use super::*; /// Preorder traversal of a graph. /// /// Preorder traversal is when each node is visited after at least one of its predecessors. If you /// are familiar with some basic graph theory, then this performs a depth first search and returns /// nodes in order of discovery time. /// /// ```text /// /// A /// / \ /// / \ /// B C /// \ / /// \ / /// D /// ``` /// /// A preorder traversal of this graph is either `A B D C` or `A C D B` #[derive(Clone)] pub struct Preorder<'a, 'tcx> { body: &'a Body<'tcx>, visited: DenseBitSet, worklist: Vec, } impl<'a, 'tcx> Preorder<'a, 'tcx> { pub fn new(body: &'a Body<'tcx>, root: BasicBlock) -> Preorder<'a, 'tcx> { let worklist = vec![root]; Preorder { body, visited: DenseBitSet::new_empty(body.basic_blocks.len()), worklist } } } /// Preorder traversal of a graph. /// /// This function creates an iterator over the `Body`'s basic blocks, that /// returns basic blocks in a preorder. /// /// See [`Preorder`]'s docs to learn what is preorder traversal. pub fn preorder<'a, 'tcx>(body: &'a Body<'tcx>) -> Preorder<'a, 'tcx> { Preorder::new(body, START_BLOCK) } impl<'a, 'tcx> Iterator for Preorder<'a, 'tcx> { type Item = (BasicBlock, &'a BasicBlockData<'tcx>); fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> { while let Some(idx) = self.worklist.pop() { if !self.visited.insert(idx) { continue; } let data = &self.body[idx]; if let Some(ref term) = data.terminator { self.worklist.extend(term.successors()); } return Some((idx, data)); } None } fn size_hint(&self) -> (usize, Option) { // The worklist might be only things already visited. let lower = 0; // This is extremely loose, but it's not worth a popcnt loop to do better. let upper = self.body.basic_blocks.len(); (lower, Some(upper)) } } /// Postorder traversal of a graph. /// /// Postorder traversal is when each node is visited after all of its successors, except when the /// successor is only reachable by a back-edge. If you are familiar with some basic graph theory, /// then this performs a depth first search and returns nodes in order of completion time. /// /// /// ```text /// /// A /// / \ /// / \ /// B C /// \ / /// \ / /// D /// ``` /// /// A Postorder traversal of this graph is `D B C A` or `D C B A` pub struct Postorder<'a, 'tcx> { basic_blocks: &'a IndexSlice>, visited: DenseBitSet, visit_stack: Vec<(BasicBlock, Successors<'a>)>, /// A non-empty `extra` allows for a precise calculation of the successors. extra: Option<(TyCtxt<'tcx>, Instance<'tcx>)>, } impl<'a, 'tcx> Postorder<'a, 'tcx> { pub fn new( basic_blocks: &'a IndexSlice>, root: BasicBlock, extra: Option<(TyCtxt<'tcx>, Instance<'tcx>)>, ) -> Postorder<'a, 'tcx> { let mut po = Postorder { basic_blocks, visited: DenseBitSet::new_empty(basic_blocks.len()), visit_stack: Vec::new(), extra, }; po.visit(root); po.traverse_successor(); po } fn visit(&mut self, bb: BasicBlock) { if !self.visited.insert(bb) { return; } let data = &self.basic_blocks[bb]; let successors = if let Some(extra) = self.extra { data.mono_successors(extra.0, extra.1) } else { data.terminator().successors() }; self.visit_stack.push((bb, successors)); } fn traverse_successor(&mut self) { // This is quite a complex loop due to 1. the borrow checker not liking it much // and 2. what exactly is going on is not clear // // It does the actual traversal of the graph, while the `next` method on the iterator // just pops off of the stack. `visit_stack` is a stack containing pairs of nodes and // iterators over the successors of those nodes. Each iteration attempts to get the next // node from the top of the stack, then pushes that node and an iterator over the // successors to the top of the stack. This loop only grows `visit_stack`, stopping when // we reach a child that has no children that we haven't already visited. // // For a graph that looks like this: // // A // / \ // / \ // B C // | | // | | // | D // \ / // \ / // E // // The state of the stack starts out with just the root node (`A` in this case); // [(A, [B, C])] // // When the first call to `traverse_successor` happens, the following happens: // // [(C, [D]), // `C` taken from the successors of `A`, pushed to the // // top of the stack along with the successors of `C` // (A, [B])] // // [(D, [E]), // `D` taken from successors of `C`, pushed to stack // (C, []), // (A, [B])] // // [(E, []), // `E` taken from successors of `D`, pushed to stack // (D, []), // (C, []), // (A, [B])] // // Now that the top of the stack has no successors we can traverse, each item will // be popped off during iteration until we get back to `A`. This yields [E, D, C]. // // When we yield `C` and call `traverse_successor`, we push `B` to the stack, but // since we've already visited `E`, that child isn't added to the stack. The last // two iterations yield `B` and finally `A` for a final traversal of [E, D, C, B, A] while let Some(bb) = self.visit_stack.last_mut().and_then(|(_, iter)| iter.next_back()) { self.visit(bb); } } } impl<'tcx> Iterator for Postorder<'_, 'tcx> { type Item = BasicBlock; fn next(&mut self) -> Option { let (bb, _) = self.visit_stack.pop()?; self.traverse_successor(); Some(bb) } fn size_hint(&self) -> (usize, Option) { // These bounds are not at all tight, but that's fine. // It's not worth a popcnt loop in `DenseBitSet` to improve the upper, // and in mono-reachable we can't be precise anyway. // Leaning on amortized growth is fine. let lower = self.visit_stack.len(); let upper = self.basic_blocks.len(); (lower, Some(upper)) } } /// Postorder traversal of a graph. /// /// This function creates an iterator over the `Body`'s basic blocks, that: /// - returns basic blocks in a postorder, /// - traverses the `BasicBlocks` CFG cache's reverse postorder backwards, and does not cache the /// postorder itself. /// /// See [`Postorder`]'s docs to learn what is postorder traversal. pub fn postorder<'a, 'tcx>( body: &'a Body<'tcx>, ) -> impl Iterator)> + ExactSizeIterator + DoubleEndedIterator { reverse_postorder(body).rev() } pub fn mono_reachable_reverse_postorder<'a, 'tcx>( body: &'a Body<'tcx>, tcx: TyCtxt<'tcx>, instance: Instance<'tcx>, ) -> Vec { let mut iter = Postorder::new(&body.basic_blocks, START_BLOCK, Some((tcx, instance))); let mut items = Vec::with_capacity(body.basic_blocks.len()); while let Some(block) = iter.next() { items.push(block); } items.reverse(); items } /// Returns an iterator over all basic blocks reachable from the `START_BLOCK` in no particular /// order. /// /// This is clearer than writing `preorder` in cases where the order doesn't matter. pub fn reachable<'a, 'tcx>( body: &'a Body<'tcx>, ) -> impl 'a + Iterator)> { preorder(body) } /// Returns a `DenseBitSet` containing all basic blocks reachable from the `START_BLOCK`. pub fn reachable_as_bitset(body: &Body<'_>) -> DenseBitSet { let mut iter = preorder(body); while let Some(_) = iter.next() {} iter.visited } /// Reverse postorder traversal of a graph. /// /// This function creates an iterator over the `Body`'s basic blocks, that: /// - returns basic blocks in a reverse postorder, /// - makes use of the `BasicBlocks` CFG cache's reverse postorder. /// /// Reverse postorder is the reverse order of a postorder traversal. /// This is different to a preorder traversal and represents a natural /// linearization of control-flow. /// /// ```text /// /// A /// / \ /// / \ /// B C /// \ / /// \ / /// D /// ``` /// /// A reverse postorder traversal of this graph is either `A B C D` or `A C B D` /// Note that for a graph containing no loops (i.e., A DAG), this is equivalent to /// a topological sort. pub fn reverse_postorder<'a, 'tcx>( body: &'a Body<'tcx>, ) -> impl Iterator)> + ExactSizeIterator + DoubleEndedIterator { body.basic_blocks.reverse_postorder().iter().map(|&bb| (bb, &body.basic_blocks[bb])) } /// Traversal of a [`Body`] that tries to avoid unreachable blocks in a monomorphized [`Instance`]. /// /// This is allowed to have false positives; blocks may be visited even if they are not actually /// reachable. /// /// Such a traversal is mostly useful because it lets us skip lowering the `false` side /// of `if ::CONST`, as well as [`NullOp::UbChecks`]. /// /// [`NullOp::UbChecks`]: rustc_middle::mir::NullOp::UbChecks pub fn mono_reachable<'a, 'tcx>( body: &'a Body<'tcx>, tcx: TyCtxt<'tcx>, instance: Instance<'tcx>, ) -> MonoReachable<'a, 'tcx> { MonoReachable::new(body, tcx, instance) } /// [`MonoReachable`] internally accumulates a [`DenseBitSet`] of visited blocks. This is just a /// convenience function to run that traversal then extract its set of reached blocks. pub fn mono_reachable_as_bitset<'a, 'tcx>( body: &'a Body<'tcx>, tcx: TyCtxt<'tcx>, instance: Instance<'tcx>, ) -> DenseBitSet { let mut iter = mono_reachable(body, tcx, instance); while let Some(_) = iter.next() {} iter.visited } pub struct MonoReachable<'a, 'tcx> { body: &'a Body<'tcx>, tcx: TyCtxt<'tcx>, instance: Instance<'tcx>, visited: DenseBitSet, // Other traversers track their worklist in a Vec. But we don't care about order, so we can // store ours in a DenseBitSet and thus save allocations because DenseBitSet has a small size // optimization. worklist: DenseBitSet, } impl<'a, 'tcx> MonoReachable<'a, 'tcx> { pub fn new( body: &'a Body<'tcx>, tcx: TyCtxt<'tcx>, instance: Instance<'tcx>, ) -> MonoReachable<'a, 'tcx> { let mut worklist = DenseBitSet::new_empty(body.basic_blocks.len()); worklist.insert(START_BLOCK); MonoReachable { body, tcx, instance, visited: DenseBitSet::new_empty(body.basic_blocks.len()), worklist, } } fn add_work(&mut self, blocks: impl IntoIterator) { for block in blocks.into_iter() { if !self.visited.contains(block) { self.worklist.insert(block); } } } } impl<'a, 'tcx> Iterator for MonoReachable<'a, 'tcx> { type Item = (BasicBlock, &'a BasicBlockData<'tcx>); fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> { while let Some(idx) = self.worklist.iter().next() { self.worklist.remove(idx); if !self.visited.insert(idx) { continue; } let data = &self.body[idx]; let targets = data.mono_successors(self.tcx, self.instance); self.add_work(targets); return Some((idx, data)); } None } }