//! Miscellaneous type-system utilities that are too small to deserve their own modules. use std::{fmt, iter}; use rustc_abi::{Float, Integer, IntegerType, Size}; use rustc_apfloat::Float as _; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; use rustc_data_structures::stack::ensure_sufficient_stack; use rustc_errors::ErrorGuaranteed; use rustc_hashes::Hash128; use rustc_hir as hir; use rustc_hir::def::{CtorOf, DefKind, Res}; use rustc_hir::def_id::{CrateNum, DefId, LocalDefId}; use rustc_index::bit_set::GrowableBitSet; use rustc_macros::{HashStable, TyDecodable, TyEncodable, extension}; use rustc_session::Limit; use rustc_span::sym; use rustc_type_ir::solve::SizedTraitKind; use smallvec::{SmallVec, smallvec}; use tracing::{debug, instrument}; use super::TypingEnv; use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags; use crate::mir; use crate::query::Providers; use crate::ty::layout::{FloatExt, IntegerExt}; use crate::ty::{ self, Asyncness, FallibleTypeFolder, GenericArgKind, GenericArgsRef, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeVisitableExt, Upcast, }; #[derive(Copy, Clone, Debug)] pub struct Discr<'tcx> { /// Bit representation of the discriminant (e.g., `-1i8` is `0xFF_u128`). pub val: u128, pub ty: Ty<'tcx>, } /// Used as an input to [`TyCtxt::uses_unique_generic_params`]. #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum CheckRegions { No, /// Only permit parameter regions. This should be used /// for everything apart from functions, which may use /// `ReBound` to represent late-bound regions. OnlyParam, /// Check region parameters from a function definition. /// Allows `ReEarlyParam` and `ReBound` to handle early /// and late-bound region parameters. FromFunction, } #[derive(Copy, Clone, Debug)] pub enum NotUniqueParam<'tcx> { DuplicateParam(ty::GenericArg<'tcx>), NotParam(ty::GenericArg<'tcx>), } impl<'tcx> fmt::Display for Discr<'tcx> { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { match *self.ty.kind() { ty::Int(ity) => { let size = ty::tls::with(|tcx| Integer::from_int_ty(&tcx, ity).size()); let x = self.val; // sign extend the raw representation to be an i128 let x = size.sign_extend(x) as i128; write!(fmt, "{x}") } _ => write!(fmt, "{}", self.val), } } } impl<'tcx> Discr<'tcx> { /// Adds `1` to the value and wraps around if the maximum for the type is reached. pub fn wrap_incr(self, tcx: TyCtxt<'tcx>) -> Self { self.checked_add(tcx, 1).0 } pub fn checked_add(self, tcx: TyCtxt<'tcx>, n: u128) -> (Self, bool) { let (size, signed) = self.ty.int_size_and_signed(tcx); let (val, oflo) = if signed { let min = size.signed_int_min(); let max = size.signed_int_max(); let val = size.sign_extend(self.val); assert!(n < (i128::MAX as u128)); let n = n as i128; let oflo = val > max - n; let val = if oflo { min + (n - (max - val) - 1) } else { val + n }; // zero the upper bits let val = val as u128; let val = size.truncate(val); (val, oflo) } else { let max = size.unsigned_int_max(); let val = self.val; let oflo = val > max - n; let val = if oflo { n - (max - val) - 1 } else { val + n }; (val, oflo) }; (Self { val, ty: self.ty }, oflo) } } #[extension(pub trait IntTypeExt)] impl IntegerType { fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { match self { IntegerType::Pointer(true) => tcx.types.isize, IntegerType::Pointer(false) => tcx.types.usize, IntegerType::Fixed(i, s) => i.to_ty(tcx, *s), } } fn initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx> { Discr { val: 0, ty: self.to_ty(tcx) } } fn disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option>) -> Option> { if let Some(val) = val { assert_eq!(self.to_ty(tcx), val.ty); let (new, oflo) = val.checked_add(tcx, 1); if oflo { None } else { Some(new) } } else { Some(self.initial_discriminant(tcx)) } } } impl<'tcx> TyCtxt<'tcx> { /// Creates a hash of the type `Ty` which will be the same no matter what crate /// context it's calculated within. This is used by the `type_id` intrinsic. pub fn type_id_hash(self, ty: Ty<'tcx>) -> Hash128 { // We want the type_id be independent of the types free regions, so we // erase them. The erase_regions() call will also anonymize bound // regions, which is desirable too. let ty = self.erase_regions(ty); self.with_stable_hashing_context(|mut hcx| { let mut hasher = StableHasher::new(); hcx.while_hashing_spans(false, |hcx| ty.hash_stable(hcx, &mut hasher)); hasher.finish() }) } pub fn res_generics_def_id(self, res: Res) -> Option { match res { Res::Def(DefKind::Ctor(CtorOf::Variant, _), def_id) => { Some(self.parent(self.parent(def_id))) } Res::Def(DefKind::Variant | DefKind::Ctor(CtorOf::Struct, _), def_id) => { Some(self.parent(def_id)) } // Other `DefKind`s don't have generics and would ICE when calling // `generics_of`. Res::Def( DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Trait | DefKind::OpaqueTy | DefKind::TyAlias | DefKind::ForeignTy | DefKind::TraitAlias | DefKind::AssocTy | DefKind::Fn | DefKind::AssocFn | DefKind::AssocConst | DefKind::Impl { .. }, def_id, ) => Some(def_id), Res::Err => None, _ => None, } } /// Checks whether `ty: Copy` holds while ignoring region constraints. /// /// This impacts whether values of `ty` are *moved* or *copied* /// when referenced. This means that we may generate MIR which /// does copies even when the type actually doesn't satisfy the /// full requirements for the `Copy` trait (cc #29149) -- this /// winds up being reported as an error during NLL borrow check. /// /// This function should not be used if there is an `InferCtxt` available. /// Use `InferCtxt::type_is_copy_modulo_regions` instead. pub fn type_is_copy_modulo_regions( self, typing_env: ty::TypingEnv<'tcx>, ty: Ty<'tcx>, ) -> bool { ty.is_trivially_pure_clone_copy() || self.is_copy_raw(typing_env.as_query_input(ty)) } /// Checks whether `ty: UseCloned` holds while ignoring region constraints. /// /// This function should not be used if there is an `InferCtxt` available. /// Use `InferCtxt::type_is_copy_modulo_regions` instead. pub fn type_is_use_cloned_modulo_regions( self, typing_env: ty::TypingEnv<'tcx>, ty: Ty<'tcx>, ) -> bool { ty.is_trivially_pure_clone_copy() || self.is_use_cloned_raw(typing_env.as_query_input(ty)) } /// Returns the deeply last field of nested structures, or the same type if /// not a structure at all. Corresponds to the only possible unsized field, /// and its type can be used to determine unsizing strategy. /// /// Should only be called if `ty` has no inference variables and does not /// need its lifetimes preserved (e.g. as part of codegen); otherwise /// normalization attempt may cause compiler bugs. pub fn struct_tail_for_codegen( self, ty: Ty<'tcx>, typing_env: ty::TypingEnv<'tcx>, ) -> Ty<'tcx> { let tcx = self; tcx.struct_tail_raw(ty, |ty| tcx.normalize_erasing_regions(typing_env, ty), || {}) } /// Returns true if a type has metadata. pub fn type_has_metadata(self, ty: Ty<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> bool { if ty.is_sized(self, typing_env) { return false; } let tail = self.struct_tail_for_codegen(ty, typing_env); match tail.kind() { ty::Foreign(..) => false, ty::Str | ty::Slice(..) | ty::Dynamic(..) => true, _ => bug!("unexpected unsized tail: {:?}", tail), } } /// Returns the deeply last field of nested structures, or the same type if /// not a structure at all. Corresponds to the only possible unsized field, /// and its type can be used to determine unsizing strategy. /// /// This is parameterized over the normalization strategy (i.e. how to /// handle `::Assoc` and `impl Trait`). You almost certainly do /// **NOT** want to pass the identity function here, unless you know what /// you're doing, or you're within normalization code itself and will handle /// an unnormalized tail recursively. /// /// See also `struct_tail_for_codegen`, which is suitable for use /// during codegen. pub fn struct_tail_raw( self, mut ty: Ty<'tcx>, mut normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>, // This is currently used to allow us to walk a ValTree // in lockstep with the type in order to get the ValTree branch that // corresponds to an unsized field. mut f: impl FnMut() -> (), ) -> Ty<'tcx> { let recursion_limit = self.recursion_limit(); for iteration in 0.. { if !recursion_limit.value_within_limit(iteration) { let suggested_limit = match recursion_limit { Limit(0) => Limit(2), limit => limit * 2, }; let reported = self .dcx() .emit_err(crate::error::RecursionLimitReached { ty, suggested_limit }); return Ty::new_error(self, reported); } match *ty.kind() { ty::Adt(def, args) => { if !def.is_struct() { break; } match def.non_enum_variant().tail_opt() { Some(field) => { f(); ty = field.ty(self, args); } None => break, } } ty::Tuple(tys) if let Some((&last_ty, _)) = tys.split_last() => { f(); ty = last_ty; } ty::Tuple(_) => break, ty::Pat(inner, _) => { f(); ty = inner; } ty::Alias(..) => { let normalized = normalize(ty); if ty == normalized { return ty; } else { ty = normalized; } } _ => { break; } } } ty } /// Same as applying `struct_tail` on `source` and `target`, but only /// keeps going as long as the two types are instances of the same /// structure definitions. /// For `(Foo>, Foo)`, the result will be `(Foo, dyn Trait)`, /// whereas struct_tail produces `T`, and `Trait`, respectively. /// /// Should only be called if the types have no inference variables and do /// not need their lifetimes preserved (e.g., as part of codegen); otherwise, /// normalization attempt may cause compiler bugs. pub fn struct_lockstep_tails_for_codegen( self, source: Ty<'tcx>, target: Ty<'tcx>, typing_env: ty::TypingEnv<'tcx>, ) -> (Ty<'tcx>, Ty<'tcx>) { let tcx = self; tcx.struct_lockstep_tails_raw(source, target, |ty| { tcx.normalize_erasing_regions(typing_env, ty) }) } /// Same as applying `struct_tail` on `source` and `target`, but only /// keeps going as long as the two types are instances of the same /// structure definitions. /// For `(Foo>, Foo)`, the result will be `(Foo, Trait)`, /// whereas struct_tail produces `T`, and `Trait`, respectively. /// /// See also `struct_lockstep_tails_for_codegen`, which is suitable for use /// during codegen. pub fn struct_lockstep_tails_raw( self, source: Ty<'tcx>, target: Ty<'tcx>, normalize: impl Fn(Ty<'tcx>) -> Ty<'tcx>, ) -> (Ty<'tcx>, Ty<'tcx>) { let (mut a, mut b) = (source, target); loop { match (a.kind(), b.kind()) { (&ty::Adt(a_def, a_args), &ty::Adt(b_def, b_args)) if a_def == b_def && a_def.is_struct() => { if let Some(f) = a_def.non_enum_variant().tail_opt() { a = f.ty(self, a_args); b = f.ty(self, b_args); } else { break; } } (&ty::Tuple(a_tys), &ty::Tuple(b_tys)) if a_tys.len() == b_tys.len() => { if let Some(&a_last) = a_tys.last() { a = a_last; b = *b_tys.last().unwrap(); } else { break; } } (ty::Alias(..), _) | (_, ty::Alias(..)) => { // If either side is a projection, attempt to // progress via normalization. (Should be safe to // apply to both sides as normalization is // idempotent.) let a_norm = normalize(a); let b_norm = normalize(b); if a == a_norm && b == b_norm { break; } else { a = a_norm; b = b_norm; } } _ => break, } } (a, b) } /// Calculate the destructor of a given type. pub fn calculate_dtor( self, adt_did: LocalDefId, validate: impl Fn(Self, LocalDefId) -> Result<(), ErrorGuaranteed>, ) -> Option { let drop_trait = self.lang_items().drop_trait()?; self.ensure_ok().coherent_trait(drop_trait).ok()?; let mut dtor_candidate = None; // `Drop` impls can only be written in the same crate as the adt, and cannot be blanket impls for &impl_did in self.local_trait_impls(drop_trait) { let Some(adt_def) = self.type_of(impl_did).skip_binder().ty_adt_def() else { continue }; if adt_def.did() != adt_did.to_def_id() { continue; } if validate(self, impl_did).is_err() { // Already `ErrorGuaranteed`, no need to delay a span bug here. continue; } let Some(item_id) = self.associated_item_def_ids(impl_did).first() else { self.dcx() .span_delayed_bug(self.def_span(impl_did), "Drop impl without drop function"); continue; }; if self.def_kind(item_id) != DefKind::AssocFn { self.dcx().span_delayed_bug(self.def_span(item_id), "drop is not a function"); continue; } if let Some(old_item_id) = dtor_candidate { self.dcx() .struct_span_err(self.def_span(item_id), "multiple drop impls found") .with_span_note(self.def_span(old_item_id), "other impl here") .delay_as_bug(); } dtor_candidate = Some(*item_id); } let did = dtor_candidate?; Some(ty::Destructor { did }) } /// Calculate the async destructor of a given type. pub fn calculate_async_dtor( self, adt_did: LocalDefId, validate: impl Fn(Self, LocalDefId) -> Result<(), ErrorGuaranteed>, ) -> Option { let async_drop_trait = self.lang_items().async_drop_trait()?; self.ensure_ok().coherent_trait(async_drop_trait).ok()?; let mut dtor_candidate = None; // `AsyncDrop` impls can only be written in the same crate as the adt, and cannot be blanket impls for &impl_did in self.local_trait_impls(async_drop_trait) { let Some(adt_def) = self.type_of(impl_did).skip_binder().ty_adt_def() else { continue }; if adt_def.did() != adt_did.to_def_id() { continue; } if validate(self, impl_did).is_err() { // Already `ErrorGuaranteed`, no need to delay a span bug here. continue; } if let Some(old_impl_did) = dtor_candidate { self.dcx() .struct_span_err(self.def_span(impl_did), "multiple async drop impls found") .with_span_note(self.def_span(old_impl_did), "other impl here") .delay_as_bug(); } dtor_candidate = Some(impl_did); } Some(ty::AsyncDestructor { impl_did: dtor_candidate?.into() }) } /// Returns the set of types that are required to be alive in /// order to run the destructor of `def` (see RFCs 769 and /// 1238). /// /// Note that this returns only the constraints for the /// destructor of `def` itself. For the destructors of the /// contents, you need `adt_dtorck_constraint`. pub fn destructor_constraints(self, def: ty::AdtDef<'tcx>) -> Vec> { let dtor = match def.destructor(self) { None => { debug!("destructor_constraints({:?}) - no dtor", def.did()); return vec![]; } Some(dtor) => dtor.did, }; let impl_def_id = self.parent(dtor); let impl_generics = self.generics_of(impl_def_id); // We have a destructor - all the parameters that are not // pure_wrt_drop (i.e, don't have a #[may_dangle] attribute) // must be live. // We need to return the list of parameters from the ADTs // generics/args that correspond to impure parameters on the // impl's generics. This is a bit ugly, but conceptually simple: // // Suppose our ADT looks like the following // // struct S(X, Y, Z); // // and the impl is // // impl<#[may_dangle] P0, P1, P2> Drop for S // // We want to return the parameters (X, Y). For that, we match // up the item-args with the args on the impl ADT, // , and then look up which of the impl args refer to // parameters marked as pure. let impl_args = match *self.type_of(impl_def_id).instantiate_identity().kind() { ty::Adt(def_, args) if def_ == def => args, _ => span_bug!(self.def_span(impl_def_id), "expected ADT for self type of `Drop` impl"), }; let item_args = ty::GenericArgs::identity_for_item(self, def.did()); let result = iter::zip(item_args, impl_args) .filter(|&(_, arg)| { match arg.kind() { GenericArgKind::Lifetime(region) => match region.kind() { ty::ReEarlyParam(ebr) => { !impl_generics.region_param(ebr, self).pure_wrt_drop } // Error: not a region param _ => false, }, GenericArgKind::Type(ty) => match *ty.kind() { ty::Param(pt) => !impl_generics.type_param(pt, self).pure_wrt_drop, // Error: not a type param _ => false, }, GenericArgKind::Const(ct) => match ct.kind() { ty::ConstKind::Param(pc) => { !impl_generics.const_param(pc, self).pure_wrt_drop } // Error: not a const param _ => false, }, } }) .map(|(item_param, _)| item_param) .collect(); debug!("destructor_constraint({:?}) = {:?}", def.did(), result); result } /// Checks whether each generic argument is simply a unique generic parameter. pub fn uses_unique_generic_params( self, args: &[ty::GenericArg<'tcx>], ignore_regions: CheckRegions, ) -> Result<(), NotUniqueParam<'tcx>> { let mut seen = GrowableBitSet::default(); let mut seen_late = FxHashSet::default(); for arg in args { match arg.kind() { GenericArgKind::Lifetime(lt) => match (ignore_regions, lt.kind()) { (CheckRegions::FromFunction, ty::ReBound(di, reg)) => { if !seen_late.insert((di, reg)) { return Err(NotUniqueParam::DuplicateParam(lt.into())); } } (CheckRegions::OnlyParam | CheckRegions::FromFunction, ty::ReEarlyParam(p)) => { if !seen.insert(p.index) { return Err(NotUniqueParam::DuplicateParam(lt.into())); } } (CheckRegions::OnlyParam | CheckRegions::FromFunction, _) => { return Err(NotUniqueParam::NotParam(lt.into())); } (CheckRegions::No, _) => {} }, GenericArgKind::Type(t) => match t.kind() { ty::Param(p) => { if !seen.insert(p.index) { return Err(NotUniqueParam::DuplicateParam(t.into())); } } _ => return Err(NotUniqueParam::NotParam(t.into())), }, GenericArgKind::Const(c) => match c.kind() { ty::ConstKind::Param(p) => { if !seen.insert(p.index) { return Err(NotUniqueParam::DuplicateParam(c.into())); } } _ => return Err(NotUniqueParam::NotParam(c.into())), }, } } Ok(()) } /// Returns `true` if `def_id` refers to a closure, coroutine, or coroutine-closure /// (i.e. an async closure). These are all represented by `hir::Closure`, and all /// have the same `DefKind`. /// /// Note that closures have a `DefId`, but the closure *expression* also has a // `HirId` that is located within the context where the closure appears (and, sadly, // a corresponding `NodeId`, since those are not yet phased out). The parent of // the closure's `DefId` will also be the context where it appears. pub fn is_closure_like(self, def_id: DefId) -> bool { matches!(self.def_kind(def_id), DefKind::Closure) } /// Returns `true` if `def_id` refers to a definition that does not have its own /// type-checking context, i.e. closure, coroutine or inline const. pub fn is_typeck_child(self, def_id: DefId) -> bool { matches!( self.def_kind(def_id), DefKind::Closure | DefKind::InlineConst | DefKind::SyntheticCoroutineBody ) } /// Returns `true` if `def_id` refers to a trait (i.e., `trait Foo { ... }`). pub fn is_trait(self, def_id: DefId) -> bool { self.def_kind(def_id) == DefKind::Trait } /// Returns `true` if `def_id` refers to a trait alias (i.e., `trait Foo = ...;`), /// and `false` otherwise. pub fn is_trait_alias(self, def_id: DefId) -> bool { self.def_kind(def_id) == DefKind::TraitAlias } /// Returns `true` if this `DefId` refers to the implicit constructor for /// a tuple struct like `struct Foo(u32)`, and `false` otherwise. pub fn is_constructor(self, def_id: DefId) -> bool { matches!(self.def_kind(def_id), DefKind::Ctor(..)) } /// Given the `DefId`, returns the `DefId` of the innermost item that /// has its own type-checking context or "inference environment". /// /// For example, a closure has its own `DefId`, but it is type-checked /// with the containing item. Similarly, an inline const block has its /// own `DefId` but it is type-checked together with the containing item. /// /// Therefore, when we fetch the /// `typeck` the closure, for example, we really wind up /// fetching the `typeck` the enclosing fn item. pub fn typeck_root_def_id(self, def_id: DefId) -> DefId { let mut def_id = def_id; while self.is_typeck_child(def_id) { def_id = self.parent(def_id); } def_id } /// Given the `DefId` and args a closure, creates the type of /// `self` argument that the closure expects. For example, for a /// `Fn` closure, this would return a reference type `&T` where /// `T = closure_ty`. /// /// Returns `None` if this closure's kind has not yet been inferred. /// This should only be possible during type checking. /// /// Note that the return value is a late-bound region and hence /// wrapped in a binder. pub fn closure_env_ty( self, closure_ty: Ty<'tcx>, closure_kind: ty::ClosureKind, env_region: ty::Region<'tcx>, ) -> Ty<'tcx> { match closure_kind { ty::ClosureKind::Fn => Ty::new_imm_ref(self, env_region, closure_ty), ty::ClosureKind::FnMut => Ty::new_mut_ref(self, env_region, closure_ty), ty::ClosureKind::FnOnce => closure_ty, } } /// Returns `true` if the node pointed to by `def_id` is a `static` item. #[inline] pub fn is_static(self, def_id: DefId) -> bool { matches!(self.def_kind(def_id), DefKind::Static { .. }) } #[inline] pub fn static_mutability(self, def_id: DefId) -> Option { if let DefKind::Static { mutability, .. } = self.def_kind(def_id) { Some(mutability) } else { None } } /// Returns `true` if this is a `static` item with the `#[thread_local]` attribute. pub fn is_thread_local_static(self, def_id: DefId) -> bool { self.codegen_fn_attrs(def_id).flags.contains(CodegenFnAttrFlags::THREAD_LOCAL) } /// Returns `true` if the node pointed to by `def_id` is a mutable `static` item. #[inline] pub fn is_mutable_static(self, def_id: DefId) -> bool { self.static_mutability(def_id) == Some(hir::Mutability::Mut) } /// Returns `true` if the item pointed to by `def_id` is a thread local which needs a /// thread local shim generated. #[inline] pub fn needs_thread_local_shim(self, def_id: DefId) -> bool { !self.sess.target.dll_tls_export && self.is_thread_local_static(def_id) && !self.is_foreign_item(def_id) } /// Returns the type a reference to the thread local takes in MIR. pub fn thread_local_ptr_ty(self, def_id: DefId) -> Ty<'tcx> { let static_ty = self.type_of(def_id).instantiate_identity(); if self.is_mutable_static(def_id) { Ty::new_mut_ptr(self, static_ty) } else if self.is_foreign_item(def_id) { Ty::new_imm_ptr(self, static_ty) } else { // FIXME: These things don't *really* have 'static lifetime. Ty::new_imm_ref(self, self.lifetimes.re_static, static_ty) } } /// Get the type of the pointer to the static that we use in MIR. pub fn static_ptr_ty(self, def_id: DefId, typing_env: ty::TypingEnv<'tcx>) -> Ty<'tcx> { // Make sure that any constants in the static's type are evaluated. let static_ty = self.normalize_erasing_regions(typing_env, self.type_of(def_id).instantiate_identity()); // Make sure that accesses to unsafe statics end up using raw pointers. // For thread-locals, this needs to be kept in sync with `Rvalue::ty`. if self.is_mutable_static(def_id) { Ty::new_mut_ptr(self, static_ty) } else if self.is_foreign_item(def_id) { Ty::new_imm_ptr(self, static_ty) } else { Ty::new_imm_ref(self, self.lifetimes.re_erased, static_ty) } } /// Expands the given impl trait type, stopping if the type is recursive. #[instrument(skip(self), level = "debug", ret)] pub fn try_expand_impl_trait_type( self, def_id: DefId, args: GenericArgsRef<'tcx>, ) -> Result, Ty<'tcx>> { let mut visitor = OpaqueTypeExpander { seen_opaque_tys: FxHashSet::default(), expanded_cache: FxHashMap::default(), primary_def_id: Some(def_id), found_recursion: false, found_any_recursion: false, check_recursion: true, tcx: self, }; let expanded_type = visitor.expand_opaque_ty(def_id, args).unwrap(); if visitor.found_recursion { Err(expanded_type) } else { Ok(expanded_type) } } /// Query and get an English description for the item's kind. pub fn def_descr(self, def_id: DefId) -> &'static str { self.def_kind_descr(self.def_kind(def_id), def_id) } /// Get an English description for the item's kind. pub fn def_kind_descr(self, def_kind: DefKind, def_id: DefId) -> &'static str { match def_kind { DefKind::AssocFn if self.associated_item(def_id).is_method() => "method", DefKind::AssocTy if self.opt_rpitit_info(def_id).is_some() => "opaque type", DefKind::Closure if let Some(coroutine_kind) = self.coroutine_kind(def_id) => { match coroutine_kind { hir::CoroutineKind::Desugared( hir::CoroutineDesugaring::Async, hir::CoroutineSource::Fn, ) => "async fn", hir::CoroutineKind::Desugared( hir::CoroutineDesugaring::Async, hir::CoroutineSource::Block, ) => "async block", hir::CoroutineKind::Desugared( hir::CoroutineDesugaring::Async, hir::CoroutineSource::Closure, ) => "async closure", hir::CoroutineKind::Desugared( hir::CoroutineDesugaring::AsyncGen, hir::CoroutineSource::Fn, ) => "async gen fn", hir::CoroutineKind::Desugared( hir::CoroutineDesugaring::AsyncGen, hir::CoroutineSource::Block, ) => "async gen block", hir::CoroutineKind::Desugared( hir::CoroutineDesugaring::AsyncGen, hir::CoroutineSource::Closure, ) => "async gen closure", hir::CoroutineKind::Desugared( hir::CoroutineDesugaring::Gen, hir::CoroutineSource::Fn, ) => "gen fn", hir::CoroutineKind::Desugared( hir::CoroutineDesugaring::Gen, hir::CoroutineSource::Block, ) => "gen block", hir::CoroutineKind::Desugared( hir::CoroutineDesugaring::Gen, hir::CoroutineSource::Closure, ) => "gen closure", hir::CoroutineKind::Coroutine(_) => "coroutine", } } _ => def_kind.descr(def_id), } } /// Gets an English article for the [`TyCtxt::def_descr`]. pub fn def_descr_article(self, def_id: DefId) -> &'static str { self.def_kind_descr_article(self.def_kind(def_id), def_id) } /// Gets an English article for the [`TyCtxt::def_kind_descr`]. pub fn def_kind_descr_article(self, def_kind: DefKind, def_id: DefId) -> &'static str { match def_kind { DefKind::AssocFn if self.associated_item(def_id).is_method() => "a", DefKind::Closure if let Some(coroutine_kind) = self.coroutine_kind(def_id) => { match coroutine_kind { hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, ..) => "an", hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::AsyncGen, ..) => "an", hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Gen, ..) => "a", hir::CoroutineKind::Coroutine(_) => "a", } } _ => def_kind.article(), } } /// Return `true` if the supplied `CrateNum` is "user-visible," meaning either a [public] /// dependency, or a [direct] private dependency. This is used to decide whether the crate can /// be shown in `impl` suggestions. /// /// [public]: TyCtxt::is_private_dep /// [direct]: rustc_session::cstore::ExternCrate::is_direct pub fn is_user_visible_dep(self, key: CrateNum) -> bool { // `#![rustc_private]` overrides defaults to make private dependencies usable. if self.features().enabled(sym::rustc_private) { return true; } // | Private | Direct | Visible | | // |---------|--------|---------|--------------------| // | Yes | Yes | Yes | !true || true | // | No | Yes | Yes | !false || true | // | Yes | No | No | !true || false | // | No | No | Yes | !false || false | !self.is_private_dep(key) // If `extern_crate` is `None`, then the crate was injected (e.g., by the allocator). // Treat that kind of crate as "indirect", since it's an implementation detail of // the language. || self.extern_crate(key).is_some_and(|e| e.is_direct()) } /// Expand any [free alias types][free] contained within the given `value`. /// /// This should be used over other normalization routines in situations where /// it's important not to normalize other alias types and where the predicates /// on the corresponding type alias shouldn't be taken into consideration. /// /// Whenever possible **prefer not to use this function**! Instead, use standard /// normalization routines or if feasible don't normalize at all. /// /// This function comes in handy if you want to mimic the behavior of eager /// type alias expansion in a localized manner. /// ///
/// This delays a bug on overflow! Therefore you need to be certain that the /// contained types get fully normalized at a later stage. Note that even on /// overflow all well-behaved free alias types get expanded correctly, so the /// result is still useful. ///
/// /// [free]: ty::Free pub fn expand_free_alias_tys>>(self, value: T) -> T { value.fold_with(&mut FreeAliasTypeExpander { tcx: self, depth: 0 }) } /// Peel off all [free alias types] in this type until there are none left. /// /// This only expands free alias types in “head” / outermost positions. It can /// be used over [expand_free_alias_tys] as an optimization in situations where /// one only really cares about the *kind* of the final aliased type but not /// the types the other constituent types alias. /// ///
/// This delays a bug on overflow! Therefore you need to be certain that the /// type gets fully normalized at a later stage. ///
/// /// [free]: ty::Free /// [expand_free_alias_tys]: Self::expand_free_alias_tys pub fn peel_off_free_alias_tys(self, mut ty: Ty<'tcx>) -> Ty<'tcx> { let ty::Alias(ty::Free, _) = ty.kind() else { return ty }; let limit = self.recursion_limit(); let mut depth = 0; while let ty::Alias(ty::Free, alias) = ty.kind() { if !limit.value_within_limit(depth) { let guar = self.dcx().delayed_bug("overflow expanding free alias type"); return Ty::new_error(self, guar); } ty = self.type_of(alias.def_id).instantiate(self, alias.args); depth += 1; } ty } // Computes the variances for an alias (opaque or RPITIT) that represent // its (un)captured regions. pub fn opt_alias_variances( self, kind: impl Into, def_id: DefId, ) -> Option<&'tcx [ty::Variance]> { match kind.into() { ty::AliasTermKind::ProjectionTy => { if self.is_impl_trait_in_trait(def_id) { Some(self.variances_of(def_id)) } else { None } } ty::AliasTermKind::OpaqueTy => Some(self.variances_of(def_id)), ty::AliasTermKind::InherentTy | ty::AliasTermKind::InherentConst | ty::AliasTermKind::FreeTy | ty::AliasTermKind::FreeConst | ty::AliasTermKind::UnevaluatedConst | ty::AliasTermKind::ProjectionConst => None, } } } struct OpaqueTypeExpander<'tcx> { // Contains the DefIds of the opaque types that are currently being // expanded. When we expand an opaque type we insert the DefId of // that type, and when we finish expanding that type we remove the // its DefId. seen_opaque_tys: FxHashSet, // Cache of all expansions we've seen so far. This is a critical // optimization for some large types produced by async fn trees. expanded_cache: FxHashMap<(DefId, GenericArgsRef<'tcx>), Ty<'tcx>>, primary_def_id: Option, found_recursion: bool, found_any_recursion: bool, /// Whether or not to check for recursive opaque types. /// This is `true` when we're explicitly checking for opaque type /// recursion, and 'false' otherwise to avoid unnecessary work. check_recursion: bool, tcx: TyCtxt<'tcx>, } impl<'tcx> OpaqueTypeExpander<'tcx> { fn expand_opaque_ty(&mut self, def_id: DefId, args: GenericArgsRef<'tcx>) -> Option> { if self.found_any_recursion { return None; } let args = args.fold_with(self); if !self.check_recursion || self.seen_opaque_tys.insert(def_id) { let expanded_ty = match self.expanded_cache.get(&(def_id, args)) { Some(expanded_ty) => *expanded_ty, None => { let generic_ty = self.tcx.type_of(def_id); let concrete_ty = generic_ty.instantiate(self.tcx, args); let expanded_ty = self.fold_ty(concrete_ty); self.expanded_cache.insert((def_id, args), expanded_ty); expanded_ty } }; if self.check_recursion { self.seen_opaque_tys.remove(&def_id); } Some(expanded_ty) } else { // If another opaque type that we contain is recursive, then it // will report the error, so we don't have to. self.found_any_recursion = true; self.found_recursion = def_id == *self.primary_def_id.as_ref().unwrap(); None } } } impl<'tcx> TypeFolder> for OpaqueTypeExpander<'tcx> { fn cx(&self) -> TyCtxt<'tcx> { self.tcx } fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> { if let ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) = *t.kind() { self.expand_opaque_ty(def_id, args).unwrap_or(t) } else if t.has_opaque_types() { t.super_fold_with(self) } else { t } } fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> { if let ty::PredicateKind::Clause(clause) = p.kind().skip_binder() && let ty::ClauseKind::Projection(projection_pred) = clause { p.kind() .rebind(ty::ProjectionPredicate { projection_term: projection_pred.projection_term.fold_with(self), // Don't fold the term on the RHS of the projection predicate. // This is because for default trait methods with RPITITs, we // install a `NormalizesTo(Projection(RPITIT) -> Opaque(RPITIT))` // predicate, which would trivially cause a cycle when we do // anything that requires `TypingEnv::with_post_analysis_normalized`. term: projection_pred.term, }) .upcast(self.tcx) } else { p.super_fold_with(self) } } } struct FreeAliasTypeExpander<'tcx> { tcx: TyCtxt<'tcx>, depth: usize, } impl<'tcx> TypeFolder> for FreeAliasTypeExpander<'tcx> { fn cx(&self) -> TyCtxt<'tcx> { self.tcx } fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> { if !ty.has_type_flags(ty::TypeFlags::HAS_TY_FREE_ALIAS) { return ty; } let ty::Alias(ty::Free, alias) = ty.kind() else { return ty.super_fold_with(self); }; if !self.tcx.recursion_limit().value_within_limit(self.depth) { let guar = self.tcx.dcx().delayed_bug("overflow expanding free alias type"); return Ty::new_error(self.tcx, guar); } self.depth += 1; let ty = ensure_sufficient_stack(|| { self.tcx.type_of(alias.def_id).instantiate(self.tcx, alias.args).fold_with(self) }); self.depth -= 1; ty } fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> { if !ct.has_type_flags(ty::TypeFlags::HAS_TY_FREE_ALIAS) { return ct; } ct.super_fold_with(self) } } impl<'tcx> Ty<'tcx> { /// Returns the `Size` for primitive types (bool, uint, int, char, float). pub fn primitive_size(self, tcx: TyCtxt<'tcx>) -> Size { match *self.kind() { ty::Bool => Size::from_bytes(1), ty::Char => Size::from_bytes(4), ty::Int(ity) => Integer::from_int_ty(&tcx, ity).size(), ty::Uint(uty) => Integer::from_uint_ty(&tcx, uty).size(), ty::Float(fty) => Float::from_float_ty(fty).size(), _ => bug!("non primitive type"), } } pub fn int_size_and_signed(self, tcx: TyCtxt<'tcx>) -> (Size, bool) { match *self.kind() { ty::Int(ity) => (Integer::from_int_ty(&tcx, ity).size(), true), ty::Uint(uty) => (Integer::from_uint_ty(&tcx, uty).size(), false), _ => bug!("non integer discriminant"), } } /// Returns the minimum and maximum values for the given numeric type (including `char`s) or /// returns `None` if the type is not numeric. pub fn numeric_min_and_max_as_bits(self, tcx: TyCtxt<'tcx>) -> Option<(u128, u128)> { use rustc_apfloat::ieee::{Double, Half, Quad, Single}; Some(match self.kind() { ty::Int(_) | ty::Uint(_) => { let (size, signed) = self.int_size_and_signed(tcx); let min = if signed { size.truncate(size.signed_int_min() as u128) } else { 0 }; let max = if signed { size.signed_int_max() as u128 } else { size.unsigned_int_max() }; (min, max) } ty::Char => (0, std::char::MAX as u128), ty::Float(ty::FloatTy::F16) => ((-Half::INFINITY).to_bits(), Half::INFINITY.to_bits()), ty::Float(ty::FloatTy::F32) => { ((-Single::INFINITY).to_bits(), Single::INFINITY.to_bits()) } ty::Float(ty::FloatTy::F64) => { ((-Double::INFINITY).to_bits(), Double::INFINITY.to_bits()) } ty::Float(ty::FloatTy::F128) => ((-Quad::INFINITY).to_bits(), Quad::INFINITY.to_bits()), _ => return None, }) } /// Returns the maximum value for the given numeric type (including `char`s) /// or returns `None` if the type is not numeric. pub fn numeric_max_val(self, tcx: TyCtxt<'tcx>) -> Option> { let typing_env = TypingEnv::fully_monomorphized(); self.numeric_min_and_max_as_bits(tcx) .map(|(_, max)| mir::Const::from_bits(tcx, max, typing_env, self)) } /// Returns the minimum value for the given numeric type (including `char`s) /// or returns `None` if the type is not numeric. pub fn numeric_min_val(self, tcx: TyCtxt<'tcx>) -> Option> { let typing_env = TypingEnv::fully_monomorphized(); self.numeric_min_and_max_as_bits(tcx) .map(|(min, _)| mir::Const::from_bits(tcx, min, typing_env, self)) } /// Checks whether values of this type `T` have a size known at /// compile time (i.e., whether `T: Sized`). Lifetimes are ignored /// for the purposes of this check, so it can be an /// over-approximation in generic contexts, where one can have /// strange rules like `>::Bar: Sized` that /// actually carry lifetime requirements. pub fn is_sized(self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> bool { self.has_trivial_sizedness(tcx, SizedTraitKind::Sized) || tcx.is_sized_raw(typing_env.as_query_input(self)) } /// Checks whether values of this type `T` implement the `Freeze` /// trait -- frozen types are those that do not contain an /// `UnsafeCell` anywhere. This is a language concept used to /// distinguish "true immutability", which is relevant to /// optimization as well as the rules around static values. Note /// that the `Freeze` trait is not exposed to end users and is /// effectively an implementation detail. pub fn is_freeze(self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> bool { self.is_trivially_freeze() || tcx.is_freeze_raw(typing_env.as_query_input(self)) } /// Fast path helper for testing if a type is `Freeze`. /// /// Returning true means the type is known to be `Freeze`. Returning /// `false` means nothing -- could be `Freeze`, might not be. pub fn is_trivially_freeze(self) -> bool { match self.kind() { ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Bool | ty::Char | ty::Str | ty::Never | ty::Ref(..) | ty::RawPtr(_, _) | ty::FnDef(..) | ty::Error(_) | ty::FnPtr(..) => true, ty::Tuple(fields) => fields.iter().all(Self::is_trivially_freeze), ty::Pat(ty, _) | ty::Slice(ty) | ty::Array(ty, _) => ty.is_trivially_freeze(), ty::Adt(..) | ty::Bound(..) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Dynamic(..) | ty::Foreign(_) | ty::Coroutine(..) | ty::CoroutineWitness(..) | ty::UnsafeBinder(_) | ty::Infer(_) | ty::Alias(..) | ty::Param(_) | ty::Placeholder(_) => false, } } /// Checks whether values of this type `T` implement the `Unpin` trait. pub fn is_unpin(self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> bool { self.is_trivially_unpin() || tcx.is_unpin_raw(typing_env.as_query_input(self)) } /// Fast path helper for testing if a type is `Unpin`. /// /// Returning true means the type is known to be `Unpin`. Returning /// `false` means nothing -- could be `Unpin`, might not be. fn is_trivially_unpin(self) -> bool { match self.kind() { ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Bool | ty::Char | ty::Str | ty::Never | ty::Ref(..) | ty::RawPtr(_, _) | ty::FnDef(..) | ty::Error(_) | ty::FnPtr(..) => true, ty::Tuple(fields) => fields.iter().all(Self::is_trivially_unpin), ty::Pat(ty, _) | ty::Slice(ty) | ty::Array(ty, _) => ty.is_trivially_unpin(), ty::Adt(..) | ty::Bound(..) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Dynamic(..) | ty::Foreign(_) | ty::Coroutine(..) | ty::CoroutineWitness(..) | ty::UnsafeBinder(_) | ty::Infer(_) | ty::Alias(..) | ty::Param(_) | ty::Placeholder(_) => false, } } /// Checks whether this type is an ADT that has unsafe fields. pub fn has_unsafe_fields(self) -> bool { if let ty::Adt(adt_def, ..) = self.kind() { adt_def.all_fields().any(|x| x.safety.is_unsafe()) } else { false } } /// Checks whether values of this type `T` implement the `AsyncDrop` trait. pub fn is_async_drop(self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> bool { !self.is_trivially_not_async_drop() && tcx.is_async_drop_raw(typing_env.as_query_input(self)) } /// Fast path helper for testing if a type is `AsyncDrop`. /// /// Returning true means the type is known to be `!AsyncDrop`. Returning /// `false` means nothing -- could be `AsyncDrop`, might not be. fn is_trivially_not_async_drop(self) -> bool { match self.kind() { ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Bool | ty::Char | ty::Str | ty::Never | ty::Ref(..) | ty::RawPtr(..) | ty::FnDef(..) | ty::Error(_) | ty::FnPtr(..) => true, // FIXME(unsafe_binders): ty::UnsafeBinder(_) => todo!(), ty::Tuple(fields) => fields.iter().all(Self::is_trivially_not_async_drop), ty::Pat(elem_ty, _) | ty::Slice(elem_ty) | ty::Array(elem_ty, _) => { elem_ty.is_trivially_not_async_drop() } ty::Adt(..) | ty::Bound(..) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Dynamic(..) | ty::Foreign(_) | ty::Coroutine(..) | ty::CoroutineWitness(..) | ty::Infer(_) | ty::Alias(..) | ty::Param(_) | ty::Placeholder(_) => false, } } /// If `ty.needs_drop(...)` returns `true`, then `ty` is definitely /// non-copy and *might* have a destructor attached; if it returns /// `false`, then `ty` definitely has no destructor (i.e., no drop glue). /// /// (Note that this implies that if `ty` has a destructor attached, /// then `needs_drop` will definitely return `true` for `ty`.) /// /// Note that this method is used to check eligible types in unions. #[inline] pub fn needs_drop(self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> bool { // Avoid querying in simple cases. match needs_drop_components(tcx, self) { Err(AlwaysRequiresDrop) => true, Ok(components) => { let query_ty = match *components { [] => return false, // If we've got a single component, call the query with that // to increase the chance that we hit the query cache. [component_ty] => component_ty, _ => self, }; // This doesn't depend on regions, so try to minimize distinct // query keys used. If normalization fails, we just use `query_ty`. debug_assert!(!typing_env.param_env.has_infer()); let query_ty = tcx .try_normalize_erasing_regions(typing_env, query_ty) .unwrap_or_else(|_| tcx.erase_regions(query_ty)); tcx.needs_drop_raw(typing_env.as_query_input(query_ty)) } } } /// If `ty.needs_async_drop(...)` returns `true`, then `ty` is definitely /// non-copy and *might* have a async destructor attached; if it returns /// `false`, then `ty` definitely has no async destructor (i.e., no async /// drop glue). /// /// (Note that this implies that if `ty` has an async destructor attached, /// then `needs_async_drop` will definitely return `true` for `ty`.) /// // FIXME(zetanumbers): Note that this method is used to check eligible types // in unions. #[inline] pub fn needs_async_drop(self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> bool { // Avoid querying in simple cases. match needs_drop_components(tcx, self) { Err(AlwaysRequiresDrop) => true, Ok(components) => { let query_ty = match *components { [] => return false, // If we've got a single component, call the query with that // to increase the chance that we hit the query cache. [component_ty] => component_ty, _ => self, }; // This doesn't depend on regions, so try to minimize distinct // query keys used. // If normalization fails, we just use `query_ty`. debug_assert!(!typing_env.has_infer()); let query_ty = tcx .try_normalize_erasing_regions(typing_env, query_ty) .unwrap_or_else(|_| tcx.erase_regions(query_ty)); tcx.needs_async_drop_raw(typing_env.as_query_input(query_ty)) } } } /// Checks if `ty` has a significant drop. /// /// Note that this method can return false even if `ty` has a destructor /// attached; even if that is the case then the adt has been marked with /// the attribute `rustc_insignificant_dtor`. /// /// Note that this method is used to check for change in drop order for /// 2229 drop reorder migration analysis. #[inline] pub fn has_significant_drop(self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> bool { // Avoid querying in simple cases. match needs_drop_components(tcx, self) { Err(AlwaysRequiresDrop) => true, Ok(components) => { let query_ty = match *components { [] => return false, // If we've got a single component, call the query with that // to increase the chance that we hit the query cache. [component_ty] => component_ty, _ => self, }; // FIXME(#86868): We should be canonicalizing, or else moving this to a method of inference // context, or *something* like that, but for now just avoid passing inference // variables to queries that can't cope with them. Instead, conservatively // return "true" (may change drop order). if query_ty.has_infer() { return true; } // This doesn't depend on regions, so try to minimize distinct // query keys used. let erased = tcx.normalize_erasing_regions(typing_env, query_ty); tcx.has_significant_drop_raw(typing_env.as_query_input(erased)) } } } /// Returns `true` if equality for this type is both reflexive and structural. /// /// Reflexive equality for a type is indicated by an `Eq` impl for that type. /// /// Primitive types (`u32`, `str`) have structural equality by definition. For composite data /// types, equality for the type as a whole is structural when it is the same as equality /// between all components (fields, array elements, etc.) of that type. For ADTs, structural /// equality is indicated by an implementation of `StructuralPartialEq` for that type. /// /// This function is "shallow" because it may return `true` for a composite type whose fields /// are not `StructuralPartialEq`. For example, `[T; 4]` has structural equality regardless of `T` /// because equality for arrays is determined by the equality of each array element. If you /// want to know whether a given call to `PartialEq::eq` will proceed structurally all the way /// down, you will need to use a type visitor. #[inline] pub fn is_structural_eq_shallow(self, tcx: TyCtxt<'tcx>) -> bool { match self.kind() { // Look for an impl of `StructuralPartialEq`. ty::Adt(..) => tcx.has_structural_eq_impl(self), // Primitive types that satisfy `Eq`. ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Str | ty::Never => true, // Composite types that satisfy `Eq` when all of their fields do. // // Because this function is "shallow", we return `true` for these composites regardless // of the type(s) contained within. ty::Pat(..) | ty::Ref(..) | ty::Array(..) | ty::Slice(_) | ty::Tuple(..) => true, // Raw pointers use bitwise comparison. ty::RawPtr(_, _) | ty::FnPtr(..) => true, // Floating point numbers are not `Eq`. ty::Float(_) => false, // Conservatively return `false` for all others... // Anonymous function types ty::FnDef(..) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Dynamic(..) | ty::Coroutine(..) => false, // Generic or inferred types // // FIXME(ecstaticmorse): Maybe we should `bug` here? This should probably only be // called for known, fully-monomorphized types. ty::Alias(..) | ty::Param(_) | ty::Bound(..) | ty::Placeholder(_) | ty::Infer(_) => { false } ty::Foreign(_) | ty::CoroutineWitness(..) | ty::Error(_) | ty::UnsafeBinder(_) => false, } } /// Peel off all reference types in this type until there are none left. /// /// This method is idempotent, i.e. `ty.peel_refs().peel_refs() == ty.peel_refs()`. /// /// # Examples /// /// - `u8` -> `u8` /// - `&'a mut u8` -> `u8` /// - `&'a &'b u8` -> `u8` /// - `&'a *const &'b u8 -> *const &'b u8` pub fn peel_refs(self) -> Ty<'tcx> { let mut ty = self; while let ty::Ref(_, inner_ty, _) = ty.kind() { ty = *inner_ty; } ty } // FIXME(compiler-errors): Think about removing this. #[inline] pub fn outer_exclusive_binder(self) -> ty::DebruijnIndex { self.0.outer_exclusive_binder } } /// Returns a list of types such that the given type needs drop if and only if /// *any* of the returned types need drop. Returns `Err(AlwaysRequiresDrop)` if /// this type always needs drop. // // FIXME(zetanumbers): consider replacing this with only // `needs_drop_components_with_async` #[inline] pub fn needs_drop_components<'tcx>( tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, ) -> Result; 2]>, AlwaysRequiresDrop> { needs_drop_components_with_async(tcx, ty, Asyncness::No) } /// Returns a list of types such that the given type needs drop if and only if /// *any* of the returned types need drop. Returns `Err(AlwaysRequiresDrop)` if /// this type always needs drop. pub fn needs_drop_components_with_async<'tcx>( tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, asyncness: Asyncness, ) -> Result; 2]>, AlwaysRequiresDrop> { match *ty.kind() { ty::Infer(ty::FreshIntTy(_)) | ty::Infer(ty::FreshFloatTy(_)) | ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Never | ty::FnDef(..) | ty::FnPtr(..) | ty::Char | ty::RawPtr(_, _) | ty::Ref(..) | ty::Str => Ok(SmallVec::new()), // Foreign types can never have destructors. ty::Foreign(..) => Ok(SmallVec::new()), // FIXME(zetanumbers): Temporary workaround for async drop of dynamic types ty::Dynamic(..) | ty::Error(_) => { if asyncness.is_async() { Ok(SmallVec::new()) } else { Err(AlwaysRequiresDrop) } } ty::Pat(ty, _) | ty::Slice(ty) => needs_drop_components_with_async(tcx, ty, asyncness), ty::Array(elem_ty, size) => { match needs_drop_components_with_async(tcx, elem_ty, asyncness) { Ok(v) if v.is_empty() => Ok(v), res => match size.try_to_target_usize(tcx) { // Arrays of size zero don't need drop, even if their element // type does. Some(0) => Ok(SmallVec::new()), Some(_) => res, // We don't know which of the cases above we are in, so // return the whole type and let the caller decide what to // do. None => Ok(smallvec![ty]), }, } } // If any field needs drop, then the whole tuple does. ty::Tuple(fields) => fields.iter().try_fold(SmallVec::new(), move |mut acc, elem| { acc.extend(needs_drop_components_with_async(tcx, elem, asyncness)?); Ok(acc) }), // These require checking for `Copy` bounds or `Adt` destructors. ty::Adt(..) | ty::Alias(..) | ty::Param(_) | ty::Bound(..) | ty::Placeholder(..) | ty::Infer(_) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Coroutine(..) | ty::CoroutineWitness(..) | ty::UnsafeBinder(_) => Ok(smallvec![ty]), } } /// Does the equivalent of /// ```ignore (illustrative) /// let v = self.iter().map(|p| p.fold_with(folder)).collect::>(); /// folder.tcx().intern_*(&v) /// ``` pub fn fold_list<'tcx, F, L, T>( list: L, folder: &mut F, intern: impl FnOnce(TyCtxt<'tcx>, &[T]) -> L, ) -> L where F: TypeFolder>, L: AsRef<[T]>, T: TypeFoldable> + PartialEq + Copy, { let slice = list.as_ref(); let mut iter = slice.iter().copied(); // Look for the first element that changed match iter.by_ref().enumerate().find_map(|(i, t)| { let new_t = t.fold_with(folder); if new_t != t { Some((i, new_t)) } else { None } }) { Some((i, new_t)) => { // An element changed, prepare to intern the resulting list let mut new_list = SmallVec::<[_; 8]>::with_capacity(slice.len()); new_list.extend_from_slice(&slice[..i]); new_list.push(new_t); for t in iter { new_list.push(t.fold_with(folder)) } intern(folder.cx(), &new_list) } None => list, } } /// Does the equivalent of /// ```ignore (illustrative) /// let v = self.iter().map(|p| p.try_fold_with(folder)).collect::>(); /// folder.tcx().intern_*(&v) /// ``` pub fn try_fold_list<'tcx, F, L, T>( list: L, folder: &mut F, intern: impl FnOnce(TyCtxt<'tcx>, &[T]) -> L, ) -> Result where F: FallibleTypeFolder>, L: AsRef<[T]>, T: TypeFoldable> + PartialEq + Copy, { let slice = list.as_ref(); let mut iter = slice.iter().copied(); // Look for the first element that changed match iter.by_ref().enumerate().find_map(|(i, t)| match t.try_fold_with(folder) { Ok(new_t) if new_t == t => None, new_t => Some((i, new_t)), }) { Some((i, Ok(new_t))) => { // An element changed, prepare to intern the resulting list let mut new_list = SmallVec::<[_; 8]>::with_capacity(slice.len()); new_list.extend_from_slice(&slice[..i]); new_list.push(new_t); for t in iter { new_list.push(t.try_fold_with(folder)?) } Ok(intern(folder.cx(), &new_list)) } Some((_, Err(err))) => { return Err(err); } None => Ok(list), } } #[derive(Copy, Clone, Debug, HashStable, TyEncodable, TyDecodable)] pub struct AlwaysRequiresDrop; /// Reveals all opaque types in the given value, replacing them /// with their underlying types. pub fn reveal_opaque_types_in_bounds<'tcx>( tcx: TyCtxt<'tcx>, val: ty::Clauses<'tcx>, ) -> ty::Clauses<'tcx> { assert!(!tcx.next_trait_solver_globally()); let mut visitor = OpaqueTypeExpander { seen_opaque_tys: FxHashSet::default(), expanded_cache: FxHashMap::default(), primary_def_id: None, found_recursion: false, found_any_recursion: false, check_recursion: false, tcx, }; val.fold_with(&mut visitor) } /// Determines whether an item is directly annotated with `doc(hidden)`. fn is_doc_hidden(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { tcx.get_attrs(def_id, sym::doc) .filter_map(|attr| attr.meta_item_list()) .any(|items| items.iter().any(|item| item.has_name(sym::hidden))) } /// Determines whether an item is annotated with `doc(notable_trait)`. pub fn is_doc_notable_trait(tcx: TyCtxt<'_>, def_id: DefId) -> bool { tcx.get_attrs(def_id, sym::doc) .filter_map(|attr| attr.meta_item_list()) .any(|items| items.iter().any(|item| item.has_name(sym::notable_trait))) } /// Determines whether an item is an intrinsic (which may be via Abi or via the `rustc_intrinsic` attribute). /// /// We double check the feature gate here because whether a function may be defined as an intrinsic causes /// the compiler to make some assumptions about its shape; if the user doesn't use a feature gate, they may /// cause an ICE that we otherwise may want to prevent. pub fn intrinsic_raw(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option { if tcx.features().intrinsics() && tcx.has_attr(def_id, sym::rustc_intrinsic) { let must_be_overridden = match tcx.hir_node_by_def_id(def_id) { hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn { has_body, .. }, .. }) => { !has_body } _ => true, }; Some(ty::IntrinsicDef { name: tcx.item_name(def_id), must_be_overridden, const_stable: tcx.has_attr(def_id, sym::rustc_intrinsic_const_stable_indirect), }) } else { None } } pub fn provide(providers: &mut Providers) { *providers = Providers { reveal_opaque_types_in_bounds, is_doc_hidden, is_doc_notable_trait, intrinsic_raw, ..*providers } }