use std::fmt::{self, Debug, Display, Formatter}; use rustc_abi::{HasDataLayout, Size}; use rustc_hir::def_id::DefId; use rustc_macros::{HashStable, Lift, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable}; use rustc_session::RemapFileNameExt; use rustc_session::config::RemapPathScopeComponents; use rustc_span::{DUMMY_SP, Span, Symbol}; use rustc_type_ir::TypeVisitableExt; use super::interpret::ReportedErrorInfo; use crate::mir::interpret::{AllocId, AllocRange, ErrorHandled, GlobalAlloc, Scalar, alloc_range}; use crate::mir::{Promoted, pretty_print_const_value}; use crate::ty::print::{pretty_print_const, with_no_trimmed_paths}; use crate::ty::{self, ConstKind, GenericArgsRef, ScalarInt, Ty, TyCtxt}; /////////////////////////////////////////////////////////////////////////// /// Evaluated Constants /// Represents the result of const evaluation via the `eval_to_allocation` query. /// Not to be confused with `ConstAllocation`, which directly refers to the underlying data! /// Here we indirect via an `AllocId`. #[derive(Copy, Clone, HashStable, TyEncodable, TyDecodable, Debug, Hash, Eq, PartialEq)] pub struct ConstAlloc<'tcx> { /// The value lives here, at offset 0, and that allocation definitely is an `AllocKind::Memory` /// (so you can use `AllocMap::unwrap_memory`). pub alloc_id: AllocId, pub ty: Ty<'tcx>, } /// Represents a constant value in Rust. `Scalar` and `Slice` are optimizations for /// array length computations, enum discriminants and the pattern matching logic. #[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash)] #[derive(HashStable)] pub enum ConstValue { /// Used for types with `layout::abi::Scalar` ABI. /// /// Not using the enum `Value` to encode that this must not be `Uninit`. Scalar(Scalar), /// Only for ZSTs. ZeroSized, /// Used for references to unsized types with slice tail. /// /// This is worth an optimized representation since Rust has literals of type `&str` and /// `&[u8]`. Not having to indirect those through an `AllocId` (or two, if we used `Indirect`) /// has shown measurable performance improvements on stress tests. We then reuse this /// optimization for slice-tail types more generally during valtree-to-constval conversion. Slice { /// The allocation storing the slice contents. /// This always points to the beginning of the allocation. alloc_id: AllocId, /// The metadata field of the reference. /// This is a "target usize", so we use `u64` as in the interpreter. meta: u64, }, /// A value not representable by the other variants; needs to be stored in-memory. /// /// Must *not* be used for scalars or ZST, but having `&str` or other slices in this variant is fine. Indirect { /// The backing memory of the value. May contain more memory than needed for just the value /// if this points into some other larger ConstValue. /// /// We use an `AllocId` here instead of a `ConstAllocation<'tcx>` to make sure that when a /// raw constant (which is basically just an `AllocId`) is turned into a `ConstValue` and /// back, we can preserve the original `AllocId`. alloc_id: AllocId, /// Offset into `alloc` offset: Size, }, } #[cfg(target_pointer_width = "64")] rustc_data_structures::static_assert_size!(ConstValue, 24); impl ConstValue { #[inline] pub fn try_to_scalar(&self) -> Option { match *self { ConstValue::Indirect { .. } | ConstValue::Slice { .. } | ConstValue::ZeroSized => None, ConstValue::Scalar(val) => Some(val), } } pub fn try_to_scalar_int(&self) -> Option { self.try_to_scalar()?.try_to_scalar_int().ok() } pub fn try_to_bits(&self, size: Size) -> Option { Some(self.try_to_scalar_int()?.to_bits(size)) } pub fn try_to_bool(&self) -> Option { self.try_to_scalar_int()?.try_into().ok() } pub fn try_to_target_usize(&self, tcx: TyCtxt<'_>) -> Option { Some(self.try_to_scalar_int()?.to_target_usize(tcx)) } pub fn try_to_bits_for_ty<'tcx>( &self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, ty: Ty<'tcx>, ) -> Option { let size = tcx .layout_of(typing_env.with_post_analysis_normalized(tcx).as_query_input(ty)) .ok()? .size; self.try_to_bits(size) } pub fn from_bool(b: bool) -> Self { ConstValue::Scalar(Scalar::from_bool(b)) } pub fn from_u64(i: u64) -> Self { ConstValue::Scalar(Scalar::from_u64(i)) } pub fn from_u128(i: u128) -> Self { ConstValue::Scalar(Scalar::from_u128(i)) } pub fn from_target_usize(i: u64, cx: &impl HasDataLayout) -> Self { ConstValue::Scalar(Scalar::from_target_usize(i, cx)) } /// Must only be called on constants of type `&str` or `&[u8]`! pub fn try_get_slice_bytes_for_diagnostics<'tcx>( &self, tcx: TyCtxt<'tcx>, ) -> Option<&'tcx [u8]> { let (alloc_id, start, len) = match self { ConstValue::Scalar(_) | ConstValue::ZeroSized => { bug!("`try_get_slice_bytes` on non-slice constant") } &ConstValue::Slice { alloc_id, meta } => (alloc_id, 0, meta), &ConstValue::Indirect { alloc_id, offset } => { // The reference itself is stored behind an indirection. // Load the reference, and then load the actual slice contents. let a = tcx.global_alloc(alloc_id).unwrap_memory().inner(); let ptr_size = tcx.data_layout.pointer_size(); if a.size() < offset + 2 * ptr_size { // (partially) dangling reference return None; } // Read the wide pointer components. let ptr = a .read_scalar( &tcx, alloc_range(offset, ptr_size), /* read_provenance */ true, ) .ok()?; let ptr = ptr.to_pointer(&tcx).discard_err()?; let len = a .read_scalar( &tcx, alloc_range(offset + ptr_size, ptr_size), /* read_provenance */ false, ) .ok()?; let len = len.to_target_usize(&tcx).discard_err()?; if len == 0 { return Some(&[]); } // Non-empty slice, must have memory. We know this is a relative pointer. let (inner_prov, offset) = ptr.into_pointer_or_addr().ok()?.prov_and_relative_offset(); (inner_prov.alloc_id(), offset.bytes(), len) } }; let data = tcx.global_alloc(alloc_id).unwrap_memory(); // This is for diagnostics only, so we are okay to use `inspect_with_uninit_and_ptr_outside_interpreter`. let start = start.try_into().unwrap(); let end = start + usize::try_from(len).unwrap(); Some(data.inner().inspect_with_uninit_and_ptr_outside_interpreter(start..end)) } /// Check if a constant may contain provenance information. This is used by MIR opts. /// Can return `true` even if there is no provenance. pub fn may_have_provenance(&self, tcx: TyCtxt<'_>, size: Size) -> bool { match *self { ConstValue::ZeroSized | ConstValue::Scalar(Scalar::Int(_)) => return false, ConstValue::Scalar(Scalar::Ptr(..)) => return true, // It's hard to find out the part of the allocation we point to; // just conservatively check everything. ConstValue::Slice { alloc_id, meta: _ } => { !tcx.global_alloc(alloc_id).unwrap_memory().inner().provenance().ptrs().is_empty() } ConstValue::Indirect { alloc_id, offset } => !tcx .global_alloc(alloc_id) .unwrap_memory() .inner() .provenance() .range_empty(AllocRange::from(offset..offset + size), &tcx), } } /// Check if a constant only contains uninitialized bytes. pub fn all_bytes_uninit(&self, tcx: TyCtxt<'_>) -> bool { let ConstValue::Indirect { alloc_id, .. } = self else { return false; }; let alloc = tcx.global_alloc(*alloc_id); let GlobalAlloc::Memory(alloc) = alloc else { return false; }; let init_mask = alloc.0.init_mask(); let init_range = init_mask.is_range_initialized(AllocRange { start: Size::ZERO, size: Size::from_bytes(alloc.0.len()), }); if let Err(range) = init_range { if range.size == alloc.0.size() { return true; } } false } } /////////////////////////////////////////////////////////////////////////// /// Constants #[derive(Clone, Copy, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable, Debug)] #[derive(TypeFoldable, TypeVisitable, Lift)] pub enum Const<'tcx> { /// This constant came from the type system. /// /// Any way of turning `ty::Const` into `ConstValue` should go through `valtree_to_const_val`; /// this ensures that we consistently produce "clean" values without data in the padding or /// anything like that. /// /// FIXME(BoxyUwU): We should remove this `Ty` and look up the type for params via `ParamEnv` Ty(Ty<'tcx>, ty::Const<'tcx>), /// An unevaluated mir constant which is not part of the type system. /// /// Note that `Ty(ty::ConstKind::Unevaluated)` and this variant are *not* identical! `Ty` will /// always flow through a valtree, so all data not captured in the valtree is lost. This variant /// directly uses the evaluated result of the given constant, including e.g. data stored in /// padding. Unevaluated(UnevaluatedConst<'tcx>, Ty<'tcx>), /// This constant cannot go back into the type system, as it represents /// something the type system cannot handle (e.g. pointers). Val(ConstValue, Ty<'tcx>), } impl<'tcx> Const<'tcx> { /// Creates an unevaluated const from a `DefId` for a const item. /// The binders of the const item still need to be instantiated. pub fn from_unevaluated( tcx: TyCtxt<'tcx>, def_id: DefId, ) -> ty::EarlyBinder<'tcx, Const<'tcx>> { ty::EarlyBinder::bind(Const::Unevaluated( UnevaluatedConst { def: def_id, args: ty::GenericArgs::identity_for_item(tcx, def_id), promoted: None, }, tcx.type_of(def_id).skip_binder(), )) } #[inline(always)] pub fn ty(&self) -> Ty<'tcx> { match self { Const::Ty(ty, ct) => { match ct.kind() { // Dont use the outer ty as on invalid code we can wind up with them not being the same. // this then results in allowing const eval to add `1_i64 + 1_usize` in cases where the mir // was originally `({N: usize} + 1_usize)` under `generic_const_exprs`. ty::ConstKind::Value(cv) => cv.ty, _ => *ty, } } Const::Val(_, ty) | Const::Unevaluated(_, ty) => *ty, } } /// Determines whether we need to add this const to `required_consts`. This is the case if and /// only if evaluating it may error. #[inline] pub fn is_required_const(&self) -> bool { match self { Const::Ty(_, c) => match c.kind() { ty::ConstKind::Value(_) => false, // already a value, cannot error _ => true, }, Const::Val(..) => false, // already a value, cannot error Const::Unevaluated(..) => true, } } #[inline] pub fn try_to_scalar(self) -> Option { match self { Const::Ty(_, c) => match c.kind() { ty::ConstKind::Value(cv) if cv.ty.is_primitive() => { // A valtree of a type where leaves directly represent the scalar const value. // Just checking whether it is a leaf is insufficient as e.g. references are leafs // but the leaf value is the value they point to, not the reference itself! Some(cv.valtree.unwrap_leaf().into()) } _ => None, }, Const::Val(val, _) => val.try_to_scalar(), Const::Unevaluated(..) => None, } } #[inline] pub fn try_to_scalar_int(self) -> Option { // This is equivalent to `self.try_to_scalar()?.try_to_int().ok()`, but measurably faster. match self { Const::Val(ConstValue::Scalar(Scalar::Int(x)), _) => Some(x), Const::Ty(_, c) => match c.kind() { ty::ConstKind::Value(cv) if cv.ty.is_primitive() => Some(cv.valtree.unwrap_leaf()), _ => None, }, _ => None, } } #[inline] pub fn try_to_bits(self, size: Size) -> Option { Some(self.try_to_scalar_int()?.to_bits(size)) } #[inline] pub fn try_to_bool(self) -> Option { self.try_to_scalar_int()?.try_into().ok() } #[inline] pub fn eval( self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, span: Span, ) -> Result { match self { Const::Ty(_, c) => { if c.has_non_region_param() { return Err(ErrorHandled::TooGeneric(span)); } match c.kind() { ConstKind::Value(cv) => Ok(tcx.valtree_to_const_val(cv)), ConstKind::Expr(_) => { bug!("Normalization of `ty::ConstKind::Expr` is unimplemented") } _ => Err(ReportedErrorInfo::non_const_eval_error( tcx.dcx().delayed_bug("Unevaluated `ty::Const` in MIR body"), ) .into()), } } Const::Unevaluated(uneval, _) => { // FIXME: We might want to have a `try_eval`-like function on `Unevaluated` tcx.const_eval_resolve(typing_env, uneval, span) } Const::Val(val, _) => Ok(val), } } #[inline] pub fn try_eval_scalar( self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, ) -> Option { if let Const::Ty(_, c) = self && let ty::ConstKind::Value(cv) = c.kind() && cv.ty.is_primitive() { // Avoid the `valtree_to_const_val` query. Can only be done on primitive types that // are valtree leaves, and *not* on references. (References should return the // pointer here, which valtrees don't represent.) Some(cv.valtree.unwrap_leaf().into()) } else { self.eval(tcx, typing_env, DUMMY_SP).ok()?.try_to_scalar() } } #[inline] pub fn try_eval_scalar_int( self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, ) -> Option { self.try_eval_scalar(tcx, typing_env)?.try_to_scalar_int().ok() } #[inline] pub fn try_eval_bits( &self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, ) -> Option { let int = self.try_eval_scalar_int(tcx, typing_env)?; let size = tcx .layout_of(typing_env.with_post_analysis_normalized(tcx).as_query_input(self.ty())) .ok()? .size; Some(int.to_bits(size)) } /// Panics if the value cannot be evaluated or doesn't contain a valid integer of the given type. #[inline] pub fn eval_bits(self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> u128 { self.try_eval_bits(tcx, typing_env) .unwrap_or_else(|| bug!("expected bits of {:#?}, got {:#?}", self.ty(), self)) } #[inline] pub fn try_eval_target_usize( self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, ) -> Option { Some(self.try_eval_scalar_int(tcx, typing_env)?.to_target_usize(tcx)) } #[inline] /// Panics if the value cannot be evaluated or doesn't contain a valid `usize`. pub fn eval_target_usize(self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> u64 { self.try_eval_target_usize(tcx, typing_env) .unwrap_or_else(|| bug!("expected usize, got {:#?}", self)) } #[inline] pub fn try_eval_bool(self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> Option { self.try_eval_scalar_int(tcx, typing_env)?.try_into().ok() } #[inline] pub fn from_value(val: ConstValue, ty: Ty<'tcx>) -> Self { Self::Val(val, ty) } #[inline] pub fn from_ty_value(tcx: TyCtxt<'tcx>, val: ty::Value<'tcx>) -> Self { Self::Ty(val.ty, ty::Const::new_value(tcx, val.valtree, val.ty)) } pub fn from_bits( tcx: TyCtxt<'tcx>, bits: u128, typing_env: ty::TypingEnv<'tcx>, ty: Ty<'tcx>, ) -> Self { let size = tcx .layout_of(typing_env.as_query_input(ty)) .unwrap_or_else(|e| bug!("could not compute layout for {ty:?}: {e:?}")) .size; let cv = ConstValue::Scalar(Scalar::from_uint(bits, size)); Self::Val(cv, ty) } #[inline] pub fn from_bool(tcx: TyCtxt<'tcx>, v: bool) -> Self { let cv = ConstValue::from_bool(v); Self::Val(cv, tcx.types.bool) } #[inline] pub fn zero_sized(ty: Ty<'tcx>) -> Self { let cv = ConstValue::ZeroSized; Self::Val(cv, ty) } pub fn from_usize(tcx: TyCtxt<'tcx>, n: u64) -> Self { let ty = tcx.types.usize; let typing_env = ty::TypingEnv::fully_monomorphized(); Self::from_bits(tcx, n as u128, typing_env, ty) } #[inline] pub fn from_scalar(_tcx: TyCtxt<'tcx>, s: Scalar, ty: Ty<'tcx>) -> Self { let val = ConstValue::Scalar(s); Self::Val(val, ty) } /// Return true if any evaluation of this constant always returns the same value, /// taking into account even pointer identity tests. pub fn is_deterministic(&self) -> bool { // Some constants may generate fresh allocations for pointers they contain, // so using the same constant twice can yield two different results. // Notably, valtrees purposefully generate new allocations. match self { Const::Ty(_, c) => match c.kind() { ty::ConstKind::Param(..) => true, // A valtree may be a reference. Valtree references correspond to a // different allocation each time they are evaluated. Valtrees for primitive // types are fine though. ty::ConstKind::Value(cv) => cv.ty.is_primitive(), ty::ConstKind::Unevaluated(..) | ty::ConstKind::Expr(..) => false, // This can happen if evaluation of a constant failed. The result does not matter // much since compilation is doomed. ty::ConstKind::Error(..) => false, // Should not appear in runtime MIR. ty::ConstKind::Infer(..) | ty::ConstKind::Bound(..) | ty::ConstKind::Placeholder(..) => bug!(), }, Const::Unevaluated(..) => false, Const::Val( ConstValue::Slice { .. } | ConstValue::ZeroSized | ConstValue::Scalar(_) | ConstValue::Indirect { .. }, _, ) => true, } } } /// An unevaluated (potentially generic) constant used in MIR. #[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable)] #[derive(Hash, HashStable, TypeFoldable, TypeVisitable, Lift)] pub struct UnevaluatedConst<'tcx> { pub def: DefId, pub args: GenericArgsRef<'tcx>, pub promoted: Option, } impl<'tcx> UnevaluatedConst<'tcx> { #[inline] pub fn shrink(self) -> ty::UnevaluatedConst<'tcx> { assert_eq!(self.promoted, None); ty::UnevaluatedConst { def: self.def, args: self.args } } } impl<'tcx> UnevaluatedConst<'tcx> { #[inline] pub fn new(def: DefId, args: GenericArgsRef<'tcx>) -> UnevaluatedConst<'tcx> { UnevaluatedConst { def, args, promoted: Default::default() } } #[inline] pub fn from_instance(instance: ty::Instance<'tcx>) -> Self { UnevaluatedConst::new(instance.def_id(), instance.args) } } impl<'tcx> Display for Const<'tcx> { fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { match *self { Const::Ty(_, c) => pretty_print_const(c, fmt, true), Const::Val(val, ty) => pretty_print_const_value(val, ty, fmt), // FIXME(valtrees): Correctly print mir constants. Const::Unevaluated(c, _ty) => { ty::tls::with(move |tcx| { let c = tcx.lift(c).unwrap(); // Matches `GlobalId` printing. let instance = with_no_trimmed_paths!(tcx.def_path_str_with_args(c.def, c.args)); write!(fmt, "{instance}")?; if let Some(promoted) = c.promoted { write!(fmt, "::{promoted:?}")?; } Ok(()) }) } } } } /////////////////////////////////////////////////////////////////////////// // Const-related utilities impl<'tcx> TyCtxt<'tcx> { pub fn span_as_caller_location(self, span: Span) -> ConstValue { let topmost = span.ctxt().outer_expn().expansion_cause().unwrap_or(span); let caller = self.sess.source_map().lookup_char_pos(topmost.lo()); self.const_caller_location( Symbol::intern( &caller .file .name .for_scope(self.sess, RemapPathScopeComponents::MACRO) .to_string_lossy(), ), caller.line as u32, caller.col_display as u32 + 1, ) } }