// Type substitutions. use crate::ty::codec::{TyDecoder, TyEncoder}; use crate::ty::fold::{TypeFoldable, TypeFolder, TypeVisitor}; use crate::ty::sty::{ClosureSubsts, GeneratorSubsts}; use crate::ty::{self, Lift, List, ParamConst, Ty, TyCtxt}; use rustc_hir::def_id::DefId; use rustc_macros::HashStable; use rustc_serialize::{self, Decodable, Encodable}; use rustc_span::{Span, DUMMY_SP}; use smallvec::SmallVec; use core::intrinsics; use std::cmp::Ordering; use std::fmt; use std::marker::PhantomData; use std::mem; use std::num::NonZeroUsize; use std::ops::ControlFlow; /// An entity in the Rust type system, which can be one of /// several kinds (types, lifetimes, and consts). /// To reduce memory usage, a `GenericArg` is a interned pointer, /// with the lowest 2 bits being reserved for a tag to /// indicate the type (`Ty`, `Region`, or `Const`) it points to. #[derive(Copy, Clone, PartialEq, Eq, Hash)] pub struct GenericArg<'tcx> { ptr: NonZeroUsize, marker: PhantomData<(Ty<'tcx>, ty::Region<'tcx>, &'tcx ty::Const<'tcx>)>, } const TAG_MASK: usize = 0b11; const TYPE_TAG: usize = 0b00; const REGION_TAG: usize = 0b01; const CONST_TAG: usize = 0b10; #[derive(Debug, TyEncodable, TyDecodable, PartialEq, Eq, PartialOrd, Ord, HashStable)] pub enum GenericArgKind<'tcx> { Lifetime(ty::Region<'tcx>), Type(Ty<'tcx>), Const(&'tcx ty::Const<'tcx>), } impl<'tcx> GenericArgKind<'tcx> { fn pack(self) -> GenericArg<'tcx> { let (tag, ptr) = match self { GenericArgKind::Lifetime(lt) => { // Ensure we can use the tag bits. assert_eq!(mem::align_of_val(lt) & TAG_MASK, 0); (REGION_TAG, lt as *const _ as usize) } GenericArgKind::Type(ty) => { // Ensure we can use the tag bits. assert_eq!(mem::align_of_val(ty) & TAG_MASK, 0); (TYPE_TAG, ty as *const _ as usize) } GenericArgKind::Const(ct) => { // Ensure we can use the tag bits. assert_eq!(mem::align_of_val(ct) & TAG_MASK, 0); (CONST_TAG, ct as *const _ as usize) } }; GenericArg { ptr: unsafe { NonZeroUsize::new_unchecked(ptr | tag) }, marker: PhantomData } } } impl fmt::Debug for GenericArg<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self.unpack() { GenericArgKind::Lifetime(lt) => lt.fmt(f), GenericArgKind::Type(ty) => ty.fmt(f), GenericArgKind::Const(ct) => ct.fmt(f), } } } impl<'tcx> Ord for GenericArg<'tcx> { fn cmp(&self, other: &GenericArg<'_>) -> Ordering { self.unpack().cmp(&other.unpack()) } } impl<'tcx> PartialOrd for GenericArg<'tcx> { fn partial_cmp(&self, other: &GenericArg<'_>) -> Option { Some(self.cmp(&other)) } } impl<'tcx> From> for GenericArg<'tcx> { fn from(r: ty::Region<'tcx>) -> GenericArg<'tcx> { GenericArgKind::Lifetime(r).pack() } } impl<'tcx> From> for GenericArg<'tcx> { fn from(ty: Ty<'tcx>) -> GenericArg<'tcx> { GenericArgKind::Type(ty).pack() } } impl<'tcx> From<&'tcx ty::Const<'tcx>> for GenericArg<'tcx> { fn from(c: &'tcx ty::Const<'tcx>) -> GenericArg<'tcx> { GenericArgKind::Const(c).pack() } } impl<'tcx> GenericArg<'tcx> { #[inline] pub fn unpack(self) -> GenericArgKind<'tcx> { let ptr = self.ptr.get(); unsafe { match ptr & TAG_MASK { REGION_TAG => GenericArgKind::Lifetime(&*((ptr & !TAG_MASK) as *const _)), TYPE_TAG => GenericArgKind::Type(&*((ptr & !TAG_MASK) as *const _)), CONST_TAG => GenericArgKind::Const(&*((ptr & !TAG_MASK) as *const _)), _ => intrinsics::unreachable(), } } } /// Unpack the `GenericArg` as a type when it is known certainly to be a type. /// This is true in cases where `Substs` is used in places where the kinds are known /// to be limited (e.g. in tuples, where the only parameters are type parameters). pub fn expect_ty(self) -> Ty<'tcx> { match self.unpack() { GenericArgKind::Type(ty) => ty, _ => bug!("expected a type, but found another kind"), } } /// Unpack the `GenericArg` as a const when it is known certainly to be a const. pub fn expect_const(self) -> &'tcx ty::Const<'tcx> { match self.unpack() { GenericArgKind::Const(c) => c, _ => bug!("expected a const, but found another kind"), } } } impl<'a, 'tcx> Lift<'tcx> for GenericArg<'a> { type Lifted = GenericArg<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { match self.unpack() { GenericArgKind::Lifetime(lt) => tcx.lift(lt).map(|lt| lt.into()), GenericArgKind::Type(ty) => tcx.lift(ty).map(|ty| ty.into()), GenericArgKind::Const(ct) => tcx.lift(ct).map(|ct| ct.into()), } } } impl<'tcx> TypeFoldable<'tcx> for GenericArg<'tcx> { fn super_fold_with>(self, folder: &mut F) -> Self { match self.unpack() { GenericArgKind::Lifetime(lt) => lt.fold_with(folder).into(), GenericArgKind::Type(ty) => ty.fold_with(folder).into(), GenericArgKind::Const(ct) => ct.fold_with(folder).into(), } } fn super_visit_with>(&self, visitor: &mut V) -> ControlFlow { match self.unpack() { GenericArgKind::Lifetime(lt) => lt.visit_with(visitor), GenericArgKind::Type(ty) => ty.visit_with(visitor), GenericArgKind::Const(ct) => ct.visit_with(visitor), } } } impl<'tcx, E: TyEncoder<'tcx>> Encodable for GenericArg<'tcx> { fn encode(&self, e: &mut E) -> Result<(), E::Error> { self.unpack().encode(e) } } impl<'tcx, D: TyDecoder<'tcx>> Decodable for GenericArg<'tcx> { fn decode(d: &mut D) -> Result, D::Error> { Ok(GenericArgKind::decode(d)?.pack()) } } /// A substitution mapping generic parameters to new values. pub type InternalSubsts<'tcx> = List>; pub type SubstsRef<'tcx> = &'tcx InternalSubsts<'tcx>; impl<'a, 'tcx> InternalSubsts<'tcx> { /// Interpret these substitutions as the substitutions of a closure type. /// Closure substitutions have a particular structure controlled by the /// compiler that encodes information like the signature and closure kind; /// see `ty::ClosureSubsts` struct for more comments. pub fn as_closure(&'a self) -> ClosureSubsts<'a> { ClosureSubsts { substs: self } } /// Interpret these substitutions as the substitutions of a generator type. /// Closure substitutions have a particular structure controlled by the /// compiler that encodes information like the signature and generator kind; /// see `ty::GeneratorSubsts` struct for more comments. pub fn as_generator(&'tcx self) -> GeneratorSubsts<'tcx> { GeneratorSubsts { substs: self } } /// Creates a `InternalSubsts` that maps each generic parameter to itself. pub fn identity_for_item(tcx: TyCtxt<'tcx>, def_id: DefId) -> SubstsRef<'tcx> { Self::for_item(tcx, def_id, |param, _| tcx.mk_param_from_def(param)) } /// Creates a `InternalSubsts` for generic parameter definitions, /// by calling closures to obtain each kind. /// The closures get to observe the `InternalSubsts` as they're /// being built, which can be used to correctly /// substitute defaults of generic parameters. pub fn for_item(tcx: TyCtxt<'tcx>, def_id: DefId, mut mk_kind: F) -> SubstsRef<'tcx> where F: FnMut(&ty::GenericParamDef, &[GenericArg<'tcx>]) -> GenericArg<'tcx>, { let defs = tcx.generics_of(def_id); let count = defs.count(); let mut substs = SmallVec::with_capacity(count); Self::fill_item(&mut substs, tcx, defs, &mut mk_kind); tcx.intern_substs(&substs) } pub fn extend_to(&self, tcx: TyCtxt<'tcx>, def_id: DefId, mut mk_kind: F) -> SubstsRef<'tcx> where F: FnMut(&ty::GenericParamDef, &[GenericArg<'tcx>]) -> GenericArg<'tcx>, { Self::for_item(tcx, def_id, |param, substs| { self.get(param.index as usize).cloned().unwrap_or_else(|| mk_kind(param, substs)) }) } fn fill_item( substs: &mut SmallVec<[GenericArg<'tcx>; 8]>, tcx: TyCtxt<'tcx>, defs: &ty::Generics, mk_kind: &mut F, ) where F: FnMut(&ty::GenericParamDef, &[GenericArg<'tcx>]) -> GenericArg<'tcx>, { if let Some(def_id) = defs.parent { let parent_defs = tcx.generics_of(def_id); Self::fill_item(substs, tcx, parent_defs, mk_kind); } Self::fill_single(substs, defs, mk_kind) } fn fill_single( substs: &mut SmallVec<[GenericArg<'tcx>; 8]>, defs: &ty::Generics, mk_kind: &mut F, ) where F: FnMut(&ty::GenericParamDef, &[GenericArg<'tcx>]) -> GenericArg<'tcx>, { substs.reserve(defs.params.len()); for param in &defs.params { let kind = mk_kind(param, substs); assert_eq!(param.index as usize, substs.len()); substs.push(kind); } } pub fn is_noop(&self) -> bool { self.is_empty() } #[inline] pub fn types(&'a self) -> impl DoubleEndedIterator> + 'a { self.iter() .filter_map(|k| if let GenericArgKind::Type(ty) = k.unpack() { Some(ty) } else { None }) } #[inline] pub fn regions(&'a self) -> impl DoubleEndedIterator> + 'a { self.iter().filter_map(|k| { if let GenericArgKind::Lifetime(lt) = k.unpack() { Some(lt) } else { None } }) } #[inline] pub fn consts(&'a self) -> impl DoubleEndedIterator> + 'a { self.iter().filter_map(|k| { if let GenericArgKind::Const(ct) = k.unpack() { Some(ct) } else { None } }) } #[inline] pub fn non_erasable_generics( &'a self, ) -> impl DoubleEndedIterator> + 'a { self.iter().filter_map(|k| match k.unpack() { GenericArgKind::Lifetime(_) => None, generic => Some(generic), }) } #[inline] pub fn type_at(&self, i: usize) -> Ty<'tcx> { if let GenericArgKind::Type(ty) = self[i].unpack() { ty } else { bug!("expected type for param #{} in {:?}", i, self); } } #[inline] pub fn region_at(&self, i: usize) -> ty::Region<'tcx> { if let GenericArgKind::Lifetime(lt) = self[i].unpack() { lt } else { bug!("expected region for param #{} in {:?}", i, self); } } #[inline] pub fn const_at(&self, i: usize) -> &'tcx ty::Const<'tcx> { if let GenericArgKind::Const(ct) = self[i].unpack() { ct } else { bug!("expected const for param #{} in {:?}", i, self); } } #[inline] pub fn type_for_def(&self, def: &ty::GenericParamDef) -> GenericArg<'tcx> { self.type_at(def.index as usize).into() } /// Transform from substitutions for a child of `source_ancestor` /// (e.g., a trait or impl) to substitutions for the same child /// in a different item, with `target_substs` as the base for /// the target impl/trait, with the source child-specific /// parameters (e.g., method parameters) on top of that base. /// /// For example given: /// /// ```no_run /// trait X { fn f(); } /// impl X for U { fn f() {} } /// ``` /// /// * If `self` is `[Self, S, T]`: the identity substs of `f` in the trait. /// * If `source_ancestor` is the def_id of the trait. /// * If `target_substs` is `[U]`, the substs for the impl. /// * Then we will return `[U, T]`, the subst for `f` in the impl that /// are needed for it to match the trait. pub fn rebase_onto( &self, tcx: TyCtxt<'tcx>, source_ancestor: DefId, target_substs: SubstsRef<'tcx>, ) -> SubstsRef<'tcx> { let defs = tcx.generics_of(source_ancestor); tcx.mk_substs(target_substs.iter().chain(self.iter().skip(defs.params.len()))) } pub fn truncate_to(&self, tcx: TyCtxt<'tcx>, generics: &ty::Generics) -> SubstsRef<'tcx> { tcx.mk_substs(self.iter().take(generics.count())) } } impl<'tcx> TypeFoldable<'tcx> for SubstsRef<'tcx> { fn super_fold_with>(self, folder: &mut F) -> Self { // This code is hot enough that it's worth specializing for the most // common length lists, to avoid the overhead of `SmallVec` creation. // The match arms are in order of frequency. The 1, 2, and 0 cases are // typically hit in 90--99.99% of cases. When folding doesn't change // the substs, it's faster to reuse the existing substs rather than // calling `intern_substs`. match self.len() { 1 => { let param0 = self[0].fold_with(folder); if param0 == self[0] { self } else { folder.tcx().intern_substs(&[param0]) } } 2 => { let param0 = self[0].fold_with(folder); let param1 = self[1].fold_with(folder); if param0 == self[0] && param1 == self[1] { self } else { folder.tcx().intern_substs(&[param0, param1]) } } 0 => self, _ => { let params: SmallVec<[_; 8]> = self.iter().map(|k| k.fold_with(folder)).collect(); if params[..] == self[..] { self } else { folder.tcx().intern_substs(¶ms) } } } } fn super_visit_with>(&self, visitor: &mut V) -> ControlFlow { self.iter().try_for_each(|t| t.visit_with(visitor)) } } /////////////////////////////////////////////////////////////////////////// // Public trait `Subst` // // Just call `foo.subst(tcx, substs)` to perform a substitution across // `foo`. Or use `foo.subst_spanned(tcx, substs, Some(span))` when // there is more information available (for better errors). pub trait Subst<'tcx>: Sized { fn subst(self, tcx: TyCtxt<'tcx>, substs: &[GenericArg<'tcx>]) -> Self { self.subst_spanned(tcx, substs, None) } fn subst_spanned( self, tcx: TyCtxt<'tcx>, substs: &[GenericArg<'tcx>], span: Option, ) -> Self; } impl<'tcx, T: TypeFoldable<'tcx>> Subst<'tcx> for T { fn subst_spanned( self, tcx: TyCtxt<'tcx>, substs: &[GenericArg<'tcx>], span: Option, ) -> T { let mut folder = SubstFolder { tcx, substs, span, binders_passed: 0 }; self.fold_with(&mut folder) } } /////////////////////////////////////////////////////////////////////////// // The actual substitution engine itself is a type folder. struct SubstFolder<'a, 'tcx> { tcx: TyCtxt<'tcx>, substs: &'a [GenericArg<'tcx>], /// The location for which the substitution is performed, if available. span: Option, /// Number of region binders we have passed through while doing the substitution binders_passed: u32, } impl<'a, 'tcx> TypeFolder<'tcx> for SubstFolder<'a, 'tcx> { fn tcx<'b>(&'b self) -> TyCtxt<'tcx> { self.tcx } fn fold_binder>(&mut self, t: ty::Binder) -> ty::Binder { self.binders_passed += 1; let t = t.super_fold_with(self); self.binders_passed -= 1; t } fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> { // Note: This routine only handles regions that are bound on // type declarations and other outer declarations, not those // bound in *fn types*. Region substitution of the bound // regions that appear in a function signature is done using // the specialized routine `ty::replace_late_regions()`. match *r { ty::ReEarlyBound(data) => { let rk = self.substs.get(data.index as usize).map(|k| k.unpack()); match rk { Some(GenericArgKind::Lifetime(lt)) => self.shift_region_through_binders(lt), _ => { let span = self.span.unwrap_or(DUMMY_SP); let msg = format!( "Region parameter out of range \ when substituting in region {} (index={})", data.name, data.index ); span_bug!(span, "{}", msg); } } } _ => r, } } fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> { if !t.needs_subst() { return t; } match *t.kind() { ty::Param(p) => self.ty_for_param(p, t), _ => t.super_fold_with(self), } } fn fold_const(&mut self, c: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> { if !c.needs_subst() { return c; } if let ty::ConstKind::Param(p) = c.val { self.const_for_param(p, c) } else { c.super_fold_with(self) } } } impl<'a, 'tcx> SubstFolder<'a, 'tcx> { fn ty_for_param(&self, p: ty::ParamTy, source_ty: Ty<'tcx>) -> Ty<'tcx> { // Look up the type in the substitutions. It really should be in there. let opt_ty = self.substs.get(p.index as usize).map(|k| k.unpack()); let ty = match opt_ty { Some(GenericArgKind::Type(ty)) => ty, Some(kind) => { let span = self.span.unwrap_or(DUMMY_SP); span_bug!( span, "expected type for `{:?}` ({:?}/{}) but found {:?} \ when substituting, substs={:?}", p, source_ty, p.index, kind, self.substs, ); } None => { let span = self.span.unwrap_or(DUMMY_SP); span_bug!( span, "type parameter `{:?}` ({:?}/{}) out of range \ when substituting, substs={:?}", p, source_ty, p.index, self.substs, ); } }; self.shift_vars_through_binders(ty) } fn const_for_param( &self, p: ParamConst, source_ct: &'tcx ty::Const<'tcx>, ) -> &'tcx ty::Const<'tcx> { // Look up the const in the substitutions. It really should be in there. let opt_ct = self.substs.get(p.index as usize).map(|k| k.unpack()); let ct = match opt_ct { Some(GenericArgKind::Const(ct)) => ct, Some(kind) => { let span = self.span.unwrap_or(DUMMY_SP); span_bug!( span, "expected const for `{:?}` ({:?}/{}) but found {:?} \ when substituting substs={:?}", p, source_ct, p.index, kind, self.substs, ); } None => { let span = self.span.unwrap_or(DUMMY_SP); span_bug!( span, "const parameter `{:?}` ({:?}/{}) out of range \ when substituting substs={:?}", p, source_ct, p.index, self.substs, ); } }; self.shift_vars_through_binders(ct) } /// It is sometimes necessary to adjust the De Bruijn indices during substitution. This occurs /// when we are substituting a type with escaping bound vars into a context where we have /// passed through binders. That's quite a mouthful. Let's see an example: /// /// ``` /// type Func = fn(A); /// type MetaFunc = for<'a> fn(Func<&'a i32>) /// ``` /// /// The type `MetaFunc`, when fully expanded, will be /// /// for<'a> fn(fn(&'a i32)) /// ^~ ^~ ^~~ /// | | | /// | | DebruijnIndex of 2 /// Binders /// /// Here the `'a` lifetime is bound in the outer function, but appears as an argument of the /// inner one. Therefore, that appearance will have a DebruijnIndex of 2, because we must skip /// over the inner binder (remember that we count De Bruijn indices from 1). However, in the /// definition of `MetaFunc`, the binder is not visible, so the type `&'a i32` will have a /// De Bruijn index of 1. It's only during the substitution that we can see we must increase the /// depth by 1 to account for the binder that we passed through. /// /// As a second example, consider this twist: /// /// ``` /// type FuncTuple = (A,fn(A)); /// type MetaFuncTuple = for<'a> fn(FuncTuple<&'a i32>) /// ``` /// /// Here the final type will be: /// /// for<'a> fn((&'a i32, fn(&'a i32))) /// ^~~ ^~~ /// | | /// DebruijnIndex of 1 | /// DebruijnIndex of 2 /// /// As indicated in the diagram, here the same type `&'a i32` is substituted once, but in the /// first case we do not increase the De Bruijn index and in the second case we do. The reason /// is that only in the second case have we passed through a fn binder. fn shift_vars_through_binders>(&self, val: T) -> T { debug!( "shift_vars(val={:?}, binders_passed={:?}, has_escaping_bound_vars={:?})", val, self.binders_passed, val.has_escaping_bound_vars() ); if self.binders_passed == 0 || !val.has_escaping_bound_vars() { return val; } let result = ty::fold::shift_vars(self.tcx(), val, self.binders_passed); debug!("shift_vars: shifted result = {:?}", result); result } fn shift_region_through_binders(&self, region: ty::Region<'tcx>) -> ty::Region<'tcx> { if self.binders_passed == 0 || !region.has_escaping_bound_vars() { return region; } ty::fold::shift_region(self.tcx, region, self.binders_passed) } } /// Stores the user-given substs to reach some fully qualified path /// (e.g., `::Item` or `::Item`). #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable)] #[derive(HashStable, TypeFoldable, Lift)] pub struct UserSubsts<'tcx> { /// The substitutions for the item as given by the user. pub substs: SubstsRef<'tcx>, /// The self type, in the case of a `::Item` path (when applied /// to an inherent impl). See `UserSelfTy` below. pub user_self_ty: Option>, } /// Specifies the user-given self type. In the case of a path that /// refers to a member in an inherent impl, this self type is /// sometimes needed to constrain the type parameters on the impl. For /// example, in this code: /// /// ``` /// struct Foo { } /// impl Foo { fn method() { } } /// ``` /// /// when you then have a path like `>::method`, /// this struct would carry the `DefId` of the impl along with the /// self type `Foo`. Then we can instantiate the parameters of /// the impl (with the substs from `UserSubsts`) and apply those to /// the self type, giving `Foo`. Finally, we unify that with /// the self type here, which contains `?A` to be `&'static u32` #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable)] #[derive(HashStable, TypeFoldable, Lift)] pub struct UserSelfTy<'tcx> { pub impl_def_id: DefId, pub self_ty: Ty<'tcx>, }