use std::assert_matches::assert_matches; use std::fmt; use rustc_data_structures::fx::FxHashMap; use rustc_errors::ErrorGuaranteed; use rustc_hir as hir; use rustc_hir::def::{CtorKind, DefKind, Namespace}; use rustc_hir::def_id::{CrateNum, DefId}; use rustc_hir::lang_items::LangItem; use rustc_index::bit_set::FiniteBitSet; use rustc_macros::{Decodable, Encodable, HashStable, Lift, TyDecodable, TyEncodable}; use rustc_span::def_id::LOCAL_CRATE; use rustc_span::{DUMMY_SP, Span, Symbol}; use tracing::{debug, instrument}; use crate::error; use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags; use crate::ty::normalize_erasing_regions::NormalizationError; use crate::ty::print::{FmtPrinter, Print}; use crate::ty::{ self, EarlyBinder, GenericArgs, GenericArgsRef, Ty, TyCtxt, TypeFoldable, TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor, }; /// An `InstanceKind` along with the args that are needed to substitute the instance. /// /// Monomorphization happens on-the-fly and no monomorphized MIR is ever created. Instead, this type /// simply couples a potentially generic `InstanceKind` with some args, and codegen and const eval /// will do all required instantiations as they run. /// /// Note: the `Lift` impl is currently not used by rustc, but is used by /// rustc_codegen_cranelift when the `jit` feature is enabled. #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)] #[derive(HashStable, Lift, TypeFoldable, TypeVisitable)] pub struct Instance<'tcx> { pub def: InstanceKind<'tcx>, pub args: GenericArgsRef<'tcx>, } /// Describes why a `ReifyShim` was created. This is needed to distinguish a ReifyShim created to /// adjust for things like `#[track_caller]` in a vtable from a `ReifyShim` created to produce a /// function pointer from a vtable entry. /// Currently, this is only used when KCFI is enabled, as only KCFI needs to treat those two /// `ReifyShim`s differently. #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] #[derive(TyEncodable, TyDecodable, HashStable)] pub enum ReifyReason { /// The `ReifyShim` was created to produce a function pointer. This happens when: /// * A vtable entry is directly converted to a function call (e.g. creating a fn ptr from a /// method on a `dyn` object). /// * A function with `#[track_caller]` is converted to a function pointer /// * If KCFI is enabled, creating a function pointer from a method on a dyn-compatible trait. /// This includes the case of converting `::call`-like methods on closure-likes to function /// pointers. FnPtr, /// This `ReifyShim` was created to populate a vtable. Currently, this happens when a /// `#[track_caller]` mismatch occurs between the implementation of a method and the method. /// This includes the case of `::call`-like methods in closure-likes' vtables. Vtable, } #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] #[derive(TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable, Lift)] pub enum InstanceKind<'tcx> { /// A user-defined callable item. /// /// This includes: /// - `fn` items /// - closures /// - coroutines Item(DefId), /// An intrinsic `fn` item (with`#[rustc_intrinsic]`). /// /// Alongside `Virtual`, this is the only `InstanceKind` that does not have its own callable MIR. /// Instead, codegen and const eval "magically" evaluate calls to intrinsics purely in the /// caller. Intrinsic(DefId), /// `::method` where `method` receives unsizeable `self: Self` (part of the /// `unsized_fn_params` feature). /// /// The generated shim will take `Self` via `*mut Self` - conceptually this is `&owned Self` - /// and dereference the argument to call the original function. VTableShim(DefId), /// `fn()` pointer where the function itself cannot be turned into a pointer. /// /// One example is `::fn`, where the shim contains /// a virtual call, which codegen supports only via a direct call to the /// `::fn` instance (an `InstanceKind::Virtual`). /// /// Another example is functions annotated with `#[track_caller]`, which /// must have their implicit caller location argument populated for a call. /// Because this is a required part of the function's ABI but can't be tracked /// as a property of the function pointer, we use a single "caller location" /// (the definition of the function itself). /// /// The second field encodes *why* this shim was created. This allows distinguishing between /// a `ReifyShim` that appears in a vtable vs one that appears as a function pointer. /// /// This field will only be populated if we are compiling in a mode that needs these shims /// to be separable, currently only when KCFI is enabled. ReifyShim(DefId, Option), /// `::call_*` (generated `FnTrait` implementation for `fn()` pointers). /// /// `DefId` is `FnTrait::call_*`. FnPtrShim(DefId, Ty<'tcx>), /// Dynamic dispatch to `::fn`. /// /// This `InstanceKind` may have a callable MIR as the default implementation. /// Calls to `Virtual` instances must be codegen'd as virtual calls through the vtable. /// *This means we might not know exactly what is being called.* /// /// If this is reified to a `fn` pointer, a `ReifyShim` is used (see `ReifyShim` above for more /// details on that). Virtual(DefId, usize), /// `<[FnMut/Fn closure] as FnOnce>::call_once`. /// /// The `DefId` is the ID of the `call_once` method in `FnOnce`. /// /// This generates a body that will just borrow the (owned) self type, /// and dispatch to the `FnMut::call_mut` instance for the closure. ClosureOnceShim { call_once: DefId, track_caller: bool }, /// `<[FnMut/Fn coroutine-closure] as FnOnce>::call_once` /// /// The body generated here differs significantly from the `ClosureOnceShim`, /// since we need to generate a distinct coroutine type that will move the /// closure's upvars *out* of the closure. ConstructCoroutineInClosureShim { coroutine_closure_def_id: DefId, // Whether the generated MIR body takes the coroutine by-ref. This is // because the signature of `<{async fn} as FnMut>::call_mut` is: // `fn(&mut self, args: A) -> ::Output`, that is to say // that it returns the `FnOnce`-flavored coroutine but takes the closure // by mut ref (and similarly for `Fn::call`). receiver_by_ref: bool, }, /// Compiler-generated accessor for thread locals which returns a reference to the thread local /// the `DefId` defines. This is used to export thread locals from dylibs on platforms lacking /// native support. ThreadLocalShim(DefId), /// Proxy shim for async drop of future (def_id, proxy_cor_ty, impl_cor_ty) FutureDropPollShim(DefId, Ty<'tcx>, Ty<'tcx>), /// `core::ptr::drop_in_place::`. /// /// The `DefId` is for `core::ptr::drop_in_place`. /// The `Option>` is either `Some(T)`, or `None` for empty drop /// glue. DropGlue(DefId, Option>), /// Compiler-generated `::clone` implementation. /// /// For all types that automatically implement `Copy`, a trivial `Clone` impl is provided too. /// Additionally, arrays, tuples, and closures get a `Clone` shim even if they aren't `Copy`. /// /// The `DefId` is for `Clone::clone`, the `Ty` is the type `T` with the builtin `Clone` impl. CloneShim(DefId, Ty<'tcx>), /// Compiler-generated `::addr` implementation. /// /// Automatically generated for all potentially higher-ranked `fn(I) -> R` types. /// /// The `DefId` is for `FnPtr::addr`, the `Ty` is the type `T`. FnPtrAddrShim(DefId, Ty<'tcx>), /// `core::future::async_drop::async_drop_in_place::<'_, T>`. /// /// The `DefId` is for `core::future::async_drop::async_drop_in_place`, the `Ty` /// is the type `T`. AsyncDropGlueCtorShim(DefId, Ty<'tcx>), /// `core::future::async_drop::async_drop_in_place::<'_, T>::{closure}`. /// /// async_drop_in_place poll function implementation (for generated coroutine). /// `Ty` here is `async_drop_in_place::{closure}` coroutine type, not just `T` AsyncDropGlue(DefId, Ty<'tcx>), } impl<'tcx> Instance<'tcx> { /// Returns the `Ty` corresponding to this `Instance`, with generic instantiations applied and /// lifetimes erased, allowing a `ParamEnv` to be specified for use during normalization. pub fn ty(&self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> Ty<'tcx> { let ty = tcx.type_of(self.def.def_id()); tcx.instantiate_and_normalize_erasing_regions(self.args, typing_env, ty) } /// Finds a crate that contains a monomorphization of this instance that /// can be linked to from the local crate. A return value of `None` means /// no upstream crate provides such an exported monomorphization. /// /// This method already takes into account the global `-Zshare-generics` /// setting, always returning `None` if `share-generics` is off. pub fn upstream_monomorphization(&self, tcx: TyCtxt<'tcx>) -> Option { // If this is an item that is defined in the local crate, no upstream // crate can know about it/provide a monomorphization. if self.def_id().is_local() { return None; } // If we are not in share generics mode, we don't link to upstream // monomorphizations but always instantiate our own internal versions // instead. if !tcx.sess.opts.share_generics() // However, if the def_id is marked inline(never), then it's fine to just reuse the // upstream monomorphization. && tcx.codegen_fn_attrs(self.def_id()).inline != rustc_hir::attrs::InlineAttr::Never { return None; } // If this a non-generic instance, it cannot be a shared monomorphization. self.args.non_erasable_generics().next()?; // compiler_builtins cannot use upstream monomorphizations. if tcx.is_compiler_builtins(LOCAL_CRATE) { return None; } match self.def { InstanceKind::Item(def) => tcx .upstream_monomorphizations_for(def) .and_then(|monos| monos.get(&self.args).cloned()), InstanceKind::DropGlue(_, Some(_)) => tcx.upstream_drop_glue_for(self.args), InstanceKind::AsyncDropGlue(_, _) => None, InstanceKind::FutureDropPollShim(_, _, _) => None, InstanceKind::AsyncDropGlueCtorShim(_, _) => { tcx.upstream_async_drop_glue_for(self.args) } _ => None, } } } impl<'tcx> InstanceKind<'tcx> { #[inline] pub fn def_id(self) -> DefId { match self { InstanceKind::Item(def_id) | InstanceKind::VTableShim(def_id) | InstanceKind::ReifyShim(def_id, _) | InstanceKind::FnPtrShim(def_id, _) | InstanceKind::Virtual(def_id, _) | InstanceKind::Intrinsic(def_id) | InstanceKind::ThreadLocalShim(def_id) | InstanceKind::ClosureOnceShim { call_once: def_id, track_caller: _ } | ty::InstanceKind::ConstructCoroutineInClosureShim { coroutine_closure_def_id: def_id, receiver_by_ref: _, } | InstanceKind::DropGlue(def_id, _) | InstanceKind::CloneShim(def_id, _) | InstanceKind::FnPtrAddrShim(def_id, _) | InstanceKind::FutureDropPollShim(def_id, _, _) | InstanceKind::AsyncDropGlue(def_id, _) | InstanceKind::AsyncDropGlueCtorShim(def_id, _) => def_id, } } /// Returns the `DefId` of instances which might not require codegen locally. pub fn def_id_if_not_guaranteed_local_codegen(self) -> Option { match self { ty::InstanceKind::Item(def) => Some(def), ty::InstanceKind::DropGlue(def_id, Some(_)) | InstanceKind::AsyncDropGlueCtorShim(def_id, _) | InstanceKind::AsyncDropGlue(def_id, _) | InstanceKind::FutureDropPollShim(def_id, ..) | InstanceKind::ThreadLocalShim(def_id) => Some(def_id), InstanceKind::VTableShim(..) | InstanceKind::ReifyShim(..) | InstanceKind::FnPtrShim(..) | InstanceKind::Virtual(..) | InstanceKind::Intrinsic(..) | InstanceKind::ClosureOnceShim { .. } | ty::InstanceKind::ConstructCoroutineInClosureShim { .. } | InstanceKind::DropGlue(..) | InstanceKind::CloneShim(..) | InstanceKind::FnPtrAddrShim(..) => None, } } #[inline] pub fn get_attrs( &self, tcx: TyCtxt<'tcx>, attr: Symbol, ) -> impl Iterator { tcx.get_attrs(self.def_id(), attr) } /// Returns `true` if the LLVM version of this instance is unconditionally /// marked with `inline`. This implies that a copy of this instance is /// generated in every codegen unit. /// Note that this is only a hint. See the documentation for /// `generates_cgu_internal_copy` for more information. pub fn requires_inline(&self, tcx: TyCtxt<'tcx>) -> bool { use rustc_hir::definitions::DefPathData; let def_id = match *self { ty::InstanceKind::Item(def) => def, ty::InstanceKind::DropGlue(_, Some(_)) => return false, ty::InstanceKind::AsyncDropGlueCtorShim(_, ty) => return ty.is_coroutine(), ty::InstanceKind::FutureDropPollShim(_, _, _) => return false, ty::InstanceKind::AsyncDropGlue(_, _) => return false, ty::InstanceKind::ThreadLocalShim(_) => return false, _ => return true, }; matches!( tcx.def_key(def_id).disambiguated_data.data, DefPathData::Ctor | DefPathData::Closure ) } pub fn requires_caller_location(&self, tcx: TyCtxt<'_>) -> bool { match *self { InstanceKind::Item(def_id) | InstanceKind::Virtual(def_id, _) => { tcx.body_codegen_attrs(def_id).flags.contains(CodegenFnAttrFlags::TRACK_CALLER) } InstanceKind::ClosureOnceShim { call_once: _, track_caller } => track_caller, _ => false, } } /// Returns `true` when the MIR body associated with this instance should be monomorphized /// by its users (e.g. codegen or miri) by instantiating the `args` from `Instance` (see /// `Instance::args_for_mir_body`). /// /// Otherwise, returns `false` only for some kinds of shims where the construction of the MIR /// body should perform necessary instantiations. pub fn has_polymorphic_mir_body(&self) -> bool { match *self { InstanceKind::CloneShim(..) | InstanceKind::ThreadLocalShim(..) | InstanceKind::FnPtrAddrShim(..) | InstanceKind::FnPtrShim(..) | InstanceKind::DropGlue(_, Some(_)) | InstanceKind::FutureDropPollShim(..) | InstanceKind::AsyncDropGlue(_, _) => false, InstanceKind::AsyncDropGlueCtorShim(_, _) => false, InstanceKind::ClosureOnceShim { .. } | InstanceKind::ConstructCoroutineInClosureShim { .. } | InstanceKind::DropGlue(..) | InstanceKind::Item(_) | InstanceKind::Intrinsic(..) | InstanceKind::ReifyShim(..) | InstanceKind::Virtual(..) | InstanceKind::VTableShim(..) => true, } } } fn type_length<'tcx>(item: impl TypeVisitable>) -> usize { struct Visitor<'tcx> { type_length: usize, cache: FxHashMap, usize>, } impl<'tcx> TypeVisitor> for Visitor<'tcx> { fn visit_ty(&mut self, t: Ty<'tcx>) { if let Some(&value) = self.cache.get(&t) { self.type_length += value; return; } let prev = self.type_length; self.type_length += 1; t.super_visit_with(self); // We don't try to use the cache if the type is fairly small. if self.type_length > 16 { self.cache.insert(t, self.type_length - prev); } } fn visit_const(&mut self, ct: ty::Const<'tcx>) { self.type_length += 1; ct.super_visit_with(self); } } let mut visitor = Visitor { type_length: 0, cache: Default::default() }; item.visit_with(&mut visitor); visitor.type_length } impl<'tcx> fmt::Display for Instance<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { ty::tls::with(|tcx| { let mut p = FmtPrinter::new(tcx, Namespace::ValueNS); let instance = tcx.lift(*self).expect("could not lift for printing"); instance.print(&mut p)?; let s = p.into_buffer(); f.write_str(&s) }) } } // async_drop_in_place::coroutine.poll, when T is a standard coroutine, // should be resolved to this coroutine's future_drop_poll (through FutureDropPollShim proxy). // async_drop_in_place::coroutine>::coroutine.poll, // when T is a standard coroutine, should be resolved to this coroutine's future_drop_poll. // async_drop_in_place::coroutine>::coroutine.poll, // when T is not a coroutine, should be resolved to the innermost // async_drop_in_place::coroutine's poll function (through FutureDropPollShim proxy) fn resolve_async_drop_poll<'tcx>(mut cor_ty: Ty<'tcx>) -> Instance<'tcx> { let first_cor = cor_ty; let ty::Coroutine(poll_def_id, proxy_args) = first_cor.kind() else { bug!(); }; let poll_def_id = *poll_def_id; let mut child_ty = cor_ty; loop { if let ty::Coroutine(child_def, child_args) = child_ty.kind() { cor_ty = child_ty; if *child_def == poll_def_id { child_ty = child_args.first().unwrap().expect_ty(); continue; } else { return Instance { def: ty::InstanceKind::FutureDropPollShim(poll_def_id, first_cor, cor_ty), args: proxy_args, }; } } else { let ty::Coroutine(_, child_args) = cor_ty.kind() else { bug!(); }; if first_cor != cor_ty { return Instance { def: ty::InstanceKind::FutureDropPollShim(poll_def_id, first_cor, cor_ty), args: proxy_args, }; } else { return Instance { def: ty::InstanceKind::AsyncDropGlue(poll_def_id, cor_ty), args: child_args, }; } } } } impl<'tcx> Instance<'tcx> { /// Creates a new [`InstanceKind::Item`] from the `def_id` and `args`. /// /// Note that this item corresponds to the body of `def_id` directly, which /// likely does not make sense for trait items which need to be resolved to an /// implementation, and which may not even have a body themselves. Usages of /// this function should probably use [`Instance::expect_resolve`], or if run /// in a polymorphic environment or within a lint (that may encounter ambiguity) /// [`Instance::try_resolve`] instead. pub fn new_raw(def_id: DefId, args: GenericArgsRef<'tcx>) -> Instance<'tcx> { assert!( !args.has_escaping_bound_vars(), "args of instance {def_id:?} has escaping bound vars: {args:?}" ); Instance { def: InstanceKind::Item(def_id), args } } pub fn mono(tcx: TyCtxt<'tcx>, def_id: DefId) -> Instance<'tcx> { let args = GenericArgs::for_item(tcx, def_id, |param, _| match param.kind { ty::GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(), ty::GenericParamDefKind::Type { .. } => { bug!("Instance::mono: {:?} has type parameters", def_id) } ty::GenericParamDefKind::Const { .. } => { bug!("Instance::mono: {:?} has const parameters", def_id) } }); Instance::new_raw(def_id, args) } #[inline] pub fn def_id(&self) -> DefId { self.def.def_id() } /// Resolves a `(def_id, args)` pair to an (optional) instance -- most commonly, /// this is used to find the precise code that will run for a trait method invocation, /// if known. This should only be used for functions and consts. If you want to /// resolve an associated type, use [`TyCtxt::try_normalize_erasing_regions`]. /// /// Returns `Ok(None)` if we cannot resolve `Instance` to a specific instance. /// For example, in a context like this, /// /// ```ignore (illustrative) /// fn foo(t: T) { ... } /// ``` /// /// trying to resolve `Debug::fmt` applied to `T` will yield `Ok(None)`, because we do not /// know what code ought to run. This setting is also affected by the current `TypingMode` /// of the environment. /// /// Presuming that coherence and type-check have succeeded, if this method is invoked /// in a monomorphic context (i.e., like during codegen), then it is guaranteed to return /// `Ok(Some(instance))`, **except** for when the instance's inputs hit the type size limit, /// in which case it may bail out and return `Ok(None)`. /// /// Returns `Err(ErrorGuaranteed)` when the `Instance` resolution process /// couldn't complete due to errors elsewhere - this is distinct /// from `Ok(None)` to avoid misleading diagnostics when an error /// has already been/will be emitted, for the original cause #[instrument(level = "debug", skip(tcx), ret)] pub fn try_resolve( tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, def_id: DefId, args: GenericArgsRef<'tcx>, ) -> Result>, ErrorGuaranteed> { assert_matches!( tcx.def_kind(def_id), DefKind::Fn | DefKind::AssocFn | DefKind::Const | DefKind::AssocConst | DefKind::AnonConst | DefKind::InlineConst | DefKind::Static { .. } | DefKind::Ctor(_, CtorKind::Fn) | DefKind::Closure | DefKind::SyntheticCoroutineBody, "`Instance::try_resolve` should only be used to resolve instances of \ functions, statics, and consts; to resolve associated types, use \ `try_normalize_erasing_regions`." ); // Rust code can easily create exponentially-long types using only a // polynomial recursion depth. Even with the default recursion // depth, you can easily get cases that take >2^60 steps to run, // which means that rustc basically hangs. // // Bail out in these cases to avoid that bad user experience. if tcx.sess.opts.unstable_opts.enforce_type_length_limit && !tcx.type_length_limit().value_within_limit(type_length(args)) { return Ok(None); } // All regions in the result of this query are erased, so it's // fine to erase all of the input regions. tcx.resolve_instance_raw( tcx.erase_and_anonymize_regions(typing_env.as_query_input((def_id, args))), ) } pub fn expect_resolve( tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, def_id: DefId, args: GenericArgsRef<'tcx>, span: Span, ) -> Instance<'tcx> { // We compute the span lazily, to avoid unnecessary query calls. // If `span` is a DUMMY_SP, and the def id is local, then use the // def span of the def id. let span_or_local_def_span = || if span.is_dummy() && def_id.is_local() { tcx.def_span(def_id) } else { span }; match ty::Instance::try_resolve(tcx, typing_env, def_id, args) { Ok(Some(instance)) => instance, Ok(None) => { let type_length = type_length(args); if !tcx.type_length_limit().value_within_limit(type_length) { tcx.dcx().emit_fatal(error::TypeLengthLimit { // We don't use `def_span(def_id)` so that diagnostics point // to the crate root during mono instead of to foreign items. // This is arguably better. span: span_or_local_def_span(), instance: Instance::new_raw(def_id, args), type_length, }); } else { span_bug!( span_or_local_def_span(), "failed to resolve instance for {}", tcx.def_path_str_with_args(def_id, args) ) } } instance => span_bug!( span_or_local_def_span(), "failed to resolve instance for {}: {instance:#?}", tcx.def_path_str_with_args(def_id, args) ), } } pub fn resolve_for_fn_ptr( tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, def_id: DefId, args: GenericArgsRef<'tcx>, ) -> Option> { debug!("resolve(def_id={:?}, args={:?})", def_id, args); // Use either `resolve_closure` or `resolve_for_vtable` assert!(!tcx.is_closure_like(def_id), "Called `resolve_for_fn_ptr` on closure: {def_id:?}"); let reason = tcx.sess.is_sanitizer_kcfi_enabled().then_some(ReifyReason::FnPtr); Instance::try_resolve(tcx, typing_env, def_id, args).ok().flatten().map(|mut resolved| { match resolved.def { InstanceKind::Item(def) if resolved.def.requires_caller_location(tcx) => { debug!(" => fn pointer created for function with #[track_caller]"); resolved.def = InstanceKind::ReifyShim(def, reason); } InstanceKind::Virtual(def_id, _) => { debug!(" => fn pointer created for virtual call"); resolved.def = InstanceKind::ReifyShim(def_id, reason); } // Reify `Trait::method` implementations if KCFI is enabled // FIXME(maurer) only reify it if it is a vtable-safe function _ if tcx.sess.is_sanitizer_kcfi_enabled() && tcx .opt_associated_item(def_id) .and_then(|assoc| assoc.trait_item_def_id) .is_some() => { // If this function could also go in a vtable, we need to `ReifyShim` it with // KCFI because it can only attach one type per function. resolved.def = InstanceKind::ReifyShim(resolved.def_id(), reason) } // Reify `::call`-like method implementations if KCFI is enabled _ if tcx.sess.is_sanitizer_kcfi_enabled() && tcx.is_closure_like(resolved.def_id()) => { // Reroute through a reify via the *unresolved* instance. The resolved one can't // be directly reified because it's closure-like. The reify can handle the // unresolved instance. resolved = Instance { def: InstanceKind::ReifyShim(def_id, reason), args } } _ => {} } resolved }) } pub fn expect_resolve_for_vtable( tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, def_id: DefId, args: GenericArgsRef<'tcx>, span: Span, ) -> Instance<'tcx> { debug!("resolve_for_vtable(def_id={:?}, args={:?})", def_id, args); let fn_sig = tcx.fn_sig(def_id).instantiate_identity(); let is_vtable_shim = !fn_sig.inputs().skip_binder().is_empty() && fn_sig.input(0).skip_binder().is_param(0) && tcx.generics_of(def_id).has_self; if is_vtable_shim { debug!(" => associated item with unsizeable self: Self"); return Instance { def: InstanceKind::VTableShim(def_id), args }; } let mut resolved = Instance::expect_resolve(tcx, typing_env, def_id, args, span); let reason = tcx.sess.is_sanitizer_kcfi_enabled().then_some(ReifyReason::Vtable); match resolved.def { InstanceKind::Item(def) => { // We need to generate a shim when we cannot guarantee that // the caller of a trait object method will be aware of // `#[track_caller]` - this ensures that the caller // and callee ABI will always match. // // The shim is generated when all of these conditions are met: // // 1) The underlying method expects a caller location parameter // in the ABI let needs_track_caller_shim = resolved.def.requires_caller_location(tcx) // 2) The caller location parameter comes from having `#[track_caller]` // on the implementation, and *not* on the trait method. && !tcx.should_inherit_track_caller(def) // If the method implementation comes from the trait definition itself // (e.g. `trait Foo { #[track_caller] my_fn() { /* impl */ } }`), // then we don't need to generate a shim. This check is needed because // `should_inherit_track_caller` returns `false` if our method // implementation comes from the trait block, and not an impl block && !matches!( tcx.opt_associated_item(def), Some(ty::AssocItem { container: ty::AssocItemContainer::Trait, .. }) ); if needs_track_caller_shim { if tcx.is_closure_like(def) { debug!( " => vtable fn pointer created for closure with #[track_caller]: {:?} for method {:?} {:?}", def, def_id, args ); // Create a shim for the `FnOnce/FnMut/Fn` method we are calling // - unlike functions, invoking a closure always goes through a // trait. resolved = Instance { def: InstanceKind::ReifyShim(def_id, reason), args }; } else { debug!( " => vtable fn pointer created for function with #[track_caller]: {:?}", def ); resolved.def = InstanceKind::ReifyShim(def, reason); } } } InstanceKind::Virtual(def_id, _) => { debug!(" => vtable fn pointer created for virtual call"); resolved.def = InstanceKind::ReifyShim(def_id, reason) } _ => {} } resolved } pub fn resolve_closure( tcx: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>, requested_kind: ty::ClosureKind, ) -> Instance<'tcx> { let actual_kind = args.as_closure().kind(); match needs_fn_once_adapter_shim(actual_kind, requested_kind) { Ok(true) => Instance::fn_once_adapter_instance(tcx, def_id, args), _ => Instance::new_raw(def_id, args), } } pub fn resolve_drop_in_place(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> ty::Instance<'tcx> { let def_id = tcx.require_lang_item(LangItem::DropInPlace, DUMMY_SP); let args = tcx.mk_args(&[ty.into()]); Instance::expect_resolve( tcx, ty::TypingEnv::fully_monomorphized(), def_id, args, ty.ty_adt_def().and_then(|adt| tcx.hir_span_if_local(adt.did())).unwrap_or(DUMMY_SP), ) } pub fn resolve_async_drop_in_place(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> ty::Instance<'tcx> { let def_id = tcx.require_lang_item(LangItem::AsyncDropInPlace, DUMMY_SP); let args = tcx.mk_args(&[ty.into()]); Instance::expect_resolve( tcx, ty::TypingEnv::fully_monomorphized(), def_id, args, ty.ty_adt_def().and_then(|adt| tcx.hir_span_if_local(adt.did())).unwrap_or(DUMMY_SP), ) } pub fn resolve_async_drop_in_place_poll( tcx: TyCtxt<'tcx>, def_id: DefId, ty: Ty<'tcx>, ) -> ty::Instance<'tcx> { let args = tcx.mk_args(&[ty.into()]); Instance::expect_resolve(tcx, ty::TypingEnv::fully_monomorphized(), def_id, args, DUMMY_SP) } #[instrument(level = "debug", skip(tcx), ret)] pub fn fn_once_adapter_instance( tcx: TyCtxt<'tcx>, closure_did: DefId, args: ty::GenericArgsRef<'tcx>, ) -> Instance<'tcx> { let fn_once = tcx.require_lang_item(LangItem::FnOnce, DUMMY_SP); let call_once = tcx .associated_items(fn_once) .in_definition_order() .find(|it| it.is_fn()) .unwrap() .def_id; let track_caller = tcx.codegen_fn_attrs(closure_did).flags.contains(CodegenFnAttrFlags::TRACK_CALLER); let def = ty::InstanceKind::ClosureOnceShim { call_once, track_caller }; let self_ty = Ty::new_closure(tcx, closure_did, args); let tupled_inputs_ty = args.as_closure().sig().map_bound(|sig| sig.inputs()[0]); let tupled_inputs_ty = tcx.instantiate_bound_regions_with_erased(tupled_inputs_ty); let args = tcx.mk_args_trait(self_ty, [tupled_inputs_ty.into()]); debug!(?self_ty, args=?tupled_inputs_ty.tuple_fields()); Instance { def, args } } pub fn try_resolve_item_for_coroutine( tcx: TyCtxt<'tcx>, trait_item_id: DefId, trait_id: DefId, rcvr_args: ty::GenericArgsRef<'tcx>, ) -> Option> { let ty::Coroutine(coroutine_def_id, args) = *rcvr_args.type_at(0).kind() else { return None; }; let coroutine_kind = tcx.coroutine_kind(coroutine_def_id).unwrap(); let coroutine_callable_item = if tcx.is_lang_item(trait_id, LangItem::Future) { assert_matches!( coroutine_kind, hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _) ); hir::LangItem::FuturePoll } else if tcx.is_lang_item(trait_id, LangItem::Iterator) { assert_matches!( coroutine_kind, hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Gen, _) ); hir::LangItem::IteratorNext } else if tcx.is_lang_item(trait_id, LangItem::AsyncIterator) { assert_matches!( coroutine_kind, hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::AsyncGen, _) ); hir::LangItem::AsyncIteratorPollNext } else if tcx.is_lang_item(trait_id, LangItem::Coroutine) { assert_matches!(coroutine_kind, hir::CoroutineKind::Coroutine(_)); hir::LangItem::CoroutineResume } else { return None; }; if tcx.is_lang_item(trait_item_id, coroutine_callable_item) { if tcx.is_async_drop_in_place_coroutine(coroutine_def_id) { return Some(resolve_async_drop_poll(rcvr_args.type_at(0))); } let ty::Coroutine(_, id_args) = *tcx.type_of(coroutine_def_id).skip_binder().kind() else { bug!() }; // If the closure's kind ty disagrees with the identity closure's kind ty, // then this must be a coroutine generated by one of the `ConstructCoroutineInClosureShim`s. if args.as_coroutine().kind_ty() == id_args.as_coroutine().kind_ty() { Some(Instance { def: ty::InstanceKind::Item(coroutine_def_id), args }) } else { Some(Instance { def: ty::InstanceKind::Item( tcx.coroutine_by_move_body_def_id(coroutine_def_id), ), args, }) } } else { // All other methods should be defaulted methods of the built-in trait. // This is important for `Iterator`'s combinators, but also useful for // adding future default methods to `Future`, for instance. debug_assert!(tcx.defaultness(trait_item_id).has_value()); Some(Instance::new_raw(trait_item_id, rcvr_args)) } } /// Depending on the kind of `InstanceKind`, the MIR body associated with an /// instance is expressed in terms of the generic parameters of `self.def_id()`, and in other /// cases the MIR body is expressed in terms of the types found in the generic parameter array. /// In the former case, we want to instantiate those generic types and replace them with the /// values from the args when monomorphizing the function body. But in the latter case, we /// don't want to do that instantiation, since it has already been done effectively. /// /// This function returns `Some(args)` in the former case and `None` otherwise -- i.e., if /// this function returns `None`, then the MIR body does not require instantiation during /// codegen. fn args_for_mir_body(&self) -> Option> { self.def.has_polymorphic_mir_body().then_some(self.args) } pub fn instantiate_mir(&self, tcx: TyCtxt<'tcx>, v: EarlyBinder<'tcx, &T>) -> T where T: TypeFoldable> + Copy, { let v = v.map_bound(|v| *v); if let Some(args) = self.args_for_mir_body() { v.instantiate(tcx, args) } else { v.instantiate_identity() } } #[inline(always)] // Keep me in sync with try_instantiate_mir_and_normalize_erasing_regions pub fn instantiate_mir_and_normalize_erasing_regions( &self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, v: EarlyBinder<'tcx, T>, ) -> T where T: TypeFoldable>, { if let Some(args) = self.args_for_mir_body() { tcx.instantiate_and_normalize_erasing_regions(args, typing_env, v) } else { tcx.normalize_erasing_regions(typing_env, v.instantiate_identity()) } } #[inline(always)] // Keep me in sync with instantiate_mir_and_normalize_erasing_regions pub fn try_instantiate_mir_and_normalize_erasing_regions( &self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>, v: EarlyBinder<'tcx, T>, ) -> Result> where T: TypeFoldable>, { if let Some(args) = self.args_for_mir_body() { tcx.try_instantiate_and_normalize_erasing_regions(args, typing_env, v) } else { // We're using `instantiate_identity` as e.g. // `FnPtrShim` is separately generated for every // instantiation of the `FnDef`, so the MIR body // is already instantiated. Any generic parameters it // contains are generic parameters from the caller. tcx.try_normalize_erasing_regions(typing_env, v.instantiate_identity()) } } } fn needs_fn_once_adapter_shim( actual_closure_kind: ty::ClosureKind, trait_closure_kind: ty::ClosureKind, ) -> Result { match (actual_closure_kind, trait_closure_kind) { (ty::ClosureKind::Fn, ty::ClosureKind::Fn) | (ty::ClosureKind::FnMut, ty::ClosureKind::FnMut) | (ty::ClosureKind::FnOnce, ty::ClosureKind::FnOnce) => { // No adapter needed. Ok(false) } (ty::ClosureKind::Fn, ty::ClosureKind::FnMut) => { // The closure fn is a `fn(&self, ...)`, but we want a `fn(&mut self, ...)`. // At codegen time, these are basically the same, so we can just return the closure. Ok(false) } (ty::ClosureKind::Fn | ty::ClosureKind::FnMut, ty::ClosureKind::FnOnce) => { // The closure fn is a `fn(&self, ...)` or `fn(&mut self, ...)`, but // we want a `fn(self, ...)`. We can produce this by doing something like: // // fn call_once(self, ...) { Fn::call(&self, ...) } // fn call_once(mut self, ...) { FnMut::call_mut(&mut self, ...) } // // These are both the same at codegen time. Ok(true) } (ty::ClosureKind::FnMut | ty::ClosureKind::FnOnce, _) => Err(()), } } // Set bits represent unused generic parameters. // An empty set indicates that all parameters are used. #[derive(Debug, Copy, Clone, Eq, PartialEq, Decodable, Encodable, HashStable)] pub struct UnusedGenericParams(FiniteBitSet); impl Default for UnusedGenericParams { fn default() -> Self { UnusedGenericParams::new_all_used() } } impl UnusedGenericParams { pub fn new_all_unused(amount: u32) -> Self { let mut bitset = FiniteBitSet::new_empty(); bitset.set_range(0..amount); Self(bitset) } pub fn new_all_used() -> Self { Self(FiniteBitSet::new_empty()) } pub fn mark_used(&mut self, idx: u32) { self.0.clear(idx); } pub fn is_unused(&self, idx: u32) -> bool { self.0.contains(idx).unwrap_or(false) } pub fn is_used(&self, idx: u32) -> bool { !self.is_unused(idx) } pub fn all_used(&self) -> bool { self.0.is_empty() } pub fn bits(&self) -> u32 { self.0.0 } pub fn from_bits(bits: u32) -> UnusedGenericParams { UnusedGenericParams(FiniteBitSet(bits)) } }