//! Validates all used crates and extern libraries and loads their metadata use std::error::Error; use std::ops::Fn; use std::path::Path; use std::str::FromStr; use std::time::Duration; use std::{cmp, env, iter}; use proc_macro::bridge::client::ProcMacro; use rustc_ast::expand::allocator::{AllocatorKind, alloc_error_handler_name, global_fn_name}; use rustc_ast::{self as ast, *}; use rustc_data_structures::fx::FxHashSet; use rustc_data_structures::owned_slice::OwnedSlice; use rustc_data_structures::svh::Svh; use rustc_data_structures::sync::{self, FreezeReadGuard, FreezeWriteGuard}; use rustc_errors::DiagCtxtHandle; use rustc_expand::base::SyntaxExtension; use rustc_fs_util::try_canonicalize; use rustc_hir as hir; use rustc_hir::def_id::{CrateNum, LOCAL_CRATE, LocalDefId, StableCrateId}; use rustc_hir::definitions::Definitions; use rustc_index::IndexVec; use rustc_middle::bug; use rustc_middle::ty::{TyCtxt, TyCtxtFeed}; use rustc_session::config::{ self, CrateType, ExtendedTargetModifierInfo, ExternLocation, OptionsTargetModifiers, TargetModifier, }; use rustc_session::cstore::{CrateDepKind, CrateSource, ExternCrate, ExternCrateSource}; use rustc_session::lint::{self, BuiltinLintDiag}; use rustc_session::output::validate_crate_name; use rustc_session::search_paths::PathKind; use rustc_span::edition::Edition; use rustc_span::{DUMMY_SP, Ident, Span, Symbol, sym}; use rustc_target::spec::{PanicStrategy, Target, TargetTuple}; use tracing::{debug, info, trace}; use crate::errors; use crate::locator::{CrateError, CrateLocator, CratePaths}; use crate::rmeta::{ CrateDep, CrateMetadata, CrateNumMap, CrateRoot, MetadataBlob, TargetModifiers, }; /// The backend's way to give the crate store access to the metadata in a library. /// Note that it returns the raw metadata bytes stored in the library file, whether /// it is compressed, uncompressed, some weird mix, etc. /// rmeta files are backend independent and not handled here. pub trait MetadataLoader { fn get_rlib_metadata(&self, target: &Target, filename: &Path) -> Result; fn get_dylib_metadata(&self, target: &Target, filename: &Path) -> Result; } pub type MetadataLoaderDyn = dyn MetadataLoader + Send + Sync + sync::DynSend + sync::DynSync; pub struct CStore { metadata_loader: Box, metas: IndexVec>>, injected_panic_runtime: Option, /// This crate needs an allocator and either provides it itself, or finds it in a dependency. /// If the above is true, then this field denotes the kind of the found allocator. allocator_kind: Option, /// This crate needs an allocation error handler and either provides it itself, or finds it in a dependency. /// If the above is true, then this field denotes the kind of the found allocator. alloc_error_handler_kind: Option, /// This crate has a `#[global_allocator]` item. has_global_allocator: bool, /// This crate has a `#[alloc_error_handler]` item. has_alloc_error_handler: bool, /// Unused externs of the crate unused_externs: Vec, } impl std::fmt::Debug for CStore { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { f.debug_struct("CStore").finish_non_exhaustive() } } pub struct CrateLoader<'a, 'tcx: 'a> { // Immutable configuration. tcx: TyCtxt<'tcx>, // Mutable output. cstore: &'a mut CStore, used_extern_options: &'a mut FxHashSet, } impl<'a, 'tcx> std::ops::Deref for CrateLoader<'a, 'tcx> { type Target = TyCtxt<'tcx>; fn deref(&self) -> &Self::Target { &self.tcx } } impl<'a, 'tcx> CrateLoader<'a, 'tcx> { fn dcx(&self) -> DiagCtxtHandle<'tcx> { self.tcx.dcx() } } pub enum LoadedMacro { MacroDef { def: MacroDef, ident: Ident, attrs: Vec, span: Span, edition: Edition, }, ProcMacro(SyntaxExtension), } pub(crate) struct Library { pub source: CrateSource, pub metadata: MetadataBlob, } enum LoadResult { Previous(CrateNum), Loaded(Library), } /// A reference to `CrateMetadata` that can also give access to whole crate store when necessary. #[derive(Clone, Copy)] pub(crate) struct CrateMetadataRef<'a> { pub cdata: &'a CrateMetadata, pub cstore: &'a CStore, } impl std::ops::Deref for CrateMetadataRef<'_> { type Target = CrateMetadata; fn deref(&self) -> &Self::Target { self.cdata } } struct CrateDump<'a>(&'a CStore); impl<'a> std::fmt::Debug for CrateDump<'a> { fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { writeln!(fmt, "resolved crates:")?; for (cnum, data) in self.0.iter_crate_data() { writeln!(fmt, " name: {}", data.name())?; writeln!(fmt, " cnum: {cnum}")?; writeln!(fmt, " hash: {}", data.hash())?; writeln!(fmt, " reqd: {:?}", data.dep_kind())?; writeln!(fmt, " priv: {:?}", data.is_private_dep())?; let CrateSource { dylib, rlib, rmeta } = data.source(); if let Some(dylib) = dylib { writeln!(fmt, " dylib: {}", dylib.0.display())?; } if let Some(rlib) = rlib { writeln!(fmt, " rlib: {}", rlib.0.display())?; } if let Some(rmeta) = rmeta { writeln!(fmt, " rmeta: {}", rmeta.0.display())?; } } Ok(()) } } /// Reason that a crate is being sourced as a dependency. #[derive(Clone, Copy)] enum CrateOrigin<'a> { /// This crate was a dependency of another crate. IndirectDependency { /// Where this dependency was included from. dep_root: &'a CratePaths, /// True if the parent is private, meaning the dependent should also be private. parent_private: bool, /// Dependency info about this crate. dep: &'a CrateDep, }, /// Injected by `rustc`. Injected, /// Provided by `extern crate foo` or as part of the extern prelude. Extern, } impl<'a> CrateOrigin<'a> { /// Return the dependency root, if any. fn dep_root(&self) -> Option<&'a CratePaths> { match self { CrateOrigin::IndirectDependency { dep_root, .. } => Some(dep_root), _ => None, } } /// Return dependency information, if any. fn dep(&self) -> Option<&'a CrateDep> { match self { CrateOrigin::IndirectDependency { dep, .. } => Some(dep), _ => None, } } /// `Some(true)` if the dependency is private or its parent is private, `Some(false)` if the /// dependency is not private, `None` if it could not be determined. fn private_dep(&self) -> Option { match self { CrateOrigin::IndirectDependency { parent_private, dep, .. } => { Some(dep.is_private || *parent_private) } _ => None, } } } impl CStore { pub fn from_tcx(tcx: TyCtxt<'_>) -> FreezeReadGuard<'_, CStore> { FreezeReadGuard::map(tcx.untracked().cstore.read(), |cstore| { cstore.as_any().downcast_ref::().expect("`tcx.cstore` is not a `CStore`") }) } pub fn from_tcx_mut(tcx: TyCtxt<'_>) -> FreezeWriteGuard<'_, CStore> { FreezeWriteGuard::map(tcx.untracked().cstore.write(), |cstore| { cstore.untracked_as_any().downcast_mut().expect("`tcx.cstore` is not a `CStore`") }) } fn intern_stable_crate_id<'tcx>( &mut self, root: &CrateRoot, tcx: TyCtxt<'tcx>, ) -> Result, CrateError> { assert_eq!(self.metas.len(), tcx.untracked().stable_crate_ids.read().len()); let num = tcx.create_crate_num(root.stable_crate_id()).map_err(|existing| { // Check for (potential) conflicts with the local crate if existing == LOCAL_CRATE { CrateError::SymbolConflictsCurrent(root.name()) } else if let Some(crate_name1) = self.metas[existing].as_ref().map(|data| data.name()) { let crate_name0 = root.name(); CrateError::StableCrateIdCollision(crate_name0, crate_name1) } else { CrateError::NotFound(root.name()) } })?; self.metas.push(None); Ok(num) } pub fn has_crate_data(&self, cnum: CrateNum) -> bool { self.metas[cnum].is_some() } pub(crate) fn get_crate_data(&self, cnum: CrateNum) -> CrateMetadataRef<'_> { let cdata = self.metas[cnum] .as_ref() .unwrap_or_else(|| panic!("Failed to get crate data for {cnum:?}")); CrateMetadataRef { cdata, cstore: self } } pub(crate) fn get_crate_data_mut(&mut self, cnum: CrateNum) -> &mut CrateMetadata { self.metas[cnum].as_mut().unwrap_or_else(|| panic!("Failed to get crate data for {cnum:?}")) } fn set_crate_data(&mut self, cnum: CrateNum, data: CrateMetadata) { assert!(self.metas[cnum].is_none(), "Overwriting crate metadata entry"); self.metas[cnum] = Some(Box::new(data)); } pub(crate) fn iter_crate_data(&self) -> impl Iterator { self.metas .iter_enumerated() .filter_map(|(cnum, data)| data.as_deref().map(|data| (cnum, data))) } fn iter_crate_data_mut(&mut self) -> impl Iterator { self.metas .iter_enumerated_mut() .filter_map(|(cnum, data)| data.as_deref_mut().map(|data| (cnum, data))) } fn push_dependencies_in_postorder(&self, deps: &mut Vec, cnum: CrateNum) { if !deps.contains(&cnum) { let data = self.get_crate_data(cnum); for dep in data.dependencies() { if dep != cnum { self.push_dependencies_in_postorder(deps, dep); } } deps.push(cnum); } } pub(crate) fn crate_dependencies_in_postorder(&self, cnum: CrateNum) -> Vec { let mut deps = Vec::new(); if cnum == LOCAL_CRATE { for (cnum, _) in self.iter_crate_data() { self.push_dependencies_in_postorder(&mut deps, cnum); } } else { self.push_dependencies_in_postorder(&mut deps, cnum); } deps } fn crate_dependencies_in_reverse_postorder(&self, cnum: CrateNum) -> Vec { let mut deps = self.crate_dependencies_in_postorder(cnum); deps.reverse(); deps } pub(crate) fn injected_panic_runtime(&self) -> Option { self.injected_panic_runtime } pub(crate) fn allocator_kind(&self) -> Option { self.allocator_kind } pub(crate) fn alloc_error_handler_kind(&self) -> Option { self.alloc_error_handler_kind } pub(crate) fn has_global_allocator(&self) -> bool { self.has_global_allocator } pub(crate) fn has_alloc_error_handler(&self) -> bool { self.has_alloc_error_handler } pub fn report_unused_deps(&self, tcx: TyCtxt<'_>) { let json_unused_externs = tcx.sess.opts.json_unused_externs; // We put the check for the option before the lint_level_at_node call // because the call mutates internal state and introducing it // leads to some ui tests failing. if !json_unused_externs.is_enabled() { return; } let level = tcx .lint_level_at_node(lint::builtin::UNUSED_CRATE_DEPENDENCIES, rustc_hir::CRATE_HIR_ID) .level; if level != lint::Level::Allow { let unused_externs = self.unused_externs.iter().map(|ident| ident.to_ident_string()).collect::>(); let unused_externs = unused_externs.iter().map(String::as_str).collect::>(); tcx.dcx().emit_unused_externs(level, json_unused_externs.is_loud(), &unused_externs); } } fn report_target_modifiers_extended( tcx: TyCtxt<'_>, krate: &Crate, mods: &TargetModifiers, dep_mods: &TargetModifiers, data: &CrateMetadata, ) { let span = krate.spans.inner_span.shrink_to_lo(); let allowed_flag_mismatches = &tcx.sess.opts.cg.unsafe_allow_abi_mismatch; let local_crate = tcx.crate_name(LOCAL_CRATE); let tmod_extender = |tmod: &TargetModifier| (tmod.extend(), tmod.clone()); let report_diff = |prefix: &String, opt_name: &String, flag_local_value: Option<&String>, flag_extern_value: Option<&String>| { if allowed_flag_mismatches.contains(&opt_name) { return; } let extern_crate = data.name(); let flag_name = opt_name.clone(); let flag_name_prefixed = format!("-{}{}", prefix, opt_name); match (flag_local_value, flag_extern_value) { (Some(local_value), Some(extern_value)) => { tcx.dcx().emit_err(errors::IncompatibleTargetModifiers { span, extern_crate, local_crate, flag_name, flag_name_prefixed, local_value: local_value.to_string(), extern_value: extern_value.to_string(), }) } (None, Some(extern_value)) => { tcx.dcx().emit_err(errors::IncompatibleTargetModifiersLMissed { span, extern_crate, local_crate, flag_name, flag_name_prefixed, extern_value: extern_value.to_string(), }) } (Some(local_value), None) => { tcx.dcx().emit_err(errors::IncompatibleTargetModifiersRMissed { span, extern_crate, local_crate, flag_name, flag_name_prefixed, local_value: local_value.to_string(), }) } (None, None) => panic!("Incorrect target modifiers report_diff(None, None)"), }; }; let mut it1 = mods.iter().map(tmod_extender); let mut it2 = dep_mods.iter().map(tmod_extender); let mut left_name_val: Option<(ExtendedTargetModifierInfo, TargetModifier)> = None; let mut right_name_val: Option<(ExtendedTargetModifierInfo, TargetModifier)> = None; loop { left_name_val = left_name_val.or_else(|| it1.next()); right_name_val = right_name_val.or_else(|| it2.next()); match (&left_name_val, &right_name_val) { (Some(l), Some(r)) => match l.1.opt.cmp(&r.1.opt) { cmp::Ordering::Equal => { if l.0.tech_value != r.0.tech_value { report_diff( &l.0.prefix, &l.0.name, Some(&l.1.value_name), Some(&r.1.value_name), ); } left_name_val = None; right_name_val = None; } cmp::Ordering::Greater => { report_diff(&r.0.prefix, &r.0.name, None, Some(&r.1.value_name)); right_name_val = None; } cmp::Ordering::Less => { report_diff(&l.0.prefix, &l.0.name, Some(&l.1.value_name), None); left_name_val = None; } }, (Some(l), None) => { report_diff(&l.0.prefix, &l.0.name, Some(&l.1.value_name), None); left_name_val = None; } (None, Some(r)) => { report_diff(&r.0.prefix, &r.0.name, None, Some(&r.1.value_name)); right_name_val = None; } (None, None) => break, } } } pub fn report_incompatible_target_modifiers(&self, tcx: TyCtxt<'_>, krate: &Crate) { for flag_name in &tcx.sess.opts.cg.unsafe_allow_abi_mismatch { if !OptionsTargetModifiers::is_target_modifier(flag_name) { tcx.dcx().emit_err(errors::UnknownTargetModifierUnsafeAllowed { span: krate.spans.inner_span.shrink_to_lo(), flag_name: flag_name.clone(), }); } } let mods = tcx.sess.opts.gather_target_modifiers(); for (_cnum, data) in self.iter_crate_data() { if data.is_proc_macro_crate() { continue; } let dep_mods = data.target_modifiers(); if mods != dep_mods { Self::report_target_modifiers_extended(tcx, krate, &mods, &dep_mods, data); } } } pub fn new(metadata_loader: Box) -> CStore { CStore { metadata_loader, // We add an empty entry for LOCAL_CRATE (which maps to zero) in // order to make array indices in `metas` match with the // corresponding `CrateNum`. This first entry will always remain // `None`. metas: IndexVec::from_iter(iter::once(None)), injected_panic_runtime: None, allocator_kind: None, alloc_error_handler_kind: None, has_global_allocator: false, has_alloc_error_handler: false, unused_externs: Vec::new(), } } } impl<'a, 'tcx> CrateLoader<'a, 'tcx> { pub fn new( tcx: TyCtxt<'tcx>, cstore: &'a mut CStore, used_extern_options: &'a mut FxHashSet, ) -> Self { CrateLoader { tcx, cstore, used_extern_options } } fn existing_match(&self, name: Symbol, hash: Option, kind: PathKind) -> Option { for (cnum, data) in self.cstore.iter_crate_data() { if data.name() != name { trace!("{} did not match {}", data.name(), name); continue; } match hash { Some(hash) if hash == data.hash() => return Some(cnum), Some(hash) => { debug!("actual hash {} did not match expected {}", hash, data.hash()); continue; } None => {} } // When the hash is None we're dealing with a top-level dependency // in which case we may have a specification on the command line for // this library. Even though an upstream library may have loaded // something of the same name, we have to make sure it was loaded // from the exact same location as well. // // We're also sure to compare *paths*, not actual byte slices. The // `source` stores paths which are normalized which may be different // from the strings on the command line. let source = self.cstore.get_crate_data(cnum).cdata.source(); if let Some(entry) = self.sess.opts.externs.get(name.as_str()) { // Only use `--extern crate_name=path` here, not `--extern crate_name`. if let Some(mut files) = entry.files() { if files.any(|l| { let l = l.canonicalized(); source.dylib.as_ref().map(|(p, _)| p) == Some(l) || source.rlib.as_ref().map(|(p, _)| p) == Some(l) || source.rmeta.as_ref().map(|(p, _)| p) == Some(l) }) { return Some(cnum); } } continue; } // Alright, so we've gotten this far which means that `data` has the // right name, we don't have a hash, and we don't have a --extern // pointing for ourselves. We're still not quite yet done because we // have to make sure that this crate was found in the crate lookup // path (this is a top-level dependency) as we don't want to // implicitly load anything inside the dependency lookup path. let prev_kind = source .dylib .as_ref() .or(source.rlib.as_ref()) .or(source.rmeta.as_ref()) .expect("No sources for crate") .1; if kind.matches(prev_kind) { return Some(cnum); } else { debug!( "failed to load existing crate {}; kind {:?} did not match prev_kind {:?}", name, kind, prev_kind ); } } None } /// Determine whether a dependency should be considered private. /// /// Dependencies are private if they get extern option specified, e.g. `--extern priv:mycrate`. /// This is stored in metadata, so `private_dep` can be correctly set during load. A `Some` /// value for `private_dep` indicates that the crate is known to be private or public (note /// that any `None` or `Some(false)` use of the same crate will make it public). /// /// Sometimes the directly dependent crate is not specified by `--extern`, in this case, /// `private-dep` is none during loading. This is equivalent to the scenario where the /// command parameter is set to `public-dependency` fn is_private_dep( &self, name: Symbol, private_dep: Option, origin: CrateOrigin<'_>, ) -> bool { if matches!(origin, CrateOrigin::Injected) { return true; } let extern_private = self.sess.opts.externs.get(name.as_str()).map(|e| e.is_private_dep); match (extern_private, private_dep) { // Explicit non-private via `--extern`, explicit non-private from metadata, or // unspecified with default to public. (Some(false), _) | (_, Some(false)) | (None, None) => false, // Marked private via `--extern priv:mycrate` or in metadata. (Some(true) | None, Some(true) | None) => true, } } fn register_crate( &mut self, host_lib: Option, origin: CrateOrigin<'_>, lib: Library, dep_kind: CrateDepKind, name: Symbol, private_dep: Option, ) -> Result { let _prof_timer = self.sess.prof.generic_activity_with_arg("metadata_register_crate", name.as_str()); let Library { source, metadata } = lib; let crate_root = metadata.get_root(); let host_hash = host_lib.as_ref().map(|lib| lib.metadata.get_root().hash()); let private_dep = self.is_private_dep(name, private_dep, origin); // Claim this crate number and cache it let feed = self.cstore.intern_stable_crate_id(&crate_root, self.tcx)?; let cnum = feed.key(); info!( "register crate `{}` (cnum = {}. private_dep = {})", crate_root.name(), cnum, private_dep ); // Maintain a reference to the top most crate. // Stash paths for top-most crate locally if necessary. let crate_paths; let dep_root = if let Some(dep_root) = origin.dep_root() { dep_root } else { crate_paths = CratePaths::new(crate_root.name(), source.clone()); &crate_paths }; let cnum_map = self.resolve_crate_deps(dep_root, &crate_root, &metadata, cnum, dep_kind, private_dep)?; let raw_proc_macros = if crate_root.is_proc_macro_crate() { let temp_root; let (dlsym_source, dlsym_root) = match &host_lib { Some(host_lib) => (&host_lib.source, { temp_root = host_lib.metadata.get_root(); &temp_root }), None => (&source, &crate_root), }; let dlsym_dylib = dlsym_source.dylib.as_ref().expect("no dylib for a proc-macro crate"); Some(self.dlsym_proc_macros(&dlsym_dylib.0, dlsym_root.stable_crate_id())?) } else { None }; let crate_metadata = CrateMetadata::new( self.sess, self.cstore, metadata, crate_root, raw_proc_macros, cnum, cnum_map, dep_kind, source, private_dep, host_hash, ); self.cstore.set_crate_data(cnum, crate_metadata); Ok(cnum) } fn load_proc_macro<'b>( &self, locator: &mut CrateLocator<'b>, path_kind: PathKind, host_hash: Option, ) -> Result)>, CrateError> where 'a: 'b, { // Use a new crate locator so trying to load a proc macro doesn't affect the error // message we emit let mut proc_macro_locator = locator.clone(); // Try to load a proc macro proc_macro_locator.is_proc_macro = true; // Load the proc macro crate for the target let (locator, target_result) = if self.sess.opts.unstable_opts.dual_proc_macros { proc_macro_locator.reset(); let result = match self.load(&mut proc_macro_locator)? { Some(LoadResult::Previous(cnum)) => { return Ok(Some((LoadResult::Previous(cnum), None))); } Some(LoadResult::Loaded(library)) => Some(LoadResult::Loaded(library)), None => return Ok(None), }; locator.hash = host_hash; // Use the locator when looking for the host proc macro crate, as that is required // so we want it to affect the error message (locator, result) } else { (&mut proc_macro_locator, None) }; // Load the proc macro crate for the host locator.reset(); locator.is_proc_macro = true; locator.target = &self.sess.host; locator.tuple = TargetTuple::from_tuple(config::host_tuple()); locator.filesearch = self.sess.host_filesearch(); locator.path_kind = path_kind; let Some(host_result) = self.load(locator)? else { return Ok(None); }; Ok(Some(if self.sess.opts.unstable_opts.dual_proc_macros { let host_result = match host_result { LoadResult::Previous(..) => { panic!("host and target proc macros must be loaded in lock-step") } LoadResult::Loaded(library) => library, }; (target_result.unwrap(), Some(host_result)) } else { (host_result, None) })) } fn resolve_crate( &mut self, name: Symbol, span: Span, dep_kind: CrateDepKind, origin: CrateOrigin<'_>, ) -> Option { self.used_extern_options.insert(name); match self.maybe_resolve_crate(name, dep_kind, origin) { Ok(cnum) => { self.cstore.set_used_recursively(cnum); Some(cnum) } Err(err) => { debug!("failed to resolve crate {} {:?}", name, dep_kind); let missing_core = self .maybe_resolve_crate(sym::core, CrateDepKind::Explicit, CrateOrigin::Extern) .is_err(); err.report(self.sess, span, missing_core); None } } } fn maybe_resolve_crate<'b>( &'b mut self, name: Symbol, mut dep_kind: CrateDepKind, origin: CrateOrigin<'b>, ) -> Result { info!("resolving crate `{}`", name); if !name.as_str().is_ascii() { return Err(CrateError::NonAsciiName(name)); } let dep_root = origin.dep_root(); let dep = origin.dep(); let hash = dep.map(|d| d.hash); let host_hash = dep.map(|d| d.host_hash).flatten(); let extra_filename = dep.map(|d| &d.extra_filename[..]); let path_kind = if dep.is_some() { PathKind::Dependency } else { PathKind::Crate }; let private_dep = origin.private_dep(); let result = if let Some(cnum) = self.existing_match(name, hash, path_kind) { (LoadResult::Previous(cnum), None) } else { info!("falling back to a load"); let mut locator = CrateLocator::new( self.sess, &*self.cstore.metadata_loader, name, // The all loop is because `--crate-type=rlib --crate-type=rlib` is // legal and produces both inside this type. self.tcx.crate_types().iter().all(|c| *c == CrateType::Rlib), hash, extra_filename, path_kind, ); match self.load(&mut locator)? { Some(res) => (res, None), None => { info!("falling back to loading proc_macro"); dep_kind = CrateDepKind::MacrosOnly; match self.load_proc_macro(&mut locator, path_kind, host_hash)? { Some(res) => res, None => return Err(locator.into_error(dep_root.cloned())), } } } }; match result { (LoadResult::Previous(cnum), None) => { info!("library for `{}` was loaded previously, cnum {cnum}", name); // When `private_dep` is none, it indicates the directly dependent crate. If it is // not specified by `--extern` on command line parameters, it may be // `private-dependency` when `register_crate` is called for the first time. Then it must be updated to // `public-dependency` here. let private_dep = self.is_private_dep(name, private_dep, origin); let data = self.cstore.get_crate_data_mut(cnum); if data.is_proc_macro_crate() { dep_kind = CrateDepKind::MacrosOnly; } data.set_dep_kind(cmp::max(data.dep_kind(), dep_kind)); data.update_and_private_dep(private_dep); Ok(cnum) } (LoadResult::Loaded(library), host_library) => { info!("register newly loaded library for `{}`", name); self.register_crate(host_library, origin, library, dep_kind, name, private_dep) } _ => panic!(), } } fn load(&self, locator: &mut CrateLocator<'_>) -> Result, CrateError> { let Some(library) = locator.maybe_load_library_crate()? else { return Ok(None); }; // In the case that we're loading a crate, but not matching // against a hash, we could load a crate which has the same hash // as an already loaded crate. If this is the case prevent // duplicates by just using the first crate. let root = library.metadata.get_root(); let mut result = LoadResult::Loaded(library); for (cnum, data) in self.cstore.iter_crate_data() { if data.name() == root.name() && root.hash() == data.hash() { assert!(locator.hash.is_none()); info!("load success, going to previous cnum: {}", cnum); result = LoadResult::Previous(cnum); break; } } Ok(Some(result)) } /// Go through the crate metadata and load any crates that it references. fn resolve_crate_deps( &mut self, dep_root: &CratePaths, crate_root: &CrateRoot, metadata: &MetadataBlob, krate: CrateNum, dep_kind: CrateDepKind, parent_is_private: bool, ) -> Result { debug!( "resolving deps of external crate `{}` with dep root `{}`", crate_root.name(), dep_root.name ); if crate_root.is_proc_macro_crate() { return Ok(CrateNumMap::new()); } // The map from crate numbers in the crate we're resolving to local crate numbers. // We map 0 and all other holes in the map to our parent crate. The "additional" // self-dependencies should be harmless. let deps = crate_root.decode_crate_deps(metadata); let mut crate_num_map = CrateNumMap::with_capacity(1 + deps.len()); crate_num_map.push(krate); for dep in deps { info!( "resolving dep `{}`->`{}` hash: `{}` extra filename: `{}` private {}", crate_root.name(), dep.name, dep.hash, dep.extra_filename, dep.is_private, ); let dep_kind = match dep_kind { CrateDepKind::MacrosOnly => CrateDepKind::MacrosOnly, _ => dep.kind, }; let cnum = self.maybe_resolve_crate( dep.name, dep_kind, CrateOrigin::IndirectDependency { dep_root, parent_private: parent_is_private, dep: &dep, }, )?; crate_num_map.push(cnum); } debug!("resolve_crate_deps: cnum_map for {:?} is {:?}", krate, crate_num_map); Ok(crate_num_map) } fn dlsym_proc_macros( &self, path: &Path, stable_crate_id: StableCrateId, ) -> Result<&'static [ProcMacro], CrateError> { let sym_name = self.sess.generate_proc_macro_decls_symbol(stable_crate_id); debug!("trying to dlsym proc_macros {} for symbol `{}`", path.display(), sym_name); unsafe { let result = load_symbol_from_dylib::<*const &[ProcMacro]>(path, &sym_name); match result { Ok(result) => { debug!("loaded dlsym proc_macros {} for symbol `{}`", path.display(), sym_name); Ok(*result) } Err(err) => { debug!( "failed to dlsym proc_macros {} for symbol `{}`", path.display(), sym_name ); Err(err.into()) } } } } fn inject_panic_runtime(&mut self, krate: &ast::Crate) { // If we're only compiling an rlib, then there's no need to select a // panic runtime, so we just skip this section entirely. let only_rlib = self.tcx.crate_types().iter().all(|ct| *ct == CrateType::Rlib); if only_rlib { info!("panic runtime injection skipped, only generating rlib"); return; } // If we need a panic runtime, we try to find an existing one here. At // the same time we perform some general validation of the DAG we've got // going such as ensuring everything has a compatible panic strategy. // // The logic for finding the panic runtime here is pretty much the same // as the allocator case with the only addition that the panic strategy // compilation mode also comes into play. let desired_strategy = self.sess.panic_strategy(); let mut runtime_found = false; let mut needs_panic_runtime = attr::contains_name(&krate.attrs, sym::needs_panic_runtime); let mut panic_runtimes = Vec::new(); for (cnum, data) in self.cstore.iter_crate_data() { needs_panic_runtime = needs_panic_runtime || data.needs_panic_runtime(); if data.is_panic_runtime() { // Inject a dependency from all #![needs_panic_runtime] to this // #![panic_runtime] crate. panic_runtimes.push(cnum); runtime_found = runtime_found || data.dep_kind() == CrateDepKind::Explicit; } } for cnum in panic_runtimes { self.inject_dependency_if(cnum, "a panic runtime", &|data| data.needs_panic_runtime()); } // If an explicitly linked and matching panic runtime was found, or if // we just don't need one at all, then we're done here and there's // nothing else to do. if !needs_panic_runtime || runtime_found { return; } // By this point we know that we (a) need a panic runtime and (b) no // panic runtime was explicitly linked. Here we just load an appropriate // default runtime for our panic strategy and then inject the // dependencies. // // We may resolve to an already loaded crate (as the crate may not have // been explicitly linked prior to this) and we may re-inject // dependencies again, but both of those situations are fine. // // Also note that we have yet to perform validation of the crate graph // in terms of everyone has a compatible panic runtime format, that's // performed later as part of the `dependency_format` module. let name = match desired_strategy { PanicStrategy::Unwind => sym::panic_unwind, PanicStrategy::Abort => sym::panic_abort, }; info!("panic runtime not found -- loading {}", name); let Some(cnum) = self.resolve_crate(name, DUMMY_SP, CrateDepKind::Implicit, CrateOrigin::Injected) else { return; }; let data = self.cstore.get_crate_data(cnum); // Sanity check the loaded crate to ensure it is indeed a panic runtime // and the panic strategy is indeed what we thought it was. if !data.is_panic_runtime() { self.dcx().emit_err(errors::CrateNotPanicRuntime { crate_name: name }); } if data.required_panic_strategy() != Some(desired_strategy) { self.dcx() .emit_err(errors::NoPanicStrategy { crate_name: name, strategy: desired_strategy }); } self.cstore.injected_panic_runtime = Some(cnum); self.inject_dependency_if(cnum, "a panic runtime", &|data| data.needs_panic_runtime()); } fn inject_profiler_runtime(&mut self) { let needs_profiler_runtime = self.sess.instrument_coverage() || self.sess.opts.cg.profile_generate.enabled(); if !needs_profiler_runtime || self.sess.opts.unstable_opts.no_profiler_runtime { return; } info!("loading profiler"); let name = Symbol::intern(&self.sess.opts.unstable_opts.profiler_runtime); let Some(cnum) = self.resolve_crate(name, DUMMY_SP, CrateDepKind::Implicit, CrateOrigin::Injected) else { return; }; let data = self.cstore.get_crate_data(cnum); // Sanity check the loaded crate to ensure it is indeed a profiler runtime if !data.is_profiler_runtime() { self.dcx().emit_err(errors::NotProfilerRuntime { crate_name: name }); } } fn inject_allocator_crate(&mut self, krate: &ast::Crate) { self.cstore.has_global_allocator = match &*fn_spans(krate, Symbol::intern(&global_fn_name(sym::alloc))) { [span1, span2, ..] => { self.dcx() .emit_err(errors::NoMultipleGlobalAlloc { span2: *span2, span1: *span1 }); true } spans => !spans.is_empty(), }; self.cstore.has_alloc_error_handler = match &*fn_spans( krate, Symbol::intern(alloc_error_handler_name(AllocatorKind::Global)), ) { [span1, span2, ..] => { self.dcx() .emit_err(errors::NoMultipleAllocErrorHandler { span2: *span2, span1: *span1 }); true } spans => !spans.is_empty(), }; // Check to see if we actually need an allocator. This desire comes // about through the `#![needs_allocator]` attribute and is typically // written down in liballoc. if !attr::contains_name(&krate.attrs, sym::needs_allocator) && !self.cstore.iter_crate_data().any(|(_, data)| data.needs_allocator()) { return; } // At this point we've determined that we need an allocator. Let's see // if our compilation session actually needs an allocator based on what // we're emitting. let all_rlib = self.tcx.crate_types().iter().all(|ct| matches!(*ct, CrateType::Rlib)); if all_rlib { return; } // Ok, we need an allocator. Not only that but we're actually going to // create an artifact that needs one linked in. Let's go find the one // that we're going to link in. // // First up we check for global allocators. Look at the crate graph here // and see what's a global allocator, including if we ourselves are a // global allocator. #[allow(rustc::symbol_intern_string_literal)] let this_crate = Symbol::intern("this crate"); let mut global_allocator = self.cstore.has_global_allocator.then_some(this_crate); for (_, data) in self.cstore.iter_crate_data() { if data.has_global_allocator() { match global_allocator { Some(other_crate) => { self.dcx().emit_err(errors::ConflictingGlobalAlloc { crate_name: data.name(), other_crate_name: other_crate, }); } None => global_allocator = Some(data.name()), } } } let mut alloc_error_handler = self.cstore.has_alloc_error_handler.then_some(this_crate); for (_, data) in self.cstore.iter_crate_data() { if data.has_alloc_error_handler() { match alloc_error_handler { Some(other_crate) => { self.dcx().emit_err(errors::ConflictingAllocErrorHandler { crate_name: data.name(), other_crate_name: other_crate, }); } None => alloc_error_handler = Some(data.name()), } } } if global_allocator.is_some() { self.cstore.allocator_kind = Some(AllocatorKind::Global); } else { // Ok we haven't found a global allocator but we still need an // allocator. At this point our allocator request is typically fulfilled // by the standard library, denoted by the `#![default_lib_allocator]` // attribute. if !attr::contains_name(&krate.attrs, sym::default_lib_allocator) && !self.cstore.iter_crate_data().any(|(_, data)| data.has_default_lib_allocator()) { self.dcx().emit_err(errors::GlobalAllocRequired); } self.cstore.allocator_kind = Some(AllocatorKind::Default); } if alloc_error_handler.is_some() { self.cstore.alloc_error_handler_kind = Some(AllocatorKind::Global); } else { // The alloc crate provides a default allocation error handler if // one isn't specified. self.cstore.alloc_error_handler_kind = Some(AllocatorKind::Default); } } fn inject_forced_externs(&mut self) { for (name, entry) in self.sess.opts.externs.iter() { if entry.force { let name_interned = Symbol::intern(name); if !self.used_extern_options.contains(&name_interned) { self.resolve_crate( name_interned, DUMMY_SP, CrateDepKind::Explicit, CrateOrigin::Extern, ); } } } } /// Inject the `compiler_builtins` crate if it is not already in the graph. fn inject_compiler_builtins(&mut self, krate: &ast::Crate) { // `compiler_builtins` does not get extern builtins, nor do `#![no_core]` crates if attr::contains_name(&krate.attrs, sym::compiler_builtins) || attr::contains_name(&krate.attrs, sym::no_core) { info!("`compiler_builtins` unneeded"); return; } // If a `#![compiler_builtins]` crate already exists, avoid injecting it twice. This is // the common case since usually it appears as a dependency of `std` or `alloc`. for (cnum, cmeta) in self.cstore.iter_crate_data() { if cmeta.is_compiler_builtins() { info!("`compiler_builtins` already exists (cnum = {cnum}); skipping injection"); return; } } // `compiler_builtins` is not yet in the graph; inject it. Error on resolution failure. let Some(cnum) = self.resolve_crate( sym::compiler_builtins, krate.spans.inner_span.shrink_to_lo(), CrateDepKind::Explicit, CrateOrigin::Injected, ) else { info!("`compiler_builtins` not resolved"); return; }; // Sanity check that the loaded crate is `#![compiler_builtins]` let cmeta = self.cstore.get_crate_data(cnum); if !cmeta.is_compiler_builtins() { self.dcx().emit_err(errors::CrateNotCompilerBuiltins { crate_name: cmeta.name() }); } } fn inject_dependency_if( &mut self, krate: CrateNum, what: &str, needs_dep: &dyn Fn(&CrateMetadata) -> bool, ) { // Don't perform this validation if the session has errors, as one of // those errors may indicate a circular dependency which could cause // this to stack overflow. if self.dcx().has_errors().is_some() { return; } // Before we inject any dependencies, make sure we don't inject a // circular dependency by validating that this crate doesn't // transitively depend on any crates satisfying `needs_dep`. for dep in self.cstore.crate_dependencies_in_reverse_postorder(krate) { let data = self.cstore.get_crate_data(dep); if needs_dep(&data) { self.dcx().emit_err(errors::NoTransitiveNeedsDep { crate_name: self.cstore.get_crate_data(krate).name(), needs_crate_name: what, deps_crate_name: data.name(), }); } } // All crates satisfying `needs_dep` do not explicitly depend on the // crate provided for this compile, but in order for this compilation to // be successfully linked we need to inject a dependency (to order the // crates on the command line correctly). for (cnum, data) in self.cstore.iter_crate_data_mut() { if needs_dep(data) { info!("injecting a dep from {} to {}", cnum, krate); data.add_dependency(krate); } } } fn report_unused_deps(&mut self, krate: &ast::Crate) { // Make a point span rather than covering the whole file let span = krate.spans.inner_span.shrink_to_lo(); // Complain about anything left over for (name, entry) in self.sess.opts.externs.iter() { if let ExternLocation::FoundInLibrarySearchDirectories = entry.location { // Don't worry about pathless `--extern foo` sysroot references continue; } if entry.nounused_dep || entry.force { // We're not worried about this one continue; } let name_interned = Symbol::intern(name); if self.used_extern_options.contains(&name_interned) { continue; } // Got a real unused --extern if self.sess.opts.json_unused_externs.is_enabled() { self.cstore.unused_externs.push(name_interned); continue; } self.sess.psess.buffer_lint( lint::builtin::UNUSED_CRATE_DEPENDENCIES, span, ast::CRATE_NODE_ID, BuiltinLintDiag::UnusedCrateDependency { extern_crate: name_interned, local_crate: self.tcx.crate_name(LOCAL_CRATE), }, ); } } fn report_future_incompatible_deps(&self, krate: &ast::Crate) { let name = self.tcx.crate_name(LOCAL_CRATE); if name.as_str() == "wasm_bindgen" { let major = env::var("CARGO_PKG_VERSION_MAJOR") .ok() .and_then(|major| u64::from_str(&major).ok()); let minor = env::var("CARGO_PKG_VERSION_MINOR") .ok() .and_then(|minor| u64::from_str(&minor).ok()); let patch = env::var("CARGO_PKG_VERSION_PATCH") .ok() .and_then(|patch| u64::from_str(&patch).ok()); match (major, minor, patch) { // v1 or bigger is valid. (Some(1..), _, _) => return, // v0.3 or bigger is valid. (Some(0), Some(3..), _) => return, // v0.2.88 or bigger is valid. (Some(0), Some(2), Some(88..)) => return, // Not using Cargo. (None, None, None) => return, _ => (), } // Make a point span rather than covering the whole file let span = krate.spans.inner_span.shrink_to_lo(); self.sess.dcx().emit_err(errors::WasmCAbi { span }); } } pub fn postprocess(&mut self, krate: &ast::Crate) { self.inject_compiler_builtins(krate); self.inject_forced_externs(); self.inject_profiler_runtime(); self.inject_allocator_crate(krate); self.inject_panic_runtime(krate); self.report_unused_deps(krate); self.report_future_incompatible_deps(krate); info!("{:?}", CrateDump(self.cstore)); } /// Process an `extern crate foo` AST node. pub fn process_extern_crate( &mut self, item: &ast::Item, def_id: LocalDefId, definitions: &Definitions, ) -> Option { match item.kind { ast::ItemKind::ExternCrate(orig_name, ident) => { debug!("resolving extern crate stmt. ident: {} orig_name: {:?}", ident, orig_name); let name = match orig_name { Some(orig_name) => { validate_crate_name(self.sess, orig_name, Some(item.span)); orig_name } None => ident.name, }; let dep_kind = if attr::contains_name(&item.attrs, sym::no_link) { CrateDepKind::MacrosOnly } else { CrateDepKind::Explicit }; let cnum = self.resolve_crate(name, item.span, dep_kind, CrateOrigin::Extern)?; let path_len = definitions.def_path(def_id).data.len(); self.cstore.update_extern_crate( cnum, ExternCrate { src: ExternCrateSource::Extern(def_id.to_def_id()), span: item.span, path_len, dependency_of: LOCAL_CRATE, }, ); Some(cnum) } _ => bug!(), } } pub fn process_path_extern(&mut self, name: Symbol, span: Span) -> Option { let cnum = self.resolve_crate(name, span, CrateDepKind::Explicit, CrateOrigin::Extern)?; self.cstore.update_extern_crate( cnum, ExternCrate { src: ExternCrateSource::Path, span, // to have the least priority in `update_extern_crate` path_len: usize::MAX, dependency_of: LOCAL_CRATE, }, ); Some(cnum) } pub fn maybe_process_path_extern(&mut self, name: Symbol) -> Option { self.maybe_resolve_crate(name, CrateDepKind::Explicit, CrateOrigin::Extern).ok() } } fn fn_spans(krate: &ast::Crate, name: Symbol) -> Vec { struct Finder { name: Symbol, spans: Vec, } impl<'ast> visit::Visitor<'ast> for Finder { fn visit_item(&mut self, item: &'ast ast::Item) { if let Some(ident) = item.kind.ident() && ident.name == self.name && attr::contains_name(&item.attrs, sym::rustc_std_internal_symbol) { self.spans.push(item.span); } visit::walk_item(self, item) } } let mut f = Finder { name, spans: Vec::new() }; visit::walk_crate(&mut f, krate); f.spans } fn format_dlopen_err(e: &(dyn std::error::Error + 'static)) -> String { e.sources().map(|e| format!(": {e}")).collect() } fn attempt_load_dylib(path: &Path) -> Result { #[cfg(target_os = "aix")] if let Some(ext) = path.extension() && ext.eq("a") { // On AIX, we ship all libraries as .a big_af archive // the expected format is lib.a(libname.so) for the actual // dynamic library let library_name = path.file_stem().expect("expect a library name"); let mut archive_member = std::ffi::OsString::from("a("); archive_member.push(library_name); archive_member.push(".so)"); let new_path = path.with_extension(archive_member); // On AIX, we need RTLD_MEMBER to dlopen an archived shared let flags = libc::RTLD_LAZY | libc::RTLD_LOCAL | libc::RTLD_MEMBER; return unsafe { libloading::os::unix::Library::open(Some(&new_path), flags) } .map(|lib| lib.into()); } unsafe { libloading::Library::new(&path) } } // On Windows the compiler would sometimes intermittently fail to open the // proc-macro DLL with `Error::LoadLibraryExW`. It is suspected that something in the // system still holds a lock on the file, so we retry a few times before calling it // an error. fn load_dylib(path: &Path, max_attempts: usize) -> Result { assert!(max_attempts > 0); let mut last_error = None; for attempt in 0..max_attempts { debug!("Attempt to load proc-macro `{}`.", path.display()); match attempt_load_dylib(path) { Ok(lib) => { if attempt > 0 { debug!( "Loaded proc-macro `{}` after {} attempts.", path.display(), attempt + 1 ); } return Ok(lib); } Err(err) => { // Only try to recover from this specific error. if !matches!(err, libloading::Error::LoadLibraryExW { .. }) { debug!("Failed to load proc-macro `{}`. Not retrying", path.display()); let err = format_dlopen_err(&err); // We include the path of the dylib in the error ourselves, so // if it's in the error, we strip it. if let Some(err) = err.strip_prefix(&format!(": {}", path.display())) { return Err(err.to_string()); } return Err(err); } last_error = Some(err); std::thread::sleep(Duration::from_millis(100)); debug!("Failed to load proc-macro `{}`. Retrying.", path.display()); } } } debug!("Failed to load proc-macro `{}` even after {} attempts.", path.display(), max_attempts); let last_error = last_error.unwrap(); let message = if let Some(src) = last_error.source() { format!("{} ({src}) (retried {max_attempts} times)", format_dlopen_err(&last_error)) } else { format!("{} (retried {max_attempts} times)", format_dlopen_err(&last_error)) }; Err(message) } pub enum DylibError { DlOpen(String, String), DlSym(String, String), } impl From for CrateError { fn from(err: DylibError) -> CrateError { match err { DylibError::DlOpen(path, err) => CrateError::DlOpen(path, err), DylibError::DlSym(path, err) => CrateError::DlSym(path, err), } } } pub unsafe fn load_symbol_from_dylib( path: &Path, sym_name: &str, ) -> Result { // Make sure the path contains a / or the linker will search for it. let path = try_canonicalize(path).unwrap(); let lib = load_dylib(&path, 5).map_err(|err| DylibError::DlOpen(path.display().to_string(), err))?; let sym = unsafe { lib.get::(sym_name.as_bytes()) } .map_err(|err| DylibError::DlSym(path.display().to_string(), format_dlopen_err(&err)))?; // Intentionally leak the dynamic library. We can't ever unload it // since the library can make things that will live arbitrarily long. let sym = unsafe { sym.into_raw() }; std::mem::forget(lib); Ok(*sym) }