use rustc_abi::ExternAbi; use rustc_ast::visit::{VisitorResult, walk_list}; use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; use rustc_data_structures::svh::Svh; use rustc_data_structures::sync::{DynSend, DynSync, par_for_each_in, try_par_for_each_in}; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::{DefId, LOCAL_CRATE, LocalDefId, LocalModDefId}; use rustc_hir::definitions::{DefKey, DefPath, DefPathHash}; use rustc_hir::intravisit::Visitor; use rustc_hir::*; use rustc_hir_pretty as pprust_hir; use rustc_span::def_id::StableCrateId; use rustc_span::{ErrorGuaranteed, Ident, Span, Symbol, kw, sym, with_metavar_spans}; use crate::hir::{ModuleItems, nested_filter}; use crate::middle::debugger_visualizer::DebuggerVisualizerFile; use crate::query::LocalCrate; use crate::ty::TyCtxt; // FIXME: the structure was necessary in the past but now it // only serves as "namespace" for HIR-related methods, and can be // removed if all the methods are reasonably renamed and moved to tcx // (https://github.com/rust-lang/rust/pull/118256#issuecomment-1826442834). #[derive(Copy, Clone)] pub struct Map<'hir> { pub(super) tcx: TyCtxt<'hir>, } /// An iterator that walks up the ancestor tree of a given `HirId`. /// Constructed using `tcx.hir_parent_iter(hir_id)`. struct ParentHirIterator<'tcx> { current_id: HirId, tcx: TyCtxt<'tcx>, // Cache the current value of `hir_owner_nodes` to avoid repeatedly calling the same query for // the same owner, which will uselessly record many times the same query dependency. current_owner_nodes: Option<&'tcx OwnerNodes<'tcx>>, } impl<'tcx> ParentHirIterator<'tcx> { fn new(tcx: TyCtxt<'tcx>, current_id: HirId) -> ParentHirIterator<'tcx> { ParentHirIterator { current_id, tcx, current_owner_nodes: None } } } impl<'tcx> Iterator for ParentHirIterator<'tcx> { type Item = HirId; fn next(&mut self) -> Option { if self.current_id == CRATE_HIR_ID { return None; } let HirId { owner, local_id } = self.current_id; let parent_id = if local_id == ItemLocalId::ZERO { // We go from an owner to its parent, so clear the cache. self.current_owner_nodes = None; self.tcx.hir_owner_parent(owner) } else { let owner_nodes = self.current_owner_nodes.get_or_insert_with(|| self.tcx.hir_owner_nodes(owner)); let parent_local_id = owner_nodes.nodes[local_id].parent; // HIR indexing should have checked that. debug_assert_ne!(parent_local_id, local_id); HirId { owner, local_id: parent_local_id } }; debug_assert_ne!(parent_id, self.current_id); self.current_id = parent_id; Some(parent_id) } } /// An iterator that walks up the ancestor tree of a given `HirId`. /// Constructed using `tcx.hir_parent_owner_iter(hir_id)`. pub struct ParentOwnerIterator<'tcx> { current_id: HirId, tcx: TyCtxt<'tcx>, } impl<'tcx> Iterator for ParentOwnerIterator<'tcx> { type Item = (OwnerId, OwnerNode<'tcx>); fn next(&mut self) -> Option { if self.current_id.local_id.index() != 0 { self.current_id.local_id = ItemLocalId::ZERO; let node = self.tcx.hir_owner_node(self.current_id.owner); return Some((self.current_id.owner, node)); } if self.current_id == CRATE_HIR_ID { return None; } let parent_id = self.tcx.hir_def_key(self.current_id.owner.def_id).parent; let parent_id = parent_id.map_or(CRATE_OWNER_ID, |local_def_index| { let def_id = LocalDefId { local_def_index }; self.tcx.local_def_id_to_hir_id(def_id).owner }); self.current_id = HirId::make_owner(parent_id.def_id); let node = self.tcx.hir_owner_node(self.current_id.owner); Some((self.current_id.owner, node)) } } impl<'tcx> TyCtxt<'tcx> { #[inline] fn expect_hir_owner_nodes(self, def_id: LocalDefId) -> &'tcx OwnerNodes<'tcx> { self.opt_hir_owner_nodes(def_id) .unwrap_or_else(|| span_bug!(self.def_span(def_id), "{def_id:?} is not an owner")) } #[inline] pub fn hir_owner_nodes(self, owner_id: OwnerId) -> &'tcx OwnerNodes<'tcx> { self.expect_hir_owner_nodes(owner_id.def_id) } #[inline] fn opt_hir_owner_node(self, def_id: LocalDefId) -> Option> { self.opt_hir_owner_nodes(def_id).map(|nodes| nodes.node()) } #[inline] pub fn expect_hir_owner_node(self, def_id: LocalDefId) -> OwnerNode<'tcx> { self.expect_hir_owner_nodes(def_id).node() } #[inline] pub fn hir_owner_node(self, owner_id: OwnerId) -> OwnerNode<'tcx> { self.hir_owner_nodes(owner_id).node() } /// Retrieves the `hir::Node` corresponding to `id`. pub fn hir_node(self, id: HirId) -> Node<'tcx> { self.hir_owner_nodes(id.owner).nodes[id.local_id].node } /// Retrieves the `hir::Node` corresponding to `id`. #[inline] pub fn hir_node_by_def_id(self, id: LocalDefId) -> Node<'tcx> { self.hir_node(self.local_def_id_to_hir_id(id)) } /// Returns `HirId` of the parent HIR node of node with this `hir_id`. /// Returns the same `hir_id` if and only if `hir_id == CRATE_HIR_ID`. /// /// If calling repeatedly and iterating over parents, prefer [`TyCtxt::hir_parent_iter`]. pub fn parent_hir_id(self, hir_id: HirId) -> HirId { let HirId { owner, local_id } = hir_id; if local_id == ItemLocalId::ZERO { self.hir_owner_parent(owner) } else { let parent_local_id = self.hir_owner_nodes(owner).nodes[local_id].parent; // HIR indexing should have checked that. debug_assert_ne!(parent_local_id, local_id); HirId { owner, local_id: parent_local_id } } } /// Returns parent HIR node of node with this `hir_id`. /// Returns HIR node of the same `hir_id` if and only if `hir_id == CRATE_HIR_ID`. pub fn parent_hir_node(self, hir_id: HirId) -> Node<'tcx> { self.hir_node(self.parent_hir_id(hir_id)) } #[inline] pub fn hir_root_module(self) -> &'tcx Mod<'tcx> { match self.hir_owner_node(CRATE_OWNER_ID) { OwnerNode::Crate(item) => item, _ => bug!(), } } #[inline] pub fn hir_free_items(self) -> impl Iterator + 'tcx { self.hir_crate_items(()).free_items.iter().copied() } #[inline] pub fn hir_module_free_items( self, module: LocalModDefId, ) -> impl Iterator + 'tcx { self.hir_module_items(module).free_items() } pub fn hir_def_key(self, def_id: LocalDefId) -> DefKey { // Accessing the DefKey is ok, since it is part of DefPathHash. self.definitions_untracked().def_key(def_id) } pub fn hir_def_path(self, def_id: LocalDefId) -> DefPath { // Accessing the DefPath is ok, since it is part of DefPathHash. self.definitions_untracked().def_path(def_id) } #[inline] pub fn hir_def_path_hash(self, def_id: LocalDefId) -> DefPathHash { // Accessing the DefPathHash is ok, it is incr. comp. stable. self.definitions_untracked().def_path_hash(def_id) } pub fn hir_get_if_local(self, id: DefId) -> Option> { id.as_local().map(|id| self.hir_node_by_def_id(id)) } pub fn hir_get_generics(self, id: LocalDefId) -> Option<&'tcx Generics<'tcx>> { self.opt_hir_owner_node(id)?.generics() } pub fn hir_item(self, id: ItemId) -> &'tcx Item<'tcx> { self.hir_owner_node(id.owner_id).expect_item() } pub fn hir_trait_item(self, id: TraitItemId) -> &'tcx TraitItem<'tcx> { self.hir_owner_node(id.owner_id).expect_trait_item() } pub fn hir_impl_item(self, id: ImplItemId) -> &'tcx ImplItem<'tcx> { self.hir_owner_node(id.owner_id).expect_impl_item() } pub fn hir_foreign_item(self, id: ForeignItemId) -> &'tcx ForeignItem<'tcx> { self.hir_owner_node(id.owner_id).expect_foreign_item() } pub fn hir_body(self, id: BodyId) -> &'tcx Body<'tcx> { self.hir_owner_nodes(id.hir_id.owner).bodies[&id.hir_id.local_id] } #[track_caller] pub fn hir_fn_decl_by_hir_id(self, hir_id: HirId) -> Option<&'tcx FnDecl<'tcx>> { self.hir_node(hir_id).fn_decl() } #[track_caller] pub fn hir_fn_sig_by_hir_id(self, hir_id: HirId) -> Option<&'tcx FnSig<'tcx>> { self.hir_node(hir_id).fn_sig() } #[track_caller] pub fn hir_enclosing_body_owner(self, hir_id: HirId) -> LocalDefId { for (_, node) in self.hir_parent_iter(hir_id) { if let Some((def_id, _)) = node.associated_body() { return def_id; } } bug!("no `hir_enclosing_body_owner` for hir_id `{}`", hir_id); } /// Returns the `HirId` that corresponds to the definition of /// which this is the body of, i.e., a `fn`, `const` or `static` /// item (possibly associated), a closure, or a `hir::AnonConst`. pub fn hir_body_owner(self, BodyId { hir_id }: BodyId) -> HirId { let parent = self.parent_hir_id(hir_id); assert_eq!(self.hir_node(parent).body_id().unwrap().hir_id, hir_id, "{hir_id:?}"); parent } pub fn hir_body_owner_def_id(self, BodyId { hir_id }: BodyId) -> LocalDefId { self.parent_hir_node(hir_id).associated_body().unwrap().0 } /// Given a `LocalDefId`, returns the `BodyId` associated with it, /// if the node is a body owner, otherwise returns `None`. pub fn hir_maybe_body_owned_by(self, id: LocalDefId) -> Option<&'tcx Body<'tcx>> { Some(self.hir_body(self.hir_node_by_def_id(id).body_id()?)) } /// Given a body owner's id, returns the `BodyId` associated with it. #[track_caller] pub fn hir_body_owned_by(self, id: LocalDefId) -> &'tcx Body<'tcx> { self.hir_maybe_body_owned_by(id).unwrap_or_else(|| { let hir_id = self.local_def_id_to_hir_id(id); span_bug!( self.hir().span(hir_id), "body_owned_by: {} has no associated body", self.hir().node_to_string(hir_id) ); }) } pub fn hir_body_param_names(self, id: BodyId) -> impl Iterator + 'tcx { self.hir_body(id).params.iter().map(|arg| match arg.pat.kind { PatKind::Binding(_, _, ident, _) => ident, _ => Ident::empty(), }) } /// Returns the `BodyOwnerKind` of this `LocalDefId`. /// /// Panics if `LocalDefId` does not have an associated body. pub fn hir_body_owner_kind(self, def_id: impl Into) -> BodyOwnerKind { let def_id = def_id.into(); match self.def_kind(def_id) { DefKind::Const | DefKind::AssocConst | DefKind::AnonConst => { BodyOwnerKind::Const { inline: false } } DefKind::InlineConst => BodyOwnerKind::Const { inline: true }, DefKind::Ctor(..) | DefKind::Fn | DefKind::AssocFn => BodyOwnerKind::Fn, DefKind::Closure | DefKind::SyntheticCoroutineBody => BodyOwnerKind::Closure, DefKind::Static { safety: _, mutability, nested: false } => { BodyOwnerKind::Static(mutability) } dk => bug!("{:?} is not a body node: {:?}", def_id, dk), } } /// Returns the `ConstContext` of the body associated with this `LocalDefId`. /// /// Panics if `LocalDefId` does not have an associated body. /// /// This should only be used for determining the context of a body, a return /// value of `Some` does not always suggest that the owner of the body is `const`, /// just that it has to be checked as if it were. pub fn hir_body_const_context(self, def_id: impl Into) -> Option { let def_id = def_id.into(); let ccx = match self.hir_body_owner_kind(def_id) { BodyOwnerKind::Const { inline } => ConstContext::Const { inline }, BodyOwnerKind::Static(mutability) => ConstContext::Static(mutability), BodyOwnerKind::Fn if self.is_constructor(def_id) => return None, BodyOwnerKind::Fn | BodyOwnerKind::Closure if self.is_const_fn(def_id) => { ConstContext::ConstFn } BodyOwnerKind::Fn if self.is_const_default_method(def_id) => ConstContext::ConstFn, BodyOwnerKind::Fn | BodyOwnerKind::Closure => return None, }; Some(ccx) } /// Returns an iterator of the `DefId`s for all body-owners in this /// crate. If you would prefer to iterate over the bodies /// themselves, you can do `self.hir().krate().body_ids.iter()`. #[inline] pub fn hir_body_owners(self) -> impl Iterator + 'tcx { self.hir_crate_items(()).body_owners.iter().copied() } #[inline] pub fn par_hir_body_owners(self, f: impl Fn(LocalDefId) + DynSend + DynSync) { par_for_each_in(&self.hir_crate_items(()).body_owners[..], |&def_id| f(def_id)); } pub fn hir_ty_param_owner(self, def_id: LocalDefId) -> LocalDefId { let def_kind = self.def_kind(def_id); match def_kind { DefKind::Trait | DefKind::TraitAlias => def_id, DefKind::LifetimeParam | DefKind::TyParam | DefKind::ConstParam => { self.local_parent(def_id) } _ => bug!("ty_param_owner: {:?} is a {:?} not a type parameter", def_id, def_kind), } } pub fn hir_ty_param_name(self, def_id: LocalDefId) -> Symbol { let def_kind = self.def_kind(def_id); match def_kind { DefKind::Trait | DefKind::TraitAlias => kw::SelfUpper, DefKind::LifetimeParam | DefKind::TyParam | DefKind::ConstParam => { self.item_name(def_id.to_def_id()) } _ => bug!("ty_param_name: {:?} is a {:?} not a type parameter", def_id, def_kind), } } pub fn hir_trait_impls(self, trait_did: DefId) -> &'tcx [LocalDefId] { self.all_local_trait_impls(()).get(&trait_did).map_or(&[], |xs| &xs[..]) } /// Gets the attributes on the crate. This is preferable to /// invoking `krate.attrs` because it registers a tighter /// dep-graph access. pub fn hir_krate_attrs(self) -> &'tcx [Attribute] { self.hir().attrs(CRATE_HIR_ID) } pub fn hir_rustc_coherence_is_core(self) -> bool { self.hir_krate_attrs().iter().any(|attr| attr.has_name(sym::rustc_coherence_is_core)) } pub fn hir_get_module(self, module: LocalModDefId) -> (&'tcx Mod<'tcx>, Span, HirId) { let hir_id = HirId::make_owner(module.to_local_def_id()); match self.hir_owner_node(hir_id.owner) { OwnerNode::Item(&Item { span, kind: ItemKind::Mod(m), .. }) => (m, span, hir_id), OwnerNode::Crate(item) => (item, item.spans.inner_span, hir_id), node => panic!("not a module: {node:?}"), } } /// Walks the contents of the local crate. See also `visit_all_item_likes_in_crate`. pub fn hir_walk_toplevel_module(self, visitor: &mut V) -> V::Result where V: Visitor<'tcx>, { let (top_mod, span, hir_id) = self.hir_get_module(LocalModDefId::CRATE_DEF_ID); visitor.visit_mod(top_mod, span, hir_id) } /// Walks the attributes in a crate. pub fn hir_walk_attributes(self, visitor: &mut V) -> V::Result where V: Visitor<'tcx>, { let krate = self.hir_crate(()); for info in krate.owners.iter() { if let MaybeOwner::Owner(info) = info { for attrs in info.attrs.map.values() { walk_list!(visitor, visit_attribute, *attrs); } } } V::Result::output() } /// Visits all item-likes in the crate in some deterministic (but unspecified) order. If you /// need to process every item-like, and don't care about visiting nested items in a particular /// order then this method is the best choice. If you do care about this nesting, you should /// use the `tcx.hir_walk_toplevel_module`. /// /// Note that this function will access HIR for all the item-likes in the crate. If you only /// need to access some of them, it is usually better to manually loop on the iterators /// provided by `tcx.hir_crate_items(())`. /// /// Please see the notes in `intravisit.rs` for more information. pub fn hir_visit_all_item_likes_in_crate(self, visitor: &mut V) -> V::Result where V: Visitor<'tcx>, { let krate = self.hir_crate_items(()); walk_list!(visitor, visit_item, krate.free_items().map(|id| self.hir_item(id))); walk_list!( visitor, visit_trait_item, krate.trait_items().map(|id| self.hir_trait_item(id)) ); walk_list!(visitor, visit_impl_item, krate.impl_items().map(|id| self.hir_impl_item(id))); walk_list!( visitor, visit_foreign_item, krate.foreign_items().map(|id| self.hir_foreign_item(id)) ); V::Result::output() } /// This method is the equivalent of `visit_all_item_likes_in_crate` but restricted to /// item-likes in a single module. pub fn hir_visit_item_likes_in_module( self, module: LocalModDefId, visitor: &mut V, ) -> V::Result where V: Visitor<'tcx>, { let module = self.hir_module_items(module); walk_list!(visitor, visit_item, module.free_items().map(|id| self.hir_item(id))); walk_list!( visitor, visit_trait_item, module.trait_items().map(|id| self.hir_trait_item(id)) ); walk_list!(visitor, visit_impl_item, module.impl_items().map(|id| self.hir_impl_item(id))); walk_list!( visitor, visit_foreign_item, module.foreign_items().map(|id| self.hir_foreign_item(id)) ); V::Result::output() } pub fn hir_for_each_module(self, mut f: impl FnMut(LocalModDefId)) { let crate_items = self.hir_crate_items(()); for module in crate_items.submodules.iter() { f(LocalModDefId::new_unchecked(module.def_id)) } } #[inline] pub fn par_hir_for_each_module(self, f: impl Fn(LocalModDefId) + DynSend + DynSync) { let crate_items = self.hir_crate_items(()); par_for_each_in(&crate_items.submodules[..], |module| { f(LocalModDefId::new_unchecked(module.def_id)) }) } #[inline] pub fn try_par_hir_for_each_module( self, f: impl Fn(LocalModDefId) -> Result<(), ErrorGuaranteed> + DynSend + DynSync, ) -> Result<(), ErrorGuaranteed> { let crate_items = self.hir_crate_items(()); try_par_for_each_in(&crate_items.submodules[..], |module| { f(LocalModDefId::new_unchecked(module.def_id)) }) } /// Returns an iterator for the nodes in the ancestor tree of the `current_id` /// until the crate root is reached. Prefer this over your own loop using `parent_id`. #[inline] pub fn hir_parent_id_iter(self, current_id: HirId) -> impl Iterator + 'tcx { ParentHirIterator::new(self, current_id) } /// Returns an iterator for the nodes in the ancestor tree of the `current_id` /// until the crate root is reached. Prefer this over your own loop using `parent_id`. #[inline] pub fn hir_parent_iter(self, current_id: HirId) -> impl Iterator)> { self.hir_parent_id_iter(current_id).map(move |id| (id, self.hir_node(id))) } /// Returns an iterator for the nodes in the ancestor tree of the `current_id` /// until the crate root is reached. Prefer this over your own loop using `parent_id`. #[inline] pub fn hir_parent_owner_iter(self, current_id: HirId) -> ParentOwnerIterator<'tcx> { ParentOwnerIterator { current_id, tcx: self } } /// Checks if the node is left-hand side of an assignment. pub fn hir_is_lhs(self, id: HirId) -> bool { match self.parent_hir_node(id) { Node::Expr(expr) => match expr.kind { ExprKind::Assign(lhs, _rhs, _span) => lhs.hir_id == id, _ => false, }, _ => false, } } /// Whether the expression pointed at by `hir_id` belongs to a `const` evaluation context. /// Used exclusively for diagnostics, to avoid suggestion function calls. pub fn hir_is_inside_const_context(self, hir_id: HirId) -> bool { self.hir_body_const_context(self.hir_enclosing_body_owner(hir_id)).is_some() } /// Retrieves the `HirId` for `id`'s enclosing function *if* the `id` block or return is /// in the "tail" position of the function, in other words if it's likely to correspond /// to the return type of the function. /// /// ``` /// fn foo(x: usize) -> bool { /// if x == 1 { /// true // If `get_fn_id_for_return_block` gets passed the `id` corresponding /// } else { // to this, it will return `foo`'s `HirId`. /// false /// } /// } /// ``` /// /// ```compile_fail,E0308 /// fn foo(x: usize) -> bool { /// loop { /// true // If `get_fn_id_for_return_block` gets passed the `id` corresponding /// } // to this, it will return `None`. /// false /// } /// ``` pub fn hir_get_fn_id_for_return_block(self, id: HirId) -> Option { let enclosing_body_owner = self.local_def_id_to_hir_id(self.hir_enclosing_body_owner(id)); // Return `None` if the `id` expression is not the returned value of the enclosing body let mut iter = [id].into_iter().chain(self.hir_parent_id_iter(id)).peekable(); while let Some(cur_id) = iter.next() { if enclosing_body_owner == cur_id { break; } // A return statement is always the value returned from the enclosing body regardless of // what the parent expressions are. if let Node::Expr(Expr { kind: ExprKind::Ret(_), .. }) = self.hir_node(cur_id) { break; } // If the current expression's value doesnt get used as the parent expressions value // then return `None` if let Some(&parent_id) = iter.peek() { match self.hir_node(parent_id) { // The current node is not the tail expression of the block expression parent // expr. Node::Block(Block { expr: Some(e), .. }) if cur_id != e.hir_id => return None, Node::Block(Block { expr: Some(e), .. }) if matches!(e.kind, ExprKind::If(_, _, None)) => { return None; } // The current expression's value does not pass up through these parent // expressions. Node::Block(Block { expr: None, .. }) | Node::Expr(Expr { kind: ExprKind::Loop(..), .. }) | Node::LetStmt(..) => return None, _ => {} } } } Some(enclosing_body_owner) } /// Retrieves the `OwnerId` for `id`'s parent item, or `id` itself if no /// parent item is in this map. The "parent item" is the closest parent node /// in the HIR which is recorded by the map and is an item, either an item /// in a module, trait, or impl. pub fn hir_get_parent_item(self, hir_id: HirId) -> OwnerId { if hir_id.local_id != ItemLocalId::ZERO { // If this is a child of a HIR owner, return the owner. hir_id.owner } else if let Some((def_id, _node)) = self.hir_parent_owner_iter(hir_id).next() { def_id } else { CRATE_OWNER_ID } } /// When on an if expression, a match arm tail expression or a match arm, give back /// the enclosing `if` or `match` expression. /// /// Used by error reporting when there's a type error in an if or match arm caused by the /// expression needing to be unit. pub fn hir_get_if_cause(self, hir_id: HirId) -> Option<&'tcx Expr<'tcx>> { for (_, node) in self.hir_parent_iter(hir_id) { match node { Node::Item(_) | Node::ForeignItem(_) | Node::TraitItem(_) | Node::ImplItem(_) | Node::Stmt(Stmt { kind: StmtKind::Let(_), .. }) => break, Node::Expr(expr @ Expr { kind: ExprKind::If(..) | ExprKind::Match(..), .. }) => { return Some(expr); } _ => {} } } None } /// Returns the nearest enclosing scope. A scope is roughly an item or block. pub fn hir_get_enclosing_scope(self, hir_id: HirId) -> Option { for (hir_id, node) in self.hir_parent_iter(hir_id) { if let Node::Item(Item { kind: ItemKind::Fn { .. } | ItemKind::Const(..) | ItemKind::Static(..) | ItemKind::Mod(..) | ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) | ItemKind::Trait(..) | ItemKind::Impl { .. }, .. }) | Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(..), .. }) | Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(..), .. }) | Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(..), .. }) | Node::Block(_) = node { return Some(hir_id); } } None } /// Returns the defining scope for an opaque type definition. pub fn hir_get_defining_scope(self, id: HirId) -> HirId { let mut scope = id; loop { scope = self.hir_get_enclosing_scope(scope).unwrap_or(CRATE_HIR_ID); if scope == CRATE_HIR_ID || !matches!(self.hir_node(scope), Node::Block(_)) { return scope; } } } } impl<'hir> Map<'hir> { pub fn get_foreign_abi(self, hir_id: HirId) -> ExternAbi { let parent = self.tcx.hir_get_parent_item(hir_id); if let OwnerNode::Item(Item { kind: ItemKind::ForeignMod { abi, .. }, .. }) = self.tcx.hir_owner_node(parent) { return *abi; } bug!( "expected foreign mod or inlined parent, found {}", self.node_to_string(HirId::make_owner(parent.def_id)) ) } pub fn expect_item(self, id: LocalDefId) -> &'hir Item<'hir> { match self.tcx.expect_hir_owner_node(id) { OwnerNode::Item(item) => item, _ => bug!("expected item, found {}", self.node_to_string(HirId::make_owner(id))), } } pub fn expect_impl_item(self, id: LocalDefId) -> &'hir ImplItem<'hir> { match self.tcx.expect_hir_owner_node(id) { OwnerNode::ImplItem(item) => item, _ => bug!("expected impl item, found {}", self.node_to_string(HirId::make_owner(id))), } } pub fn expect_trait_item(self, id: LocalDefId) -> &'hir TraitItem<'hir> { match self.tcx.expect_hir_owner_node(id) { OwnerNode::TraitItem(item) => item, _ => bug!("expected trait item, found {}", self.node_to_string(HirId::make_owner(id))), } } pub fn get_fn_output(self, def_id: LocalDefId) -> Option<&'hir FnRetTy<'hir>> { Some(&self.tcx.opt_hir_owner_node(def_id)?.fn_decl()?.output) } pub fn expect_variant(self, id: HirId) -> &'hir Variant<'hir> { match self.tcx.hir_node(id) { Node::Variant(variant) => variant, _ => bug!("expected variant, found {}", self.node_to_string(id)), } } pub fn expect_field(self, id: HirId) -> &'hir FieldDef<'hir> { match self.tcx.hir_node(id) { Node::Field(field) => field, _ => bug!("expected field, found {}", self.node_to_string(id)), } } pub fn expect_foreign_item(self, id: OwnerId) -> &'hir ForeignItem<'hir> { match self.tcx.hir_owner_node(id) { OwnerNode::ForeignItem(item) => item, _ => { bug!( "expected foreign item, found {}", self.node_to_string(HirId::make_owner(id.def_id)) ) } } } #[track_caller] pub fn expect_opaque_ty(self, id: LocalDefId) -> &'hir OpaqueTy<'hir> { match self.tcx.hir_node_by_def_id(id) { Node::OpaqueTy(opaq) => opaq, _ => { bug!( "expected opaque type definition, found {}", self.node_to_string(self.tcx.local_def_id_to_hir_id(id)) ) } } } pub fn expect_expr(self, id: HirId) -> &'hir Expr<'hir> { match self.tcx.hir_node(id) { Node::Expr(expr) => expr, _ => bug!("expected expr, found {}", self.node_to_string(id)), } } pub fn opt_delegation_sig_id(self, def_id: LocalDefId) -> Option { self.tcx.opt_hir_owner_node(def_id)?.fn_decl()?.opt_delegation_sig_id() } #[inline] fn opt_ident(self, id: HirId) -> Option { match self.tcx.hir_node(id) { Node::Pat(&Pat { kind: PatKind::Binding(_, _, ident, _), .. }) => Some(ident), // A `Ctor` doesn't have an identifier itself, but its parent // struct/variant does. Compare with `hir::Map::span`. Node::Ctor(..) => match self.tcx.parent_hir_node(id) { Node::Item(item) => Some(item.ident), Node::Variant(variant) => Some(variant.ident), _ => unreachable!(), }, node => node.ident(), } } #[inline] pub(super) fn opt_ident_span(self, id: HirId) -> Option { self.opt_ident(id).map(|ident| ident.span) } #[inline] pub fn ident(self, id: HirId) -> Ident { self.opt_ident(id).unwrap() } #[inline] pub fn opt_name(self, id: HirId) -> Option { self.opt_ident(id).map(|ident| ident.name) } pub fn name(self, id: HirId) -> Symbol { self.opt_name(id).unwrap_or_else(|| bug!("no name for {}", self.node_to_string(id))) } /// Given a node ID, gets a list of attributes associated with the AST /// corresponding to the node-ID. pub fn attrs(self, id: HirId) -> &'hir [Attribute] { self.tcx.hir_attrs(id.owner).get(id.local_id) } /// Gets the span of the definition of the specified HIR node. /// This is used by `tcx.def_span`. pub fn span(self, hir_id: HirId) -> Span { fn until_within(outer: Span, end: Span) -> Span { if let Some(end) = end.find_ancestor_inside(outer) { outer.with_hi(end.hi()) } else { outer } } fn named_span(item_span: Span, ident: Ident, generics: Option<&Generics<'_>>) -> Span { if ident.name != kw::Empty { let mut span = until_within(item_span, ident.span); if let Some(g) = generics && !g.span.is_dummy() && let Some(g_span) = g.span.find_ancestor_inside(item_span) { span = span.to(g_span); } span } else { item_span } } let span = match self.tcx.hir_node(hir_id) { // Function-like. Node::Item(Item { kind: ItemKind::Fn { sig, .. }, span: outer_span, .. }) | Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(sig, ..), span: outer_span, .. }) | Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(sig, ..), span: outer_span, .. }) | Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(sig, ..), span: outer_span, .. }) => { // Ensure that the returned span has the item's SyntaxContext, and not the // SyntaxContext of the visibility. sig.span.find_ancestor_in_same_ctxt(*outer_span).unwrap_or(*outer_span) } // Impls, including their where clauses. Node::Item(Item { kind: ItemKind::Impl(Impl { generics, .. }), span: outer_span, .. }) => until_within(*outer_span, generics.where_clause_span), // Constants and Statics. Node::Item(Item { kind: ItemKind::Const(ty, ..) | ItemKind::Static(ty, ..), span: outer_span, .. }) | Node::TraitItem(TraitItem { kind: TraitItemKind::Const(ty, ..), span: outer_span, .. }) | Node::ImplItem(ImplItem { kind: ImplItemKind::Const(ty, ..), span: outer_span, .. }) | Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Static(ty, ..), span: outer_span, .. }) => until_within(*outer_span, ty.span), // With generics and bounds. Node::Item(Item { kind: ItemKind::Trait(_, _, generics, bounds, _), span: outer_span, .. }) | Node::TraitItem(TraitItem { kind: TraitItemKind::Type(bounds, _), generics, span: outer_span, .. }) => { let end = if let Some(b) = bounds.last() { b.span() } else { generics.span }; until_within(*outer_span, end) } // Other cases. Node::Item(item) => match &item.kind { ItemKind::Use(path, _) => { // Ensure that the returned span has the item's SyntaxContext, and not the // SyntaxContext of the path. path.span.find_ancestor_in_same_ctxt(item.span).unwrap_or(item.span) } _ => named_span(item.span, item.ident, item.kind.generics()), }, Node::Variant(variant) => named_span(variant.span, variant.ident, None), Node::ImplItem(item) => named_span(item.span, item.ident, Some(item.generics)), Node::ForeignItem(item) => named_span(item.span, item.ident, None), Node::Ctor(_) => return self.span(self.tcx.parent_hir_id(hir_id)), Node::Expr(Expr { kind: ExprKind::Closure(Closure { fn_decl_span, .. }), span, .. }) => { // Ensure that the returned span has the item's SyntaxContext. fn_decl_span.find_ancestor_inside(*span).unwrap_or(*span) } _ => self.span_with_body(hir_id), }; debug_assert_eq!(span.ctxt(), self.span_with_body(hir_id).ctxt()); span } /// Like `hir.span()`, but includes the body of items /// (instead of just the item header) pub fn span_with_body(self, hir_id: HirId) -> Span { match self.tcx.hir_node(hir_id) { Node::Param(param) => param.span, Node::Item(item) => item.span, Node::ForeignItem(foreign_item) => foreign_item.span, Node::TraitItem(trait_item) => trait_item.span, Node::ImplItem(impl_item) => impl_item.span, Node::Variant(variant) => variant.span, Node::Field(field) => field.span, Node::AnonConst(constant) => constant.span, Node::ConstBlock(constant) => self.tcx.hir_body(constant.body).value.span, Node::ConstArg(const_arg) => const_arg.span(), Node::Expr(expr) => expr.span, Node::ExprField(field) => field.span, Node::Stmt(stmt) => stmt.span, Node::PathSegment(seg) => { let ident_span = seg.ident.span; ident_span .with_hi(seg.args.map_or_else(|| ident_span.hi(), |args| args.span_ext.hi())) } Node::Ty(ty) => ty.span, Node::AssocItemConstraint(constraint) => constraint.span, Node::TraitRef(tr) => tr.path.span, Node::OpaqueTy(op) => op.span, Node::Pat(pat) => pat.span, Node::TyPat(pat) => pat.span, Node::PatField(field) => field.span, Node::PatExpr(lit) => lit.span, Node::Arm(arm) => arm.span, Node::Block(block) => block.span, Node::Ctor(..) => self.span_with_body(self.tcx.parent_hir_id(hir_id)), Node::Lifetime(lifetime) => lifetime.ident.span, Node::GenericParam(param) => param.span, Node::Infer(i) => i.span, Node::LetStmt(local) => local.span, Node::Crate(item) => item.spans.inner_span, Node::WherePredicate(pred) => pred.span, Node::PreciseCapturingNonLifetimeArg(param) => param.ident.span, Node::Synthetic => unreachable!(), Node::Err(span) => span, } } pub fn span_if_local(self, id: DefId) -> Option { id.is_local().then(|| self.tcx.def_span(id)) } pub fn res_span(self, res: Res) -> Option { match res { Res::Err => None, Res::Local(id) => Some(self.span(id)), res => self.span_if_local(res.opt_def_id()?), } } /// Get a representation of this `id` for debugging purposes. /// NOTE: Do NOT use this in diagnostics! pub fn node_to_string(self, id: HirId) -> String { hir_id_to_string(self, id) } /// Returns the HirId of `N` in `struct Foo` when /// called with the HirId for the `{ ... }` anon const pub fn opt_const_param_default_param_def_id(self, anon_const: HirId) -> Option { let const_arg = self.tcx.parent_hir_id(anon_const); match self.tcx.parent_hir_node(const_arg) { Node::GenericParam(GenericParam { def_id: param_id, kind: GenericParamKind::Const { .. }, .. }) => Some(*param_id), _ => None, } } pub fn maybe_get_struct_pattern_shorthand_field(&self, expr: &Expr<'_>) -> Option { let local = match expr { Expr { kind: ExprKind::Path(QPath::Resolved( None, Path { res: def::Res::Local(_), segments: [PathSegment { ident, .. }], .. }, )), .. } => Some(ident), _ => None, }?; match self.tcx.parent_hir_node(expr.hir_id) { Node::ExprField(field) => { if field.ident.name == local.name && field.is_shorthand { return Some(local.name); } } _ => {} } None } } impl<'tcx> intravisit::HirTyCtxt<'tcx> for TyCtxt<'tcx> { fn hir_node(&self, hir_id: HirId) -> Node<'tcx> { (*self).hir_node(hir_id) } fn hir_body(&self, id: BodyId) -> &'tcx Body<'tcx> { (*self).hir_body(id) } fn hir_item(&self, id: ItemId) -> &'tcx Item<'tcx> { (*self).hir_item(id) } fn hir_trait_item(&self, id: TraitItemId) -> &'tcx TraitItem<'tcx> { (*self).hir_trait_item(id) } fn hir_impl_item(&self, id: ImplItemId) -> &'tcx ImplItem<'tcx> { (*self).hir_impl_item(id) } fn hir_foreign_item(&self, id: ForeignItemId) -> &'tcx ForeignItem<'tcx> { (*self).hir_foreign_item(id) } } impl<'tcx> pprust_hir::PpAnn for TyCtxt<'tcx> { fn nested(&self, state: &mut pprust_hir::State<'_>, nested: pprust_hir::Nested) { pprust_hir::PpAnn::nested(&(self as &dyn intravisit::HirTyCtxt<'_>), state, nested) } } pub(super) fn crate_hash(tcx: TyCtxt<'_>, _: LocalCrate) -> Svh { let krate = tcx.hir_crate(()); let hir_body_hash = krate.opt_hir_hash.expect("HIR hash missing while computing crate hash"); let upstream_crates = upstream_crates(tcx); let resolutions = tcx.resolutions(()); // We hash the final, remapped names of all local source files so we // don't have to include the path prefix remapping commandline args. // If we included the full mapping in the SVH, we could only have // reproducible builds by compiling from the same directory. So we just // hash the result of the mapping instead of the mapping itself. let mut source_file_names: Vec<_> = tcx .sess .source_map() .files() .iter() .filter(|source_file| source_file.cnum == LOCAL_CRATE) .map(|source_file| source_file.stable_id) .collect(); source_file_names.sort_unstable(); // We have to take care of debugger visualizers explicitly. The HIR (and // thus `hir_body_hash`) contains the #[debugger_visualizer] attributes but // these attributes only store the file path to the visualizer file, not // their content. Yet that content is exported into crate metadata, so any // changes to it need to be reflected in the crate hash. let debugger_visualizers: Vec<_> = tcx .debugger_visualizers(LOCAL_CRATE) .iter() // We ignore the path to the visualizer file since it's not going to be // encoded in crate metadata and we already hash the full contents of // the file. .map(DebuggerVisualizerFile::path_erased) .collect(); let crate_hash: Fingerprint = tcx.with_stable_hashing_context(|mut hcx| { let mut stable_hasher = StableHasher::new(); hir_body_hash.hash_stable(&mut hcx, &mut stable_hasher); upstream_crates.hash_stable(&mut hcx, &mut stable_hasher); source_file_names.hash_stable(&mut hcx, &mut stable_hasher); debugger_visualizers.hash_stable(&mut hcx, &mut stable_hasher); if tcx.sess.opts.incremental.is_some() { let definitions = tcx.untracked().definitions.freeze(); let mut owner_spans: Vec<_> = krate .owners .iter_enumerated() .filter_map(|(def_id, info)| { let _ = info.as_owner()?; let def_path_hash = definitions.def_path_hash(def_id); let span = tcx.source_span(def_id); debug_assert_eq!(span.parent(), None); Some((def_path_hash, span)) }) .collect(); owner_spans.sort_unstable_by_key(|bn| bn.0); owner_spans.hash_stable(&mut hcx, &mut stable_hasher); } tcx.sess.opts.dep_tracking_hash(true).hash_stable(&mut hcx, &mut stable_hasher); tcx.stable_crate_id(LOCAL_CRATE).hash_stable(&mut hcx, &mut stable_hasher); // Hash visibility information since it does not appear in HIR. // FIXME: Figure out how to remove `visibilities_for_hashing` by hashing visibilities on // the fly in the resolver, storing only their accumulated hash in `ResolverGlobalCtxt`, // and combining it with other hashes here. resolutions.visibilities_for_hashing.hash_stable(&mut hcx, &mut stable_hasher); with_metavar_spans(|mspans| { mspans.freeze_and_get_read_spans().hash_stable(&mut hcx, &mut stable_hasher); }); stable_hasher.finish() }); Svh::new(crate_hash) } fn upstream_crates(tcx: TyCtxt<'_>) -> Vec<(StableCrateId, Svh)> { let mut upstream_crates: Vec<_> = tcx .crates(()) .iter() .map(|&cnum| { let stable_crate_id = tcx.stable_crate_id(cnum); let hash = tcx.crate_hash(cnum); (stable_crate_id, hash) }) .collect(); upstream_crates.sort_unstable_by_key(|&(stable_crate_id, _)| stable_crate_id); upstream_crates } fn hir_id_to_string(map: Map<'_>, id: HirId) -> String { let path_str = |def_id: LocalDefId| map.tcx.def_path_str(def_id); let span_str = || map.tcx.sess.source_map().span_to_snippet(map.span(id)).unwrap_or_default(); let node_str = |prefix| format!("{id} ({prefix} `{}`)", span_str()); match map.tcx.hir_node(id) { Node::Item(item) => { let item_str = match item.kind { ItemKind::ExternCrate(..) => "extern crate", ItemKind::Use(..) => "use", ItemKind::Static(..) => "static", ItemKind::Const(..) => "const", ItemKind::Fn { .. } => "fn", ItemKind::Macro(..) => "macro", ItemKind::Mod(..) => "mod", ItemKind::ForeignMod { .. } => "foreign mod", ItemKind::GlobalAsm { .. } => "global asm", ItemKind::TyAlias(..) => "ty", ItemKind::Enum(..) => "enum", ItemKind::Struct(..) => "struct", ItemKind::Union(..) => "union", ItemKind::Trait(..) => "trait", ItemKind::TraitAlias(..) => "trait alias", ItemKind::Impl { .. } => "impl", }; format!("{id} ({item_str} {})", path_str(item.owner_id.def_id)) } Node::ForeignItem(item) => { format!("{id} (foreign item {})", path_str(item.owner_id.def_id)) } Node::ImplItem(ii) => { let kind = match ii.kind { ImplItemKind::Const(..) => "associated constant", ImplItemKind::Fn(fn_sig, _) => match fn_sig.decl.implicit_self { ImplicitSelfKind::None => "associated function", _ => "method", }, ImplItemKind::Type(_) => "associated type", }; format!("{id} ({kind} `{}` in {})", ii.ident, path_str(ii.owner_id.def_id)) } Node::TraitItem(ti) => { let kind = match ti.kind { TraitItemKind::Const(..) => "associated constant", TraitItemKind::Fn(fn_sig, _) => match fn_sig.decl.implicit_self { ImplicitSelfKind::None => "associated function", _ => "trait method", }, TraitItemKind::Type(..) => "associated type", }; format!("{id} ({kind} `{}` in {})", ti.ident, path_str(ti.owner_id.def_id)) } Node::Variant(variant) => { format!("{id} (variant `{}` in {})", variant.ident, path_str(variant.def_id)) } Node::Field(field) => { format!("{id} (field `{}` in {})", field.ident, path_str(field.def_id)) } Node::AnonConst(_) => node_str("const"), Node::ConstBlock(_) => node_str("const"), Node::ConstArg(_) => node_str("const"), Node::Expr(_) => node_str("expr"), Node::ExprField(_) => node_str("expr field"), Node::Stmt(_) => node_str("stmt"), Node::PathSegment(_) => node_str("path segment"), Node::Ty(_) => node_str("type"), Node::AssocItemConstraint(_) => node_str("assoc item constraint"), Node::TraitRef(_) => node_str("trait ref"), Node::OpaqueTy(_) => node_str("opaque type"), Node::Pat(_) => node_str("pat"), Node::TyPat(_) => node_str("pat ty"), Node::PatField(_) => node_str("pattern field"), Node::PatExpr(_) => node_str("pattern literal"), Node::Param(_) => node_str("param"), Node::Arm(_) => node_str("arm"), Node::Block(_) => node_str("block"), Node::Infer(_) => node_str("infer"), Node::LetStmt(_) => node_str("local"), Node::Ctor(ctor) => format!( "{id} (ctor {})", ctor.ctor_def_id().map_or("".into(), |def_id| path_str(def_id)), ), Node::Lifetime(_) => node_str("lifetime"), Node::GenericParam(param) => { format!("{id} (generic_param {})", path_str(param.def_id)) } Node::Crate(..) => String::from("(root_crate)"), Node::WherePredicate(_) => node_str("where predicate"), Node::Synthetic => unreachable!(), Node::Err(_) => node_str("error"), Node::PreciseCapturingNonLifetimeArg(_param) => node_str("parameter"), } } pub(super) fn hir_module_items(tcx: TyCtxt<'_>, module_id: LocalModDefId) -> ModuleItems { let mut collector = ItemCollector::new(tcx, false); let (hir_mod, span, hir_id) = tcx.hir_get_module(module_id); collector.visit_mod(hir_mod, span, hir_id); let ItemCollector { submodules, items, trait_items, impl_items, foreign_items, body_owners, opaques, nested_bodies, .. } = collector; ModuleItems { submodules: submodules.into_boxed_slice(), free_items: items.into_boxed_slice(), trait_items: trait_items.into_boxed_slice(), impl_items: impl_items.into_boxed_slice(), foreign_items: foreign_items.into_boxed_slice(), body_owners: body_owners.into_boxed_slice(), opaques: opaques.into_boxed_slice(), nested_bodies: nested_bodies.into_boxed_slice(), } } pub(crate) fn hir_crate_items(tcx: TyCtxt<'_>, _: ()) -> ModuleItems { let mut collector = ItemCollector::new(tcx, true); // A "crate collector" and "module collector" start at a // module item (the former starts at the crate root) but only // the former needs to collect it. ItemCollector does not do this for us. collector.submodules.push(CRATE_OWNER_ID); tcx.hir_walk_toplevel_module(&mut collector); let ItemCollector { submodules, items, trait_items, impl_items, foreign_items, body_owners, opaques, nested_bodies, .. } = collector; ModuleItems { submodules: submodules.into_boxed_slice(), free_items: items.into_boxed_slice(), trait_items: trait_items.into_boxed_slice(), impl_items: impl_items.into_boxed_slice(), foreign_items: foreign_items.into_boxed_slice(), body_owners: body_owners.into_boxed_slice(), opaques: opaques.into_boxed_slice(), nested_bodies: nested_bodies.into_boxed_slice(), } } struct ItemCollector<'tcx> { // When true, it collects all items in the create, // otherwise it collects items in some module. crate_collector: bool, tcx: TyCtxt<'tcx>, submodules: Vec, items: Vec, trait_items: Vec, impl_items: Vec, foreign_items: Vec, body_owners: Vec, opaques: Vec, nested_bodies: Vec, } impl<'tcx> ItemCollector<'tcx> { fn new(tcx: TyCtxt<'tcx>, crate_collector: bool) -> ItemCollector<'tcx> { ItemCollector { crate_collector, tcx, submodules: Vec::default(), items: Vec::default(), trait_items: Vec::default(), impl_items: Vec::default(), foreign_items: Vec::default(), body_owners: Vec::default(), opaques: Vec::default(), nested_bodies: Vec::default(), } } } impl<'hir> Visitor<'hir> for ItemCollector<'hir> { type NestedFilter = nested_filter::All; fn maybe_tcx(&mut self) -> Self::MaybeTyCtxt { self.tcx } fn visit_item(&mut self, item: &'hir Item<'hir>) { if Node::Item(item).associated_body().is_some() { self.body_owners.push(item.owner_id.def_id); } self.items.push(item.item_id()); // Items that are modules are handled here instead of in visit_mod. if let ItemKind::Mod(module) = &item.kind { self.submodules.push(item.owner_id); // A module collector does not recurse inside nested modules. if self.crate_collector { intravisit::walk_mod(self, module, item.hir_id()); } } else { intravisit::walk_item(self, item) } } fn visit_foreign_item(&mut self, item: &'hir ForeignItem<'hir>) { self.foreign_items.push(item.foreign_item_id()); intravisit::walk_foreign_item(self, item) } fn visit_anon_const(&mut self, c: &'hir AnonConst) { self.body_owners.push(c.def_id); intravisit::walk_anon_const(self, c) } fn visit_inline_const(&mut self, c: &'hir ConstBlock) { self.body_owners.push(c.def_id); self.nested_bodies.push(c.def_id); intravisit::walk_inline_const(self, c) } fn visit_opaque_ty(&mut self, o: &'hir OpaqueTy<'hir>) { self.opaques.push(o.def_id); intravisit::walk_opaque_ty(self, o) } fn visit_expr(&mut self, ex: &'hir Expr<'hir>) { if let ExprKind::Closure(closure) = ex.kind { self.body_owners.push(closure.def_id); self.nested_bodies.push(closure.def_id); } intravisit::walk_expr(self, ex) } fn visit_trait_item(&mut self, item: &'hir TraitItem<'hir>) { if Node::TraitItem(item).associated_body().is_some() { self.body_owners.push(item.owner_id.def_id); } self.trait_items.push(item.trait_item_id()); intravisit::walk_trait_item(self, item) } fn visit_impl_item(&mut self, item: &'hir ImplItem<'hir>) { if Node::ImplItem(item).associated_body().is_some() { self.body_owners.push(item.owner_id.def_id); } self.impl_items.push(item.impl_item_id()); intravisit::walk_impl_item(self, item) } }