use std::borrow::Borrow; use std::collections::hash_map::Entry; use std::fs::File; use std::io::{Read, Seek, Write}; use std::path::{Path, PathBuf}; use std::sync::Arc; use rustc_data_structures::fx::{FxIndexMap, FxIndexSet}; use rustc_data_structures::memmap::{Mmap, MmapMut}; use rustc_data_structures::sync::{join, par_for_each_in}; use rustc_data_structures::temp_dir::MaybeTempDir; use rustc_data_structures::thousands::usize_with_underscores; use rustc_feature::Features; use rustc_hir as hir; use rustc_hir::attrs::{AttributeKind, EncodeCrossCrate}; use rustc_hir::def_id::{CRATE_DEF_ID, CRATE_DEF_INDEX, LOCAL_CRATE, LocalDefId, LocalDefIdSet}; use rustc_hir::definitions::DefPathData; use rustc_hir::find_attr; use rustc_hir_pretty::id_to_string; use rustc_middle::dep_graph::WorkProductId; use rustc_middle::middle::dependency_format::Linkage; use rustc_middle::mir::interpret; use rustc_middle::query::Providers; use rustc_middle::traits::specialization_graph; use rustc_middle::ty::AssocContainer; use rustc_middle::ty::codec::TyEncoder; use rustc_middle::ty::fast_reject::{self, TreatParams}; use rustc_middle::{bug, span_bug}; use rustc_serialize::{Decodable, Decoder, Encodable, Encoder, opaque}; use rustc_session::config::{CrateType, OptLevel, TargetModifier}; use rustc_span::hygiene::HygieneEncodeContext; use rustc_span::{ ByteSymbol, ExternalSource, FileName, SourceFile, SpanData, SpanEncoder, StableSourceFileId, Symbol, SyntaxContext, sym, }; use tracing::{debug, instrument, trace}; use crate::errors::{FailCreateFileEncoder, FailWriteFile}; use crate::rmeta::*; pub(super) struct EncodeContext<'a, 'tcx> { opaque: opaque::FileEncoder, tcx: TyCtxt<'tcx>, feat: &'tcx rustc_feature::Features, tables: TableBuilders, lazy_state: LazyState, span_shorthands: FxHashMap, type_shorthands: FxHashMap, usize>, predicate_shorthands: FxHashMap, usize>, interpret_allocs: FxIndexSet, // This is used to speed up Span encoding. // The `usize` is an index into the `MonotonicVec` // that stores the `SourceFile` source_file_cache: (Arc, usize), // The indices (into the `SourceMap`'s `MonotonicVec`) // of all of the `SourceFiles` that we need to serialize. // When we serialize a `Span`, we insert the index of its // `SourceFile` into the `FxIndexSet`. // The order inside the `FxIndexSet` is used as on-disk // order of `SourceFiles`, and encoded inside `Span`s. required_source_files: Option>, is_proc_macro: bool, hygiene_ctxt: &'a HygieneEncodeContext, // Used for both `Symbol`s and `ByteSymbol`s. symbol_index_table: FxHashMap, } /// If the current crate is a proc-macro, returns early with `LazyArray::default()`. /// This is useful for skipping the encoding of things that aren't needed /// for proc-macro crates. macro_rules! empty_proc_macro { ($self:ident) => { if $self.is_proc_macro { return LazyArray::default(); } }; } macro_rules! encoder_methods { ($($name:ident($ty:ty);)*) => { $(fn $name(&mut self, value: $ty) { self.opaque.$name(value) })* } } impl<'a, 'tcx> Encoder for EncodeContext<'a, 'tcx> { encoder_methods! { emit_usize(usize); emit_u128(u128); emit_u64(u64); emit_u32(u32); emit_u16(u16); emit_u8(u8); emit_isize(isize); emit_i128(i128); emit_i64(i64); emit_i32(i32); emit_i16(i16); emit_raw_bytes(&[u8]); } } impl<'a, 'tcx, T> Encodable> for LazyValue { fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) { e.emit_lazy_distance(self.position); } } impl<'a, 'tcx, T> Encodable> for LazyArray { fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) { e.emit_usize(self.num_elems); if self.num_elems > 0 { e.emit_lazy_distance(self.position) } } } impl<'a, 'tcx, I, T> Encodable> for LazyTable { fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) { e.emit_usize(self.width); e.emit_usize(self.len); e.emit_lazy_distance(self.position); } } impl<'a, 'tcx> Encodable> for ExpnIndex { fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) { s.emit_u32(self.as_u32()); } } impl<'a, 'tcx> SpanEncoder for EncodeContext<'a, 'tcx> { fn encode_crate_num(&mut self, crate_num: CrateNum) { if crate_num != LOCAL_CRATE && self.is_proc_macro { panic!("Attempted to encode non-local CrateNum {crate_num:?} for proc-macro crate"); } self.emit_u32(crate_num.as_u32()); } fn encode_def_index(&mut self, def_index: DefIndex) { self.emit_u32(def_index.as_u32()); } fn encode_def_id(&mut self, def_id: DefId) { def_id.krate.encode(self); def_id.index.encode(self); } fn encode_syntax_context(&mut self, syntax_context: SyntaxContext) { rustc_span::hygiene::raw_encode_syntax_context(syntax_context, self.hygiene_ctxt, self); } fn encode_expn_id(&mut self, expn_id: ExpnId) { if expn_id.krate == LOCAL_CRATE { // We will only write details for local expansions. Non-local expansions will fetch // data from the corresponding crate's metadata. // FIXME(#43047) FIXME(#74731) We may eventually want to avoid relying on external // metadata from proc-macro crates. self.hygiene_ctxt.schedule_expn_data_for_encoding(expn_id); } expn_id.krate.encode(self); expn_id.local_id.encode(self); } fn encode_span(&mut self, span: Span) { match self.span_shorthands.entry(span) { Entry::Occupied(o) => { // If an offset is smaller than the absolute position, we encode with the offset. // This saves space since smaller numbers encode in less bits. let last_location = *o.get(); // This cannot underflow. Metadata is written with increasing position(), so any // previously saved offset must be smaller than the current position. let offset = self.opaque.position() - last_location; if offset < last_location { let needed = bytes_needed(offset); SpanTag::indirect(true, needed as u8).encode(self); self.opaque.write_with(|dest| { *dest = offset.to_le_bytes(); needed }); } else { let needed = bytes_needed(last_location); SpanTag::indirect(false, needed as u8).encode(self); self.opaque.write_with(|dest| { *dest = last_location.to_le_bytes(); needed }); } } Entry::Vacant(v) => { let position = self.opaque.position(); v.insert(position); // Data is encoded with a SpanTag prefix (see below). span.data().encode(self); } } } fn encode_symbol(&mut self, sym: Symbol) { self.encode_symbol_or_byte_symbol(sym.as_u32(), |this| this.emit_str(sym.as_str())); } fn encode_byte_symbol(&mut self, byte_sym: ByteSymbol) { self.encode_symbol_or_byte_symbol(byte_sym.as_u32(), |this| { this.emit_byte_str(byte_sym.as_byte_str()) }); } } fn bytes_needed(n: usize) -> usize { (usize::BITS - n.leading_zeros()).div_ceil(u8::BITS) as usize } impl<'a, 'tcx> Encodable> for SpanData { fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) { // Don't serialize any `SyntaxContext`s from a proc-macro crate, // since we don't load proc-macro dependencies during serialization. // This means that any hygiene information from macros used *within* // a proc-macro crate (e.g. invoking a macro that expands to a proc-macro // definition) will be lost. // // This can show up in two ways: // // 1. Any hygiene information associated with identifier of // a proc macro (e.g. `#[proc_macro] pub fn $name`) will be lost. // Since proc-macros can only be invoked from a different crate, // real code should never need to care about this. // // 2. Using `Span::def_site` or `Span::mixed_site` will not // include any hygiene information associated with the definition // site. This means that a proc-macro cannot emit a `$crate` // identifier which resolves to one of its dependencies, // which also should never come up in practice. // // Additionally, this affects `Span::parent`, and any other // span inspection APIs that would otherwise allow traversing // the `SyntaxContexts` associated with a span. // // None of these user-visible effects should result in any // cross-crate inconsistencies (getting one behavior in the same // crate, and a different behavior in another crate) due to the // limited surface that proc-macros can expose. // // IMPORTANT: If this is ever changed, be sure to update // `rustc_span::hygiene::raw_encode_expn_id` to handle // encoding `ExpnData` for proc-macro crates. let ctxt = if s.is_proc_macro { SyntaxContext::root() } else { self.ctxt }; if self.is_dummy() { let tag = SpanTag::new(SpanKind::Partial, ctxt, 0); tag.encode(s); if tag.context().is_none() { ctxt.encode(s); } return; } // The Span infrastructure should make sure that this invariant holds: debug_assert!(self.lo <= self.hi); if !s.source_file_cache.0.contains(self.lo) { let source_map = s.tcx.sess.source_map(); let source_file_index = source_map.lookup_source_file_idx(self.lo); s.source_file_cache = (Arc::clone(&source_map.files()[source_file_index]), source_file_index); } let (ref source_file, source_file_index) = s.source_file_cache; debug_assert!(source_file.contains(self.lo)); if !source_file.contains(self.hi) { // Unfortunately, macro expansion still sometimes generates Spans // that malformed in this way. let tag = SpanTag::new(SpanKind::Partial, ctxt, 0); tag.encode(s); if tag.context().is_none() { ctxt.encode(s); } return; } // There are two possible cases here: // 1. This span comes from a 'foreign' crate - e.g. some crate upstream of the // crate we are writing metadata for. When the metadata for *this* crate gets // deserialized, the deserializer will need to know which crate it originally came // from. We use `TAG_VALID_SPAN_FOREIGN` to indicate that a `CrateNum` should // be deserialized after the rest of the span data, which tells the deserializer // which crate contains the source map information. // 2. This span comes from our own crate. No special handling is needed - we just // write `TAG_VALID_SPAN_LOCAL` to let the deserializer know that it should use // our own source map information. // // If we're a proc-macro crate, we always treat this as a local `Span`. // In `encode_source_map`, we serialize foreign `SourceFile`s into our metadata // if we're a proc-macro crate. // This allows us to avoid loading the dependencies of proc-macro crates: all of // the information we need to decode `Span`s is stored in the proc-macro crate. let (kind, metadata_index) = if source_file.is_imported() && !s.is_proc_macro { // To simplify deserialization, we 'rebase' this span onto the crate it originally came // from (the crate that 'owns' the file it references. These rebased 'lo' and 'hi' // values are relative to the source map information for the 'foreign' crate whose // CrateNum we write into the metadata. This allows `imported_source_files` to binary // search through the 'foreign' crate's source map information, using the // deserialized 'lo' and 'hi' values directly. // // All of this logic ensures that the final result of deserialization is a 'normal' // Span that can be used without any additional trouble. let metadata_index = { // Introduce a new scope so that we drop the 'read()' temporary match &*source_file.external_src.read() { ExternalSource::Foreign { metadata_index, .. } => *metadata_index, src => panic!("Unexpected external source {src:?}"), } }; (SpanKind::Foreign, metadata_index) } else { // Record the fact that we need to encode the data for this `SourceFile` let source_files = s.required_source_files.as_mut().expect("Already encoded SourceMap!"); let (metadata_index, _) = source_files.insert_full(source_file_index); let metadata_index: u32 = metadata_index.try_into().expect("cannot export more than U32_MAX files"); (SpanKind::Local, metadata_index) }; // Encode the start position relative to the file start, so we profit more from the // variable-length integer encoding. let lo = self.lo - source_file.start_pos; // Encode length which is usually less than span.hi and profits more // from the variable-length integer encoding that we use. let len = self.hi - self.lo; let tag = SpanTag::new(kind, ctxt, len.0 as usize); tag.encode(s); if tag.context().is_none() { ctxt.encode(s); } lo.encode(s); if tag.length().is_none() { len.encode(s); } // Encode the index of the `SourceFile` for the span, in order to make decoding faster. metadata_index.encode(s); if kind == SpanKind::Foreign { // This needs to be two lines to avoid holding the `s.source_file_cache` // while calling `cnum.encode(s)` let cnum = s.source_file_cache.0.cnum; cnum.encode(s); } } } impl<'a, 'tcx> Encodable> for [u8] { fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) { Encoder::emit_usize(e, self.len()); e.emit_raw_bytes(self); } } impl<'a, 'tcx> TyEncoder<'tcx> for EncodeContext<'a, 'tcx> { const CLEAR_CROSS_CRATE: bool = true; fn position(&self) -> usize { self.opaque.position() } fn type_shorthands(&mut self) -> &mut FxHashMap, usize> { &mut self.type_shorthands } fn predicate_shorthands(&mut self) -> &mut FxHashMap, usize> { &mut self.predicate_shorthands } fn encode_alloc_id(&mut self, alloc_id: &rustc_middle::mir::interpret::AllocId) { let (index, _) = self.interpret_allocs.insert_full(*alloc_id); index.encode(self); } } // Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy($value))`, which would // normally need extra variables to avoid errors about multiple mutable borrows. macro_rules! record { ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{ { let value = $value; let lazy = $self.lazy(value); $self.$tables.$table.set_some($def_id.index, lazy); } }}; } // Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy_array($value))`, which would // normally need extra variables to avoid errors about multiple mutable borrows. macro_rules! record_array { ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{ { let value = $value; let lazy = $self.lazy_array(value); $self.$tables.$table.set_some($def_id.index, lazy); } }}; } macro_rules! record_defaulted_array { ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{ { let value = $value; let lazy = $self.lazy_array(value); $self.$tables.$table.set($def_id.index, lazy); } }}; } impl<'a, 'tcx> EncodeContext<'a, 'tcx> { fn emit_lazy_distance(&mut self, position: NonZero) { let pos = position.get(); let distance = match self.lazy_state { LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"), LazyState::NodeStart(start) => { let start = start.get(); assert!(pos <= start); start - pos } LazyState::Previous(last_pos) => { assert!( last_pos <= position, "make sure that the calls to `lazy*` \ are in the same order as the metadata fields", ); position.get() - last_pos.get() } }; self.lazy_state = LazyState::Previous(NonZero::new(pos).unwrap()); self.emit_usize(distance); } fn lazy>>(&mut self, value: B) -> LazyValue where T::Value<'tcx>: Encodable>, { let pos = NonZero::new(self.position()).unwrap(); assert_eq!(self.lazy_state, LazyState::NoNode); self.lazy_state = LazyState::NodeStart(pos); value.borrow().encode(self); self.lazy_state = LazyState::NoNode; assert!(pos.get() <= self.position()); LazyValue::from_position(pos) } fn lazy_array, B: Borrow>>( &mut self, values: I, ) -> LazyArray where T::Value<'tcx>: Encodable>, { let pos = NonZero::new(self.position()).unwrap(); assert_eq!(self.lazy_state, LazyState::NoNode); self.lazy_state = LazyState::NodeStart(pos); let len = values.into_iter().map(|value| value.borrow().encode(self)).count(); self.lazy_state = LazyState::NoNode; assert!(pos.get() <= self.position()); LazyArray::from_position_and_num_elems(pos, len) } fn encode_symbol_or_byte_symbol( &mut self, index: u32, emit_str_or_byte_str: impl Fn(&mut Self), ) { // if symbol/byte symbol is predefined, emit tag and symbol index if Symbol::is_predefined(index) { self.opaque.emit_u8(SYMBOL_PREDEFINED); self.opaque.emit_u32(index); } else { // otherwise write it as string or as offset to it match self.symbol_index_table.entry(index) { Entry::Vacant(o) => { self.opaque.emit_u8(SYMBOL_STR); let pos = self.opaque.position(); o.insert(pos); emit_str_or_byte_str(self); } Entry::Occupied(o) => { let x = *o.get(); self.emit_u8(SYMBOL_OFFSET); self.emit_usize(x); } } } } fn encode_def_path_table(&mut self) { let table = self.tcx.def_path_table(); if self.is_proc_macro { for def_index in std::iter::once(CRATE_DEF_INDEX) .chain(self.tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index)) { let def_key = self.lazy(table.def_key(def_index)); let def_path_hash = table.def_path_hash(def_index); self.tables.def_keys.set_some(def_index, def_key); self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64()); } } else { for (def_index, def_key, def_path_hash) in table.enumerated_keys_and_path_hashes() { let def_key = self.lazy(def_key); self.tables.def_keys.set_some(def_index, def_key); self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64()); } } } fn encode_def_path_hash_map(&mut self) -> LazyValue> { self.lazy(DefPathHashMapRef::BorrowedFromTcx(self.tcx.def_path_hash_to_def_index_map())) } fn encode_source_map(&mut self) -> LazyTable>> { let source_map = self.tcx.sess.source_map(); let all_source_files = source_map.files(); // By replacing the `Option` with `None`, we ensure that we can't // accidentally serialize any more `Span`s after the source map encoding // is done. let required_source_files = self.required_source_files.take().unwrap(); let working_directory = &self.tcx.sess.opts.working_dir; let mut adapted = TableBuilder::default(); let local_crate_stable_id = self.tcx.stable_crate_id(LOCAL_CRATE); // Only serialize `SourceFile`s that were used during the encoding of a `Span`. // // The order in which we encode source files is important here: the on-disk format for // `Span` contains the index of the corresponding `SourceFile`. for (on_disk_index, &source_file_index) in required_source_files.iter().enumerate() { let source_file = &all_source_files[source_file_index]; // Don't serialize imported `SourceFile`s, unless we're in a proc-macro crate. assert!(!source_file.is_imported() || self.is_proc_macro); // At export time we expand all source file paths to absolute paths because // downstream compilation sessions can have a different compiler working // directory, so relative paths from this or any other upstream crate // won't be valid anymore. // // At this point we also erase the actual on-disk path and only keep // the remapped version -- as is necessary for reproducible builds. let mut adapted_source_file = (**source_file).clone(); match source_file.name { FileName::Real(ref original_file_name) => { let adapted_file_name = source_map .path_mapping() .to_embeddable_absolute_path(original_file_name.clone(), working_directory); adapted_source_file.name = FileName::Real(adapted_file_name); } _ => { // expanded code, not from a file } }; // We're serializing this `SourceFile` into our crate metadata, // so mark it as coming from this crate. // This also ensures that we don't try to deserialize the // `CrateNum` for a proc-macro dependency - since proc macro // dependencies aren't loaded when we deserialize a proc-macro, // trying to remap the `CrateNum` would fail. if self.is_proc_macro { adapted_source_file.cnum = LOCAL_CRATE; } // Update the `StableSourceFileId` to make sure it incorporates the // id of the current crate. This way it will be unique within the // crate graph during downstream compilation sessions. adapted_source_file.stable_id = StableSourceFileId::from_filename_for_export( &adapted_source_file.name, local_crate_stable_id, ); let on_disk_index: u32 = on_disk_index.try_into().expect("cannot export more than U32_MAX files"); adapted.set_some(on_disk_index, self.lazy(adapted_source_file)); } adapted.encode(&mut self.opaque) } fn encode_crate_root(&mut self) -> LazyValue { let tcx = self.tcx; let mut stats: Vec<(&'static str, usize)> = Vec::with_capacity(32); macro_rules! stat { ($label:literal, $f:expr) => {{ let orig_pos = self.position(); let res = $f(); stats.push(($label, self.position() - orig_pos)); res }}; } // We have already encoded some things. Get their combined size from the current position. stats.push(("preamble", self.position())); let (crate_deps, dylib_dependency_formats) = stat!("dep", || (self.encode_crate_deps(), self.encode_dylib_dependency_formats())); let lib_features = stat!("lib-features", || self.encode_lib_features()); let stability_implications = stat!("stability-implications", || self.encode_stability_implications()); let (lang_items, lang_items_missing) = stat!("lang-items", || { (self.encode_lang_items(), self.encode_lang_items_missing()) }); let stripped_cfg_items = stat!("stripped-cfg-items", || self.encode_stripped_cfg_items()); let diagnostic_items = stat!("diagnostic-items", || self.encode_diagnostic_items()); let native_libraries = stat!("native-libs", || self.encode_native_libraries()); let foreign_modules = stat!("foreign-modules", || self.encode_foreign_modules()); _ = stat!("def-path-table", || self.encode_def_path_table()); // Encode the def IDs of traits, for rustdoc and diagnostics. let traits = stat!("traits", || self.encode_traits()); // Encode the def IDs of impls, for coherence checking. let impls = stat!("impls", || self.encode_impls()); let incoherent_impls = stat!("incoherent-impls", || self.encode_incoherent_impls()); _ = stat!("mir", || self.encode_mir()); _ = stat!("def-ids", || self.encode_def_ids()); let interpret_alloc_index = stat!("interpret-alloc-index", || { let mut interpret_alloc_index = Vec::new(); let mut n = 0; trace!("beginning to encode alloc ids"); loop { let new_n = self.interpret_allocs.len(); // if we have found new ids, serialize those, too if n == new_n { // otherwise, abort break; } trace!("encoding {} further alloc ids", new_n - n); for idx in n..new_n { let id = self.interpret_allocs[idx]; let pos = self.position() as u64; interpret_alloc_index.push(pos); interpret::specialized_encode_alloc_id(self, tcx, id); } n = new_n; } self.lazy_array(interpret_alloc_index) }); // Encode the proc macro data. This affects `tables`, so we need to do this before we // encode the tables. This overwrites def_keys, so it must happen after // encode_def_path_table. let proc_macro_data = stat!("proc-macro-data", || self.encode_proc_macros()); let tables = stat!("tables", || self.tables.encode(&mut self.opaque)); let debugger_visualizers = stat!("debugger-visualizers", || self.encode_debugger_visualizers()); let exportable_items = stat!("exportable-items", || self.encode_exportable_items()); let stable_order_of_exportable_impls = stat!("exportable-items", || self.encode_stable_order_of_exportable_impls()); // Encode exported symbols info. This is prefetched in `encode_metadata`. let (exported_non_generic_symbols, exported_generic_symbols) = stat!("exported-symbols", || { ( self.encode_exported_symbols(tcx.exported_non_generic_symbols(LOCAL_CRATE)), self.encode_exported_symbols(tcx.exported_generic_symbols(LOCAL_CRATE)), ) }); // Encode the hygiene data. // IMPORTANT: this *must* be the last thing that we encode (other than `SourceMap`). The // process of encoding other items (e.g. `optimized_mir`) may cause us to load data from // the incremental cache. If this causes us to deserialize a `Span`, then we may load // additional `SyntaxContext`s into the global `HygieneData`. Therefore, we need to encode // the hygiene data last to ensure that we encode any `SyntaxContext`s that might be used. let (syntax_contexts, expn_data, expn_hashes) = stat!("hygiene", || self.encode_hygiene()); let def_path_hash_map = stat!("def-path-hash-map", || self.encode_def_path_hash_map()); // Encode source_map. This needs to be done last, because encoding `Span`s tells us which // `SourceFiles` we actually need to encode. let source_map = stat!("source-map", || self.encode_source_map()); let target_modifiers = stat!("target-modifiers", || self.encode_target_modifiers()); let root = stat!("final", || { let attrs = tcx.hir_krate_attrs(); self.lazy(CrateRoot { header: CrateHeader { name: tcx.crate_name(LOCAL_CRATE), triple: tcx.sess.opts.target_triple.clone(), hash: tcx.crate_hash(LOCAL_CRATE), is_proc_macro_crate: proc_macro_data.is_some(), is_stub: false, }, extra_filename: tcx.sess.opts.cg.extra_filename.clone(), stable_crate_id: tcx.def_path_hash(LOCAL_CRATE.as_def_id()).stable_crate_id(), required_panic_strategy: tcx.required_panic_strategy(LOCAL_CRATE), panic_in_drop_strategy: tcx.sess.opts.unstable_opts.panic_in_drop, edition: tcx.sess.edition(), has_global_allocator: tcx.has_global_allocator(LOCAL_CRATE), has_alloc_error_handler: tcx.has_alloc_error_handler(LOCAL_CRATE), has_panic_handler: tcx.has_panic_handler(LOCAL_CRATE), has_default_lib_allocator: ast::attr::contains_name( attrs, sym::default_lib_allocator, ), proc_macro_data, debugger_visualizers, compiler_builtins: ast::attr::contains_name(attrs, sym::compiler_builtins), needs_allocator: ast::attr::contains_name(attrs, sym::needs_allocator), needs_panic_runtime: ast::attr::contains_name(attrs, sym::needs_panic_runtime), no_builtins: ast::attr::contains_name(attrs, sym::no_builtins), panic_runtime: ast::attr::contains_name(attrs, sym::panic_runtime), profiler_runtime: ast::attr::contains_name(attrs, sym::profiler_runtime), symbol_mangling_version: tcx.sess.opts.get_symbol_mangling_version(), crate_deps, dylib_dependency_formats, lib_features, stability_implications, lang_items, diagnostic_items, lang_items_missing, stripped_cfg_items, native_libraries, foreign_modules, source_map, target_modifiers, traits, impls, incoherent_impls, exportable_items, stable_order_of_exportable_impls, exported_non_generic_symbols, exported_generic_symbols, interpret_alloc_index, tables, syntax_contexts, expn_data, expn_hashes, def_path_hash_map, specialization_enabled_in: tcx.specialization_enabled_in(LOCAL_CRATE), }) }); let total_bytes = self.position(); let computed_total_bytes: usize = stats.iter().map(|(_, size)| size).sum(); assert_eq!(total_bytes, computed_total_bytes); if tcx.sess.opts.unstable_opts.meta_stats { use std::fmt::Write; self.opaque.flush(); // Rewind and re-read all the metadata to count the zero bytes we wrote. let pos_before_rewind = self.opaque.file().stream_position().unwrap(); let mut zero_bytes = 0; self.opaque.file().rewind().unwrap(); let file = std::io::BufReader::new(self.opaque.file()); for e in file.bytes() { if e.unwrap() == 0 { zero_bytes += 1; } } assert_eq!(self.opaque.file().stream_position().unwrap(), pos_before_rewind); stats.sort_by_key(|&(_, usize)| usize); stats.reverse(); // bigger items first let prefix = "meta-stats"; let perc = |bytes| (bytes * 100) as f64 / total_bytes as f64; let section_w = 23; let size_w = 10; let banner_w = 64; // We write all the text into a string and print it with a single // `eprint!`. This is an attempt to minimize interleaved text if multiple // rustc processes are printing macro-stats at the same time (e.g. with // `RUSTFLAGS='-Zmeta-stats' cargo build`). It still doesn't guarantee // non-interleaving, though. let mut s = String::new(); _ = writeln!(s, "{prefix} {}", "=".repeat(banner_w)); _ = writeln!(s, "{prefix} METADATA STATS: {}", tcx.crate_name(LOCAL_CRATE)); _ = writeln!(s, "{prefix} {:size_w$}", "Section", "Size"); _ = writeln!(s, "{prefix} {}", "-".repeat(banner_w)); for (label, size) in stats { _ = writeln!( s, "{prefix} {:size_w$} ({:4.1}%)", label, usize_with_underscores(size), perc(size) ); } _ = writeln!(s, "{prefix} {}", "-".repeat(banner_w)); _ = writeln!( s, "{prefix} {:size_w$} (of which {:.1}% are zero bytes)", "Total", usize_with_underscores(total_bytes), perc(zero_bytes) ); _ = writeln!(s, "{prefix} {}", "=".repeat(banner_w)); eprint!("{s}"); } root } } struct AnalyzeAttrState<'a> { is_exported: bool, is_doc_hidden: bool, features: &'a Features, } /// Returns whether an attribute needs to be recorded in metadata, that is, if it's usable and /// useful in downstream crates. Local-only attributes are an obvious example, but some /// rustdoc-specific attributes can equally be of use while documenting the current crate only. /// /// Removing these superfluous attributes speeds up compilation by making the metadata smaller. /// /// Note: the `is_exported` parameter is used to cache whether the given `DefId` has a public /// visibility: this is a piece of data that can be computed once per defid, and not once per /// attribute. Some attributes would only be usable downstream if they are public. #[inline] fn analyze_attr(attr: &hir::Attribute, state: &mut AnalyzeAttrState<'_>) -> bool { let mut should_encode = false; if let hir::Attribute::Parsed(p) = attr && p.encode_cross_crate() == EncodeCrossCrate::No { // Attributes not marked encode-cross-crate don't need to be encoded for downstream crates. } else if let Some(name) = attr.name() && !rustc_feature::encode_cross_crate(name) { // Attributes not marked encode-cross-crate don't need to be encoded for downstream crates. } else if attr.doc_str().is_some() { // We keep all doc comments reachable to rustdoc because they might be "imported" into // downstream crates if they use `#[doc(inline)]` to copy an item's documentation into // their own. if state.is_exported { should_encode = true; } } else if attr.has_name(sym::doc) { // If this is a `doc` attribute that doesn't have anything except maybe `inline` (as in // `#[doc(inline)]`), then we can remove it. It won't be inlinable in downstream crates. if let Some(item_list) = attr.meta_item_list() { for item in item_list { if !item.has_name(sym::inline) { should_encode = true; if item.has_name(sym::hidden) { state.is_doc_hidden = true; break; } } } } } else if let &[sym::diagnostic, seg] = &*attr.path() { should_encode = rustc_feature::is_stable_diagnostic_attribute(seg, state.features); } else { should_encode = true; } should_encode } fn should_encode_span(def_kind: DefKind) -> bool { match def_kind { DefKind::Mod | DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Variant | DefKind::Trait | DefKind::TyAlias | DefKind::ForeignTy | DefKind::TraitAlias | DefKind::AssocTy | DefKind::TyParam | DefKind::ConstParam | DefKind::LifetimeParam | DefKind::Fn | DefKind::Const | DefKind::Static { .. } | DefKind::Ctor(..) | DefKind::AssocFn | DefKind::AssocConst | DefKind::Macro(_) | DefKind::ExternCrate | DefKind::Use | DefKind::AnonConst | DefKind::InlineConst | DefKind::OpaqueTy | DefKind::Field | DefKind::Impl { .. } | DefKind::Closure | DefKind::SyntheticCoroutineBody => true, DefKind::ForeignMod | DefKind::GlobalAsm => false, } } fn should_encode_attrs(def_kind: DefKind) -> bool { match def_kind { DefKind::Mod | DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Variant | DefKind::Trait | DefKind::TyAlias | DefKind::ForeignTy | DefKind::TraitAlias | DefKind::AssocTy | DefKind::Fn | DefKind::Const | DefKind::Static { nested: false, .. } | DefKind::AssocFn | DefKind::AssocConst | DefKind::Macro(_) | DefKind::Field | DefKind::Impl { .. } => true, // Tools may want to be able to detect their tool lints on // closures from upstream crates, too. This is used by // https://github.com/model-checking/kani and is not a performance // or maintenance issue for us. DefKind::Closure => true, DefKind::SyntheticCoroutineBody => false, DefKind::TyParam | DefKind::ConstParam | DefKind::Ctor(..) | DefKind::ExternCrate | DefKind::Use | DefKind::ForeignMod | DefKind::AnonConst | DefKind::InlineConst | DefKind::OpaqueTy | DefKind::LifetimeParam | DefKind::Static { nested: true, .. } | DefKind::GlobalAsm => false, } } fn should_encode_expn_that_defined(def_kind: DefKind) -> bool { match def_kind { DefKind::Mod | DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Variant | DefKind::Trait | DefKind::Impl { .. } => true, DefKind::TyAlias | DefKind::ForeignTy | DefKind::TraitAlias | DefKind::AssocTy | DefKind::TyParam | DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static { .. } | DefKind::Ctor(..) | DefKind::AssocFn | DefKind::AssocConst | DefKind::Macro(_) | DefKind::ExternCrate | DefKind::Use | DefKind::ForeignMod | DefKind::AnonConst | DefKind::InlineConst | DefKind::OpaqueTy | DefKind::Field | DefKind::LifetimeParam | DefKind::GlobalAsm | DefKind::Closure | DefKind::SyntheticCoroutineBody => false, } } fn should_encode_visibility(def_kind: DefKind) -> bool { match def_kind { DefKind::Mod | DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Variant | DefKind::Trait | DefKind::TyAlias | DefKind::ForeignTy | DefKind::TraitAlias | DefKind::AssocTy | DefKind::Fn | DefKind::Const | DefKind::Static { nested: false, .. } | DefKind::Ctor(..) | DefKind::AssocFn | DefKind::AssocConst | DefKind::Macro(..) | DefKind::Field => true, DefKind::Use | DefKind::ForeignMod | DefKind::TyParam | DefKind::ConstParam | DefKind::LifetimeParam | DefKind::AnonConst | DefKind::InlineConst | DefKind::Static { nested: true, .. } | DefKind::OpaqueTy | DefKind::GlobalAsm | DefKind::Impl { .. } | DefKind::Closure | DefKind::ExternCrate | DefKind::SyntheticCoroutineBody => false, } } fn should_encode_stability(def_kind: DefKind) -> bool { match def_kind { DefKind::Mod | DefKind::Ctor(..) | DefKind::Variant | DefKind::Field | DefKind::Struct | DefKind::AssocTy | DefKind::AssocFn | DefKind::AssocConst | DefKind::TyParam | DefKind::ConstParam | DefKind::Static { .. } | DefKind::Const | DefKind::Fn | DefKind::ForeignMod | DefKind::TyAlias | DefKind::OpaqueTy | DefKind::Enum | DefKind::Union | DefKind::Impl { .. } | DefKind::Trait | DefKind::TraitAlias | DefKind::Macro(..) | DefKind::ForeignTy => true, DefKind::Use | DefKind::LifetimeParam | DefKind::AnonConst | DefKind::InlineConst | DefKind::GlobalAsm | DefKind::Closure | DefKind::ExternCrate | DefKind::SyntheticCoroutineBody => false, } } /// Whether we should encode MIR. Return a pair, resp. for CTFE and for LLVM. /// /// Computing, optimizing and encoding the MIR is a relatively expensive operation. /// We want to avoid this work when not required. Therefore: /// - we only compute `mir_for_ctfe` on items with const-eval semantics; /// - we skip `optimized_mir` for check runs. /// - we only encode `optimized_mir` that could be generated in other crates, that is, a code that /// is either generic or has inline hint, and is reachable from the other crates (contained /// in reachable set). /// /// Note: Reachable set describes definitions that might be generated or referenced from other /// crates and it can be used to limit optimized MIR that needs to be encoded. On the other hand, /// the reachable set doesn't have much to say about which definitions might be evaluated at compile /// time in other crates, so it cannot be used to omit CTFE MIR. For example, `f` below is /// unreachable and yet it can be evaluated in other crates: /// /// ``` /// const fn f() -> usize { 0 } /// pub struct S { pub a: [usize; f()] } /// ``` fn should_encode_mir( tcx: TyCtxt<'_>, reachable_set: &LocalDefIdSet, def_id: LocalDefId, ) -> (bool, bool) { match tcx.def_kind(def_id) { // Constructors DefKind::Ctor(_, _) => { let mir_opt_base = tcx.sess.opts.output_types.should_codegen() || tcx.sess.opts.unstable_opts.always_encode_mir; (true, mir_opt_base) } // Constants DefKind::AnonConst | DefKind::InlineConst | DefKind::AssocConst | DefKind::Const => { (true, false) } // Coroutines require optimized MIR to compute layout. DefKind::Closure if tcx.is_coroutine(def_id.to_def_id()) => (false, true), DefKind::SyntheticCoroutineBody => (false, true), // Full-fledged functions + closures DefKind::AssocFn | DefKind::Fn | DefKind::Closure => { let generics = tcx.generics_of(def_id); let opt = tcx.sess.opts.unstable_opts.always_encode_mir || (tcx.sess.opts.output_types.should_codegen() && reachable_set.contains(&def_id) && (generics.requires_monomorphization(tcx) || tcx.cross_crate_inlinable(def_id))); // The function has a `const` modifier or is in a `const trait`. let is_const_fn = tcx.is_const_fn(def_id.to_def_id()) || tcx.is_const_default_method(def_id.to_def_id()); (is_const_fn, opt) } // The others don't have MIR. _ => (false, false), } } fn should_encode_variances<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, def_kind: DefKind) -> bool { match def_kind { DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::OpaqueTy | DefKind::Fn | DefKind::Ctor(..) | DefKind::AssocFn => true, DefKind::AssocTy => { // Only encode variances for RPITITs (for traits) matches!(tcx.opt_rpitit_info(def_id), Some(ty::ImplTraitInTraitData::Trait { .. })) } DefKind::Mod | DefKind::Variant | DefKind::Field | DefKind::AssocConst | DefKind::TyParam | DefKind::ConstParam | DefKind::Static { .. } | DefKind::Const | DefKind::ForeignMod | DefKind::Impl { .. } | DefKind::Trait | DefKind::TraitAlias | DefKind::Macro(..) | DefKind::ForeignTy | DefKind::Use | DefKind::LifetimeParam | DefKind::AnonConst | DefKind::InlineConst | DefKind::GlobalAsm | DefKind::Closure | DefKind::ExternCrate | DefKind::SyntheticCoroutineBody => false, DefKind::TyAlias => tcx.type_alias_is_lazy(def_id), } } fn should_encode_generics(def_kind: DefKind) -> bool { match def_kind { DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Variant | DefKind::Trait | DefKind::TyAlias | DefKind::ForeignTy | DefKind::TraitAlias | DefKind::AssocTy | DefKind::Fn | DefKind::Const | DefKind::Static { .. } | DefKind::Ctor(..) | DefKind::AssocFn | DefKind::AssocConst | DefKind::AnonConst | DefKind::InlineConst | DefKind::OpaqueTy | DefKind::Impl { .. } | DefKind::Field | DefKind::TyParam | DefKind::Closure | DefKind::SyntheticCoroutineBody => true, DefKind::Mod | DefKind::ForeignMod | DefKind::ConstParam | DefKind::Macro(..) | DefKind::Use | DefKind::LifetimeParam | DefKind::GlobalAsm | DefKind::ExternCrate => false, } } fn should_encode_type(tcx: TyCtxt<'_>, def_id: LocalDefId, def_kind: DefKind) -> bool { match def_kind { DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Variant | DefKind::Ctor(..) | DefKind::Field | DefKind::Fn | DefKind::Const | DefKind::Static { nested: false, .. } | DefKind::TyAlias | DefKind::ForeignTy | DefKind::Impl { .. } | DefKind::AssocFn | DefKind::AssocConst | DefKind::Closure | DefKind::ConstParam | DefKind::AnonConst | DefKind::InlineConst | DefKind::SyntheticCoroutineBody => true, DefKind::OpaqueTy => { let origin = tcx.local_opaque_ty_origin(def_id); if let hir::OpaqueTyOrigin::FnReturn { parent, .. } | hir::OpaqueTyOrigin::AsyncFn { parent, .. } = origin && let hir::Node::TraitItem(trait_item) = tcx.hir_node_by_def_id(parent) && let (_, hir::TraitFn::Required(..)) = trait_item.expect_fn() { false } else { true } } DefKind::AssocTy => { let assoc_item = tcx.associated_item(def_id); match assoc_item.container { ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => true, ty::AssocContainer::Trait => assoc_item.defaultness(tcx).has_value(), } } DefKind::TyParam => { let hir::Node::GenericParam(param) = tcx.hir_node_by_def_id(def_id) else { bug!() }; let hir::GenericParamKind::Type { default, .. } = param.kind else { bug!() }; default.is_some() } DefKind::Trait | DefKind::TraitAlias | DefKind::Mod | DefKind::ForeignMod | DefKind::Macro(..) | DefKind::Static { nested: true, .. } | DefKind::Use | DefKind::LifetimeParam | DefKind::GlobalAsm | DefKind::ExternCrate => false, } } fn should_encode_fn_sig(def_kind: DefKind) -> bool { match def_kind { DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) => true, DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Variant | DefKind::Field | DefKind::Const | DefKind::Static { .. } | DefKind::Ctor(..) | DefKind::TyAlias | DefKind::OpaqueTy | DefKind::ForeignTy | DefKind::Impl { .. } | DefKind::AssocConst | DefKind::Closure | DefKind::ConstParam | DefKind::AnonConst | DefKind::InlineConst | DefKind::AssocTy | DefKind::TyParam | DefKind::Trait | DefKind::TraitAlias | DefKind::Mod | DefKind::ForeignMod | DefKind::Macro(..) | DefKind::Use | DefKind::LifetimeParam | DefKind::GlobalAsm | DefKind::ExternCrate | DefKind::SyntheticCoroutineBody => false, } } fn should_encode_constness(def_kind: DefKind) -> bool { match def_kind { DefKind::Fn | DefKind::AssocFn | DefKind::Closure | DefKind::Ctor(_, CtorKind::Fn) => true, DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Field | DefKind::Const | DefKind::AssocConst | DefKind::AnonConst | DefKind::Static { .. } | DefKind::TyAlias | DefKind::OpaqueTy | DefKind::Impl { .. } | DefKind::ForeignTy | DefKind::ConstParam | DefKind::InlineConst | DefKind::AssocTy | DefKind::TyParam | DefKind::Trait | DefKind::TraitAlias | DefKind::Mod | DefKind::ForeignMod | DefKind::Macro(..) | DefKind::Use | DefKind::LifetimeParam | DefKind::GlobalAsm | DefKind::ExternCrate | DefKind::Ctor(_, CtorKind::Const) | DefKind::Variant | DefKind::SyntheticCoroutineBody => false, } } fn should_encode_const(def_kind: DefKind) -> bool { match def_kind { DefKind::Const | DefKind::AssocConst | DefKind::AnonConst | DefKind::InlineConst => true, DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Variant | DefKind::Ctor(..) | DefKind::Field | DefKind::Fn | DefKind::Static { .. } | DefKind::TyAlias | DefKind::OpaqueTy | DefKind::ForeignTy | DefKind::Impl { .. } | DefKind::AssocFn | DefKind::Closure | DefKind::ConstParam | DefKind::AssocTy | DefKind::TyParam | DefKind::Trait | DefKind::TraitAlias | DefKind::Mod | DefKind::ForeignMod | DefKind::Macro(..) | DefKind::Use | DefKind::LifetimeParam | DefKind::GlobalAsm | DefKind::ExternCrate | DefKind::SyntheticCoroutineBody => false, } } impl<'a, 'tcx> EncodeContext<'a, 'tcx> { fn encode_attrs(&mut self, def_id: LocalDefId) { let tcx = self.tcx; let mut state = AnalyzeAttrState { is_exported: tcx.effective_visibilities(()).is_exported(def_id), is_doc_hidden: false, features: &tcx.features(), }; let attr_iter = tcx .hir_attrs(tcx.local_def_id_to_hir_id(def_id)) .iter() .filter(|attr| analyze_attr(*attr, &mut state)); record_array!(self.tables.attributes[def_id.to_def_id()] <- attr_iter); let mut attr_flags = AttrFlags::empty(); if state.is_doc_hidden { attr_flags |= AttrFlags::IS_DOC_HIDDEN; } self.tables.attr_flags.set(def_id.local_def_index, attr_flags); } fn encode_def_ids(&mut self) { self.encode_info_for_mod(CRATE_DEF_ID); // Proc-macro crates only export proc-macro items, which are looked // up using `proc_macro_data` if self.is_proc_macro { return; } let tcx = self.tcx; for local_id in tcx.iter_local_def_id() { let def_id = local_id.to_def_id(); let def_kind = tcx.def_kind(local_id); self.tables.def_kind.set_some(def_id.index, def_kind); // The `DefCollector` will sometimes create unnecessary `DefId`s // for trivial const arguments which are directly lowered to // `ConstArgKind::Path`. We never actually access this `DefId` // anywhere so we don't need to encode it for other crates. if def_kind == DefKind::AnonConst && match tcx.hir_node_by_def_id(local_id) { hir::Node::ConstArg(hir::ConstArg { kind, .. }) => match kind { // Skip encoding defs for these as they should not have had a `DefId` created hir::ConstArgKind::Path(..) | hir::ConstArgKind::Infer(..) => true, hir::ConstArgKind::Anon(..) => false, }, _ => false, } { continue; } if def_kind == DefKind::Field && let hir::Node::Field(field) = tcx.hir_node_by_def_id(local_id) && let Some(anon) = field.default { record!(self.tables.default_fields[def_id] <- anon.def_id.to_def_id()); } if should_encode_span(def_kind) { let def_span = tcx.def_span(local_id); record!(self.tables.def_span[def_id] <- def_span); } if should_encode_attrs(def_kind) { self.encode_attrs(local_id); } if should_encode_expn_that_defined(def_kind) { record!(self.tables.expn_that_defined[def_id] <- self.tcx.expn_that_defined(def_id)); } if should_encode_span(def_kind) && let Some(ident_span) = tcx.def_ident_span(def_id) { record!(self.tables.def_ident_span[def_id] <- ident_span); } if def_kind.has_codegen_attrs() { record!(self.tables.codegen_fn_attrs[def_id] <- self.tcx.codegen_fn_attrs(def_id)); } if should_encode_visibility(def_kind) { let vis = self.tcx.local_visibility(local_id).map_id(|def_id| def_id.local_def_index); record!(self.tables.visibility[def_id] <- vis); } if should_encode_stability(def_kind) { self.encode_stability(def_id); self.encode_const_stability(def_id); self.encode_default_body_stability(def_id); self.encode_deprecation(def_id); } if should_encode_variances(tcx, def_id, def_kind) { let v = self.tcx.variances_of(def_id); record_array!(self.tables.variances_of[def_id] <- v); } if should_encode_fn_sig(def_kind) { record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id)); } if should_encode_generics(def_kind) { let g = tcx.generics_of(def_id); record!(self.tables.generics_of[def_id] <- g); record!(self.tables.explicit_predicates_of[def_id] <- self.tcx.explicit_predicates_of(def_id)); let inferred_outlives = self.tcx.inferred_outlives_of(def_id); record_defaulted_array!(self.tables.inferred_outlives_of[def_id] <- inferred_outlives); for param in &g.own_params { if let ty::GenericParamDefKind::Const { has_default: true, .. } = param.kind { let default = self.tcx.const_param_default(param.def_id); record!(self.tables.const_param_default[param.def_id] <- default); } } } if tcx.is_conditionally_const(def_id) { record!(self.tables.const_conditions[def_id] <- self.tcx.const_conditions(def_id)); } if should_encode_type(tcx, local_id, def_kind) { record!(self.tables.type_of[def_id] <- self.tcx.type_of(def_id)); } if should_encode_constness(def_kind) { self.tables.constness.set_some(def_id.index, self.tcx.constness(def_id)); } if let DefKind::Fn | DefKind::AssocFn = def_kind { self.tables.asyncness.set_some(def_id.index, tcx.asyncness(def_id)); record_array!(self.tables.fn_arg_idents[def_id] <- tcx.fn_arg_idents(def_id)); } if let Some(name) = tcx.intrinsic(def_id) { record!(self.tables.intrinsic[def_id] <- name); } if let DefKind::TyParam = def_kind { let default = self.tcx.object_lifetime_default(def_id); record!(self.tables.object_lifetime_default[def_id] <- default); } if let DefKind::Trait = def_kind { record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id)); record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <- self.tcx.explicit_super_predicates_of(def_id).skip_binder()); record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <- self.tcx.explicit_implied_predicates_of(def_id).skip_binder()); let module_children = self.tcx.module_children_local(local_id); record_array!(self.tables.module_children_non_reexports[def_id] <- module_children.iter().map(|child| child.res.def_id().index)); if self.tcx.is_const_trait(def_id) { record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id] <- self.tcx.explicit_implied_const_bounds(def_id).skip_binder()); } } if let DefKind::TraitAlias = def_kind { record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id)); record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <- self.tcx.explicit_super_predicates_of(def_id).skip_binder()); record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <- self.tcx.explicit_implied_predicates_of(def_id).skip_binder()); } if let DefKind::Trait | DefKind::Impl { .. } = def_kind { let associated_item_def_ids = self.tcx.associated_item_def_ids(def_id); record_array!(self.tables.associated_item_or_field_def_ids[def_id] <- associated_item_def_ids.iter().map(|&def_id| { assert!(def_id.is_local()); def_id.index }) ); for &def_id in associated_item_def_ids { self.encode_info_for_assoc_item(def_id); } } if let DefKind::Closure | DefKind::SyntheticCoroutineBody = def_kind && let Some(coroutine_kind) = self.tcx.coroutine_kind(def_id) { self.tables.coroutine_kind.set(def_id.index, Some(coroutine_kind)) } if def_kind == DefKind::Closure && tcx.type_of(def_id).skip_binder().is_coroutine_closure() { let coroutine_for_closure = self.tcx.coroutine_for_closure(def_id); self.tables .coroutine_for_closure .set_some(def_id.index, coroutine_for_closure.into()); // If this async closure has a by-move body, record it too. if tcx.needs_coroutine_by_move_body_def_id(coroutine_for_closure) { self.tables.coroutine_by_move_body_def_id.set_some( coroutine_for_closure.index, self.tcx.coroutine_by_move_body_def_id(coroutine_for_closure).into(), ); } } if let DefKind::Static { .. } = def_kind { if !self.tcx.is_foreign_item(def_id) { let data = self.tcx.eval_static_initializer(def_id).unwrap(); record!(self.tables.eval_static_initializer[def_id] <- data); } } if let DefKind::Enum | DefKind::Struct | DefKind::Union = def_kind { self.encode_info_for_adt(local_id); } if let DefKind::Mod = def_kind { self.encode_info_for_mod(local_id); } if let DefKind::Macro(_) = def_kind { self.encode_info_for_macro(local_id); } if let DefKind::TyAlias = def_kind { self.tables .type_alias_is_lazy .set(def_id.index, self.tcx.type_alias_is_lazy(def_id)); } if let DefKind::OpaqueTy = def_kind { self.encode_explicit_item_bounds(def_id); self.encode_explicit_item_self_bounds(def_id); record!(self.tables.opaque_ty_origin[def_id] <- self.tcx.opaque_ty_origin(def_id)); self.encode_precise_capturing_args(def_id); if tcx.is_conditionally_const(def_id) { record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id] <- tcx.explicit_implied_const_bounds(def_id).skip_binder()); } } if let DefKind::AnonConst = def_kind { record!(self.tables.anon_const_kind[def_id] <- self.tcx.anon_const_kind(def_id)); } if tcx.impl_method_has_trait_impl_trait_tys(def_id) && let Ok(table) = self.tcx.collect_return_position_impl_trait_in_trait_tys(def_id) { record!(self.tables.trait_impl_trait_tys[def_id] <- table); } if let DefKind::Impl { .. } | DefKind::Trait = def_kind { let table = tcx.associated_types_for_impl_traits_in_trait_or_impl(def_id); record!(self.tables.associated_types_for_impl_traits_in_trait_or_impl[def_id] <- table); } } for (def_id, impls) in &tcx.crate_inherent_impls(()).0.inherent_impls { record_defaulted_array!(self.tables.inherent_impls[def_id.to_def_id()] <- impls.iter().map(|def_id| { assert!(def_id.is_local()); def_id.index })); } for (def_id, res_map) in &tcx.resolutions(()).doc_link_resolutions { record!(self.tables.doc_link_resolutions[def_id.to_def_id()] <- res_map); } for (def_id, traits) in &tcx.resolutions(()).doc_link_traits_in_scope { record_array!(self.tables.doc_link_traits_in_scope[def_id.to_def_id()] <- traits); } } #[instrument(level = "trace", skip(self))] fn encode_info_for_adt(&mut self, local_def_id: LocalDefId) { let def_id = local_def_id.to_def_id(); let tcx = self.tcx; let adt_def = tcx.adt_def(def_id); record!(self.tables.repr_options[def_id] <- adt_def.repr()); let params_in_repr = self.tcx.params_in_repr(def_id); record!(self.tables.params_in_repr[def_id] <- params_in_repr); if adt_def.is_enum() { let module_children = tcx.module_children_local(local_def_id); record_array!(self.tables.module_children_non_reexports[def_id] <- module_children.iter().map(|child| child.res.def_id().index)); } else { // For non-enum, there is only one variant, and its def_id is the adt's. debug_assert_eq!(adt_def.variants().len(), 1); debug_assert_eq!(adt_def.non_enum_variant().def_id, def_id); // Therefore, the loop over variants will encode its fields as the adt's children. } for (idx, variant) in adt_def.variants().iter_enumerated() { let data = VariantData { discr: variant.discr, idx, ctor: variant.ctor.map(|(kind, def_id)| (kind, def_id.index)), is_non_exhaustive: variant.is_field_list_non_exhaustive(), }; record!(self.tables.variant_data[variant.def_id] <- data); record_array!(self.tables.associated_item_or_field_def_ids[variant.def_id] <- variant.fields.iter().map(|f| { assert!(f.did.is_local()); f.did.index })); for field in &variant.fields { self.tables.safety.set_some(field.did.index, field.safety); } if let Some((CtorKind::Fn, ctor_def_id)) = variant.ctor { let fn_sig = tcx.fn_sig(ctor_def_id); // FIXME only encode signature for ctor_def_id record!(self.tables.fn_sig[variant.def_id] <- fn_sig); } } if let Some(destructor) = tcx.adt_destructor(local_def_id) { record!(self.tables.adt_destructor[def_id] <- destructor); } if let Some(destructor) = tcx.adt_async_destructor(local_def_id) { record!(self.tables.adt_async_destructor[def_id] <- destructor); } } #[instrument(level = "debug", skip(self))] fn encode_info_for_mod(&mut self, local_def_id: LocalDefId) { let tcx = self.tcx; let def_id = local_def_id.to_def_id(); // If we are encoding a proc-macro crates, `encode_info_for_mod` will // only ever get called for the crate root. We still want to encode // the crate root for consistency with other crates (some of the resolver // code uses it). However, we skip encoding anything relating to child // items - we encode information about proc-macros later on. if self.is_proc_macro { // Encode this here because we don't do it in encode_def_ids. record!(self.tables.expn_that_defined[def_id] <- tcx.expn_that_defined(local_def_id)); } else { let module_children = tcx.module_children_local(local_def_id); record_array!(self.tables.module_children_non_reexports[def_id] <- module_children.iter().filter(|child| child.reexport_chain.is_empty()) .map(|child| child.res.def_id().index)); record_defaulted_array!(self.tables.module_children_reexports[def_id] <- module_children.iter().filter(|child| !child.reexport_chain.is_empty())); } } fn encode_explicit_item_bounds(&mut self, def_id: DefId) { debug!("EncodeContext::encode_explicit_item_bounds({:?})", def_id); let bounds = self.tcx.explicit_item_bounds(def_id).skip_binder(); record_defaulted_array!(self.tables.explicit_item_bounds[def_id] <- bounds); } fn encode_explicit_item_self_bounds(&mut self, def_id: DefId) { debug!("EncodeContext::encode_explicit_item_self_bounds({:?})", def_id); let bounds = self.tcx.explicit_item_self_bounds(def_id).skip_binder(); record_defaulted_array!(self.tables.explicit_item_self_bounds[def_id] <- bounds); } #[instrument(level = "debug", skip(self))] fn encode_info_for_assoc_item(&mut self, def_id: DefId) { let tcx = self.tcx; let item = tcx.associated_item(def_id); if matches!(item.container, AssocContainer::Trait | AssocContainer::TraitImpl(_)) { self.tables.defaultness.set_some(def_id.index, item.defaultness(tcx)); } record!(self.tables.assoc_container[def_id] <- item.container); if let AssocContainer::Trait = item.container && item.is_type() { self.encode_explicit_item_bounds(def_id); self.encode_explicit_item_self_bounds(def_id); if tcx.is_conditionally_const(def_id) { record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id] <- self.tcx.explicit_implied_const_bounds(def_id).skip_binder()); } } if let ty::AssocKind::Type { data: ty::AssocTypeData::Rpitit(rpitit_info) } = item.kind { record!(self.tables.opt_rpitit_info[def_id] <- rpitit_info); if matches!(rpitit_info, ty::ImplTraitInTraitData::Trait { .. }) { record_array!( self.tables.assumed_wf_types_for_rpitit[def_id] <- self.tcx.assumed_wf_types_for_rpitit(def_id) ); self.encode_precise_capturing_args(def_id); } } } fn encode_precise_capturing_args(&mut self, def_id: DefId) { let Some(precise_capturing_args) = self.tcx.rendered_precise_capturing_args(def_id) else { return; }; record_array!(self.tables.rendered_precise_capturing_args[def_id] <- precise_capturing_args); } fn encode_mir(&mut self) { if self.is_proc_macro { return; } let tcx = self.tcx; let reachable_set = tcx.reachable_set(()); let keys_and_jobs = tcx.mir_keys(()).iter().filter_map(|&def_id| { let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id); if encode_const || encode_opt { Some((def_id, encode_const, encode_opt)) } else { None } }); for (def_id, encode_const, encode_opt) in keys_and_jobs { debug_assert!(encode_const || encode_opt); debug!("EntryBuilder::encode_mir({:?})", def_id); if encode_opt { record!(self.tables.optimized_mir[def_id.to_def_id()] <- tcx.optimized_mir(def_id)); self.tables .cross_crate_inlinable .set(def_id.to_def_id().index, self.tcx.cross_crate_inlinable(def_id)); record!(self.tables.closure_saved_names_of_captured_variables[def_id.to_def_id()] <- tcx.closure_saved_names_of_captured_variables(def_id)); if self.tcx.is_coroutine(def_id.to_def_id()) && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id) { record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses); } } if encode_const { record!(self.tables.mir_for_ctfe[def_id.to_def_id()] <- tcx.mir_for_ctfe(def_id)); // FIXME(generic_const_exprs): this feels wrong to have in `encode_mir` let abstract_const = tcx.thir_abstract_const(def_id); if let Ok(Some(abstract_const)) = abstract_const { record!(self.tables.thir_abstract_const[def_id.to_def_id()] <- abstract_const); } if should_encode_const(tcx.def_kind(def_id)) { let qualifs = tcx.mir_const_qualif(def_id); record!(self.tables.mir_const_qualif[def_id.to_def_id()] <- qualifs); let body = tcx.hir_maybe_body_owned_by(def_id); if let Some(body) = body { let const_data = rendered_const(self.tcx, &body, def_id); record!(self.tables.rendered_const[def_id.to_def_id()] <- const_data); } } } record!(self.tables.promoted_mir[def_id.to_def_id()] <- tcx.promoted_mir(def_id)); if self.tcx.is_coroutine(def_id.to_def_id()) && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id) { record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses); } } // Encode all the deduced parameter attributes for everything that has MIR, even for items // that can't be inlined. But don't if we aren't optimizing in non-incremental mode, to // save the query traffic. if tcx.sess.opts.output_types.should_codegen() && tcx.sess.opts.optimize != OptLevel::No && tcx.sess.opts.incremental.is_none() { for &local_def_id in tcx.mir_keys(()) { if let DefKind::AssocFn | DefKind::Fn = tcx.def_kind(local_def_id) { record_array!(self.tables.deduced_param_attrs[local_def_id.to_def_id()] <- self.tcx.deduced_param_attrs(local_def_id.to_def_id())); } } } } #[instrument(level = "debug", skip(self))] fn encode_stability(&mut self, def_id: DefId) { // The query lookup can take a measurable amount of time in crates with many items. Check if // the stability attributes are even enabled before using their queries. if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked { if let Some(stab) = self.tcx.lookup_stability(def_id) { record!(self.tables.lookup_stability[def_id] <- stab) } } } #[instrument(level = "debug", skip(self))] fn encode_const_stability(&mut self, def_id: DefId) { // The query lookup can take a measurable amount of time in crates with many items. Check if // the stability attributes are even enabled before using their queries. if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked { if let Some(stab) = self.tcx.lookup_const_stability(def_id) { record!(self.tables.lookup_const_stability[def_id] <- stab) } } } #[instrument(level = "debug", skip(self))] fn encode_default_body_stability(&mut self, def_id: DefId) { // The query lookup can take a measurable amount of time in crates with many items. Check if // the stability attributes are even enabled before using their queries. if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked { if let Some(stab) = self.tcx.lookup_default_body_stability(def_id) { record!(self.tables.lookup_default_body_stability[def_id] <- stab) } } } #[instrument(level = "debug", skip(self))] fn encode_deprecation(&mut self, def_id: DefId) { if let Some(depr) = self.tcx.lookup_deprecation(def_id) { record!(self.tables.lookup_deprecation_entry[def_id] <- depr); } } #[instrument(level = "debug", skip(self))] fn encode_info_for_macro(&mut self, def_id: LocalDefId) { let tcx = self.tcx; let (_, macro_def, _) = tcx.hir_expect_item(def_id).expect_macro(); self.tables.is_macro_rules.set(def_id.local_def_index, macro_def.macro_rules); record!(self.tables.macro_definition[def_id.to_def_id()] <- &*macro_def.body); } fn encode_native_libraries(&mut self) -> LazyArray { empty_proc_macro!(self); let used_libraries = self.tcx.native_libraries(LOCAL_CRATE); self.lazy_array(used_libraries.iter()) } fn encode_foreign_modules(&mut self) -> LazyArray { empty_proc_macro!(self); let foreign_modules = self.tcx.foreign_modules(LOCAL_CRATE); self.lazy_array(foreign_modules.iter().map(|(_, m)| m).cloned()) } fn encode_hygiene(&mut self) -> (SyntaxContextTable, ExpnDataTable, ExpnHashTable) { let mut syntax_contexts: TableBuilder<_, _> = Default::default(); let mut expn_data_table: TableBuilder<_, _> = Default::default(); let mut expn_hash_table: TableBuilder<_, _> = Default::default(); self.hygiene_ctxt.encode( &mut (&mut *self, &mut syntax_contexts, &mut expn_data_table, &mut expn_hash_table), |(this, syntax_contexts, _, _), index, ctxt_data| { syntax_contexts.set_some(index, this.lazy(ctxt_data)); }, |(this, _, expn_data_table, expn_hash_table), index, expn_data, hash| { if let Some(index) = index.as_local() { expn_data_table.set_some(index.as_raw(), this.lazy(expn_data)); expn_hash_table.set_some(index.as_raw(), this.lazy(hash)); } }, ); ( syntax_contexts.encode(&mut self.opaque), expn_data_table.encode(&mut self.opaque), expn_hash_table.encode(&mut self.opaque), ) } fn encode_proc_macros(&mut self) -> Option { let is_proc_macro = self.tcx.crate_types().contains(&CrateType::ProcMacro); if is_proc_macro { let tcx = self.tcx; let proc_macro_decls_static = tcx.proc_macro_decls_static(()).unwrap().local_def_index; let stability = tcx.lookup_stability(CRATE_DEF_ID); let macros = self.lazy_array(tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index)); for (i, span) in self.tcx.sess.psess.proc_macro_quoted_spans() { let span = self.lazy(span); self.tables.proc_macro_quoted_spans.set_some(i, span); } self.tables.def_kind.set_some(LOCAL_CRATE.as_def_id().index, DefKind::Mod); record!(self.tables.def_span[LOCAL_CRATE.as_def_id()] <- tcx.def_span(LOCAL_CRATE.as_def_id())); self.encode_attrs(LOCAL_CRATE.as_def_id().expect_local()); let vis = tcx.local_visibility(CRATE_DEF_ID).map_id(|def_id| def_id.local_def_index); record!(self.tables.visibility[LOCAL_CRATE.as_def_id()] <- vis); if let Some(stability) = stability { record!(self.tables.lookup_stability[LOCAL_CRATE.as_def_id()] <- stability); } self.encode_deprecation(LOCAL_CRATE.as_def_id()); if let Some(res_map) = tcx.resolutions(()).doc_link_resolutions.get(&CRATE_DEF_ID) { record!(self.tables.doc_link_resolutions[LOCAL_CRATE.as_def_id()] <- res_map); } if let Some(traits) = tcx.resolutions(()).doc_link_traits_in_scope.get(&CRATE_DEF_ID) { record_array!(self.tables.doc_link_traits_in_scope[LOCAL_CRATE.as_def_id()] <- traits); } // Normally, this information is encoded when we walk the items // defined in this crate. However, we skip doing that for proc-macro crates, // so we manually encode just the information that we need for &proc_macro in &tcx.resolutions(()).proc_macros { let id = proc_macro; let proc_macro = tcx.local_def_id_to_hir_id(proc_macro); let mut name = tcx.hir_name(proc_macro); let span = tcx.hir_span(proc_macro); // Proc-macros may have attributes like `#[allow_internal_unstable]`, // so downstream crates need access to them. let attrs = tcx.hir_attrs(proc_macro); let macro_kind = if find_attr!(attrs, AttributeKind::ProcMacro(..)) { MacroKind::Bang } else if find_attr!(attrs, AttributeKind::ProcMacroAttribute(..)) { MacroKind::Attr } else if let Some(trait_name) = find_attr!(attrs, AttributeKind::ProcMacroDerive { trait_name, ..} => trait_name) { name = *trait_name; MacroKind::Derive } else { bug!("Unknown proc-macro type for item {:?}", id); }; let mut def_key = self.tcx.hir_def_key(id); def_key.disambiguated_data.data = DefPathData::MacroNs(name); let def_id = id.to_def_id(); self.tables.def_kind.set_some(def_id.index, DefKind::Macro(macro_kind.into())); self.tables.proc_macro.set_some(def_id.index, macro_kind); self.encode_attrs(id); record!(self.tables.def_keys[def_id] <- def_key); record!(self.tables.def_ident_span[def_id] <- span); record!(self.tables.def_span[def_id] <- span); record!(self.tables.visibility[def_id] <- ty::Visibility::Public); if let Some(stability) = stability { record!(self.tables.lookup_stability[def_id] <- stability); } } Some(ProcMacroData { proc_macro_decls_static, stability, macros }) } else { None } } fn encode_debugger_visualizers(&mut self) -> LazyArray { empty_proc_macro!(self); self.lazy_array( self.tcx .debugger_visualizers(LOCAL_CRATE) .iter() // Erase the path since it may contain privacy sensitive data // that we don't want to end up in crate metadata. // The path is only needed for the local crate because of // `--emit dep-info`. .map(DebuggerVisualizerFile::path_erased), ) } fn encode_crate_deps(&mut self) -> LazyArray { empty_proc_macro!(self); let deps = self .tcx .crates(()) .iter() .map(|&cnum| { let dep = CrateDep { name: self.tcx.crate_name(cnum), hash: self.tcx.crate_hash(cnum), host_hash: self.tcx.crate_host_hash(cnum), kind: self.tcx.dep_kind(cnum), extra_filename: self.tcx.extra_filename(cnum).clone(), is_private: self.tcx.is_private_dep(cnum), }; (cnum, dep) }) .collect::>(); { // Sanity-check the crate numbers let mut expected_cnum = 1; for &(n, _) in &deps { assert_eq!(n, CrateNum::new(expected_cnum)); expected_cnum += 1; } } // We're just going to write a list of crate 'name-hash-version's, with // the assumption that they are numbered 1 to n. // FIXME (#2166): This is not nearly enough to support correct versioning // but is enough to get transitive crate dependencies working. self.lazy_array(deps.iter().map(|(_, dep)| dep)) } fn encode_target_modifiers(&mut self) -> LazyArray { empty_proc_macro!(self); let tcx = self.tcx; self.lazy_array(tcx.sess.opts.gather_target_modifiers()) } fn encode_lib_features(&mut self) -> LazyArray<(Symbol, FeatureStability)> { empty_proc_macro!(self); let tcx = self.tcx; let lib_features = tcx.lib_features(LOCAL_CRATE); self.lazy_array(lib_features.to_sorted_vec()) } fn encode_stability_implications(&mut self) -> LazyArray<(Symbol, Symbol)> { empty_proc_macro!(self); let tcx = self.tcx; let implications = tcx.stability_implications(LOCAL_CRATE); let sorted = implications.to_sorted_stable_ord(); self.lazy_array(sorted.into_iter().map(|(k, v)| (*k, *v))) } fn encode_diagnostic_items(&mut self) -> LazyArray<(Symbol, DefIndex)> { empty_proc_macro!(self); let tcx = self.tcx; let diagnostic_items = &tcx.diagnostic_items(LOCAL_CRATE).name_to_id; self.lazy_array(diagnostic_items.iter().map(|(&name, def_id)| (name, def_id.index))) } fn encode_lang_items(&mut self) -> LazyArray<(DefIndex, LangItem)> { empty_proc_macro!(self); let lang_items = self.tcx.lang_items().iter(); self.lazy_array(lang_items.filter_map(|(lang_item, def_id)| { def_id.as_local().map(|id| (id.local_def_index, lang_item)) })) } fn encode_lang_items_missing(&mut self) -> LazyArray { empty_proc_macro!(self); let tcx = self.tcx; self.lazy_array(&tcx.lang_items().missing) } fn encode_stripped_cfg_items(&mut self) -> LazyArray> { self.lazy_array( self.tcx .stripped_cfg_items(LOCAL_CRATE) .into_iter() .map(|item| item.clone().map_mod_id(|def_id| def_id.index)), ) } fn encode_traits(&mut self) -> LazyArray { empty_proc_macro!(self); self.lazy_array(self.tcx.traits(LOCAL_CRATE).iter().map(|def_id| def_id.index)) } /// Encodes an index, mapping each trait to its (local) implementations. #[instrument(level = "debug", skip(self))] fn encode_impls(&mut self) -> LazyArray { empty_proc_macro!(self); let tcx = self.tcx; let mut trait_impls: FxIndexMap)>> = FxIndexMap::default(); for id in tcx.hir_free_items() { let DefKind::Impl { of_trait } = tcx.def_kind(id.owner_id) else { continue; }; let def_id = id.owner_id.to_def_id(); if of_trait && let Some(header) = tcx.impl_trait_header(def_id) { record!(self.tables.impl_trait_header[def_id] <- header); self.tables.defaultness.set_some(def_id.index, tcx.defaultness(def_id)); let trait_ref = header.trait_ref.instantiate_identity(); let simplified_self_ty = fast_reject::simplify_type( self.tcx, trait_ref.self_ty(), TreatParams::InstantiateWithInfer, ); trait_impls .entry(trait_ref.def_id) .or_default() .push((id.owner_id.def_id.local_def_index, simplified_self_ty)); let trait_def = tcx.trait_def(trait_ref.def_id); if let Ok(mut an) = trait_def.ancestors(tcx, def_id) && let Some(specialization_graph::Node::Impl(parent)) = an.nth(1) { self.tables.impl_parent.set_some(def_id.index, parent.into()); } // if this is an impl of `CoerceUnsized`, create its // "unsized info", else just store None if tcx.is_lang_item(trait_ref.def_id, LangItem::CoerceUnsized) { let coerce_unsized_info = tcx.coerce_unsized_info(def_id).unwrap(); record!(self.tables.coerce_unsized_info[def_id] <- coerce_unsized_info); } } } let trait_impls: Vec<_> = trait_impls .into_iter() .map(|(trait_def_id, impls)| TraitImpls { trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index), impls: self.lazy_array(&impls), }) .collect(); self.lazy_array(&trait_impls) } #[instrument(level = "debug", skip(self))] fn encode_incoherent_impls(&mut self) -> LazyArray { empty_proc_macro!(self); let tcx = self.tcx; let all_impls: Vec<_> = tcx .crate_inherent_impls(()) .0 .incoherent_impls .iter() .map(|(&simp, impls)| IncoherentImpls { self_ty: simp, impls: self.lazy_array(impls.iter().map(|def_id| def_id.local_def_index)), }) .collect(); self.lazy_array(&all_impls) } fn encode_exportable_items(&mut self) -> LazyArray { empty_proc_macro!(self); self.lazy_array(self.tcx.exportable_items(LOCAL_CRATE).iter().map(|def_id| def_id.index)) } fn encode_stable_order_of_exportable_impls(&mut self) -> LazyArray<(DefIndex, usize)> { empty_proc_macro!(self); let stable_order_of_exportable_impls = self.tcx.stable_order_of_exportable_impls(LOCAL_CRATE); self.lazy_array( stable_order_of_exportable_impls.iter().map(|(def_id, idx)| (def_id.index, *idx)), ) } // Encodes all symbols exported from this crate into the metadata. // // This pass is seeded off the reachability list calculated in the // middle::reachable module but filters out items that either don't have a // symbol associated with them (they weren't translated) or if they're an FFI // definition (as that's not defined in this crate). fn encode_exported_symbols( &mut self, exported_symbols: &[(ExportedSymbol<'tcx>, SymbolExportInfo)], ) -> LazyArray<(ExportedSymbol<'static>, SymbolExportInfo)> { empty_proc_macro!(self); self.lazy_array(exported_symbols.iter().cloned()) } fn encode_dylib_dependency_formats(&mut self) -> LazyArray> { empty_proc_macro!(self); let formats = self.tcx.dependency_formats(()); if let Some(arr) = formats.get(&CrateType::Dylib) { return self.lazy_array(arr.iter().skip(1 /* skip LOCAL_CRATE */).map( |slot| match *slot { Linkage::NotLinked | Linkage::IncludedFromDylib => None, Linkage::Dynamic => Some(LinkagePreference::RequireDynamic), Linkage::Static => Some(LinkagePreference::RequireStatic), }, )); } LazyArray::default() } } /// Used to prefetch queries which will be needed later by metadata encoding. /// Only a subset of the queries are actually prefetched to keep this code smaller. fn prefetch_mir(tcx: TyCtxt<'_>) { if !tcx.sess.opts.output_types.should_codegen() { // We won't emit MIR, so don't prefetch it. return; } let reachable_set = tcx.reachable_set(()); par_for_each_in(tcx.mir_keys(()), |&&def_id| { let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id); if encode_const { tcx.ensure_done().mir_for_ctfe(def_id); } if encode_opt { tcx.ensure_done().optimized_mir(def_id); } if encode_opt || encode_const { tcx.ensure_done().promoted_mir(def_id); } }) } // NOTE(eddyb) The following comment was preserved for posterity, even // though it's no longer relevant as EBML (which uses nested & tagged // "documents") was replaced with a scheme that can't go out of bounds. // // And here we run into yet another obscure archive bug: in which metadata // loaded from archives may have trailing garbage bytes. Awhile back one of // our tests was failing sporadically on the macOS 64-bit builders (both nopt // and opt) by having ebml generate an out-of-bounds panic when looking at // metadata. // // Upon investigation it turned out that the metadata file inside of an rlib // (and ar archive) was being corrupted. Some compilations would generate a // metadata file which would end in a few extra bytes, while other // compilations would not have these extra bytes appended to the end. These // extra bytes were interpreted by ebml as an extra tag, so they ended up // being interpreted causing the out-of-bounds. // // The root cause of why these extra bytes were appearing was never // discovered, and in the meantime the solution we're employing is to insert // the length of the metadata to the start of the metadata. Later on this // will allow us to slice the metadata to the precise length that we just // generated regardless of trailing bytes that end up in it. pub struct EncodedMetadata { // The declaration order matters because `full_metadata` should be dropped // before `_temp_dir`. full_metadata: Option, // This is an optional stub metadata containing only the crate header. // The header should be very small, so we load it directly into memory. stub_metadata: Option>, // The path containing the metadata, to record as work product. path: Option>, // We need to carry MaybeTempDir to avoid deleting the temporary // directory while accessing the Mmap. _temp_dir: Option, } impl EncodedMetadata { #[inline] pub fn from_path( path: PathBuf, stub_path: Option, temp_dir: Option, ) -> std::io::Result { let file = std::fs::File::open(&path)?; let file_metadata = file.metadata()?; if file_metadata.len() == 0 { return Ok(Self { full_metadata: None, stub_metadata: None, path: None, _temp_dir: None, }); } let full_mmap = unsafe { Some(Mmap::map(file)?) }; let stub = if let Some(stub_path) = stub_path { Some(std::fs::read(stub_path)?) } else { None }; Ok(Self { full_metadata: full_mmap, stub_metadata: stub, path: Some(path.into()), _temp_dir: temp_dir, }) } #[inline] pub fn full(&self) -> &[u8] { &self.full_metadata.as_deref().unwrap_or_default() } #[inline] pub fn stub_or_full(&self) -> &[u8] { self.stub_metadata.as_deref().unwrap_or(self.full()) } #[inline] pub fn path(&self) -> Option<&Path> { self.path.as_deref() } } impl Encodable for EncodedMetadata { fn encode(&self, s: &mut S) { self.stub_metadata.encode(s); let slice = self.full(); slice.encode(s) } } impl Decodable for EncodedMetadata { fn decode(d: &mut D) -> Self { let stub = >>::decode(d); let len = d.read_usize(); let full_metadata = if len > 0 { let mut mmap = MmapMut::map_anon(len).unwrap(); mmap.copy_from_slice(d.read_raw_bytes(len)); Some(mmap.make_read_only().unwrap()) } else { None }; Self { full_metadata, stub_metadata: stub, path: None, _temp_dir: None } } } #[instrument(level = "trace", skip(tcx))] pub fn encode_metadata(tcx: TyCtxt<'_>, path: &Path, ref_path: Option<&Path>) { // Since encoding metadata is not in a query, and nothing is cached, // there's no need to do dep-graph tracking for any of it. tcx.dep_graph.assert_ignored(); // Generate the metadata stub manually, as that is a small file compared to full metadata. if let Some(ref_path) = ref_path { let _prof_timer = tcx.prof.verbose_generic_activity("generate_crate_metadata_stub"); with_encode_metadata_header(tcx, ref_path, |ecx| { let header: LazyValue = ecx.lazy(CrateHeader { name: tcx.crate_name(LOCAL_CRATE), triple: tcx.sess.opts.target_triple.clone(), hash: tcx.crate_hash(LOCAL_CRATE), is_proc_macro_crate: false, is_stub: true, }); header.position.get() }) } let _prof_timer = tcx.prof.verbose_generic_activity("generate_crate_metadata"); let dep_node = tcx.metadata_dep_node(); // If the metadata dep-node is green, try to reuse the saved work product. if tcx.dep_graph.is_fully_enabled() && let work_product_id = WorkProductId::from_cgu_name("metadata") && let Some(work_product) = tcx.dep_graph.previous_work_product(&work_product_id) && tcx.try_mark_green(&dep_node) { let saved_path = &work_product.saved_files["rmeta"]; let incr_comp_session_dir = tcx.sess.incr_comp_session_dir_opt().unwrap(); let source_file = rustc_incremental::in_incr_comp_dir(&incr_comp_session_dir, saved_path); debug!("copying preexisting metadata from {source_file:?} to {path:?}"); match rustc_fs_util::link_or_copy(&source_file, path) { Ok(_) => {} Err(err) => tcx.dcx().emit_fatal(FailCreateFileEncoder { err }), }; return; }; if tcx.sess.threads() != 1 { // Prefetch some queries used by metadata encoding. // This is not necessary for correctness, but is only done for performance reasons. // It can be removed if it turns out to cause trouble or be detrimental to performance. join( || prefetch_mir(tcx), || { let _ = tcx.exported_non_generic_symbols(LOCAL_CRATE); let _ = tcx.exported_generic_symbols(LOCAL_CRATE); }, ); } // Perform metadata encoding inside a task, so the dep-graph can check if any encoded // information changes, and maybe reuse the work product. tcx.dep_graph.with_task( dep_node, tcx, path, |tcx, path| { with_encode_metadata_header(tcx, path, |ecx| { // Encode all the entries and extra information in the crate, // culminating in the `CrateRoot` which points to all of it. let root = ecx.encode_crate_root(); // Flush buffer to ensure backing file has the correct size. ecx.opaque.flush(); // Record metadata size for self-profiling tcx.prof.artifact_size( "crate_metadata", "crate_metadata", ecx.opaque.file().metadata().unwrap().len(), ); root.position.get() }) }, None, ); } fn with_encode_metadata_header( tcx: TyCtxt<'_>, path: &Path, f: impl FnOnce(&mut EncodeContext<'_, '_>) -> usize, ) { let mut encoder = opaque::FileEncoder::new(path) .unwrap_or_else(|err| tcx.dcx().emit_fatal(FailCreateFileEncoder { err })); encoder.emit_raw_bytes(METADATA_HEADER); // Will be filled with the root position after encoding everything. encoder.emit_raw_bytes(&0u64.to_le_bytes()); let source_map_files = tcx.sess.source_map().files(); let source_file_cache = (Arc::clone(&source_map_files[0]), 0); let required_source_files = Some(FxIndexSet::default()); drop(source_map_files); let hygiene_ctxt = HygieneEncodeContext::default(); let mut ecx = EncodeContext { opaque: encoder, tcx, feat: tcx.features(), tables: Default::default(), lazy_state: LazyState::NoNode, span_shorthands: Default::default(), type_shorthands: Default::default(), predicate_shorthands: Default::default(), source_file_cache, interpret_allocs: Default::default(), required_source_files, is_proc_macro: tcx.crate_types().contains(&CrateType::ProcMacro), hygiene_ctxt: &hygiene_ctxt, symbol_index_table: Default::default(), }; // Encode the rustc version string in a predictable location. rustc_version(tcx.sess.cfg_version).encode(&mut ecx); let root_position = f(&mut ecx); // Make sure we report any errors from writing to the file. // If we forget this, compilation can succeed with an incomplete rmeta file, // causing an ICE when the rmeta file is read by another compilation. if let Err((path, err)) = ecx.opaque.finish() { tcx.dcx().emit_fatal(FailWriteFile { path: &path, err }); } let file = ecx.opaque.file(); if let Err(err) = encode_root_position(file, root_position) { tcx.dcx().emit_fatal(FailWriteFile { path: ecx.opaque.path(), err }); } } fn encode_root_position(mut file: &File, pos: usize) -> Result<(), std::io::Error> { // We will return to this position after writing the root position. let pos_before_seek = file.stream_position().unwrap(); // Encode the root position. let header = METADATA_HEADER.len(); file.seek(std::io::SeekFrom::Start(header as u64))?; file.write_all(&pos.to_le_bytes())?; // Return to the position where we are before writing the root position. file.seek(std::io::SeekFrom::Start(pos_before_seek))?; Ok(()) } pub(crate) fn provide(providers: &mut Providers) { *providers = Providers { doc_link_resolutions: |tcx, def_id| { tcx.resolutions(()) .doc_link_resolutions .get(&def_id) .unwrap_or_else(|| span_bug!(tcx.def_span(def_id), "no resolutions for a doc link")) }, doc_link_traits_in_scope: |tcx, def_id| { tcx.resolutions(()).doc_link_traits_in_scope.get(&def_id).unwrap_or_else(|| { span_bug!(tcx.def_span(def_id), "no traits in scope for a doc link") }) }, ..*providers } } /// Build a textual representation of an unevaluated constant expression. /// /// If the const expression is too complex, an underscore `_` is returned. /// For const arguments, it's `{ _ }` to be precise. /// This means that the output is not necessarily valid Rust code. /// /// Currently, only /// /// * literals (optionally with a leading `-`) /// * unit `()` /// * blocks (`{ … }`) around simple expressions and /// * paths without arguments /// /// are considered simple enough. Simple blocks are included since they are /// necessary to disambiguate unit from the unit type. /// This list might get extended in the future. /// /// Without this censoring, in a lot of cases the output would get too large /// and verbose. Consider `match` expressions, blocks and deeply nested ADTs. /// Further, private and `doc(hidden)` fields of structs would get leaked /// since HIR datatypes like the `body` parameter do not contain enough /// semantic information for this function to be able to hide them – /// at least not without significant performance overhead. /// /// Whenever possible, prefer to evaluate the constant first and try to /// use a different method for pretty-printing. Ideally this function /// should only ever be used as a fallback. pub fn rendered_const<'tcx>(tcx: TyCtxt<'tcx>, body: &hir::Body<'_>, def_id: LocalDefId) -> String { let value = body.value; #[derive(PartialEq, Eq)] enum Classification { Literal, Simple, Complex, } use Classification::*; fn classify(expr: &hir::Expr<'_>) -> Classification { match &expr.kind { hir::ExprKind::Unary(hir::UnOp::Neg, expr) => { if matches!(expr.kind, hir::ExprKind::Lit(_)) { Literal } else { Complex } } hir::ExprKind::Lit(_) => Literal, hir::ExprKind::Tup([]) => Simple, hir::ExprKind::Block(hir::Block { stmts: [], expr: Some(expr), .. }, _) => { if classify(expr) == Complex { Complex } else { Simple } } // Paths with a self-type or arguments are too “complex” following our measure since // they may leak private fields of structs (with feature `adt_const_params`). // Consider: `>::CONSTANT`. // Paths without arguments are definitely harmless though. hir::ExprKind::Path(hir::QPath::Resolved(_, hir::Path { segments, .. })) => { if segments.iter().all(|segment| segment.args.is_none()) { Simple } else { Complex } } // FIXME: Claiming that those kinds of QPaths are simple is probably not true if the Ty // contains const arguments. Is there a *concise* way to check for this? hir::ExprKind::Path(hir::QPath::TypeRelative(..)) => Simple, // FIXME: Can they contain const arguments and thus leak private struct fields? hir::ExprKind::Path(hir::QPath::LangItem(..)) => Simple, _ => Complex, } } match classify(value) { // For non-macro literals, we avoid invoking the pretty-printer and use the source snippet // instead to preserve certain stylistic choices the user likely made for the sake of // legibility, like: // // * hexadecimal notation // * underscores // * character escapes // // FIXME: This passes through `-/*spacer*/0` verbatim. Literal if !value.span.from_expansion() && let Ok(snippet) = tcx.sess.source_map().span_to_snippet(value.span) => { snippet } // Otherwise we prefer pretty-printing to get rid of extraneous whitespace, comments and // other formatting artifacts. Literal | Simple => id_to_string(&tcx, body.id().hir_id), // FIXME: Omit the curly braces if the enclosing expression is an array literal // with a repeated element (an `ExprKind::Repeat`) as in such case it // would not actually need any disambiguation. Complex => { if tcx.def_kind(def_id) == DefKind::AnonConst { "{ _ }".to_owned() } else { "_".to_owned() } } } }