tcx> LateLintPass<'tcx> for SymbolInternStringLiteral { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx rustc_hir::Expr<'tcx>) { if let hir::ExprKind::Call(path, [arg]) = expr.kind && let hir::ExprKind::Path(ref qpath) = path.kind && let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() && cx.tcx.is_diagnostic_item(sym::SymbolIntern, def_id) && let hir::ExprKind::Lit(kind) = arg.kind && let rustc_ast::LitKind::Str(_, _) = kind.node { cx.emit_span_lint( SYMBOL_INTERN_STRING_LITERAL, kind.span, SymbolInternStringLiteralDiag, ); } } }